SAFE-SQL: Self-Augmented In-Context Learning with Fine-grained
Example Selection for Text-to-SQL

Anonymous ACL submission

Abstract

Text-to-SQL aims to convert natural language
questions into executable SQL queries. While
previous approaches, such as skeleton-masked
selection, have demonstrated strong perfor-
mance by retrieving similar training examples
to guide large language models (LLMs), they
struggle in real-world scenarios where such
examples are unavailable. To overcome this
limitation, we propose Self-Augmentation in-
context learning with Fine-grained Example se-
lection for Text-to-SQL (SAFE-SQL), a novel
framework that improves SQL generation by
generating and filtering self-augmented exam-
ples. SAFE-SQL first prompts an LLM to
generate multiple Text-to-SQL examples rel-
evant to the test input. Then SAFE-SQL fil-
ters these examples through three relevance as-
sessments, constructing high-quality in-context
learning examples. Using self-generated exam-
ples, SAFE-SQL surpasses the previous zero-
shot, and few-shot Text-to-SQL frameworks,
achieving higher execution accuracy. Notably,
our approach provides additional performance
gains in extra hard and unseen scenarios, where
conventional methods often fail.

1 Introduction

Text-to-SQL generation converts questions into
SQL queries that help users access information
in databases. Traditional approaches on Text-to-
SQL, such as, rule-based systems and early ma-
chine learning models, relied on hand-crafted rules
or simple pattern matching to generate SQL queries.
They often struggle with the ambiguity and context-
dependence of natural language, making it chal-
lenging to accurately translate user intent into struc-
tured SQL commands (EI Boujddaini et al., 2024;
Mohammadjafari et al., 2025; Li and Jagadish,
2014). As the field progressed, more sophisticated
approaches emerged, including skeleton-masked
selection (Gao et al., 2023), relying on retrieving
similar examples from training data to guide query

N
Self Augmentation & filtering
Generate similar examples and reasoning!

=) question @
Examples

= []

at

‘Generate similar examples
sed on schema linking

Skeleton Masked Selection
Search similar examples in Training set!

Table Info

Retreive similar examples

‘with masking

~ ~

Retrieved Question Original Question Augmented Question

‘What are the record companies Simllar | What are the country code and Similar _ | Whatare the country code and
of orchestras in de: o 2TV | first name of the players who won | @ ===~ == - ® | last name of the players who
in both tourney WTA Champion- won in both tourney semifinals
shij n? and finals?

scending
in which they

Retrieved SQL query Gold SQL query Example SQL Query

SELECT SELECT

SELECT TRO.\{I AS FROM AS
FROM JoIN ST ONTT i JOIN A 720N
ORDER BY

o Dissimilar similar__ |

ERE
INTERSECT SELECT INTERSECT SELECT

FROM
FROM AS 71 JOIN AS71JOIN As
AS 72 ON

'WHERE WHERE

Retrieved Example User Question & Gold SQL Generated Example

Figure 1: The left example illustrates a failure in retriev-
ing similar Text-to-SQL examples from the training set.
In contrast, the right example demonstrates how our pro-
posed self-augmented approach successfully generates
similar examples autonomously.

generation. However, these methods face signifi-
cant challenges in real-world scenarios where sim-
ilar examples are often unavailable in the train-
ing set (Gan et al., 2021; Hong et al., 2024) or
retrieve unrelated examples as shown in Figure 1.
To overcome these problems, recent research has
introduced to generate synthetic data. SQL-GEN,
introduced by (Pourreza et al., 2024) introduces
dialect-specific synthetic data to resolve the diverse
SQL dialect challenges in Text-to-SQL systems.
Another important aspect of synthetic data gener-
ation is incorporating key relationships from the
schema and employing schema-distance-weighted
column sampling (Zhao et al., 2022). However,
these synthetic data generation methodologies pre-
dominantly require supervised fine-tuning, which
demands substantial computational resources and
time (Yang et al., 2024b). Moreover, self-generated
examples can introduce significant noise and inac-
curacies that undermine the quality of in-context
learning. Errors in synthetic SQL queries or flawed
reasoning paths may lead to incorrect interpreta-
tions of database schemas (Wretblad et al., 2024).
As a result, relying on unfiltered self-generated

examples for Text-to-SQL tasks can risk degrad-
ing overall model performance. Consequently, it
is necessary to develop more efficient approaches
that enhance the accuracy of Text-to-SQL while
eliminating extra training costs and mitigating the
adverse impacts of noisy self-generated examples.
In this paper, we propose SAFE-SQL, a novel
approach that fully exploits the generative power
of large language models (LLMs) to create high-
quality synthetic examples in an unsupervised man-
ner. SAFE-SQL enhances its inference capabili-
ties without additional fine-tuning through four key
steps: (1) Schema Linking: Analyzing SQL test
questions, database tables, and foreign keys to map
relationships between queries and database struc-
tures (2) Example Generation: Generating ten sim-
ilar question-SQL query-reasoning path triplets per
input using schema-linked information with LLMs
(3) Threshold-based example selection: Evaluat-
ing generated examples via embedding similarity,
keyword & structural alignment, and reasoning
path validity, retaining only those scoring above
specific threshold and (4) Final SQL Inference:
Leveraging the curated examples, this step utilizes
in-context learning to enhance the performance
of large language models. This approach benefits
from carefully selected examples that align with
the natural language question and database schema,
ensuring accurate and efficient SQL generation.
By relying on LLM-generated and filtered exam-
ples, SAFE-SQL significantly improves robustness
and accuracy, particularly in complex or unseen
scenarios where retrieval-based approaches strug-
gle. Consequently, our approach eliminates the
need for additional model training while achieving
superior performance in Text-to-SQL tasks. Our
contributions can be listed as follows:

* We propose SAFE-SQL, a fully unsupervised
approach that leverages LLMs to generate syn-
thetic examples without additional fine-tuning or
reliance on predefined training sets.

* We introduce a structured filtering mechanism
that selects high-quality question-SQL pairs
based on embedding similarity, keyword and
structural alignment, and reasoning path valida-
tion.

* Our method dynamically adapts examples using
schema-linked information to boost SQL genera-
tion particularly in complex and unseen scenar-
ios.

