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Figure 1: STREAM3R. Given a stream of input images, our method estimates dense 3D geometry
for each incoming frame using a causal Transformer. Features from previously observed frames are
cached as context for future inference. The demo video is from Genie 3 (Ball et al., 2025).

ABSTRACT

We present STREAM3R, a novel approach to 3D reconstruction that reformulates
pointmap prediction as a decoder-only Transformer problem. Existing state-of-
the-art methods for multi-view reconstruction either depend on expensive global
optimization or rely on simplistic memory mechanisms, both of which scale
poorly with sequence length. In contrast, STREAM3R introduces a streaming
framework that efficiently processes image sequences using causal attention, in-
spired by advances in modern language modeling. By learning geometric priors
from large-scale 3D datasets, STREAM3R generalizes well to diverse and chal-
lenging scenarios, including dynamic scenes where traditional methods often fail.
Extensive experiments show that our method consistently outperforms prior work
across both static and dynamic scene benchmarks. Moreover, STREAM3R is
inherently compatible with LLM-style training infrastructure, enabling efficient
large-scale pretraining and fine-tuning for various downstream 3D tasks. Our re-
sults highlight the potential of causal Transformer models for online 3D percep-
tion, paving the way for real-time 3D understanding in streaming environments.

1 INTRODUCTION

Reconstructing detailed 3D geometry from images is the crux in computer vision (Schonberger &
Frahm, 2016; Schönberger et al., 2016; Chen et al., 2021) and serves as the prerequisite for a series
of downstream applications, such as autonomous driving (Geiger et al., 2013), virtual reality (Zheng
et al., 2023; Lan et al., 2024), robotics (Irshad et al., 2024), and more. While traditional visual-
geometry methods like SfM (Schonberger & Frahm, 2016) and Multi-view Stereo (Yao et al., 2018;
2019) tackle this problem by solving a series of sub-problems through handcrafted designs, a recent
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trend led by DUSt3R (Wang et al., 2024d) has demonstrated a promising new way of directly re-
gressing point clouds using powerful transformers. This paradigm, along with its follow-up works
including MASt3R (Leroy et al., 2024), Fast3R (Yang et al., 2025), and VGG-T (Wang et al., 2025a),
enables the reconstruction of 3D geometry from a number of input images–ranging from a single
image to hundreds–offering a more unified solution to 3D reconstruction.

While these works focus on processing a fixed set of images, real-world applications often require
continuously processing streaming visual input and updating the reconstruction on-the-fly (Davi-
son et al., 2007), such as when an autonomous agent explores a new environment, or when pro-
cessing a long video sequence. Handling streaming input poses significant new challenges. For
example, naively running Fast3R or VGG-T every time a new image arrives would incur signifi-
cant redundant computation, as they have to reconstruct from scratch without inheriting previous
results. These methods also struggle with long videos due to the expensive full-attention operation.
Spann3R (Wang & Agapito, 2024) extends DUSt3R with a memory design (Cheng & Schwing,
2022) to support incremental reconstruction, but it still suffers from significant accumulated drift
and fails over dynamic scenes. The most relevant concurrent work is CUT3R (Wang et al., 2025b),
which proposes a RNN paradigm (Zaremba et al., 2015) to handle unstructured or streaming inputs.
However, the RNN-based design does not scale well with modern network architectures (Dao, 2024)
and struggles with long-range dependency due to its limited memory size.

In light of the streaming nature of this task, in this work, we are interested in investigating the use
of a transformer with uni-directional causal attention to achieve online, incremental 3D reconstruc-
tion. In an LLM-style transformer with causal attention, the prediction at each step reuses previous
computations through a KVCache, which has been proven successful in many language and audio
tasks (Touvron et al., 2023; Copet et al., 2023). We observe that this property is also highly desir-
able for addressing online 3D reconstruction from streaming data, as each step should build upon
the previous reconstruction while integrating new content from the incoming frame.

Motivated by this, we propose STREAM3R, a comprehensive framework that performs 3D recon-
struction from unstructured or streaming input images, and predicts the corresponding point maps
in both world and local coordinates (Yang et al., 2025). Unlike concurrent works (Yang et al.,
2025; Wang et al., 2025a) that resolve this issue by replacing DUSt3R’s asymmetric decoders with
bi-directional attention blocks (Devlin et al., 2019; Brooks et al., 2024), STREAM3R follows the
modern decoder-only (Brown et al., 2020) transformer design, where incoming frames are sequen-
tially processed and registered with causal attention (Chen et al., 2025). In this way, STREAM3R is
naturally compatible with modern Large Language Models (LLMs) (Touvron et al., 2023) training
and inference techniques such as window attention (Jiang et al., 2023) and KVCache (Brown et al.,
2020), i.e., the tokens of processed observations will be saved as reference for registering incoming
frames.

