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Abstract

We propose a new method for optimistic planning in infinite-horizon discounted
Markov decision processes based on the idea of adding regularization to the updates
of an otherwise standard approximate value iteration procedure. This technique
allows us to avoid contraction and monotonicity arguments typically required by
existing analyses of approximate dynamic programming methods, and in particular
to use approximate transition functions estimated via least-squares procedures in
MDPs with linear function approximation. We use our method to recover known
guarantees in tabular MDPs and to provide a computationally efficient algorithm
for learning near-optimal policies in discounted linear mixture MDPs from a single
stream of experience, and show it achieves near-optimal statistical guarantees.

1 Introduction

The idea of constructing a confidence set of statistically plausible models and picking a policy that
maximizes the expected return in the best of these models can be traced back to the pioneering work
of Lai & Robbins (1985) in the context of multi-armed bandit problems, and has been successfully
extended to address the exploration-exploitation dilemma in reinforcement learning (RL, Sutton &
Barto, 2018). This popular design principle came to be known as optimism in the face of uncertainty,
and the associated optimization task as the problem of optimistic planning. The optimistic principle
has driven the development of statistically efficient RL algorithms for a variety of problem settings.
Following the work of Brafman & Tennenholtz (2002); Strehl et al. (2009) on optimistic exploration
methods for RL in Markov decision processes (MDPs), a breakthrough was achieved by Jaksch, Ort-
ner, and Auer (2010), whose UCRL2 algorithm was shown to achieve near-optimal regret guarantees
in a broad class of tabular MDPs. In subsequent years, their work inspired an impressive amount of
follow-up work, leading to a variety of extensions, improvements, and other mutations.

The computational efficiency of such optimistic methods crucially hinges on the implementation
of the optimistic planning subroutine. In the work of Jaksch et al. (2010), this was addressed by a
procedure called extended value iteration (EVI), which performs dynamic programming (DP) in
an auxiliary MDP where the confidence set of models is projected to the space of actions, allowing
the realization of arbitrary transitions that are statistically plausible given all past experience. After
mild adjustments, the EVI procedure can be shown to give near-optimal solutions to the optimistic
planning problem in a computationally efficient manner (cf. Fruit et al., 2018 and Section 38.5.2
in Lattimore & Szepesvári, 2020). Other, even more effective optimistic dynamic programming
procedures have been proposed and analyzed (Fruit et al., 2018; Qian et al., 2018). However, these
computational developments have been largely restricted to the relatively simple tabular setting.

In recent years, the RL theory literature has seen a massive revival largely due to the breakthrough
achieved by Jin, Yang, Wang, and Jordan (2020), who successfully extended the idea of optimistic
exploration to a class of large-scale MDPs using linear function approximation. While extremely
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influential, their approach (and virtually all of its numerous follow-ups) are limited to the relatively
simple setting of finite-horizon MDPs. The reason for this limitation is inherent in their algorithm
design that crucially uses the fact that optimistic planning in finite-horizon MDPs can be solved via a
simple backward recursion over the time indices within each episode (Neu & Pike-Burke, 2020). This
idea completely fails for infinite-horizon problems where dynamic programming methods should
aim to approximate the solution of a fixed-point equation. Solving such fixed-point equations is
possible in the tabular case but no known efficient method exists for linear function approximation,
the short reason being that the least-squares transition estimator used in the construction of Jin et al.
(2020) cannot be straightforwardly used to build an approximate Bellman operator that satisfies the
necessary contraction properties.

The best attempt at attacking the infinite-horizon setting under function approximation we are
aware of is by Wei, Jahromi, Luo, and Jain (2021), who propose a set of algorithms that are
either statistically or computationally efficient, but eventually fall short of providing an algorithm
with both of these desired properties. Another good contribution was made by Vial, Parulekar,
Shakkottai, and Srikant (2022), who provided approximate DP methods for stochastic shortest
path problems with linear transition functions, and analyzed them via studying the concentration
properties of the empirical transition operator. This technique did allow them to prove regret bounds,
but the guarantees did not reach optimality in terms of scaling with the time horizon unless strong
assumptions are made. Notably, Vial et al. (2022) only managed to perform a tight analysis in the
special case where the features are orthogonal, which allowed them to reason about contraction
properties of the empirical Bellman operator. Lacking a general contraction argument, or another idea
that would enable computationally efficient optimistic planning, efficient exploration-exploitation
in infinite-horizon MDPs under function approximation has remained unsolved so far.

This is the problem we address in this paper in the context of discounted infinite-horizon MDPs.
Instead of relying on a contraction argument (or an approximate version thereof), we propose to solve
the optimistic planning problem using regularized dynamic programming. In particular, we consider a
variant of the Mirror-Descent Modified Policy Iteration (MD-MPI) algorithm of Geist, Scherrer, and
Pietquin (2019) that uses a least-squares estimator of the transition kernel and an exploration bonus
to define an optimistic regularized Bellman operator. Using arguments from the classic analysis
of mirror descent methods, we show that each application of this optimistic operator improves the
quality of the policy up to an additive error term that telescopes over the iterations. In other words,
we show that each iteration improves over the last one in an average sense. This is in stark contrast
to arguments used for analyzing previous optimistic planning methods that relied on contraction
arguments which guarantee strict improvements to the policy in each iteration. The advantage is that
it remains applicable even when the approximate dynamic programming operator is not contractive
or monotone (even approximately).

Our concrete contribution is applying the above scheme to discounted linear mixture MDPs and
showing that it achieves a near-optimal regret bound of order

√
(B2dH + d2H3 + log |A|H4)T ,

where d is the feature dimension, B is a bound on the norm of the features, and H = 1
1−γ is the

effective horizon. This result implies that our algorithm produces an ε-optimal policy after about(
B2dH + d2H3 + log |A|H4

)
/ε2 iterations. Each policy update takes poly(d,H, T ) iterations of

regularized dynamic programming, each consisting of poly(d,H, T ) elementary operations. This is
to be contrasted with previous contributions on a similar1 setting by Zhou, He, and Gu (2021), whose
policy updates rely on a version of EVI adapted to linear function approximation. Their EVI variants
require globally constraining the model parameters in a way that the model is a valid transition kernel.
While this last constraint allowed them to reason about contractive properties of the EVI iterations, it
is practically impossible to enforce without making strong assumptions on the feature maps and the
MDP itself. The difficulty remains even when the property is only required to hold locally in each
state. In this sense, our method is the first to obtain near-optimal statistical rates while also being
entirely computationally feasible.

The rest of this paper is organized as follows. After presenting the notation at the end of this section
and the background in Section 2, we introduce our algorithmic framework in Section 3. We provide
generic performance guarantees and explain the key steps of the analysis in Section 4. The guarantees
are instantiated in the context of tabular and linear mixture MDPs in Section 5. We conclude in
Section 6 with a discussion of our contribution along with its limitations.

1We provide a detailed discussion about the differences between our settings in Section 6.1.
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Notation. For a natural number N > 0, we denote [N ] = {1, 2, . . . , N}. For a real number
M , we define the truncation operator ΠM that acts on functions f defined on a domain A via
ΠMf : x 7→ max (min [f (x) ,M ] , 0). For a measurable space (A,F), we define the set of all
probability distributions ∆(A), and for any two distributions P,Q ∈ ∆(A) such that P ≪ Q, we
define the relative entropy as DKL (P∥Q) = Ea∼P

[
ln
(

dP
dQ (a)

)]
. For P ∈ ∆(A) and a bounded

function f ∈ RA, we write ⟨P, f⟩ = Ea∼P [f(a)] to denote the expectation of f under P , and we
will use the same notation for finite-dimensional vector spaces to denote inner products. For a vector
v ∈ Rd and a square matrix Z ∈ Rd×d, we will use the notation ∥v∥Z =

√
⟨v, Zv⟩.

2 Preliminaries

We consider a discounted MDP M = (X ,A, r, P, γ, ν0), where X is the finite state space2, A is the
finite action space, r : X ×A → [0, 1] is the deterministic reward function assumed to be known3,
P : X ×A → ∆(X ) is the transition probability distribution, γ ∈ (0, 1) is the discount factor, and
ν0 ∈ ∆(X ) is the initial state distribution. The model describes a sequential interaction scheme
between a decision-making agent and its environment, where the following steps are repeated for a
sequence of rounds t = 1, 2, . . . after the initial state is drawn as X0 ∼ ν0: the agent observes the
state Xt ∈ X , selects an action At ∈ A, obtains reward r (Xt, At), and the environment generates
the next state Xt+1 ∼ P (·|Xt, At). The goal of the agent is to pick its sequence of actions in a way
that the total discounted return

∑∞
t=0 γ

tr (Xt, At) is as large as possible.