2 Related work

2.1 Supervised Fine-Tuning for Text-to-SQL

Supervised Fine-Tuning enables models to learn
domain-specific nuances and schema alignments,
significantly improving performance on special-
ized tasks (Sarker et al., 2024). Techniques
such as schema linking (Yang et al., 2024c),
constraint-based decoding (Scholak et al., 2021),
and execution-guided generation (Wang et al.,
2024) have further enhanced the robustness of fine-
tuned models in handling domain-specific chal-
lenges. Synthesizes text-to-SQL data from weak
and strong LLMs (Yang et al., 2024b) utilizes pref-
erence learning from the weak data from small
LLMs and strong data from Large LLMs. However,
supervised fine-tuning can be time-consuming and
demands substantial computational resources. To
remedy such issues, our approach sidesteps these
heavy requirements by generating high-quality syn-
thetic examples in a fully unsupervised manner.

2.2 In-Context Learning for Text-to-SQL

In-Context learning has emerged as another influen-
tial method, leveraging the ability of large language
models to perform text to sql tasks by conditioning
on a few examples provided in the input prompt,
without requiring explicit parameter updates. Un-
like traditional in-context learning methods that
rely on a fixed set of examples, our approach dy-
namically generates and filters schema-aware ex-
amples to better adapt to varying query structures in
real-world scenarios. AST-SQL (Shen et al., 2024)
introduces using an abstract syntax tree algorithm
to select similar examples and incorporate them
into the in-context learning pipeline.

Skeleton Masked Similarity Method Skeleton
masked similarity is an approach that emphasizes
structural similarity between natural language ques-
tions and SQL queries. This method involves ex-
tracting the skeleton of a SQL query from the given
question and masking unnecessary details to focus
on its essential structure. By preserving key struc-
tural patterns, such as SELECT-FROM-WHERE
clauses, this approach facilitates learning the corre-
spondence between natural language expressions
and SQL query elements. By moving beyond sim-
ple word-level matching, it captures deeper struc-
tural correlations, which is particularly effective for
complex queries or linguistically diverse questions.

1) Similar example generation step

User Question:
Show countries where a singer above age 40
and a'singer below 30 are from.

User Question:
10 countries

ger bel

untry

oreign keys:

vem T vgsgag

- a singer above age

a9 a sin
—yQ"“"v//
% Co

_—

low 30 0
- Age 4T ...
Related Foreign keys:

generate 10 Examples

@ Bxample #1
‘Augmented Question

LM Related Foreign keys
+Resoning Path

“Generate 10 Similar
Examples with
Reasoning Path”

Usar Question

Related Foreign keys

B. Structural & key word simiilarity Example 3 (Score: 10)
between test question & generat-

ed question Example 4—(Score: 5}

C. Rationality of Reasoning path Example 5—(Score:6}

Example 6 (Score: 8)~

Relevance score = a*A + B¥B + y*C
Example 7—(Score: 3)

Relevance scoring Threshold Filtering

[singer_in_concert.Singer_ID = Singer.Singer_ID]
User Input Schema linking Example Generation
2) Example filtering & inference step
l Threshold =8 Reference to the following
. similar examples, give me
Example-i—{Seore:7} the sq] query of the question.
A. semantic similarity between test m
question & generated question Example 2 (Score: 8)~{ The Answer is

/]

User Question
SELECT country
FROM singer
WHERE age > 40
INTERSECT
SELECT country
FROM singer
WHERE age < 30

Foreign keys

T Example2
- Augmented Question
-sQL quer
- Reasoning path M

™ Example3

T Example 6

Final Inference

Figure 2: Overall flow of our proposed SAFE-SQL.

Classification and Decomposition Methods
The classification and decomposition method sim-
plifies SQL query generation by breaking down
natural language questions into sequential steps.
This process starts with classifying the input based
on its structure or intent (e.g., single-table queries,
multi-table joins, or nested queries) and then de-
composes the question into smaller subtasks, such
as identifying specific clauses and resolving their
components. PTD-SQL (Luo et al., 2024) uses
this step-wise approach to enhance LLM inference,
reducing complexity and improving overall accu-
racy by modularizing the SQL generation process.
While this method effectively handles complex and
multi-intent queries, it struggles with questions that
do not fit predefined categories.

Self-Training and Correction Methods Recent
advancements in the Text-to-SQL domain have fo-
cused on enhancing model performance and relia-
bility through self-training and self-correction tech-
niques. These approaches enable models to gener-
ate data or correct errors autonomously, thereby im-
proving data efficiency and generalization capabili-
ties. LG Al research introduces Self-training strat-
egy (Jo et al., 2024) utilizing pseudo-labeled unan-
swerable questions to develop a reliable Text-to-
SQL system for Electronic Health Records (EHRs).
SelECT-SQL (Shen and Kejriwal, 2024), proposes
an innovative in-context learning solution that com-
bines chain-of-thought prompting, self-correction,
and ensemble methods. MAGIC (Askari et al.,
2024), use multiple agents (manager, feedback, and
correction agents) to iteratively refine generated
SQL queries. Other approaches employ code lan-

guage models to repeatedly correct errors in SQL
queries (Chen et al., 2023). Unlike these iterative
correction techniques, our approach preemptively
filters and refines self-generated examples to re-
duce errors before query generation, thereby avoid-
ing the need for additional correction steps.

3 Fine-grained Self-Augmentation for
Text-to-SQL

We propose SAFE-SQL, a framework that auto-
matically generates high-quality examples for in-
context learning in Text-to-SQL tasks. Unlike tradi-
tional methods that rely on retrieving similar ques-
tions or using predefined templates, SAFE-SQL
uses LLMs to create synthetic examples tailored
to the given database schema. These examples
are then filtered based on their semantic similarity,
structural similarity, and the quality of their reason-
ing paths. Finally, we predict final SQL query for
the test input using the self-generated examples via
in-context learning.