We train our method end-to-end on a large collection of 3D data, and benchmark the proposed
method on a series of downstream applications. In summary, our key contributions are as follows:

1. We propose STREAM3R, a decoder-only transformer framework that reformulates dense
3D reconstruction into a sequential registration task with causal attention, enabling scala-
bility to unstructured and streaming inputs.

2. STREAM3R is inherently compatible with modern LLM-style training and inference tech-
niques, allowing efficient and scalable context accumulation across frames.

3. Our architecture supports both world- and local-coordinate pointmap prediction, and nat-
urally generalizes to large-scale novel view synthesis scenarios via splatting-based render-
ing.

4. We train the model end-to-end on diverse 3D data and demonstrate competitive or superior
performance on standard benchmarks, with strong generalization and fast inference speed.

2 RELATED WORK

Classic 3D Reconstruction. Early 3D reconstruction pipelines – such as Structure-from-Motion
(SfM) (Hartley & Zisserman, 2003; Schonberger & Frahm, 2016; Tang & Tan, 2018) and
SLAM (Davison et al., 2007; Mur-Artal et al., 2015; Teed & Deng, 2021) – estimate sparse geometry
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and camera poses from image collections via geometric reasoning. More recent approaches such as
NeRF (Mildenhall et al., 2020; Zhang et al., 2020; Wang et al., 2021a) and Gaussian Splatting (Kerbl
et al., 2023; Huang et al., 2024) shift the focus to high-fidelity novel view synthesis using contin-
uous volumetric representations. However, these methods are typically trained per-scene with no
learned priors, leading to slow convergence and poor generalization to sparse or occluded inputs—a
limitation sometimes referred to as the tabula rasa assumption (Wang et al., 2025b). In contrast, we
adopt a data-driven approach that learns geometric priors from large-scale 3D datasets (Ling et al.,
2024; Reizenstein et al., 2021), enabling fast and generalizable reconstruction from unstructured or
streaming inputs.

Learning 3D Priors from Data. Recent works leverage large-scale data to learn priors for depth es-
timation (Yang et al., 2024b; Ke et al., 2024; Hu et al., 2025), pose+depth estimation (Li et al., 2024;
Wang et al., 2024b), and bundle adjustment (Wang et al., 2024a). While these methods improve gen-
eralization, most focus on monocular depth or two-view setups, limiting their ability to reconstruct
full geometry in the absence of known intrinsics (Yin et al., 2023). VGGSfM (Wang et al., 2024a)
introduces differentiable bundle adjustment by integrating neural feature matching with classic op-
timization, but remains iterative and computationally heavy, impeding scalability. In the multi-view
stereo domain, approaches such as MVSNeRF (Chen et al., 2021; 2024) and MVSNet (Yao et al.,
2018) integrate neural networks into the MVS pipeline but typically require known camera poses
and still heavily rely on hand-crafted components to effectively incorporate 3D geometry.

Pointmap-based Representations. Pointmap-based representations (Wang et al., 2024d; Leroy
et al., 2024; Charatan et al., 2024; Xu et al., 2024; Szymanowicz et al., 2023; Zhang et al., 2024a;b)
have recently emerged as a unifying format for dense 3D geometry prediction, aligning well with the
output structure of neural networks. Compared to voxels (Sitzmann et al., 2019), meshes (Gkioxari
et al., 2019), or implicit fields (Park et al., 2019; Mildenhall et al., 2020), pointmaps enable feedfor-
ward inference and real-time rendering, and can directly support applications such as rasterization-
based rendering (Kerbl et al., 2023), SLAM (Murai et al., 2024; Liu et al., 2024), and few-shot
synthesis (Ye et al., 2025). DUSt3R (Wang et al., 2024d) and follow-ups like MASt3R (Leroy et al.,
2024) recast stereo 3D reconstruction as dense pointmap regression, jointly estimating depth, pose,
and intrinsics from image pairs. However, their pairwise design fundamentally limits scalability
– requiring quadratic fusion operations and complex global alignment procedures when handling
multi-view scenarios. Our approach maintains the advantages of pointmap representations while
overcoming these scalability limitations.