Below we describe the most fundamental objects relevant to our work, and refer the reader to the
classic book of Puterman (2014) for more context and details. A (stationary) policy is a mapping
π : X → ∆(A) from a state to a probability measure over actions. The value function and action-
value function of a policy π are respectively defined as the functions V π ∈ RX and Qπ ∈ RX×A

mapping each state x and state-action pair x, a to

V π(x) = Eπ

[ ∞∑
t=0

γtr (Xt, At)

∣∣∣∣∣X0 = x

]
, Qπ(x, a) = Eπ

[ ∞∑
t=0

γtr (Xt, At)

∣∣∣∣∣X0 = x,A0 = a

]
,

where Eπ denotes the expectation with respect to the probability measure Pπ , generated by the interac-
tion between the environment and the policy π. With some abuse of notation, we define the conditional
expectation operator P : RX → RX×A as (Pf) (x, a) =

∑
x′∈X P (x′|x, a) f (x′), for f ∈ RX . Its

adjoint P T acts on distributions µ ∈ ∆(X ×A) as (P Tµ) (x′) =
∑

x,a∈X×A P (x′|x, a)µ (x, a). It
returns the state distribution realized after starting from the state-action distribution µ and then taking
a step forward in the MDP dynamics. With these, we can simply state the Bellman equations tying
together the value functions as

V π (x) = Ea∼π(·|x) [Q
π (x, a)] , Qπ = r + γPV π.

We also introduce the operator E : RX → RX×A acting on functions f ∈ RX via the assignment
(Ef) (x, a) = f (x), and its adjoint via its action ETµ (x) =

∑
a µ (x, a) on distributions µ ∈

∆(X × A). The operator E can be thought of as a “padding” operator over the action space
that allows us to use vector notation, while ET applied to a state-action distribution returns the
corresponding marginal distribution of states. The adjoint P T (resp. ET) is the operator such that, for
any f, g, ⟨Pf, g⟩ = ⟨f, P Tg⟩ (resp. E, ET).

In a discounted MDP, a policy π induces a unique normalized discounted occupancy measure over
the state space, defined for any state x ∈ X as

νπ (x) = (1− γ)

∞∑
t=0

γtPπ [Xt = x] .

The normalization term (1− γ) guarantees νπ is a probability measure over X . We call the inverse
of this normalization constant the effective horizon and denote it by H = 1

1−γ . We also define the

2Our results extend to the case where X is a measurable space. The precise definitions require measure-
theoretic concepts Bertsekas & Shreve (1996). For the sake of readability and because they are well understood,
we only consider finite state spaces here.

3It is a standard assumption, and removing it only costs a constant factor in the regret Jaksch et al. (2010).
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associated state-action occupancy measure µπ, defined as µπ (x, a) = νπ (x)π (a|x). State-action
occupancy measures are known to satisfy the following recurrence relation that is sometimes called
the system of Bellman flow constraints:

ETµπ = γP Tµπ + (1− γ) ν0. (1)

Using the state-action occupancy measure, the discounted return of a policy can be written as
Rπ

γ = 1
1−γ ⟨µπ, r⟩. We will use µ∗ to denote an occupancy measure with maximal return and

ν∗ = ETµ∗ to denote the associated state-occupancy measure. Finally, given two policies π, π′, we
denote DKL (π∥π′) = (DKL (π (·|x) ∥π′ (·|x)))x∈X , and we define H (π∥π′) = ⟨νπ,DKL (π∥π′)⟩,
the conditional relative entropy4.

In this paper, we will consider the setting of online learning in discounted MDPs, where the agent
aims to produce an ε-optimal policy πout satisfying ⟨µ∗ − µπout , r⟩ ≤ ε based on a single stream of
experience in the MDP. We will assume that the learner has access to a reset action that drops the
agent back to a state randomly drawn from the initial-state distribution ν0, and that the learner follows
a stationary policy πt in each round t. We will measure the performance in terms of the number
of samples necessary to guarantee that the output policy is ε-optimal. As an auxiliary performance
measure, we will also consider the expected regret (or simply, regret)5 of the learner defined as

RT = E

[
T∑

t=1

(
⟨µ∗ − µπt , r⟩

)]
.

It is easy to see that a regret bound can be converted into sample complexity guarantees. In particular,
selecting a time index I uniformly at random from 1, . . . , T and returning πout = πI guarantees that

E
[
⟨µ∗ − µπout , r⟩

]
=

RT

T
,

which can be made arbitrarily small if RT grows sublinearly and T is set large enough. We note here
that, while superficially similar to the discounted regret criterion considered in earlier works like Liu
& Su (2020); He et al. (2021) or Zhou et al. (2021), there are some major differences between our
objectives. We only point out here that we consider the complexity of producing a good policy to exe-
cute from the initial state distribution, whereas theirs measures the suboptimality of the policies along
the trajectory traversed by the learner. We defer a further discussion of the two settings to Section 6.1.

3 Algorithm

Our approach implements the principle of optimism in the face of uncertainty in discounted MDPs.
Instead of aiming to solve an optimistic version of the Bellman optimality equations via extended
value iteration as done by Jaksch et al. (2010), our method draws on techniques from convex
optimization aiming at average policy improvement. In particular, our planning procedure is based
on a regularized version of approximate value iteration and incorporates an optimistic estimate of
the associated Bellman operator. Consequently, we refer to our algorithm as RAVI-UCB, standing for
Regularized Approximate Value Iteration with Upper Confidence Bounds.

The overall procedure is presented as Algorithm 1. Starting with an initial estimate V0 and an initial
policy π0, RAVI-UCB proceeds in a sequence of epochs k = 1, 2, . . . , where a new epoch is started
by taking the reset action with probability 1− γ in each round, which results in epochs of average
length H = 1

1−γ . At the beginning epoch k, we update the model estimate P̂k, perform one step of
online mirror descent to obtain a policy πk and a value Vk, and apply an optimistic Bellman update
to produce a state-action value estimate Qk+1. Here, P̂k is a nominal transition model and CBk is
an exploration bonus defined to be large enough to ensure that γP̂Vk + CBk ≥ γPVk and so that

4Technically, this is the conditional relative entropy between the occupancy measures µπ and µπ′
, but we

will keep referring to it in terms of the policies to keep our notations light. We refer to Neu et al. (2017) for
further discussion.

5In the related literature, it is more common to define regret as a random variable and bound it with high
probability. Our algorithm is only suitable for bounding the expected regret, and thus we only define this quantity
here; we defer further discussion to Section 6.
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Algorithm 1 RAVI-UCB.
Inputs: Horizon T , learning rate η > 0, initial value V0, initial policy π0.
Initialize: t = 1, Q1 = EV0, D1 = ∅.
for k = 1, . . . do
Tk = t.
P̂k = TRANSITION-ESTIMATE (DTk

).
Vk (x) =

1
η log

(∑
a πk−1 (a|x) eηQk(x,a)

)
.

πk (a|x) = πk−1 (a|x) eη(Qk(x,a)−Vk(x)).
CBk = BONUS (DTk

).
Qk+1 = ΠH

[
r + CBk + γP̂kVk

]
.

repeat
Play at ∼ πk (·|xt) and observe xt+1.
Update Dt+1 = ADD (Dt, {(xt, at, xt+1)}).
t = t+ 1.
With probability 1− γ, reset to initial distribution: xt ∼ ν0 and break.

until t = T
end for

Qk+1 is an upper bound on the regularized Bellman update r + γPVk. In particular, we update the
exploration bonuses CBk such that they satisfy, for all x, a∣∣〈γP (·|x, a)− γP̂k (·|x, a) , Vk

〉∣∣ ≤ CBk (x, a) . (2)

We will refer to exploration bonuses satisfying the above condition as valid. The Q-functions are
truncated to the range [0, H] to make sure that the optimistic property above can be ensured by
setting a reasonably sized exploration bonus CBk. It is important to note that Qk+1 does not directly
attempt to approximate the optimal action-value function Q∗ in the true MDP, which marks a clear
departure from previously known optimism-based regret analyses. Instead, our analysis will show that
(1− γ) ⟨ν0, Vk⟩ acts as an optimistic estimate of the optimal return (1− γ) ⟨ν0, V ∗⟩ in an “average”
sense, and that the total reward of our algorithm can also be bounded in terms of the same quantity.

As we will see explicitly in Section 5, the model estimate and bonuses are computed using the
data gathered so far, DTk

, where Tk denotes the first time index of epoch k. We highlight that the
assignments in Algorithm 1 are only made symbolically for all x, a, and a practical implementation
will not necessarily need to loop over the entire state-action space. Rather, all quantities of interest
can be computed on demand while executing the policy in runtime.

Finally, to make some of the arguments in Section 4 more convenient to state, we introduce some
notation. We let Tk = {Tk, Tk + 1, . . . , Tk+1 − 1} denote the set of time indices belonging to epoch
k, and K (T ) denote the total number of epochs. For the sake of analysis, it will be useful to pad out
the trajectory of states and actions with the artificial observations (XT+1, AT+1, . . . , XT+ , AT+),
where T+ is the first time that a reset would have occurred had the algorithm been executed beyond
time step T . These observations are well-defined random variables, and are introduced to make sure
that the last epoch does not require special treatment.

4 Main Result & Analysis

Our main technical result regarding the performance of RAVI-UCB is the following regret bound.

Theorem 4.1. Let {πk}k and {CBk}k be the policies and exploration bonuses produced by
RAVI-UCB over T timesteps, where the input is η =

√
2 log |A| / (H2T ), V0 = 0 and any pol-

icy π0. Suppose that the sequence of bonuses {CBk}k is valid in the sense of Equation (2). Then the
policies {πk}k satisfy the following bound:

RT ≤ 2E

 T+∑
t=1

CBt (Xt, At)

+
√

2H4 log |A|T + 2H2.
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We present the proof of Theorem 4.1 below. In particular, we state a sequence of lemmas whose
combination will yield the complete proof, and relegate the proofs of the lemmas in Appendix A.