3.1 Schema Linking

The first step in SAFE-SQL is schema linking,
which identifies and extracts relevant schema el-
ements from the database to reduce noise and im-
prove performance in Text-to-SQL tasks (Cao et al.,
2024). As shown in Figure 2, the schema linking
step involves analyzing the test question to detect
keywords and phrases that correspond to schema
elements such as tables, columns, rows, and foreign
keys within the database schema. This mapping
narrows the focus to the most pertinent parts of
the schema and provides the necessary context for

generating examples that are both meaningful and
grounded in the database structure.

3.2 Example Generation

Using the information obtained from schema link-
ing, the LLM generates multiple synthetic exam-
ples for each test question. As illustrated in Fig-
ure 2, for each test question, we generate ten ex-
amples—each comprising a similar question, its
corresponding SQL query, and a detailed reasoning
path. These examples maintain structural similarity
while varying elements such as numerical values,
table names, and key attributes. This controlled
variation ensures that the generated examples re-
main relevant while encouraging the model to gen-
eralize beyond surface-level patterns. By observing
these modified instances, the model can infer the
correct SQL query even when faced with unseen
but structurally similar questions. In particular, the
reasoning path outlines the logical steps required
to derive the correct SQL query result, providing a
comprehensive explanation of the query execution
process. We provide the full prompt used for Large
Language Models in Appendix B.1.

3.3 Relevance Scoring

After generating synthetic examples, SAFE-SQL
evaluates examples, as shown in Figure 2. This
evaluation process capture the core intent of the
test question. To achieve this, each example e is as-
signed a composite relevance score Rel on a scale
from O to 10, which is calculated as follows:

Rel = a-S(Qe, Q) + B+ A(Qe, Q) +v- R (1)

Here, (); denotes the test question, (), denotes
the generated example question, R denotes the rea-
soning path of the generated example, and the three
components are defined as:

* S(Qe, Q¢): Semantic similarity between the
generated question and test questions.

o A(Qe, Q¢): Structural alignment between the
generated question and test questions.

* R: Evaluates the quality of the reasoning path
accompanying the example. This score mea-
sures the completeness, logical consistency,
and alignment of the reasoning steps with both
the test question and the relevant schema ele-
ments.

The weighting factors «, 3, and v sum to 1, allow-
ing SAFE-SQL to select examples. Only examples
that surpass a predefined threshold are retained for
guiding SQL query generation. We provide the
full prompt used for LLMs in Appendix B.2. The
semantic similarity score measures whether the
generated question accurately preserves the intent
of the test question, even if its wording differs. As
shown in Figure 2, a generated question "Retrieve
the list of countries where one singer is older than
40 and another is younger than 30." has a different
structure but correctly maintains the meaning, re-
sulting in a high semantic similarity score. Another
generated question, "Show cities where a singer
above age 40 and a singer below 30 are from."
shares the same SQL structure as the test question,
differing only in the geographical entity, resulting
in a high structural similarity score. For reasoning
path similarity, examples that follow a similar step-
by-step logical process to derive the SQL query
receive a higher score. Queries that require the
same table joins, filtering conditions, and aggre-
gation methods are more likely to align with the
reasoning process of the test question, leading to
a stronger match. These factors are complemen-
tary, and carefully evaluating these factors is crucial
for effective example selection, ensuring that the
retrieved examples are highly relevant to the test
question.

3.4 Threshold Selection

To further ensure quality, SAFE-SQL retains only
those examples with a relevance score above a pre-
defined threshold #. Formally, the set of selected
examples is defined as:

Egelected = {6 S ’ Rel > 0} 2)

where F represents all generated examples. This
thresholding step filters out low-quality examples
and ensures that only the most informative and
contextually appropriate examples are used in the
final inference. The threshold is set to 8, as Figure 4
demonstrates that this value provides an optimal
balance between preserving high-quality examples
and maintaining sufficient diversity for robust SQL
generation.

3.5 Final Inference

In the final stage, the high-quality examples gener-
ated in previous steps are combined with the test
question to construct a comprehensive prompt for

the LLM. These examples, enriched with similar
questions, corresponding SQL queries, and detailed
reasoning paths, guide the LLM in generating the
final SQL query. By integrating schema linking,
synthetic example generation, relevance scoring,
and threshold-based filtering, SAFE-SQL produces
SQL queries that are both syntactically correct and
semantically aligned with the intended database
operations, while also providing an interpretable
reasoning process.

4 Experiment

4.1 Experimental Setup

For our experiments, we employ six models for
comparison purposes: GPT-4o0 (Hurst et al., 2024),
GPT-40-mini (Hurst et al., 2024), GPT-4 (Achiam
et al., 2023), Llama-3.1-8B-Instruct (Dubey et al.,
2024), Deepseek-coder-6.7b-instruct (Guo et al.,
2024), Qwen2.5-7B-Instruct (Yang et al., 2024a),
and starcoder2-7b (Lozhkov et al., 2024). The eval-
uation is conducted on the Spider (Yu et al., 2018)
dev dataset, which is a widely used benchmark
for Text-to-SQL systems. The Spider dev set is a
large-scale, cross-domain benchmark specifically
designed to assess the generalization capabilities
of Text-to-SQL models. It contains 7,000 training
samples covering 166 databases in various domains
and 1,034 evaluation samples from 20 databases.
Our analysis parts conduct with gpt-40-2024-08-06
version model.

4.2 Baselines

We use the following baseline text to SQL meth-
ods: Supervised fine tuning, which fine-tune open
source model, Zero-shot, which inference with-
out examples, Few-shot, which inference with
few examples. Synthesizes text-to-SQL data from
weak and strong LLMs (Yang et al., 2024b) uti-
lizes preference learning from the weak data from
small LLMs and strong data from LLMs. SQL-
Palm (Sun et al., 2024) introduces synthetic data
augmentation to fine-tune open source models. Din
SQL (Pourreza and Rafiei, 2023) breaking down
the task into smaller sub-tasks, allowing large lan-
guage models to iteratively improve their reasoning
process through self-correction. C3 SQL (Dong
et al., 2023) comprises Clear Prompting, Calibra-
tion with Hints, and Consistent Output, which sys-
tematically addresses model input, bias, and output
to enhance performance using zero-shot prompt.
Dail SQL (Gao et al., 2023) introduces effective

Method Model Easy Medium Hard Extra All
Supervised Fine-Tuning (SFT)