4D Reconstruction from Monocular Videos. Reconstructing dense geometry of dynamic scenes
from monocular video is significant but challenging for conventional methods. Recent methods (Lei
et al., 2024; Chu et al., 2024; Li et al., 2024; Kopf et al., 2021) leverages depth priors to resolve this
challenge. Specifically, Robust-CVD (Kopf et al., 2021) and MegaSAM (Li et al., 2024) requires
time-consuming per-video optimization. MonST3R (Zhang et al., 2024a) builds on DUSt3R to
output pointmaps for dynamic scenes by fine-tuning DUSt3R on the dynamic datasets. However, it
still requires a sliding-window based per-video global alignment as post-processing. In contrast, our
method enables feedforward 4D reconstruction directly from monocular videos, supporting online
prediction without costly per-video optimization or post-processing alignment.

Reconstruction Methods from Streaming Inputs. Streaming approaches offer a more scal-
able alternative solution for the 3D reconstruction problem, represented by the monocular SLAM
pipelines (Davison et al., 2007; Liu et al., 2024; Zhu et al., 2024). Inspired by the existing learning-
based online 3D reconstruction methods (Choy et al., 2016; Yu et al., 2021; Wang et al., 2021c), re-
cently Spann3R (Wang & Agapito, 2024) introduces a memory-based extension to DUSt3R, while
Fast3R (Yang et al., 2025) and VGG-T (Wang et al., 2025a) replace asymmetric decoders with
Transformer-based attention stacks to directly enable multi-view fusion. Despite these advances,
these approaches still predominantly rely on global full-attention mechanisms, limiting their real-
time scalability with increasing sequence length. CUT3R (Wang et al., 2025b) adopts an RNN-style
architecture to process unstructured inputs incrementally, but suffers from limited memory capacity
and poor compatibility with modern hardware acceleration techniques (Dao, 2024). Our method
fundamentally re-conceptualizes pointmap prediction as a decoder-only Transformer task, enabling
efficient causal inference through techniques like KVCache and windowed attention (Jiang et al.,
2023; Brown et al., 2020). This architectural design allows us to scale effectively to long sequences
while maintaining full compatibility with modern LLM-style training infrastructure and optimiza-
tion techniques, overcoming the limitations of previous approaches.
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Figure 2: Method Overview. Built on a causal transformer, STREAM3R processes streaming images
sequentially for 3D reconstruction. Each input image is first tokenized using a shared-weight ViT
encoder, and the resulting tokens are passed to our causal decoder. Each decoder layer begins with
frame-wise self-attention. For subsequent views, the model applies causal attention to the memory
tokens cached from previous observations. The outputs include point maps and confidence maps in
both world and camera coordinate systems, as long as the camera pose as shown on the right. Note
that we visualize the point cloud of the Headlocal with its depth map.

3 PRELIMINARIES: DUST3R

We reformulate DUSt3R (Wang et al., 2024d) to accept a stream of images as input. In DUSt3R,
each incoming image It is initially patchified into a set of K tokens, Ft = Encoder(It), where
Ft ∈ RK×C and Encoder is a weight-sharing ViT (Dosovitskiy et al., 2021). Specifically, DUSt3R
is designed to ingest two input images at a time, i.e., t ∈ {1, 2}. The encoded images yield two sets
of tokens:

F1 = Encoder(I1), F2 = Encoder(I2). (1)
Afterwards, the decoder networks Decodert reason over both of them through a series of transformer blocks

with cross attention layer:

Gi
1 = DecoderBlocki

1(G
i−1
1 , Gi−1

2 ), Gi
2 = DecoderBlocki

2(G
i−1
2 , Gi−1

1 ), (2)

with i ranging from 1 to B, representing the block index in a decoder of B blocks in total. G0
1 := F1 and

G0
2 := F2. Finally, the corresponding regression head of each branch predicts a pointmap with an associated

confidence map:

X̂1,1, Ĉ1,1 = Head1(G
0
1, . . . , G

B
1 ), X̂2,1, Ĉ2,1 = Head2(G

0
2, . . . , G

B
2 ). (3)

Note that DUSt3R is designed for two-view inputs and requires an expensive and unscalable global alignment
process to incorporate more input views.