The analysis will be split into two main parts: one pertaining to the general properties of our optimistic
planning procedure and to the eventual regret bound that can be derived from it, and one concerning
the specifics of the setting considered. In particular, we first analyze RAVI-UCB using a generic
exploration bonus that we will suppose to be “valid”, and then show in Section 5 how to derive such
valid exploration bonuses in the concrete settings of tabular MDPs and linear mixture MDPs.

4.1 Optimistic Planning

For this general analysis, we will fix an epoch index k, assume that P̂k is some estimator of the
transition kernel P and that the exploration bonus CBk is valid in the sense of Equation (2). We
provide the following inequality that will be useful for bounding the suboptimality gaps.

Lemma 4.2. Let Qk+1 be the state-action value estimate produced by RAVI-UCB in epoch k, with
any input, and assume the bonuses CBk are valid in the sense of Equation (2). Then,

r + γPVk ≤ Qk+1 ≤ r + 2CBk + γPVk,

where Vk is the value estimate defined in Algorithm 1.

The proof is in Appendix A.1. Our key result regarding the quality of the policies produced by
RAVI-UCB is the following.

Lemma 4.3. Let K be a fixed number of epochs, and let πk and CBk be the policy and exploration
bonus produced by RAVI-UCB in epoch k, where the input is V0 = 0, any policy π0, and any η > 0.
Suppose that {CBk}k is a sequence of valid exploration bonuses in the sense of Equation (2). Then,
the sequence {πk}k satisfies the following bound:

K∑
k=1

(⟨µ∗, r⟩ − ⟨µπk , r⟩) ≤ 2

K∑
k=1

⟨µπk ,CBk⟩+ 2H +
1

η
H (π∗∥π0) +

ηH3K

2
.

We defer the proof to Appendix A.2. The main idea is to show that, under the validity condition of
the exploration bonuses, (1− γ) ⟨ν0, Vk⟩ acts as an approximate upper bound on the optimal return
⟨µ∗, r⟩, up to some additional terms resulting from the use of incremental updates. Thanks to the
use of regularization, we can show that these additional terms are small on average, and that the gap
between the optimistic value and the return of πk can be bounded in terms of ⟨µπk ,CBk⟩.

4.2 The Epoch Schedule

The remaining part is to account for the effects of the randomized epoch schedule. Provided that the
exploration bonuses are valid, we need to control the sum

∑T
t=1 ⟨µπt ,CBt⟩. We relate it to a more

easily tractable sum in the next lemma.

Lemma 4.4. The sequence of policies selected by RAVI-UCB satisfies

E

[
T∑

t=1

⟨µπt ,CBt⟩

]
≤ E

 T+∑
t=1

CBt (Xt, At)

 .
The proof is in Appendix A.3. This bound is guaranteed by the epoch schedule used by RAVI-UCB
that ensures that within each epoch k of geometric length, the sequence of realized state-action
trajectory is distributed according to the occupancy measure of πk.

4.3 Putting Everything Together

The proof of Theorem 4.1 concludes by combining the above claims. In anticipation of Section 5,
for our main assumption to be satisfied we let δ = 1/T and define the exploration bonuses as in
Lemma C.1 or Lemma 5.2. This implies the resulting exploration bonuses are valid with probability
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at least 1 − δ, so on this event we can use Lemma 4.3 to bound the expected regret of RAVI-UCB.
Setting π0 as the uniform policy, we get

RT ≤ 2E

[
T∑

t=1

⟨µπt ,CBt⟩

]
+HE

[
1

η
log |A|+ ηH3

2
K (T ) + 2H

]
,

where we used that the expected epoch length is H and H (π∗∥π0) ≤ log |A|. Noticing that
E [K] = (1− γ)T and setting the learning rate η =

√
2 log |A| / (H2T ), the expected optimization

error becomes

E
[
1

η
log |A|+ ηH3K

2

]
=
√
2H2T log |A|.

The remaining terms in the regret bound corresponding to the sum of exploration bonuses can be
bounded by appealing to Lemma 4.4. This concludes the proof.

5 Applications

We now consider two classes of MDPs and show how to implement our algorithm and derive a regret
bound. For didactic purposes, we instantiate RAVI-UCB in the setting of tabular MDPs with small
state and action spaces in Appendix C. In the rest of this section, we focus on a class of MDPs
commonly referred to as linear mixture MDPs Modi et al. (2020); Ayoub et al. (2020) formally
defined as follows.

Assumption 5.1 (Linear mixture MDP). There exist a known feature map ψ : X ×A×X → Rd,
and an unknown θ ∈ Rd with ∥θ∥2 ≤ B such that P (x′|x, a) =

∑d
i=1 θiψi(x, a, x

′). Furthermore,
for any (x, a) ∈ X ×A, V ∈ [0, H]

X ,∥∥∥∥∥∑
x′∈X

ψ(x, a, x′)V (x′)

∥∥∥∥∥
2

≤ BH.

Here, we suppose M satisfies Assumption 5.1. While remotely related to the notion of linear MDPs
Jin et al. (2020); Yang & Wang (2019), linear mixture MDPs are a distinct class of models that cannot
be captured in that framework, and have been widely studied in the past few years as linear MDPs—
we refer to Zhou et al. (2021) for further discussion. As often assumed in the related literature, we
assume the map φk(x, a) =

∑
x′ ψ(x, a, x′)Vk (x

′) can be computed (or approximated) efficiently.
We provide a detailed discussion of all such computational matters in Section 6.2.

The algorithm is in Appendix B.1. Let λ > 0 be a regularization parameter, Λ1 = λI , and
b1 = 0. At epoch k, for t ∈ Tk, the data is stored as Dt+1 = (Λt+1, bt+1) where Λt+1 =

Λt + φk (xt, at)φk (xt, at)
T and bt+1 = bt + φk (xt, at)Vk (xt+1). P̂k =

∑
i θ̂k,iψi is computed

via a least-squares regression, where θ̂k = Λ−1
Tk
bTk

. Given β > 0, the exploration bonuses are defined
as

CBk(x, a) = β ∥φk(x, a)∥Λ−1
Tk

. (3)

We now turn to the validity condition required by Lemma 4.3.

Lemma 5.2. Let δ ∈ (0, 1). Then, setting β = H
√

2
(
d
2 log

[
1 + TB2H2

λd

]
+ log 1

δ

)
+
√
λB guaran-

tees that, with probability 1−δ, the validity condition (2) is satisfied by CBk as defined in Equation (3)
for all k.

The proof is in Appendix B.2. It relies on standard techniques regarding linear mixture MDPs Zhou
et al. (2021); Cai et al. (2020). One important property required is the boundedness of each Vk that
is guaranteed by the truncation. Then, we can bound the sum of the exploration bonuses with the
following lemma.

Lemma 5.3. The sum of exploration bonuses generated by RAVI-UCB satisfies
E
[∑T+

t=1 CBt (Xt, At)
]
= O

(
β
√
dHT log (T )

)
.
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The proof (Appendix B.3) follows from a series of small (but somewhat tedious) adjustments of a
classic result often referred to as the “elliptical potential lemma”, the main challenge being dealing
with the randomized epoch schedule.

Our main technical result regarding the performance of RAVI-UCB is the following.
Theorem 5.4. Suppose RAVI-UCB is run with the uniform policy as π0, V0 = 0, λ = 1, a learning rate

η =
√
2 log |A| / (H2T ), and an exploration parameter β = H

√
2
(
d
2 log

[
1 + TB2H2

d

]
+ log T

)
+

B. Then, the expected regret of RAVI-UCB satisfies

RT = Õ
(√

(d2H3 +B2dH +H4 log |A|)T
)
.

Õ (·) hides logarithmic factors of T , B, d, and H . A perhaps more useful result is the following,
derived from an online-to-batch conversion. Suppose RAVI-UCB returns a policy πout = πU with U
being an epoch index chosen uniformly at random from the range of epochs. The following corollary
provides a guarantee on the quality of this policy.
Corollary 5.5. Let ε > 0. Then, RAVI-UCB run with the same parameters as before outputs a policy
πout satisfying E [⟨µ∗ − µπout , r⟩] ≤ ε after Tε = Õ

((
B2dH + d2H3 +H4 log |A|

)
ε−2
)

steps.

The expectation appearing in the first statement is with respect to the random transitions in the
MDP and the epoch scheduling, whereas the expectation in the second one is also with respect to
the random choice of the policy. It is possible to remove the former expectation, but the latter is
inherent to the online-to-batch conversion process used by our analysis. We will return to this point
in Section 6.2.

6 Discussion

We now discuss the merits and limitations of our results, and point out directions for future research.

6.1 Results and Comparisons

There are many differences between our approach and previously proposed optimistic exploration
methods that we are aware of. Perhaps the most interesting novelty in our method is that it radically
relaxes the optimistic properties that previous methods strive for: instead of calculating estimates of
the value function or the MDP model that are strictly optimistic, we only guarantee that our value
estimates are optimistic in an average sense. Thus, during its runtime, our algorithm may execute
several policies that do not individually satisfy any optimistic properties, even approximately. We find
this property to be curious and believe that the ideas we develop to tackle such notions of “average
optimism” may find other applications. We note though that our planning procedure can be used to
produce optimistic policies in a stricter sense by executing several regularized value iteration steps
per policy update, until the resulting optimization error vanishes. Doing so results in an improved
dependency on H by a factor

√
H but comes at the cost of a major computational overhead.