SYN-SQL Sense 13B 95.2 88.6 75.9 60.3 83.5
SQL-Palm PaLM2 93.5 84.8 62.6 482 773
Zero-shot Methods
Baseline GPT-4 84.3 73.1 65.8 40.3 69.1
Baseline GPT-40 87.2 77.2 68.4 48.7 734
Baseline GPT-40-mini 84.8 75.6 67.0 46.1 71.5
C3g-SQL GPT-4 90.2 82.8 7173 643 80.6
Few-shot Methods
DIN-SQL GPT4 91.1 79.8 64.9 434 742
DAIL-SQL GPT-4 90.7 89.7 753 62.0 83.1
ACT-SQL GPT4 91.1 79.4 67.2 440 745
PTD-SQL GPT4 94.8 88.8 85.1 64.5 85.7
DEA-SQL GPT4 88.7 89.5 85.6 70.5 85.6
Self-augmented In-Context Learning
SAFE-SQL GPT-4 93.2 88.9 85.8 747 86.8
SAFE-SQL GPT-40 93.4 89.3 884 75.8 87.9

SAFE-SQL GPT-40-mini 93.6 87.5 86.1 752 874

Table 1: Execution accuracy across difficulty levels on
the Spider development set. The highest score per row
is in bold, and the second highest is underlined.

few-shot learning which significantly reduces the
number of tokens required per question. ACT-
SQL (Zhang et al., 2023) enhances Text-to-SQL
performance by automatically generating chain-of-
thought exemplars, eliminating the need for manual
labeling. PTD SQL (Luo et al., 2024) categoriz-
ing queries into subproblems and focusing on tar-
geted drilling to improve large language models’
reasoning capabilities. Unlike traditional few-shot
methods that depend on human-selected examples,
our Self-Augmented In-Context Learning method
allowing the model to generate its own in-context
examples, and used for final inference. This self-
augmented approach removing the need for man-
ually provided exemples while still leveraging the
benefits of in-context learning, leading to improved
adaptability and performance in Text-to-SQL tasks.

4.3 Evaluation Metrics

We use Execution Accuracy (EX) and Exact Match
(EM) to evaluate the performance of our model. EX
measures whether the SQL query generated by the
model produces the same results as the ground truth
query when executed on a database. Exact Match
(EM), on the other hand, assesses whether the pre-
dicted SQL query exactly matches the ground truth
query in its structure and syntax. By combining
these two metrics, we ensure a comprehensive eval-
uation of both the correctness and execution relia-
bility of the generated SQL queries.

Models EX EM
GPT-40 + SAFE 87.9 78.3
w/o Reasoning path 84.4 (-3.5) 73.6(-4.7)
w/o Relevance filtering ~ 82.1 (-5.8) 68.5(-9.7)
w/o Schema linking 80.4 (-7.5) 65.1(-13.2)
w/o Similar examples 77.1 (-10.8) 61.9(-16.4)

Table 2: Ablation study results for SAFE-SQL, where
removing each component leads to a performance drop.

4.4 Performance among SQL difficulty level

We analyze the performance of SAFE-SQL across
different SQL difficulty levels and compare it with
zero-shot, few-shot prompting methods, and su-
pervised fine-tuning approaches. The results, pre-
sented in Table 1, demonstrate that SAFE-SQL
achieves overall superior performance, with partic-
ularly strong improvements in hard and extra hard
categories. Few-shot methods exhibit higher accu-
racy in Easy and Medium categories, which can be
attributed to skeleton-masked selection which re-
trieves answers directly from the training set, lead-
ing to an inflated performance in simpler queries.
SAFE-SQL excels in hard and extra hard cate-
gories, achieving significantly higher EX. This im-
provement is notably influenced by the inclusion of
reasoning paths, which provide explicit guidance in
SQL generation and enhance the model’s ability to
construct complex queries, as well as the filtering
of misleading examples, which reduces potential
confusion and prevents error propagation. While
multiple factors contribute to SAFE-SQL’s effec-
tiveness, these mechanisms play a crucial role in
enabling the model to generate more accurate and
structurally sound SQL queries, especially in chal-
lenging scenarios where other approaches struggle.

4.5 Ablation study

To assess the contribution of each key component
in our model, we conduct an ablation study by sys-
tematically removing four critical modules: Rea-
soning Path, Relevance Score, Schema Linking,
and Similar Examples. We evaluate the resulting
impact on performance using EX shown in Table 2.
Our findings indicate that each component plays a
crucial role in the model’s effectiveness. Removing
the Reasoning Path leads to a 3.5-point drop in EX,
highlighting its importance in guiding the model
toward generating accurate SQL queries. The ab-
sence of the Relevance Score resulted in a 5.8-point
decrease in EX, underscoring its contribution to
overall performance. Eliminating Schema Linking
causes a 7.5-point drop in EX, which demonstrates

its critical role in similar example construction.
Overall, each of the four components—Reasoning
Path, Relevance Score, Schema Linking, and Sim-
ilar Examples—is essential for achieving optimal
performance in SQL generation.

4.6 Analysis

Score cos @ # of Generated EX % Filtered EX
>0 0.581 10340 0 %

>2 0.625 10185 1.50% (-155)

>4 0.744 9883 4.41% (-457)

>6 0.762 9378 9.30% (-962)

>8 0.765 8606 16.76% (-1734)
>10 0.769 6795 34.28% (-3545)

Table 3: Summary of data generation, filtering results,
and embedding similarity analysis by score.

Number of generated and filtered examples per
score, along with an embedding similarity anal-
ysis of the filtered examples For each test ques-
tion in the Spider dev set, 10 examples are gener-
ated, resulting in a total of 10,340 examples. The
quality of these examples is assessed using a rel-
evance score ranging from 0 to 10. As shown in
Table 3, the 65.71% of examples are assigned a
score of 10, while the 0.59% of examples are re-
ceived a score of 0. This trend suggests that the
LLM tends to assign high relevance to its own
generated examples. The similarity is computed
using cosine similarity, where higher scores indi-
cate greater semantic alignment between the test
questions and the retained examples. As the fil-
tering threshold increases, the embedding similar-
ity also increases, suggesting that higher-relevance
examples exhibit stronger semantic consistency
with the test questions. However, we also observe
that overly strict filtering—selecting only examples
with a perfect score of 10—Ieads to a decline in per-
formance. This drop occurs because an excessively
high threshold significantly reduces the number of
available examples, limiting the diversity.