4 METHOD

We introduce STREAM3R, a transformer that ingests uncalibrated streaming images as inputs and yields a se-
ries of 3D attributes as output. The input can be either unstructured image collections or video. Unlike existing
approaches (Wang et al., 2025a; Yang et al., 2025) that address this issue by adopting costly bi-directional at-
tention over the entire input sequence or using fixed-size memory buffers (Wang & Agapito, 2024; Wang et al.,
2025b), STREAM3R instead caches features from the past frames as context and processes incoming frame
sequentially using causal attention over the accumulated observations. This design not only enables faster
training and quicker convergence but also aligns with the architectural principles of modern LLMs, allowing us
to leverage the advances of that domain. We first introduce the problem formulation in Sec. 4.1, the architecture
in Sec. 4.2, and the training objectives in Sec. 4.3, and the implementation details in Sec. 5. An overview of
the proposed method is shown in Fig. 2. Also note that STREAM3R shares the same architecture design with
DUst3R, and please refer to the appendix for the preliminaries.
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4.1 PROBLEM DEFINITION AND NOTATION

STREAM3R is a regression model that sequentially takes a streaming of N RGB images (I)Nt , where each
image I ∈ R3×H×W belongs to the same 3D scene. The streaming inputs are successively transformed into a
set of 3D annotations corresponding to each frame:

fθ((I)
N
t ) = (X̂ local

t , X̂global
t , P̂t)

N
t . (4)

Technically, STREAM3R is implemented as a causal transformer that maps each image It into its cor-
responding pointmap of the local coordinate X̂ local

t ∈ R3×H×W and its pointmap in a global coordinate
X̂global

t ∈ R3×H×W , which is indicated by the first input frame I0, and its relative camera pose P̂t ∈ R9

including both intrinsics and extrinsics. We devise later how these 3D attributes are predicted.

4.2 CAUSAL TRANSFORMER FOR 3D REGRESSION

Causal Attention for Long-context 3D Reasoning. As mentioned in Sec. 3, given the streaming inputs, for
each current image, It, our method first tokenizes it into the features Ft = Encoder(It). The main difference
lies in the decoder side: rather than performing bi-directional attention over the whole sequence (Yang et al.,
2025) or interacting with a learnable state as in Wang et al. (2025b), we draw inspiration from the LLMs (Tou-
vron et al., 2023; Brown et al., 2020; DeepSeek-AI et al., 2024) and perform causal attention efficiently with
previous observations. Specifically, after performing frame-wise self-attention in each decoder block, the cur-
rent feature Gi−1

t will cross-attend to the features of previously observed frames corresponding to the same
layer:

Gi
t = DecoderBlocki

(
Gi−1

t , Gi−1
0 ⊕Gi−1

1 ⊕ · · · ⊕Gi−1
t−1

)
. (5)

This interaction ensures efficient information transfer to handle long-context dependencies. Note that this oper-
ation is easy to implement and well optimized with KV cache during inference for efficient computation (Brown
et al., 2020; Touvron et al., 2023).

Simplified Decoder Design. To achieve this, several network architecture modifications are required. In
DUSt3R, the decoder follows a symmetric design, i.e., two separate decoders Decoder1, Decoder2 are em-
ployed to handle two input views. To extend to an arbitrary number of inputs, we remove the symmetric design
and only retain a single decoder Decoder to process all the input frames. Specifically, each block in the de-
coder contains a SelfAttn block for frame-wise attention, and a CrossAttn block for causally attending to the
features of all previous observations. Note that we process the first two frames following the convention of
DUSt3R due to the lack of historical context. All incoming frames afterwards follow the causal operation in
Eq. (5). Note that to indicate the canonical world space, we add a learnable register token [reg] to the tokens
of the first frame F1 = F1 + [reg], in an element-wise manner, as shown in Fig. 2. In this way, the model
learns to output the global points without introducing N separate decoders. Unlike Yang et al. (2025), we did
not impose positional embedding for other frames for simplicity.

Prediction Heads. After the decoding operation, the 3D attributes corresponding to each frame can be pre-
dicted accordingly. Following existing works (Wang et al., 2025b;a), we predict two sets of point maps
X̂ local

t , X̂global
t with their corresponding confidence maps Ĉ local

t , Ĉglobal
t . Specifically, the local point map X̂ local

t

is defined in the coordinate frame of the viewing camera, and the global point map X̂global
t is in the coordinate

frame of the first image I1. We use two DPT (Ranftl et al., 2021) heads for point map prediction:

X̂ local
t , Ĉ local

t = Headlocal(G
0
t , . . . , G

B
t ), (6)

X̂global
t , Ĉglobal

t = Headglobal(G
0
t , . . . , G

B
t ), (7)

P̂t = Headpose(G
0
t , . . . , G

B
t ), (8)

where this redundant prediction has been demonstrated to simplify training (Jiang et al., 2025) and facilitates
training on 3D datasets with partial annotations (Liu et al., 2022; Yu et al., 2023).