While our algorithm is closely related to the MD-MPI method of Geist, Scherrer, and Pietquin (2019)
and our proofs feature several similar steps, we remark that the purpose of our analysis is quite
different from theirs, even when disregarding the optimistic adjustment we make to the Bellman
operators. Taking a close look at their proofs for the special case of zero approximation errors, one
can deduce bounds on our quantity of interest that are of the order (H +H(π∗∥πK)) /K after K
iterations. This is faster than what our analysis provides for approximate DP, which is due to the
monotonicity of the exact Bellman operator which allows fast last-iterate convergence. The same
rate appears in the analysis of regularized policy iteration methods by Agarwal et al. (2021) (see
Theorem 16). Either way, all of these analyses use tools from the analysis of mirror descent first
developed by Martinet (1970), Rockafellar (1976), and Nemirovski & Yudin (1983) (see also Beck &
Teboulle, 2003). Note that, as the guarantees of these regularization-based methods hold on arbitrary
data sequences, our regret guarantees trivially generalize to the case where the rewards change over
time in a potentially adversarial fashion (as in, e.g., Even-Dar et al., 2009; Cai et al., 2020).

Another line of work that our contribution seemingly fits into is the one initiated by Liu & Su (2020)
on the topic of regret minimization for discounted MDPs (see also He et al., 2021; Zhou et al., 2021).
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A closer look reveals that their objective is quite different from ours, in that they aim to upper bound∑T
t=1 (V

∗ (Xt)− V πt (Xt)) along the trajectory traversed by the learning agent. This notion of
regret has been motivated by a formerly popular notion of “sample complexity of exploration” in
discounted MDPs—we highlight Kakade (2003); Strehl et al. (2009) out of the abundant “PAC-MDP”
literature on this subject. This performance measure is in fact not comparable to ours in almost any
possible sense. In fact, it is easy to see that this notion may fail to capture the sample complexity
of learning a good policy in a meaningful way: a policy that immediately enters a “trap” state that
yields zero reward until the end of time will only incur a constant regret of order 1

1−γ , even if there
is a policy that yields a steady stream of +1 rewards in each round. Thus, without making stringent
assumptions about the MDP that rule out such undesirable scenarios, the value of minimizing this
notion of discounted regret may be questionable.

6.2 Limitations and Future Directions

On a related note, our method suffers from the limitation of requiring access to a reset action taking
the agent back to the initial distribution ν0 at any time. In general, this is necessary to achieve
our objectives. Indeed, in MDPs where all states around the initial distribution are transient, it is
impossible to learn a good policy from a single stream of experience without resets since the agent
only gets to visit the relevant part of the state space once. We thus believe these issues are inherent to
learning in discounted MDPs.

Another limitation is that our guarantees only hold on expectation as opposed to high probability.
In fact, several of our results can be strengthened to hold in this stronger sense, albeit at the cost of
a more involved analysis. In particular, the only parts of our analysis that need to be changed are
Lemmas 4.4 and 5.3, to deal with the randomized epoch schedule. The first of these can be handled
via a martingale argument and the second by bounding the number and length of the epochs with
high probability. Both of these changes are conceptually simple, but practically tedious so we omit
them for clarity. On the other hand, Corollary 5.5 relies on a randomized online-to-batch conversion,
and the result is stated on expectation with respect to the randomization step. Once again, this result
can be strengthened to hold with high probability by running a “best-policy-selection” subroutine
on the sequence of policies produced by the algorithm. This post-processing step is standard in the
related literature and we omit details here to preserve clarity.

Based on our current results, generalizing our techniques to the infinite-horizon average-reward
setting seems to be challenging but not impossible. The key step in our proof that requires discounting
is setting the truncation level at H = 1

1−γ , which serves the purpose of guaranteeing that our
approximate Bellman operator is optimistic. In particular, the truncation level needs to be set large
enough so that the inequality of Equation 4 goes through. We see no natural way to extend this
condition to the undiscounted setup. We remain hopeful that this challenge can be overcome with
more effort (but may potentially need some significant new ideas).

Finally, let us remark on the linear mixture MDP assumption that we have used. While arguably
well-studied in the past years, this model for linear function approximation has limitations that make
it rather difficult to adapt to practical scenarios. The biggest is that learning algorithms in this model
need access to an oracle to evaluate sums of the form

∑
x′ ψ (x, a, x′)V (x′), which can only be per-

formed efficiently in special cases. Options include assuming that ψ (x, a, ·) is sparse or the integral
can be approximated effectively via Monte Carlo sampling. A major inconvenience that this causes in
the implementation of our method is that Q-functions (and policies) cannot be represented effectively
with a single low-dimensional object, so these values have to be recalculated on the fly while executing
the policy, requiring excessive Monte Carlo integration in runtime. We thus wish to extend our analysis
to more tractable MDP models like the model of Jin et al. (2020). While it is straightforward to imple-
ment our algorithm for linear MDPs, unfortunately the covering number of the value function class
used by our algorithm appears to be too large to allow proving strong performance bounds. On a more
positive note, we wish to point out that linear mixture MDPs are still a rich family of models that in gen-
eral is incomparable to linear MDPs, and can subsume many interesting models—we refer to (Ayoub
et al., 2020) for further discussion. We are optimistic that the limitations of our current analysis can be
eventually removed and our method can be adapted to a much broader class of infinite-horizon MDPs.
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A Omitted Proofs in Section 4

A.1 Proof of Lemma 4.2

Lemma A.1. Let Qk+1 be the state-action value estimate produced by RAVI-UCB in epoch k, with
any input, and assume the bonuses CBk are valid in the sense of Equation (2). Then,

r + γPVk ≤ Qk+1 ≤ r + 2CBk + γPVk,

where Vk is the value estimate defined in Algorithm 1.

Proof. We start by proving the lower-bound. For each state-action pair (x, a), we need to handle two
separate cases corresponding to whether or not Qk+1 (x, a) is truncated from above. In the first case,
we have Qk+1 (x, a) = H , which implies

Qk+1 (x, a) = H = 1 + γH ≥ r (x, a) + γ
(
PVk

)
(x, a) . (4)

Here, we have crucially used the condition Vk ≤ H in the inequality, which was made possible by
truncating the Q-functions to the range [0, H]. In the other case where Qk+1 (x, a) ≤ H , we use the
validity of CBk to show the following inequality:

Qk+1 (x, a) ≥ r (x, a) + CBk (x, a) + γ
(
P̂kVk

)
(x, a)

≥ r (x, a) + γ (PVk) (x, a) ,

where the first inequality is valid even when a truncation from below happens.

For the upper-bound, we proceed similarly and consider the two cases corresponding to whether or
not Qk+1 (x, a) is truncated from below in each state-action pair. First considering the case where
Qk+1 (x, a) = 0, we observe that

Qk+1 (x, a) = 0 ≤ r (x, a) + γ (PVk) (x, a) ,

from which the claim follows due to non-negativity of CBk. As for the other case, we have

Qk+1 (x, a) ≤ r (x, a) + CBk (x, a) + γ
(
P̂kVk

)
(x, a)

≤ r (x, a) + 2CBk (x, a) + γ
(
PVk

)
(x, a) ,

where the last step follows from the validity condition on CBk.

A.2 Proof of Lemma 4.3

We start with a technical tool we will use in the proof.
Lemma A.2. Let π and π′ be two policies, with their corresponding state-action occupancy measures
being µπ and µπ′

, and their state occupancy measures being νπ and νπ
′
. Then,

DKL

(
µπ
∥∥∥µπ′

)
≤ 1

1− γ
H (π∥π′) .

Proof. Using the chain rule of the relative entropy, we write

DKL

(
µπ
∥∥∥µπ′

)
= DKL

(
νπ
∥∥∥νπ′

)
+H (π∥π′) .

By the Bellman flow constraints in Equation (1) and the joint convexity of the relative entropy, we
bound the second term as

DKL

(
νπ
∥∥∥νπ′

)
= DKL

(
γP Tµπ + (1− γ) ν0

∥∥∥γP Tµπ′
+ (1− γ) ν0

)
≤ (1− γ)DKL (ν0∥ν0) + γDKL

(
P Tµπ

∥∥∥P Tµπ′
)

= γDKL

(
P Tµπ

∥∥∥P Tµπ′
)
≤ γDKL

(
µπ
∥∥∥µπ′

)
,

where we also used the data-processing inequality in the last step. The proof is concluded by
reordering the terms.
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We now recall and prove our key result.
Lemma A.3. Let K be a fixed number of epochs, and let πk and CBk be the policy and exploration
bonus produced by RAVI-UCB in epoch k, where the input is V0 = 0, any policy π0, and any η > 0.
Suppose that {CBk}k is a sequence of valid exploration bonuses in the sense of Equation (2). Then,
the sequence {πk}k satisfies the following bound:

K∑
k=1

(⟨µ∗, r⟩ − ⟨µπk , r⟩) ≤ 2

K∑
k=1

⟨µπk ,CBk⟩+ 2H +
1

η
H (π∗∥π0) +

ηH3K

2
.