Effect of question embedding similarity on Ex-
ecution Accuracy. In Figure 3, the left graph
illustrates the correlation between embedding simi-
larity and EX. Each point represents one of the 11
data points obtained by filtering examples based on
different threshold scores (0 to 10). The data points
follow an upward trend, suggesting that higher sim-
ilarity tends to result in better EX. The red line
indicates the overall correlation, with a coefficient

@ Data Points ° 0.5
0.87 1 — Ccorrelation: 0.82

ol
©
o

e
~
o

Average Accuracy

0.83

Execution Accuracy

o

©

N
e
S
o

o

o

=1
ol
o
o

0.80

e
o
o

0.575 0.600 0.625 0.650 0.675 0.700 0.725 0.750 0.775
Test Question & Similar Question Embedding Similarity

Uniformly Scaled Similarity Bins

Figure 3: (Left) Correlation between question embedding similarity and average EX, (Right) Average EX across

embedding similarity bins

1.0

0.9

Execution Accuracy

-e- Easy | .. B

-m- Medium T
Hard

ae Extra

—— Al

0.6

0.5

Relevance Score Threshold

Figure 4: Performance of GPT-40 at different relevance
score thresholds.

of 0.82, showing a relatively strong positive rela-
tionship. Building on this analysis, the right graph
provides a more fine-grained view by examining
the execution accuracy of individual generated ex-
amples based on their embedding similarity with
test questions. The x-axis represents the normal-
ized similarity between the test question and the
generated question, and the y-axis indicates EX.
The results show that EX is lowest in the 0.0-0.1
similarity range, suggesting that examples with
very low similarity to test questions tend to be less
useful. As similarity increases, EX generally im-
proves, peaking in the 0.7-0.8 range. This suggests
that examples with a moderate to high similarity
to test questions are more effective in generating
executable SQL queries. However, accuracy drops
slightly in the 0.8-0.9 range before rising again in
the 0.9-1.0 range. This indicates that excessively
high similarity can reduce diversity, potentially lim-
iting the model’s generalization ability.

Effect of Relevance Scoring Thresholds on Per-
formance. To further evaluate the effectiveness

of SAFE-SQL, we conduct a detailed case study
using varying thresholds for the relevance scor-
ing mechanism as shown in Figure 4. The self-
generated examples are filtered based on relevance
scores, with thresholds ranging from O to 10. For
each test question, the number of high-scoring
examples varied due to the specific content and
schema structure (e.g., some test questions had
six examples with scores > 8, while others had
three). The selected examples are then used during
the final inference stage to generate SQL queries.
The > 8 threshold consistently produced the best
results, validating the robustness of SAFE-SQL’s
relevance score filtering. The results demonstrate
that selecting high-quality examples plays a critical
role in guiding LLMs to generate accurate SQL
queries, regardless of the underlying model.

Effect of three measuring components on Per-
formance. To assess the impact of the three mea-
suring components—semantic similarity («), key-
word & structural similarity (/3), and reasoning
path quality (v)—on EX, we conduct experiments
by varying their respective weightings. The results,
presented in Table 5, highlight distinct performance
trends across different difficulty levels. Notably,
the exclusion of reasoning path quality leads to
a drop in EX, particularly in the Hard and Extra
Hard. This suggests that a well-structured reason-
ing path is crucial for handling complex queries,
as it provides essential logical steps that bridge
the gap between natural language understanding
and SQL formulation. Conversely, semantic sim-
ilarity and structural SQL query similarity have a
greater influence on the Easy and Medium levels.
This is because these queries tend to be relatively
straightforward, meaning that having structurally

SQL Question

GOLD SQL Query

Augmented
Question

SQL

Generated Reasoning Path

Relevance Score

Questionl: What are
the names, countries,
and ages for every
singer in descending or-
der of age?

SELECT
country,
singer
age DESC

name,
age FROM
ORDER BY

What are the names,
ages, and countries of
all singers from a spe-
cific country, sorted by
age in descending or-
der?

1. Identify the desired columns: name, age, and
country.

2. Specify the table: singer.

3. Sort the results by age in descending order.

Semantic similarity =
10 Structural Similarity
= 10 Reasoning path =
10 Relevance score =
(10+10+10)/3 = 10

Question2: Return the
names and template ids
for documents that con-
tain the letter w in their
description.

SELECT
document_name,
template_id FROM
Documents WHERE
Document_Description
LIKE "%w%"

Retrieve the titles and
category IDs of articles
whose summaries con-
tain the word "data".

1. Identify the necessary columns: extract title
and category_id from the Articles table.

2. Locate the relevant table: use the Articles table
as it contains the required data.

3. Define the filtering condition: apply a WHERE
clause to check if the summary column contains
the substring "data".

4. Use the LIKE operator: employ LIKE
*%data%’ to search for any instance of "data"
within the summary.

5. Retrieve the results: return the title and
category_id values for all matching records.

Semantic similarity =
7 Structural Similarity
= 9 Reasoning path =
8 Relevance score =
(7+9+8)/3 =8

Question3: What is the
number of car models
that are produced by
each maker and what is
the id and full name of

SELECT Count (*),
T2.FullName, T2.id
FROM MODEL_LIST AS
T1 JOIN CAR_MAKERS
AS T2 ON T1.Maker

List all employees who
work in the IT depart-
ment along with their
employee ID and hire
date.

1. Identify required details: employee ID and hire
date.

2. Filter condition: find employees who work in
IT.

3. Retrieve data: select only emp_id and

Semantic similarity =
6 Structural Similarity
= 3 Reasoning path =
2 Relevance score =
(6+3+2)/3 =3.67

each maker? = T2.id GROUP BY
T2.id;

hire_date.