4.3 TRAINING OBJECTIVE

STREAM3R is trained using a generalized form of the pointmap loss introduced in DUSt3R. Given a sequence
of N randomly sampled images, sourced either from a video or an image collection, we train the model to
produce pointmap predictions denoted by X = {X̂ local, X̂ global}, where X̂ local = {X̂ local

t }Nt=1 and X̂ global =

{X̂global
t }Nt=1. The corresponding confidence scores are denoted as Ĉ.

Following Wang et al. (2025a), we apply a confidence-aware regression loss to the pointmaps: Lconf =∑
(x̂,ĉ)∈(X̂ ,Ĉ)

(
ĉ ·

∥∥ x̂
ŝ
− x

s

∥∥
2
− α log ĉ

)
, where ŝ and s are scale normalization factors for X̂ and X for scale-

invariant supervision (Wang et al., 2024c). We also set ŝ := s for metric-scale datasets as in MASt3R (Leroy

5
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Input Images MonST3R Fast3R OursCUT3R

Figure 3: Qualitative results on in-the-wild images. We compare our method, STREAM3Rα, with
MonST3R, Fast3R, and CUT3R, and demonstrate that it achieves superior visual quality.

et al., 2024) to enable metric-scale pointmaps prediction. For the camera prediction loss, we parameterize pose
P̂t as quaternion q̂t, translation τ̂t and focal f̂ t, and minimize the L2 norm between the prediction and ground
truth: Lpose =

∑N
t=1

(
∥q̂t − qt∥2 +

∥∥ τ̂t
ŝ
− τt

s

∥∥
2
+

∥∥∥f̂t − ft

∥∥∥
2

)
.

5 EXPERIMENTS

Datasets. We train our method on a large and diverse collection of 3D datasets, e.g., Co3Dv2 (Reizenstein et al.,
2021), ScanNet++ (Yeshwanth et al., 2023), ScanNet (Dai et al., 2017), HyperSim (Roberts et al., 2021), Dy-
namic Replica (Karaev et al., 2023), DL3DV (Ling et al., 2024), BlendedMVS (Yao et al., 2020), Aria Synthetic
Environments (Pan et al., 2023), TartanAir (Wang et al., 2020), MapFree (Arnold et al., 2022), MegaDepth (Li
& Snavely, 2018), and ARKitScenes (Baruch et al., 2022). Please check the appendix for the full dataset details.

Implementation Details. We provide two versions of STREAM3R, where STREAM3Rα is inspired and fine-
tuned from DUSt3R (Wang et al., 2024d) pre-trained weights, and STREAM3Rβ is initialized from the flagship
VGG-T (Wang et al., 2025a) model. For STREAM3Rα, we inherit the 24-layer CroCo ViT (Weinzaepfel et al.,
2023) as our encoder, and retrofit its 12-layer decoder network by only retaining the first decoder Decoder =
Decoder1. The DPT-L (Ranftl et al., 2021) heads are used to map the decoded tokens to the local and global
point maps accordingly. For STREAM3Rβ , we replace the SelfAttn layer in the Global Attention of VGG-T
with CausalAttn and fine-tune all the parameters. For memory-efficient and stable training, we inject QK-
Norm (Dehghani et al., 2023) to each transformer layer and leverage FlashAttention (Dao, 2024) for BFloat16
mixed precision training.

Training Details. Our model is trained with the AdamW optimizer on a batch size of 64 with a learning rate
1e-4 for 400K iterations. For each batch, we randomly sample 4 − 10 frames from a random training scene.
The input frames are cropped into diverse resolutions, ranging from 224 × 224 to 512 × 384 to improve gen-
eralization. The training runs end-to-end on 8 NVIDIA A100 GPUs over seven days. Gradient checkpointing
is also adopted to optimize memory usage.