Proof. We begin by rewriting the performance gap of the output policy as follows:
K∑

k=1

(⟨µ∗, r⟩ − ⟨µπk , r⟩) =
K∑

k=1

(∆∗
k +∆k) ,

where we defined ∆∗
k = ⟨µ∗, r⟩ − (1− γ) ⟨ν0, Vk⟩ and ∆k = (1− γ) ⟨ν0, Vk⟩ − ⟨µπk , r⟩ for all k.

Let us now fix some k and consider the first term, ∆∗
k. We start by observing that (1− γ) ν0 =

ETµ∗ − γP Tµ∗, which allows us to write

∆∗
k = ⟨µ∗, r⟩ − (1− γ) ⟨ν0, Vk⟩
= ⟨µ∗, r + γPVk⟩ − ⟨µ∗, EVk⟩ .

(5)

In order to treat the first term in Equation (5), we use the lower-bound from Lemma 4.2 to obtain

∆∗
k ≤ ⟨µ∗, Qk+1 − EVk⟩
= ⟨µ∗, Qk+1 − EVk+1⟩+ ⟨µ∗, EVk+1 − EVk⟩ .

Summing up for all k = 1, . . . ,K, we get
K∑

k=1

∆∗
k ≤

〈
µ∗, QK+1 − EV K+1

〉
+ ⟨µ∗, E (VK+1 − V1)⟩ ,

where we defined Qk =
∑k

i=1Qi and V k =
∑k

i=1 Vi for any k. By a classic telescoping argument
(presented in Lemma D.1), one can show that, for all k,

V k (x) = max
p∈∆(A)

{〈
p,Qk (x, ·)

〉
− 1

η
DKL (p∥π0 (·|x))

}
≥
〈
π∗ (·|x) , Qk (x, ·)

〉
− 1

η
DKL

(
π∗(·|x)∥π0(·|x)

)
.

Combining this with the previous inequality, we get
K∑

k=1

∆∗
k ≤ 1

η
H (π∗∥π0) + ⟨µ∗, EVK+1⟩ , (6)

by definition of the conditional entropy and V1 = 0. We now move on to bounding ∆k. Then, using
the upper-bound of Lemma 4.2 to lower-bound r, we bound ∆k as follows:

∆k = (1− γ) ⟨ν0, Vk⟩ − ⟨µπk , r⟩
≤ (1− γ) ⟨ν0, Vk⟩ −

〈
µπk , Qk+1 − 2CBk − γPVk

〉
= ⟨ETµπk − γP Tµπk , Vk⟩ − ⟨µπk , Qk+1 − γPVk⟩+ 2 ⟨µπk ,CBk⟩ ,

where we have used (1− γ) ν0 = ETµπk − γP Tµπk in the third line. We can then rewrite the current
upper-bound as

∆k ≤ ⟨µπk , EVk −Qk+1⟩+ 2 ⟨µπk ,CBk⟩
= ⟨µπk , EVk⟩ − ⟨µπk+1 , Qk+1⟩+ ⟨µπk+1 − µπk , Qk+1⟩+ 2 ⟨µπk ,CBk⟩ .

To proceed, we use Lemma D.1 to note that

⟨µπk+1 , Qk+1⟩ =
〈
ETµπk+1 , Vk+1 +

1

η
DKL (πk+1∥πk)

〉
,

13



which allows us to continue as

∆k ≤ ⟨µπk , EVk⟩−⟨µπk+1 , EVk+1⟩+⟨µπk+1 − µπk , Qk+1⟩−
1

η
H (πk+1∥πk)+2 ⟨µπk ,CBk⟩ . (7)

The last remaining difficulty is to control the second difference in the last inequality. This can be
done thanks to the regularization, that makes the occupancy measures change “slowly enough”. To
proceed, we use Pinsker’s inequality and the boundedness of Qk+1 to show

⟨µπk+1 − µπk , Qk+1⟩ ≤ H
√
2DKL (µπk+1∥µπk).

Appealing to Lemma A.2, we can bound the last term as DKL (µ
πk+1∥µπk) ≤ H · H (πk+1∥πk).

Using these results, we obtain

⟨µπk+1 − µπk , Qk+1⟩ −
1

η
H (πk+1∥πk)

≤
√
2H3H (πk+1∥πk)−

1

η
H (πk+1∥πk)

≤ sup
z

{√
2H3 · z − 1

η
z2
}

=
ηH3

2
,

where the last step follows from the Fenchel–Young inequality applied to the convex function
f (z) = z2/2. Then, summing up both sides of Equation (7) for all k = 1, . . . ,K,

K∑
k=1

∆k ≤ −⟨µπK+1 , EVK+1⟩+
ηH3

2
K + 2

K∑
k=1

⟨µπk ,CBk⟩ , (8)

where we used V1 = 0. Combining Equations (6) and (8),

K∑
k=1

(⟨µ∗, r⟩ − ⟨µπk , r⟩) ≤ 2

K∑
k=1

⟨µπk ,CBk⟩+ 2H +
1

η
H (π∗∥π0) +

ηH3

2
K,

where we used ⟨µ∗ − µπK+1 , EVK+1⟩ ≤ 2H .

A.3 Proof of Lemma 4.4

Lemma A.4. The sequence of policies selected by RAVI-UCB satisfies

E

[
T∑

t=1

⟨µπt ,CBt⟩

]
≤ E

 T+∑
t=1

CBt (Xt, At)

 .
Proof. For the sake of this proof, we slightly update our notation for Tk by setting TK(T ) ={
TK(T ), TK(T ) + 1, . . . , T+

}
. We will use Fk−1 to denote the filtration generated by the observa-

tions up to the end of epoch k − 1, and Lk to denote the length of epoch k. We start by rewriting the
sum of exploration bonuses up to step T+ as

T+∑
t=1

CBt (Xt, At) =

K(T )∑
k=1

∑
t∈Tk

CBt (Xt, At) . (9)

By virtue of the definition of T+, all epochs are of geometric length with mean 1
1−γ . Now,

let us consider a fixed epoch k and define the auxiliary infinite sequence of state-action pairs
Xk,0, Ak,0, Xk,1, Ak,1, . . . that is generated independently from the realized sample trajectory
(Xt, At)t∈Tk

given Fk−1 as follows. The initial state Xk,0 is drawn from ν0, and then subse-
quently for each i = 0, 1, . . . , the actions are drawn as Ak,i ∼ πk (·|Xk,i) and follow-up states are
drawn as Xk,i+1 ∼ P (·|Xk,i, Ak,i). Recalling the notational convention that CBt = CBk for all
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t ∈ Tk, we observe that for any k, we have

E

[∑
t∈Tk

CBt (Xt, At)

∣∣∣∣∣Fk−1

]
= E

[
Lk−1∑
i=0

CBk (Xk,i, Ak,i)

∣∣∣∣∣Fk−1

]

= E

[ ∞∑
i=0

I{i<Lk}CBk (Xk,i, Ak,i)

∣∣∣∣∣Fk−1

]

= E

[ ∞∑
i=0

γiCBk (Xk,i, Ak,i)

∣∣∣∣∣Fk−1

]

=

∞∑
i=0

γi ⟨uk,i,CBk⟩ =
⟨µπk ,CBk⟩

1− γ

= E [Lk ⟨µπk ,CBk⟩| Fk−1] = E

[∑
t∈Tk

⟨µπk ,CBk⟩

∣∣∣∣∣Fk−1

]
,

where in the third line we have observed that Lk follows a geometric law with parameter 1 − γ,
and is independent of (Xk,i, Ak,i)i. In the fourth line we introduced the notation uk,i to denote the
joint distribution of Xk,i, Ak,i given Fk−1 and noticed that the discounted sum of these distributions
exactly matches the definition of the occupancy measure µπk up to the normalization constant (1− γ),
and finally concluded by observing that E [Lk| Fk−1] =

1
1−γ .

The proof is completed by summing up over all epochs, taking marginal expectations, and noticing
that

E

[
T∑

t=1

⟨µπt ,CBt⟩

]
≤ E

 T+∑
t=1

⟨µπt ,CBt⟩

 = E

K(T )∑
k=1

∑
t∈Tk

⟨µπk ,CBk⟩

 .
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B Algorithm and Omitted Proofs in Section 5

B.1 The Algorithm

In this section, we apply our results to linear mixture MDPs. The algorithm is shown in Algorithm 2.
The highlighted parts correspond to the instantiations of the functions TRANSITION-ESTIMATE,
BONUS, and ADD from Algorithm 1. P̂k is computed via a least-squares regression, and we use
elliptical bonuses for CBk. Thus, we only need to store and update the empirical covariance matrix
Λt and the vector bt when interacting with the environment.

Algorithm 2 RAVI-UCB for linear mixture MDPs.
Inputs: Horizon T , learning rate η > 0, confidence parameter β > 0, regularization parameter λ,
value V0, policy π0.
Initialize: t = 1, Λ1 = λI , b1 = 0, Q1 = EV0.
for k = 1, . . . do
Tk = t.
θ̂k = Λ−1

Tk
bTk

.
P̂k =

∑
i θ̂k,iψi.

Vk (x) =
1
η log

(∑
a πk−1 (a|x) eηQk(x,a)

)
.