Table 4: Examples of original and augmented SQL questions with reasoning paths by GPT-4o0.

a B v || Easy Medium Hard Extra EX
0.33 033 033 ‘ ‘ 93.4 89.3 88.4 758 879
1 0 0 90.7 84.2 82.3 68.3 82.8
0 1 0 89.8 85.6 81.2 69.2 83.1
0 0 1 89.2 85.1 84.3 71.7 83.7
0.5 0.5 0 91.2 87.3 82.5 69.4 84.4
0.5 0 0.5 92.5 87.9 83.5 70.3 85.3
0 05 05 || 927 868 885 7124 861

Table 5: Execution accuracy across difficulty levels un-
der different weights: semantic similarity («), Structural
similarity (3), and reasoning path quality ().

similar SQL questions in the example set often
provides sufficient guidance for generating correct
queries. In these cases, direct pattern matching and
schema alignment play a larger role. Overall, the
findings demonstrate that a balanced combination
of all three components is essential for optimiz-
ing performance across different levels of query
complexity.

4.7 Case Study

As shown in Table 4, test questions from the Spider
dev set alongside their generated similar examples,
evaluated based on semantic similarity, structural
similarity, and the reasoning path score, which to-
gether determine the relevance score. The first
example achieves a perfect relevance score of 10,
as the generated question closely aligns with the
original in meaning, structure, and reasoning. The
SQL formulation remains nearly identical, and the
reasoning path explicitly details each step, ensur-
ing full alignment. The second example receives

a relevance score of 8, with semantic similarity of
7 due to minor differences in terminology ("doc-
uments" vs. "articles" and "letter 'w’" vs. "word
"data’"). However, its structural similarity remains
high, as the SQL structure is nearly identical. The
reasoning path score of 8 reflects a clear expla-
nation of query formulation, though slightly less
detailed than the first example. The third example
has the lowest relevance score due to significant
differences. The generated question shifts focus
from counting car models to listing IT employees,
resulting in semantic similarity of 6 and structural
similarity of 3. These results emphasize the impor-
tance of fine-grained example selection due to the
varing quality of generated examples.

5 Conclusion

In this paper, we introduce SAFE-SQL, a novel un-
supervised framework designed to improve Text-to-
SQL execution accuracy by generating and filtering
self-augmented examples. Through extensive ex-
periments, we show that fine-grained example gen-
eration, and optimal threshold filtering contribute
to the overall performance increase. Specifically,
our method achieves state-of-the-art results, with
notable improvements over ablated versions, high-
lighting the importance of these modules in gener-
ating accurate and semantically valid SQL queries.
Our findings underscore the capability of large lan-
guage models when carefully structured and en-
hanced, to address complex Text-to-SQL tasks.

Limitations

While SAFE-SQL demonstrates strong perfor-
mance in generating accurate and semantically
valid SQL queries, there are a few limitations that
should be addressed in future work. Although the
model performs well on the tested datasets, its
ability to generalize to highly diverse or domain-
specific SQL tasks remains to be fully evaluated.
The current framework also relies on large lan-
guage models like GPT-40, which may not be easily
scalable to low-resource settings or environments
with limited computational resources. Handling
edge cases and extremely complex queries, which
might require deeper schema understanding and
more sophisticated reasoning, is another challenge
for the model.

Ethics Statement

This research introduces SAFE-SQL, a self-
augmented in-context learning framework for Text-
to-SQL tasks. While our approach enhances SQL
generation without additional fine-tuning, it relies
on LL.Ms, which may inherit biases from training
data. We mitigate potential biases and inaccuracies
through structured filtering and relevance scoring.
Our study uses publicly available datasets, ensur-
ing compliance with data privacy standards. We
encourage responsible use of our method, particu-
larly in applications requiring high accuracy and
fairness.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Arian Askari, Christian Poelitz, and Xinye Tang. 2024.
Magic: Generating self-correction guideline for in-
context text-to-sql. Preprint, arXiv:2406.12692.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin
Zhang, Wei Chen, and Xiang Bai. 2024. Rsl-
sql: Robust schema linking in text-to-sql generation.
Preprint, arXiv:2411.00073.

Ziru Chen, Shijie Chen, Michael White, Raymond
Mooney, Ali Payani, Jayanth Srinivasa, Yu Su,
and Huan Sun. 2023. Text-to-sql error correc-
tion with language models of code. Preprint,
arXiv:2305.13073.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang

Lou. 2023. C3: Zero-shot text-to-sql with chatgpt.
Preprint, arXiv:2307.07306.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Farida El Boujddaini, Ahmed Laguidi, and Youssef Mej-
doub. 2024. A survey on text-to-sql parsing: From
rule-based foundations to large language models. In
International Conference on Connected Objects and
Artificial Intelligence, pages 266—272. Springer.

Yujian Gan, Xinyun Chen, and Matthew Purver.
2021. Exploring underexplored limitations of
cross-domain text-to-sql generalization. Preprint,
arXiv:2109.05157.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. Preprint, arXiv:2406.08426.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Yongrae Jo, Seongyun Lee, Minju Seo, Sung Ju Hwang,
and Moontae Lee. 2024. Lg ai research kaist
at ehrsql 2024: Self-training large language mod-
els with pseudo-labeled unanswerable questions for
a reliable text-to-sql system on ehrs. Preprint,
arXiv:2405.11162.

Fei Li and Hosagrahar V Jagadish. 2014. Constructing
an interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73-84.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin,
and Yujiu Yang. 2024. Ptd-sql: Partitioning and
targeted drilling with Ilms in text-to-sql. Preprint,
arXiv:2409.14082.

https://arxiv.org/abs/2406.12692
https://arxiv.org/abs/2406.12692
https://arxiv.org/abs/2406.12692
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2305.13073
https://arxiv.org/abs/2305.13073
https://arxiv.org/abs/2305.13073
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2109.05157
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2405.11162
https://arxiv.org/abs/2405.11162
https://arxiv.org/abs/2405.11162
https://arxiv.org/abs/2405.11162
https://arxiv.org/abs/2405.11162
https://arxiv.org/abs/2405.11162
https://arxiv.org/abs/2405.11162
https://arxiv.org/abs/2409.14082
https://arxiv.org/abs/2409.14082
https://arxiv.org/abs/2409.14082

Ali Mohammadjafari, Anthony S. Maida, and Raju
Gottumukkala. 2025. From natural language to sql:

Review of llm-based text-to-sql systems. Preprint,
arXiv:2410.01066.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Mohammadreza Pourreza, Ruoxi Sun, Hailong Li, Lesly
Miculicich, Tomas Pfister, and Sercan O. Arik. 2024.
Sql-gen: Bridging the dialect gap for text-to-sql
via synthetic data and model merging. Preprint,
arXiv:2408.12733.