Baselines. We compare our methods against a set of baselines that are designed to take a pair of views as input:
DUSt3R (Wang et al., 2024d), MASt3R (Leroy et al., 2024), and MonST3R (Zhang et al., 2024a). Besides, we
include the comparison against concurrent methods Spann3R (Wang & Agapito, 2024), CUT3R (Wang et al.,
2025b), SLAM3R (Liu et al., 2024), and Fast3R (Yang et al., 2025) that are specifically designed for handling
a varying number of input images. We also include the flagship 3D geometry model VGG-T (Wang et al.,
2025a) for reference. Note that Fast3R and VGG-T are bi-directional attention methods, and we group them
together with methods that require global optimization (GA). We group other concurrent methods together as
streaming methods that support processing sequential inputs. Note that for all methods except for VGG-T

6
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Table 1: Single-frame Depth Evaluation. We report the performance on Sintel, Bonn, KITTI, and
NYU-v2 (static) datasets. The best and second best results in each category are bold and underlined
respectively. Our method achieves better or comparable performance against existing methods.

Method
Sintel Bonn KITTI NYU-v2

Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑
VGG-T (Wang et al., 2025a) 0.271 67.7 0.053 97.3 0.076 93.3 0.060 94.8
Fast3R (Yang et al., 2025) 0.502 52.8 0.192 77.3 0.129 81.2 0.099 88.9

DUSt3R (Wang et al., 2024d) 0.424 58.7 0.141 82.5 0.112 86.3 0.080 90.7
MASt3R (Leroy et al., 2024) 0.340 60.4 0.142 82.0 0.079 94.7 0.129 84.9

MonST3R (Zhang et al., 2024a) 0.358 54.8 0.076 93.9 0.100 89.3 0.102 88.0

Spann3R (Wang & Agapito, 2024) 0.470 53.9 0.118 85.9 0.128 84.6 0.122 84.9
CUT3R (Wang et al., 2025b) 0.428 55.4 0.063 96.2 0.092 91.3 0.086 90.9

STREAM3Rα 0.350 59.0 0.075 93.4 0.088 91.3 0.091 89.9
STREAM3Rβ 0.228 70.7 0.061 96.7 0.063 95.5 0.057 95.7

Table 2: Video Depth Evaluation. We evaluate scale-invariant and metric depth accuracy on the
Sintel, Bonn, and KITTI datasets. Methods that require global alignment are denoted as “GA”.
The “Type” column indicates whether the method is Optimzation-based (“Optim”), streaming
(“Stream”), or full-attention (“FA”) We also report inference speed in FPS on the KITTI dataset
using 512×144 resolution for all methods on an A100 GPU, except for Spann3R, which supports
Stream 224×224 inputs. Our method achieves performance that is better than CUT3R, while of-
fering FAter inference. For STREAM3Rβ-W[5], we indicate using sliding window attention on
STREAM3Rβ with window size 5. Note that STREAM3Rβ-W[5] achieves the fastest FPS among
all streaming-based methods.

Sintel Bonn KITTI
Alignment Method Type Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑ FPS

VGG-T (Wang et al., 2025a) FA 0.297 68.8 0.055 97.1 0.073 96.5 7.32
Fast3R (Yang et al., 2025) FA 0.653 44.9 0.193 77.5 0.140 83.4 47.23

Per-sequence scale

DUSt3R-GA (Wang et al., 2024d) Optim 0.656 45.2 0.155 83.3 0.144 81.3 0.76
MASt3R-GA (Leroy et al., 2024) Optim 0.641 43.9 0.252 70.1 0.183 74.5 0.31

MonST3R-GA (Zhang et al., 2024a) Optim 0.378 55.8 0.067 96.3 0.168 74.4 0.35

Spann3R (Wang & Agapito, 2024) Stream 0.622 42.6 0.144 81.3 0.198 73.7 13.55
CUT3R (Wang et al., 2025b) Stream 0.421 47.9 0.078 93.7 0.118 88.1 16.58

STREAM3Rα Stream 0.478 51.1 0.075 94.1 0.116 89.6 23.48
STREAM3Rβ Stream 0.264 70.5 0.069 95.2 0.080 94.7 12.95

STREAM3Rβ-W[5] Stream 0.279 68.6 0.064 96.7 0.083 95.2 32.93

Metric scale
MASt3R-GA (Leroy et al., 2024) Optim 1.022 14.3 0.272 70.6 0.467 15.2 0.31

CUT3R (Wang et al., 2025b) Stream 1.029 23.8 0.103 88.5 0.122 85.5 16.58
STREAM3Rα Stream 1.041 21.0 0.084 94.4 0.234 57.6 23.48

and STREAM3Rβ , we conduct inference with the largest dimension of 512. For VGG-T based methods, we
conduct inference with the largest dimension of 518 due to the requirement of DINO-V2 tokenizer (Oquab
et al., 2023). Regarding FPS, we benchmark the inference speed on the A100 GPU with FP32. Comparisons
of more concurrent methods (Zhuo et al., 2025; Yang et al., 2024b) are included in the appendix.