πk (a|x) = πk−1 (a|x) eη(Qk(x,a)−Vk(x)).
φk (x, a) =

∑
x′ ψ (x, a, x′)Vk (x

′).
CBk (x, a) = β ∥φk (x, a)∥Λ−1

Tk

.

Qk+1 = ΠH

[
r + CBk + γP̂kVk

]
.

repeat
Play at ∼ πk (·|xt), and observe xt+1.
Update Λt+1 = Λt + φk (xt, at)φk (xt, at)

T, and bt+1 = bt + φk (xt, at)Vk (xt+1).
t = t+ 1.
With probability 1− γ, reset to initial distribution: xt ∼ ν0 and break.

until t = T
end for

B.2 Proof of Lemma 5.2

Lemma B.1. Let δ ∈ (0, 1). Then, setting β = H
√

2
(
d
2 log

[
1 + TB2H2

λd

]
+ log 1

δ

)
+

√
λB

guarantees that, with probability 1− δ, the validity condition (2) is satisfied by CBk as defined in
Equation (3) for all k.

Proof. Let us fix k ∈ [K], t ∈ {Tk, Tk + 1, . . . , Tk+1 − 1}, δ ∈ (0, 1). We start by recalling the def-
inition of the nominal transition model P̂k acting on functions V as

(
P̂kV

)
(x, a) =

〈
φV (x, a) , θ̂k

〉
,

where we denoted the state-action feature map φV (x, a) =
∑

x′∈X ψ (x, a, x′)V (x′), and the
parameter θ̂k can be written out as

θ̂k = Λ−1
Tk
bTk

=

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj)φi (xj , aj)
T
+ λI

−1
k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj)Vi (xj+1) .
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To proceed, we notice that the true transition operator acting on V can be written in a similar form as

(PV ) (x, a) =
∑
x′∈X

P (x′|x, a)V (x′) (by definition of P )

=
∑
x′∈X

⟨θ, ψ (x, a, x′)⟩V (x′) (by Assumption 5.1)

=

〈
θ,
∑
x′∈X

ψ (x, a, x′)V (x′)

〉
= ⟨θ, φV (x, a)⟩ ,

where we used the definition of φV in the last line. Proceeding further with the same expression, we
write

(PV ) (x, a) =
〈
φV (x, a) ,Λ−1

Tk
ΛTk

θ
〉

=

〈
φV (x, a) ,Λ−1

Tk

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj)φi (xj , aj)
T
θ + λΛ−1

Tk
θ

〉

=

〈
φV (x, a) ,Λ−1

Tk

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj) (PVi) (xj , aj) + λΛ−1
Tk
θ

〉
,

where we used the definition of ΛTk
and Assumption 5.1 in the last line. Comparing the expressions

for PV and P̂kV , we obtain∣∣∣P̂kV (x, a)− PV (x, a)
∣∣∣ =

∣∣∣∣∣∣
〈
φV (x, a) ,Λ−1

Tk

k−1∑
i=0

Ti+1−1∑
j=Ti

φi (xj , aj) [Vi (xj+1)− (PVi) (xj , aj)]− λΛ−1
Tk
θ

〉∣∣∣∣∣∣ .
Using the Cauchy–Schwartz inequality and taking V = Vk, we get∣∣∣P̂kVk (x, a)− PVk (x, a)

∣∣∣ ≤ ∥φk (x, a)∥Λ−1
Tk

(|ξk|+ |bk|) ,

where ξk =
∥∥∥∑k−1

i=0

∑Ti+1−1
j=Ti

φi (xj , aj) [Vi (xj+1)− (PVi) (xj , aj)]
∥∥∥
Λ−1

Tk

, and bk = λ ∥θ∥Λ−1
Tk

.

The second term can be easily bounded as |bk| ≤
√
λ ∥θ∥2 ≤

√
λB, using that λmin (ΛTk

) ≥ λ and
the boundedness of the features.

For the first term, observe that Vi (xj+1)− (PVi) (xj , aj) forms a martingale difference sequence,
with increments bounded in [−H,H] by the truncation made in the algorithm. Additionally, the
feature vectors are bounded as ∥φi (xj , aj)∥2 ≤ BH and the true parameter as ∥θ∥2 ≤ B by
Assumption 5.1. Therefore, we can apply the self-normalized concentration result in Theorem D.2
(stated in Appendix D.2), which guarantees that with probability at least 1− δ, the following bound
holds for all k ∈ [K]:

ξk ≤ H

√√√√2 log

[
det (ΛTk

)
1/2

det (λI)
−1/2

δ

]
.

The determinants appearing in the bound can be further upper bounded by using that det (λI) = λd

and

det (ΛTk
) ≤

(
tr (ΛTk

)

d

)d

(by the trace-determinant inequality)

=
1

dd

λd+ k−1∑
i=0

Ti+1−1∑
j=Ti

∥φi (xj , aj)∥22

d

(by the definition of ΛTk
)

≤
(
λ+

TkB
2H2

d

)d

(by the boundedness of the features)

≤
(
λ+

TB2H2

d

)d

,
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where in the last step we used Tk ≤ T . We plug this back in the upper-bound on ξk to obtain the
bound

ξk ≤ H

√
2

(
d

2
log

[
1 +

TB2H2

λd

]
+ log

1

δ

)
.

Putting everything together, we have verified that, for all k ∈ [K],∣∣∣〈P (·|x, a)− P̂k (·|x, a) , Vk
〉∣∣∣ ≤ ∥φk (x, a)∥Λ−1

Tk

(
H

√
2

(
d

2
log

[
1 +

TB2H2

λd

]
+ log

1

δ

)
+
√
λB

)
= β ∥φk (x, a)∥Λ−1

Tk

.

holds with probability at least 1− δ, where we have defined β as

β = H

√
2

(
d

2
log

[
1 +

TB2H2

λd

]
+ log

1

δ

)
+

√
λB. (10)

This concludes the proof.

B.3 Proof of Lemma 5.3

Lemma B.2. The sum of exploration bonuses generated by RAVI-UCB satisfies
E
[∑T+

t=1 CBt (Xt, At)
]
= O

(
β
√
dHT log (T )

)
.

Proof. The proof is based on a classic “pigeonhole” argument often called the “elliptical potential
lemma” (e.g., Lemma 19.4 in Lattimore & Szepesvári, 2020, or Section 11.7 in Cesa-Bianchi &
Lugosi, 2006, but see also Lai et al., 1979; Lai & Wei, 1982). The main challenge of adapting this
result to our setting is accounting for the randomized epoch schedule. Another subtle difficulty comes
from the fact that Lemma 4.3 only bounds the total regret as opposed to the instantaneous regrets in
each round, which necessitates arguments that are slightly more involved than what is commonly
seen in closely related work.

As for the actual proof, we start by introducing some useful notation that we will use through-
out the proof. For t ∈ [T ], we use kt to denote the index of the epoch that t belongs to. For
simplicity, for all k and t, we will write φk,t = φk (Xt, At), Λk = ΛTk

. We also define

N (T ) =
{
t ∈ [T ] : ∥φkt,t∥Λ−1

kt

≥ 1
}

as the set of “bad” time indices where state-action pairs

with large feature norms are observed, and E (T ) =
{
k ∈ [K (T )] : ∃t ∈ Tk, ∥φk,t∥Λ−1

k
≥ 1
}

be
the set of epochs containing at least one bad time index. Using these definitions, we rewrite the sum
of exploration bonuses as follows:

E

 T+∑
t=1

CBt (Xt, At)

 = βE

 ∑
k∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k

+
∑

k/∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k


≤ βE

BH√
λ

∑
k∈E(T )

|Tk|+
∑

k/∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k

 (using ∥φ∥2 ≤ BH and Λk ⪰ λI)

= βE [|E (T )|] BH
2

√
λ

+ βE

 ∑
k/∈E(T )

∑
t∈Tk

∥φk,t∥Λ−1
k

 (using Wald’s identity)

= βE [|E (T )|] BH
2

√
λ

+ βE

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) ,
where in the last step we used the definition of E(T ). We treat the first term separately in Lemma B.4,
stated after this proof. This gives the following bound:

E

 T+∑
t=1

CBt (Xt, At)

 ≤ βdBH2

√
λ log (2)

log

(
1 +

B2H2T

λd

)
+ βE

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) .
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Thus, we can focus on the second term in the right hand side. This term can be upper-bounded using
the Cauchy–Schwarz inequality as

∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

)
≤

K(T )∑
k=1

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

)
≤

√
T

√√√√K(T )∑
k=1

∑
t∈Tk

(
1 ∧ ∥φk,t∥2Λ−1

k

)
.

To proceed, we use the inequality (x ∧ |Tk|) ≤ |Tk|
log(|Tk|+1) log (1 + x) that is valid for all x ≥ 0.

Setting Ck = |Tk|
log(|Tk|+1) , this gives

K(T )∑
k=1

∑
t∈Tk

(
1 ∧ ∥φk,t∥2Λ−1

k

)
=

K(T )∑
k=1

1

|Tk|
∑
t∈Tk

(
|Tk| ∧ |Tk| ∥φk,t∥2Λ−1

k

)
≤

K(T )∑
k=1

Ck

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)

≤ max
k

Ck ·
K(T )∑
k=1

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
.

The sum is handled separately in Lemma B.3 stated and proved right after this proof. Putting the
result together with our previous calculations, we get

∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

)
≤

√
T
√

max
k

Ck

√
d log

(
1 +

B2H2T

λd

)
.