Shouvon Sarker, Xishuang Dong, Xiangfang Li, and
Lijun Qian. 2024. Enhancing llm fine-tuning for text-
to-sqls by sql quality measurement. arXiv preprint
arXiv:2410.01869.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. Preprint, arXiv:2109.05093.

Ke Shen and Mayank Kejriwal. 2024. Select-sql: Self-
correcting ensemble chain-of-thought for text-to-sql.
Preprint, arXiv:2409.10007.

Zhili Shen, Pavlos Vougiouklis, Chenxin Diao, Kaus-
tubh Vyas, Yuanyi Ji, and Jeff Z. Pan. 2024. Im-
proving retrieval-augmented text-to-sql with ast-

based ranking and schema pruning. Preprint,
arXiv:2407.03227.

Ruoxi Sun, Sercan O. Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
and Tomas Pfister. 2024. Sql-palm: Improved large
language model adaptation for text-to-sql (extended).
Preprint, arXiv:2306.00739.

Zhongyuan Wang, Richong Zhang, Zhijie Nie, and Jaein
Kim. 2024. Tool-assisted agent on sql inspection and
refinement in real-world scenarios. arXiv preprint
arXiv:2408.16991.

Niklas Wretblad, Fredrik Gordh Riseby, Rahul Biswas,
Amin Ahmadi, and Oskar Holmstrom. 2024. Un-
derstanding the effects of noise in text-to-sql: An
examination of the bird-bench benchmark. Preprint,
arXiv:2402.12243.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024b. Synthesizing text-
to-sql data from weak and strong llms. Preprint,
arXiv:2408.03256.

Sun Yang, Qiong Su, Zhishuai Li, Ziyue Li, Hangyu
Mao, Chenxi Liu, and Rui Zhao. 2024c. Sql-to-
schema enhances schema linking in text-to-sql. In

10

International Conference on Database and Expert
Systems Applications, pages 139-145. Springer.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought. Preprint, arXiv:2310.17342.

Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan,
Henry Zhu, Anuj Chauhan, Alexander Li, Lin Pan,
Jun Wang, Chung-Wei Hang, Sheng Zhang, Marvin
Dong, Joe Lilien, Patrick Ng, Zhiguo Wang, Vitto-
rio Castelli, and Bing Xiang. 2022. Importance of
synthesizing high-quality data for text-to-sql parsing.
Preprint, arXiv:2212.08785.

https://arxiv.org/abs/2410.01066
https://arxiv.org/abs/2410.01066
https://arxiv.org/abs/2410.01066
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2408.12733
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2409.10007
https://arxiv.org/abs/2409.10007
https://arxiv.org/abs/2409.10007
https://arxiv.org/abs/2407.03227
https://arxiv.org/abs/2407.03227
https://arxiv.org/abs/2407.03227
https://arxiv.org/abs/2407.03227
https://arxiv.org/abs/2407.03227
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2402.12243
https://arxiv.org/abs/2408.03256
https://arxiv.org/abs/2408.03256
https://arxiv.org/abs/2408.03256
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2212.08785
https://arxiv.org/abs/2212.08785
https://arxiv.org/abs/2212.08785

A Appendix
B Prompts for SAFE-SQL

B.1 Prompt for example generation.

For example generation, we use zero shot prompt
as shown in the figure 6.

You are a powerful text-to-SQL reasoner. Your
task is to generate ten similar questions, ten SQL
queries, and ten reasoning paths for how the SQL
queries are derived. To ensure high-quality exam-
ples, focus on the following three key aspects:

Semantic Similarity

Ensure that all generated questions have the same
underlying meaning as the test question. Variations
in wording, synonyms, and phrasing are allowed
as long as they preserve the intended query objec-
tive. Avoid introducing ambiguity or additional
constraints that alter the intent.

Structural Similarity

While key terms (such as table names, column
names, and numerical values) may vary, their func-
tional roles and relationships should remain intact.
Reasoning Path Similarity

The logical reasoning required to construct the
SQL query should remain consistent across ex-
amples.Clearly outline each step, including how
key conditions are identified and mapped to SQL
operations.Maintain coherence in how joins, aggre-
gations, filters, and sorting operations are applied.
Do not explain me about the result and just give me
ten examples.

Schema linking: schema_linking][i]
Tables: test_table[i]

Foreign keys: test_foreign_keys[i]
Question: test_question[i]

Similar Question:
SQL query:
Reasoning Path:

Table 6: The zero-shot prompt used for example genera-
tion

B.2 Prompt for filtering examples.

For example generation, we use zero shot prompt
as shown in figure 7.

B.3 Prompt for final inference.

For final inference, we use zero shot prompt as

shown in figure 8.

C Impact of model size

Performance based on generated examples
across different model size As shown in Ta-

11

You are a powerful text-to-SQL reasoner. Given a test question
and a set of examples, compute the relevance score for each
example based on the following criteria. Do not explain me
about the answer, just give me scores.

Semantic Similarity of Questions

Compare the overall meaning of the test question and the
example question. Higher scores should be assigned if the
two questions have the same intent, even if they are phrased
differently. Consider synonyms, paraphrasing, and minor
wording variations that do not alter the fundamental meaning.
Assign lower scores if the test and example questions focus on
different database operations (e.g., aggregation vs. filtering)
or require fundamentally different types of information.(up to
10 points).

10: Almost identical meaning and intent.

7-9: Minor paraphrasing but highly relevant.

4-6: Some overlap but different focus.

1-3: Mostly unrelated meaning.

0: Completely different intent.

Keyword & Structural Similarity

Evaluate the structural alignment between the test question and
the example question by analyzing how key elements (such
as entities, attributes, and numerical values) are connected.
Even if individual nouns, verbs, or numbers differ, the overall
relational structure should be considered. Focus on whether
the dependencies between key components (e.g., how entities
relate to each other in the database) remain consistent.(up to
10 points).