5.1 MONOCULAR AND VIDEO DEPTH ESTIMATION

Mono-Depth Estimation. Following previous methods (Zhang et al., 2024a; Wang et al., 2025b), we first eval-
uate monocular depth estimation on Sintel (Butler et al., 2012), Bonn (Palazzolo et al., 2019), KITTI (Geiger
et al., 2013), and NYU-v2 (Silberman et al., 2012) datasets, which cover dynamic and static, indoor and out-
door, realistic and synthetic data. These datasets are not used for training and are suitable for benchmarking the
zero-shot performance across different domains. Our evaluation includes the absolute relative error (Abs Rel)
and percentage of inlier points within a 1.25-factor of true depth δ < 1.25, following the convention of existing
methods (Hu et al., 2025; Yang et al., 2024a). Per-frame median scaling is imposed as in DUSt3R. We include
the quantitative results in Tab. 1. As can be seen, our method achieves state-of-the-art compared to streaming-
based methods, and even performs best compared to VGG-T on Sintel, KITTI, and NYU-2. Also note that our
method uses fewer datasets and compute resources compared to CUT3R. Specifically, CUT3R adopts a cur-
riculum training of four stages for 100 + 35 + 40 + 10 = 185 epochs, while our method is trained end-to-end
for only 7 epochs using a partial of CUT3R’s datasets due to the computational resources constraints.

Video Depth Estimation. We also benchmark our model on the video depth task, which evaluates both per-
frame depth quality and inter-frame depth consistency by aligning the output depth maps to the ground truth
depth maps using a given per-sequence scale. Metric point map methods like MASt3R, CUT3R, and ours
are also reported without alignment. The quantitative results for both methods are included in Tab. 2. Over
per-sequence scale alignment, our method surpasses optimization-based baselines DUSt3R-GA (Wang et al.,
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Table 3: 3D Reconstruction Evaluation on 7-Scenes (Shotton et al., 2013). Despite operating in the
streaming setting, our method delivers competitive performance, matching or even exceeding that
of offline optimization-based methods that leverage global alignment.

Method Type
Acc↓ Comp↓ NC↑

FPS
Mean Med. Mean Med. Mean Med.

VGG-T (Wang et al., 2025a) FA 0.087 0.039 0.091 0.039 0.787 0.890 12.00
Fast3R (Yang et al., 2025) FA 0.164 0.108 0.163 0.080 0.686 0.775 30.92

DUSt3R-GA (Wang et al., 2024d) Optim 0.146 0.077 0.181 0.067 0.736 0.839 0.68
MASt3R-GA (Leroy et al., 2024) Optim 0.185 0.081 0.180 0.069 0.701 0.792 0.34

MonST3R-GA (Zhang et al., 2024a) Optim 0.248 0.185 0.266 0.167 0.672 0.759 0.39

Spann3R (Wang & Agapito, 2024) Stream 0.298 0.226 0.205 0.112 0.650 0.730 12.97
SLAM3R (Liu et al., 2024) Stream 0.287 0.155 0.226 0.066 0.644 0.720 38.40

CUT3R (Wang et al., 2025b) Stream 0.126 0.047 0.154 0.031 0.727 0.834 17.00
STREAM3Rα Stream 0.148 0.077 0.177 0.058 0.700 0.801 26.40
STREAM3Rβ Stream 0.122 0.044 0.101 0.038 0.746 0.856 20.12

2024d) and MASt3R-GA (Leroy et al., 2024) (static-scene assumption) and even MonST3R-GA (Zhang et al.,
2024a) (dynamic-scene, optical flow (Teed & Deng, 2020) dependent). Against the streaming state-of-the-
art CUT3R, we achieve higher accuracy on all three benchmarks while running 40% faster. STREAM3R also
outperforms full-attention Fast3R (Yang et al., 2025), streaming approaches Spann3R (Wang & Agapito, 2024),
and the flagship model VGG-T on Sintel. Notably, STREAM3Rβ-W, using sliding-window attention (Jiang
et al., 2023) for constant cache, exceeds STREAM3Rβ on Bonn and KITTI despite accessing only five past
frames.