The only random quantity left in the upper-bound is the maximum over Ck. By concavity of the
square-root function and Jensen’s inequality, we get

E

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) ≤
√
T

√
E
[
max

k
Ck

]√
d log

(
1 +

B2H2T

λd

)
,

which we further upper bound by using Lemma B.5 as

E

 ∑
k/∈E(T )

∑
t∈Tk

(
1 ∧ ∥φk,t∥Λ−1

k

) ≤
√
T
√
H (4 + 2 log T )

√
d log

(
1 +

B2H2T

λd

)
.

We put together the two terms, and plug in the definition of β to get

E

 T+∑
t=1

CBt (Xt, At)

 ≤ C1 (T ) +
√
TC2 (T ) ,

where the two factors are defined as

C1 (T ) =

(
H

√
2

(
d

2
log

[
1 +

B2H2T

λd

]
+ log T

)
+

√
λB

)
dBH2

√
λ log (2)

log

(
1 +

B2H2T

λd

)

C2 (T ) =

(
H

√
2

(
d

2
log

[
1 +

B2H2T

λd

]
+ log T

)
+

√
λB

)√
H (4 + 2 log T )

√
d log

(
1 +

B2H2T

λd

)
.

The proof is then concluded by observing that C1 (T ) + C2 (T ) = O
(
BH3/2d log (T )

3/2
)

.

Lemma B.3. Following the same notations from Section B.3

K∑
k=1

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
≤ d log

(
1 +

B2H2T

λd

)
.
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Proof. We will follow the steps of the proof of Lemma 19.4 in Lattimore & Szepesvári (2020). First,
notice that Λk can be written as

Λk+1 = Λk +
∑
t∈Tk

φk,tφ
T

k,t = Λ
1/2
k

(
I +

∑
t∈Tk

Λ
−1/2
k φk,tφ

T

k,tΛ
−1/2
k

)
Λ
1/2
k .

Taking the determinant of the above matrix, we get

det (Λk+1) = det (Λk) det

(
I +

∑
t∈Tk

Λ
−1/2
k φk,tφ

T

k,tΛ
−1/2
k

)
.

Now, taking logarithms on both sides and using the concavity of log det, we obtain

log det (Λk+1) = log det (Λk) + log det

(
I +

∑
t∈Tk

Λ
−1/2
k φk,tφ

T

k,tΛ
−1/2
k

)

= log det (Λk) + log det

(
1

|Tk|
∑
t∈Tk

(
I + |Tk|Λ−1/2

k φk,tφ
T

k,tΛ
−1/2
k

))

≥ log det (Λk) +
1

|Tk|
∑
t∈Tk

log det
(
I + |Tk|Λ−1/2

k φk,tφ
T

k,tΛ
−1/2
k

)
= log det (Λk) +

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
,

where the inequality is Jensen’s, and the final step follows from using the equality det(I + vvT) =

(1 + ∥v∥22) that holds for any v ∈ Rd. Summing up for k gives

log det
(
ΛK(T )

)
≥ log det (Λ1) +

K∑
k=1

1

|Tk|
∑
t∈Tk

log
(
1 + |Tk| ∥φk,t∥2Λ−1

k

)
,

and furthermore by the trace-determinant inequality we have

log

(
detΛK(T )

detΛ0

)
= log

(
det
(
ΛK(T )

)
λd

)
≤ d log

(
tr
(
ΛK(T )

)
λd

)
.

Finally, the trace can be bounded as

tr
(
ΛK(T )

)
= λd+

K(T )∑
k=1

∑
t∈Tk

∥φk,t∥22 ≤ λd+B2H2T.

Plugging this back into the previous inequality proves the claim.

Lemma B.4. The number of epochs that contain a feature vector with a norm larger than one is
bounded as

|E (T )| ≤ d

log (2)
log

(
1 +

B2H2T

λd

)
.

A simpler version of this statement is given as Exercise 19.3 in Lattimore & Szepesvári (2020), and
our proof below drew inspiration from the proof of Lemma 19 in Ouhamma et al. (2022). We only
have to deal with the challenge of randomized epoch schedules, which we do by similar arguments as
in the proof of Lemma 5.3 above.

Proof. Let k ∈ [K (T )]. We define G0 = λI and Gk+1 = Gk +
∑

t∈Tk
φk,tφ

T

k,tI{t∈N (T )}. We
have the following decomposition:

Gk+1 = G
1/2
k

(
I +

∑
t∈Tk

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

I{t∈N (T )}

)
G

1/2
k

= G
1/2
k

I + ∑
t∈Tk∩N (T )

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

G
1/2
k .
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Therefore, taking the log-determinant on both sides, we obtain

log det (Gk+1) = log det (Gk) + log det

I + ∑
t∈Tk∩N (T )

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

 .

If Tk ∩N (T ) = ∅, or equivalently if k /∈ E (T ) (i.e., there is no “bad” state-action pair in the epoch
k), the second term in the right-hand side is zero. Hence, summing over k ∈ [E (T )], we get

log det
(
GK(T )

)
= log det (G0)+

∑
k∈E(T )

log det

I + ∑
t∈Tk∩N (T )

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T

 .

(11)
Using the concavity of log det, Jensen’s inequality gives us

log det
(
GK(T )

)
≥ log det (G0)

+
∑

k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log det

(
I + |Tk ∩N (T )|

(
G

−1/2
k φk,t

)(
G

−1/2
k φk,t

)T
)

= log det (G0) +
∑

k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log
(
1 + |Tk ∩N (T )| ∥φk,t∥2G−1

k

)
,

where the equality follows from the fact that det(I + vvT) = (1 + ∥v∥22) that holds for any v ∈ Rd.
Then, we notice that G−1

k ⪰ Λ−1
k , and thus we can further bound this expression as

log det
(
GK(T )

)
≥ log det (G0)+

∑
k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log
(
1 + |Tk ∩N (T )| ∥φk,t∥2Λ−1

k

)
.

For k ∈ E (T ), t ∈ Tk ∩ N (T ), we have |Tk ∩N (T )| ≥ 1, and ∥φk,t∥Λ−1
k

≥ 1 by definition of
N (T ). This implies that

log det
(
GK(T )

)
≥ log det (G0) +

∑
k∈E(T )

1

|Tk ∩N (T )|
∑

t∈Tk∩N (T )

log (2)

≥ log det (G0) + log (2) |E (T )| .

Thus, we have

|E (T )| ≤ 1

log (2)
log

(
det
(
GK(T )

)
det (G0)

)

=
1

log (2)
log

(
det
(
GK(T )

)
λd

)
(by the definition of G1)

≤ d

log (2)
log

(
tr
(
GK(T )

)
λd

)
. (by the trace-determinant inequality)

Finally, the trace can be bounded as

tr
(
GK(T )

)
= λd+

∑
k∈E(T )

∑
t∈Tk∩N (T )

∥φk,t∥22 1N (T ) (t) ≤ λd+B2H2T.

The proof is concluded by putting this bound together with the previous inequality.

Lemma B.5. The random variables {Ck}k, defined for all k by Ck = |Tk|
log(1+|Tk|) where |Tk| is a

geometric random variable with parameter 1− γ, satify the following

E
[
max

k
Ck

]
≤ 4 + 2 log T

1− γ
.
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Proof. First, notice that log (1 + |Tk|) ≥ log 2 so that Ck = |Tk|
log(1+|Tk|) ≤

|Tk|
log 2 . Next, using the fact

that the number of epochs is at most T , and observing that each |Tk| is geometrically distributed with
parameter 1 − γ, we can bound maxk |Tk| by a maximum over T independent geometric random
variables Z1, . . . , ZT with parameter 1− γ:

E
[
max

k
|Tk|

]
≤ E

[
max
j∈[T ]

Zj

]
=

∞∑
i=0

P
[
max
j∈[T ]

Zj > i

]
(since each Zi is nonnegative)

≤ k + T

∞∑
i=k

P [Z1 > i] (upper bounding the first k > 0 terms by 1)

= k + T

∞∑
i=k

γi (using that Z1 is geometric with parameter 1− γ)

= k +
Tγk

1− γ
,

where we have used the formula for the geometric sum in the last step. Now, setting k =
⌈
log T
1−γ

⌉
, we

get

E
[
max

k
|Tk|

]
= k + T

γk

1− γ
≤ 1 + log T

1− γ
+
T exp

(
log γ
1−γ · log T

)
1− γ

≤ 1 + log T

1− γ
+
T exp (− log T )

1− γ
=

2 + log T

1− γ
,

where in the second line we have used the inequality log γ
1−γ ≤ −1 that holds for all γ ∈ (0, 1). The

proof is concluded by using that log 2 > 1
2 and combining the above bound with the bound relating

Ck to |Tk|.
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C Applications: tabular MDPs

We now apply our results in the context of tabular MDPs. As we will see, a simple applica-
tion of our framework allows us to recover known guarantees in this setting. The algorithm is
shown in Algorithm 3. The highlighted parts correspond to the instantiations of the functions
TRANSITION-ESTIMATE, BONUS, and ADD from Algorithm 1. LetN1(x, a) = 1 andN ′

1(x, a, x
′) = 0

denote the initial counts6 for the tuples (x, a) and (x, a, x′). At epoch k, for t ∈ Tk, we up-
date Dt+1 =

(
Nt+1, N

′
t+1

)
as Nt+1(x, a) = Nt(x, a) + I{Xt=x,At=a} and N ′

t+1(x, a, x
′) =

N ′
t(x, a, x

′) + I{Xt=x,At=a,Xt+1=x′}. We use P̂k (x
′|x, a) = NTk

(x, a, x′)/NTk
(x, a) as a model

estimate, and given β > 0, the exploration bonuses are defined as

CBk(x, a) =
β√

NTk
(x, a)

. (12)

The following lemma shows that an appropriate choice of the scaling parameter β ensures the validity
of the exploration bonuses.