10: Nearly identical structural relationships and dependencies.
7-9: Mostly similar structure, with minor differences in entity
connections.

4-6: Some overlap, but noticeable differences in how key
components interact.

1-3: Few shared structural relationships, making alignment
weak.

0: No meaningful structural similarities.

Reasoning Path Similarity

Evaluate whether the logical steps needed to answer the ex-
ample question align with those required for the test question.
Consider whether the database operations (e.g., filtering, ag-
gregation, joins, subqueries) are similar.A high score should
be given if the example follows the same logical sequence to
derive the SQL query.Lower scores should be assigned if the
reasoning process differs significantly, even if the questions
seem similar at a surface level.(up to 10 points).

10: Exact reasoning process to get right SQL query.

7-9: Mostly similar but with minor differences.

4-6: Some alignment but different key steps.

1-3: Largely different reasoning.

0: Completely unrelated logic.

Question: test_question[i]

Similar Question: similar_question[i]
Reasoning Path: reasoning_path[i]
Relevance score:

Table 7: The zero-shot prompt used for filtering exam-
ples.

You are a powerful text-to-SQL reasoner. Your task
is to generate the final SQL query using a set of
selected examples that provide guidance on query
construction. Utilizing Selected Examples. Do not
explain me about the answer, just give me SQL
query.

A set of chosen examples, each containing: A nat-
ural language question similar to the test question
A corresponding SQL query A detailed reasoning
path explaining how the SQL query was derived
These examples are selected based on three key
criteria:

Semantic Similarity of Questions The selected ex-
amples closely match the intent of the test question.
Variations in wording do not change the meaning.
Structural Similarity The database schema ele-
ments (tables, columns, joins) used in the examples
align with the test question. The SQL syntax and
structure are relevant to the expected query.
Reasoning Path Similarity The logical steps used
to construct the SQL query align with the reasoning
required for the test question. Key transformations,
filtering conditions, and aggregation logic are simi-
lar.

Final SQL Query Construction

Using the selected examples, generate the final
SQL query that correctly retrieves the desired re-
sult for the given test question. Follow the reason-
ing patterns observed in the examples. Maintain
correct table joins, filters, aggregations, and condi-
tions based on schema constraints. Ensure that the
final query accurately represents the intent of the
test question while leveraging the insights from the
selected examples. Now, generate the final SQL
query for the given test question:

##Tables: test_table[i]

#i#Foreign_keys: test_foreign_keys[i]
##Question: text_question[i]
##Filtered_example: filtered_example[i]

Table 8: The zero-shot prompt used for Final SQL query
inference.

12

Easy Med Hard Extra All
Qwen 2.5-3B 624 612 586 488 59.1
Qwen 2.5-7B 80.0 78.0 672 51.8 723
Qwen 2.5-14B 81.2 803 695 564 74.7

Table 9: Execution accuracy performance of different
size of models of Qwen series across difficulty levels of
spider dev set.

ble 9, We investigate the impact of model size on
example generation with different variants of the
Qwen2.5 Models. The results demonstrate that
the 14B model achieves the highest overall perfor-
mance, followed by the 7B and the 3B. This trend
is consistent across all difficulty levels, with large
model size generating higher-quality examples that
lead to more accurate SQL query generation. The
performance improvement with increasing model
size can be attributed to the enhanced capacity of
larger models to capture SQL question patterns and
semantic relationships. Moreover, larger models
possess more extensive information, allowing them
to generate more appropriate questions and con-
struct detailed reasoning paths, which contribute to
the overall accuracy of SQL query generation.

D Spider dev training set embedding

clusters.

Sentence Embedding Clusters

t-SNE Dimension 2
o

[XXX N XX J
I
=4

-100 -75 50

5
bl

0
t-SNE Dimension 1

Figure 5: Embedding of spider dev set training ques-
tions.

Although questions within the same category
share semantic similarities, they may belong to
different clusters, leading to inconsistencies when
retrieving examples from the training set. This
highlights the limitations of training set retrieval in
Text-to-SQL tasks.

Methods Model Type Easy Medium Hard Extra All
SAFE-SQL Llama3.1-8B-Instruct ICL 732% 76.1% 632% 59.4% 70.5%
SAFE-SQL Deepseek-coder-6.7B ICL 88.8% 65.5% 63.8% 253% 64.2%
SAFE-SQL Qwen2.5-7B-Instruct ICL 83.6% 80.7% 78.7% 69.4% 79.2%
SAFE-SQL Starcoder-7B ICL 892% 889% 84.5% 70.6% 85.2%

Table 10: Execution accuracy performance of different methods across difficulty levels of spider dev set.

D.1 Additional model performance

To evaluate the impact of example generation qual-
ity on Text-to-SQL performance, we conducted ex-
periments using different models for final inference.
Examples generated by GPT-40, followed by infer-
ence using the target model. Large language mod-
els’, such as Qwen 2.5-7B and Deepseek-coder-
6.7B, ability to generate high-quality, semantically
relevant in-context examples is limited. To mitigate
this, we first used GPT-40 to generate in-context
examples and filtering examples, then performed
final inference using the selected model. Our re-
sults show that leveraging GPT-40 for example
generation and scoring improved overall execution
accuracy by 6.9 points compared to fully relying
on Qwen 2.5-7B for the entire process as shown
in Table 9. This confirms that high-quality, well-
aligned in-context examples play a crucial role in
enhancing Text-to-SQL performance, especially in
complex queries.

13

	Introduction
	Related work
	Supervised Fine-Tuning for Text-to-SQL
	In-Context Learning for Text-to-SQL

	Fine-grained Self-Augmentation for Text-to-SQL
	Schema Linking
	Example Generation
	Relevance Scoring
	Threshold Selection
	Final Inference

	Experiment
	Experimental Setup
	Baselines
	Evaluation Metrics
	Performance among SQL difficulty level
	Ablation study
	Analysis
	Case Study

	Conclusion
	Appendix
	Prompts for SAFE-SQL
	Prompt for example generation.
	Prompt for filtering examples.
	Prompt for final inference.

	Impact of model size
	Spider dev training set embedding clusters.
	Additional model performance