Lemma C.1. Let δ ∈ (0, 1). Then, setting β = 8H
√
|X | log (|X | |A|T/δ) guarantees that, with

probability 1− δ, the validity condition (2) is satisfied by CBk as defined in Equation (12) for all k.

Then, we can bound the bonuses as follows.
Lemma C.2. The sum of exploration bonuses generated by RAVI-UCB satisfies
E
[∑T+

t=1 CBt (Xt, At)
]
= O

(
β
√
|X | |A|T

)
.

We refer the reader to previous works for the proofs of the above two lemmas (see, e.g., Jaksch
et al., 2010; Fruit et al., 2018). Combining the above two results gives a regret bound of order
|X |H

√
|A|T , as expected.

Algorithm 3 RAVI-UCB for tabular MDPs.
Inputs: Horizon T , learning rate η > 0, confidence parameter β > 0, value V0, policy π0.
Initialize: t = 1, N ′

1 = 0, N1 = 1, Q1 = EV0.
for k = 1, . . . do
Tk = t.
P̂k (x

′|x, a) = N ′
Tk

(x, a, x′) /NTk
(x, a).

Vk (x) =
1
η log

(∑
a πk−1 (a|x) eηQk(x,a)

)
.

πk (a|x) = πk−1 (a|x) eη(Qk(x,a)−Vk(x)).
CBk (x, a) = β/

√
NTk

(x, a).

Qk+1 = ΠH

[
r + CBk + γP̂kVk

]
.

repeat
Play at ∼ πk (·|xt), and observe xt+1.
Update N ′

t+1 (xt, at, xt+1) = N ′
t (xt, at, xt+1) + 1, and Nt+1 (xt, at) = Nt (xt, at) + 1.

t = t+ 1.
With probability 1− γ, reset to initial distribution: xt ∼ ν0 and break.

until t = T
end for

6We initialize N1 at 1 to avoid divisions by zero.
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D Standard Results

D.1 Softmax Policies and Value Functions

In this section, we recall a range of standard facts relating the softmax policies our algorithm uses
and the associated value functions. These can be found in numerous papers, textbooks, and lecture
notes—for concreteness, see Section 28.1 in Lattimore & Szepesvári, 2020 as an example.
Lemma D.1. Let {Vk}k∈[K], {πk}k∈[K], and {Qk}k∈[K] be the sequences of functions defined in
Algorithm 1. Then, the following equalities are satisfied for all k ∈ [K] and x ∈ X :

Vk (x) = max
p∈∆(A)

{
⟨p,Qk (x, ·)⟩ −

1

η
DKL (p∥πk−1 (·|x))

}
πk (·|x) = arg max p∈∆(A)

{
⟨p,Qk (x, ·)⟩ −

1

η
DKL (p∥πk−1 (·|x))

}
.

Furthermore, for all k ∈ [K] and x ∈ X , we have

k∑
i=1

Vi (x) = max
p∈∆(A)

{〈
p,

k∑
i=1

Qi (x, ·)

〉
− 1

η
DKL (p∥π0 (·|x))

}
.

Proof. First, we show that the maximum indeed takes the form claimed in the main paper and that
the maximizer is given by a softmax policy. For simplicity, we drop the indices for now and consider
the optimization problem

sup
p∈∆(A)

{
⟨p,Q⟩ − 1

η
DKL (p∥p′)

}
,

where Q ∈ RA, and p′ ∈ ∆(A). As the probability simplex is compact and(
p 7→ ⟨p,Q⟩ − 1

ηDKL (p∥p′)
)

is continuous, the supremum is attained at some p∗ ∈ ∆(A). The

Lagrangian function of this optimization problem is given for all p ∈ RA
+ and α ∈ R as

L (p, α) = ⟨p,Q⟩ − 1

η
DKL (p∥p′) + α (⟨p,1⟩ − 1) .

Its partial derivative with respect to the primal variable p(a) is

∂L (p, α)

∂p(a)
= Q(a)− 1

η

(
log

(
p(a)

p′(a)

)
+ 1

)
+ α.

Setting it to zero gives us the expression

p∗(a) = p′(a) exp
(
η (Q(a) + α)− 1

)
.

Then, we use the constraint on p∗ to find the value of α. In particular, ⟨p∗,1⟩ = 1 implies∑
a∈A

p′ (a) exp (ηQ (a)) = exp (1− ηα) ,

from which we deduce that

α =
1

η

(
1− log

(∑
a∈A

p′ (a) exp (ηQ (a))

))
.

Denoting V ∗ = 1
η log

(∑
a∈A p

′ (a) exp [ηQ (a)]
)
, we plug back the expression of α into p∗:

p∗(a) = p′(a) exp
(
η (Q(a)− V ∗)

)
.

From this, we can directly express the relative entropy between p∗ and p′ as

DKL (p
∗∥p′) =

∑
a

p∗(a) log
p∗(a)

p′(a)
=
∑
a

p∗(a)
(
Q(a)− V ∗) = ⟨p∗, Q− V ∗1⟩ ,
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so that we can write

⟨p∗, Q⟩ − 1

η
DKL (p

∗∥p′) = ⟨p∗, Q⟩ − ⟨p∗, Q− V ∗1⟩ = V ∗.

The first statement of the lemma then follows from applying this result to Q = Qk (x, ·) and
p′ = πk−1 (·|x), for k ∈ [K], x ∈ X . That is, for any state-action pair (x, a) ∈ X × A and
k ≥ 1, denoting the maximum Vk and the maximizer πk, we have that the following expressions are
equivalent to the ones given in the statement of the lemma:

Vk (x) =
1

η
log

(∑
a∈A

πk−1 (a|x) eηQk(x,a)

)
,

πk (a|x) = πk−1 (a|x) exp (η [Qk (x, a)− Vk (x)]) .

For the second statement, we start by denoting V̄k =
∑k

i=1 Vi and Q̄k =
∑k

i=1Qi, for k ≥ 1, and
show by induction that, for x ∈ X , the following holds

πk (·|x) = π0 (·|x) exp
(
η
[
Q̄k (x, ·)− V̄k (x)1

])
.

Let x ∈ X . The case k = 1 follows immediately from the previous statement with Q = Q1 (x, ·)
and p′ = π0 (·|x). Assume the previous equation holds at k. Using the first statement with Q =
Qk+1 (x, ·) and p′ = πk (·|x) we have, for a ∈ A, πk+1 (a|x) = πk (a|x) eη[Qk+1(x,a)−Vk+1(x)].
Applying the inductive hypothesis, it gives

πk+1 (a|x) = π0 (a|x) exp
(
η
[
Q̄k (x, a)− V̄k (x)

])
exp (η [Qk+1 (x, a)− Vk+1 (x)])

= π0 (a|x) exp
(
η
[
Q̄k+1 (x, a)− V̄k+1 (x)

])
,

which finishes the induction. Then, we move on to the actual statement. We have

Vk (x) =
1

η
log

(∑
a∈A

πk−1 (a|x) eηQk(x,a)

)
(by the first statement)

=
1

η
log

(∑
a∈A

π0 (a|x) eη(Qk(x,a)+Q̄k−1(x,a)−V̄k−1(x))

)
(by induction)

=
1

η
log

(∑
a∈A

π0 (a|x) eη(Q̄k(x,a))

)
− V̄k−1 (x) .

Therefore, by definition of V̄k−1,
k∑

i=1

Vi (x) =
1

η
log

(∑
a∈A

π0 (a|x) eη(Q̄k(x,a))

)

= max
p∈∆(A)

{〈
p,

k∑
i=1

Qi (x, ·)

〉
− 1

η
DKL (p∥π0 (·|x))

}
,

which concludes the proof.

D.2 A Self-Normalized Tail Inequality

Theorem D.2 (Theorem 14.7 in de la Peña et al. (2009), Theorem 2 in Abbasi-Yadkori et al. (2011)).
Let {ηt}∞t=1 be a real-valued stochastic process with corresponding filtration {Ft}∞t=0. Let ηt|Ft−1

be zero-mean and σ-subGaussian; i.e. E [ηt|Ft−1] = 0, and

∀λ ∈ R,E
[
eληt

∣∣Ft−1

]
≤ e

λ2σ2

2 .

Let {φt}∞t=0 be an Rd-valued stochastic process where φt is Ft−1-measurable. Assume Λ0 is a d× d

positive definite matrix, and let Λt = Λ0 +
∑t

s=1 φsφ
T
s. Then, for any δ > 0, with probability at

least 1− δ, we have for all t ≥ 0,∥∥∥∥∥
t∑

s=1

φsηs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

[
det (Λt)

1/2
det (Λ0)

−1/2

δ

]
.
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