5.2 3D RECONSTRUCTION

We also benchmark scene-level 3D reconstruction on the 7-scenes (Shotton et al., 2013) dataset and use ac-
curacy (Acc), completion (Comp), and normal consistency (NC) metrics, following the convention of existing
methods (Wang & Agapito, 2024; Wang et al., 2025b; 2024d). Following CUT3R, we assess the model’s per-
formance on image collections with minimal or no overlap by evaluating using sparsely sampled images, i.e.,
3 to 5 frames per scene. The quantitative results are included in Tab. 3. Our method achieves better perfor-
mance compared to optimization-based methods and strong baselines including Spann3R, Fast3R, CUT3R, and
SLAM3R. Compared to CUT3R, our method shows better performance with over 50% times faster during the
inference. While SLAM3R achieves the fastest inference, it yields noticeably lower reconstruction accuracy
than our method. This performance gap can be partially attributed to SLAM3R being trained and evaluated at
a lower input resolution of 224× 224. The comparison results on NRGBD (Azinović et al., 2022) benchmark
is included in the appendix.

5.3 MEMORY USAGE

Table 4: GPU Memory Usage Comparison (GB).

Input Frames 1 20 40 60 80 100

VGG-T 4.70 9.99 18.66 30.48 45.47 63.63
CUT3R 3.34 3.71 4.11 4.48 4.86 5.25
MonST3R-GA 3.05 12.36 22.52 32.69 42.81 52.96
STREAM3Rα 3.02 5.64 8.31 10.98 13.65 16.32
STREAM3Rβ 4.70 6.29 8.71 11.83 14.95 18.08
STREAM3Rα-W[5] 3.02 3.72 3.72 3.72 3.72 3.72
STREAM3Rβ -W[5] 4.70 5.18 5.18 5.18 5.18 5.18

Tab. 4 illustrates the peak GPU memory usage compar-
ison under different numbers of input frames. All mea-
surements are conducted on a single NVIDIA A100
GPU using FlashAttention (Dao, 2024), with input im-
age resolution set to 448 × 448. While naive at-
tention implementations will cause quadratic memory
usage with respect to sequence length, FlashAtten-
tion reduces this from quadratic to linear. Unlike bi-
directional methods that process all views jointly, our
causal version processes streaming views sequentially,
resulting in linearly increasing KV Cache memory.

Our method naturally supports sliding window atten-
tion without requiring any fine-tuning. We implement STREAM3R-W[5], a window attention mechanism that
always attends to the features of the first frame and the five most recent frames from previous observations.
With this approach, the KV Cache size remains constant regardless of input sequence length. Furthermore,
as shown in Tab. 2, using window attention achieves comparable or even better performance in video depth
evaluation.

5.4 ABLATION ON THE EFFECTIVENESS OF THE PROPOSED ARCHITECTURE

Here, we conduct detailed ablation analysis on STREAM3R to demonstrate the effectiveness of its designs.
Due to the extensive computational resources required to train the model, we only train the ablation models on
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Table 5: Ablation on Video Depth Estimation and 3D Reconstruction. Comparison between RNN-
based CUT3R and our proposed architecture STREAM3Rα. Results show consistent improvements
across both video depth estimation (Sintel, BONN, KITTI) and 3D reconstruction (7-Scenes).

Method
Video Depth Estimation 3D Reconstruction (7-Scenes)

Sintel BONN KITTI Acc↓ Comp↓ NC↑
Abs Rel δ < 1.25 Abs Rel δ < 1.25 Abs Rel δ < 1.25 Mean Med. Mean Med. Mean Med.

CUT3R 0.598 40.7 0.102 90.7 0.157 77.4 0.480 0.365 0.330 0.148 0.555 0.583
STREAM3Rα 0.535 47.0 0.083 94.2 0.141 81.8 0.328 0.261 0.255 0.095 0.605 0.659

224× 224 resolution images. All the datasets are included to train the models. Note that for a fair comparison,
we initialize all the models below using the pre-trained MASt3R (Leroy et al., 2024) checkpoints and train the
models using the same hyper-parameters and compute resources.
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Figure 4: Ablation of our proposed STREAM3R. Compared to Wang et al. (2025b), our decoder-
only network yields better convergence with faster training speed in the 3D point map prediction
task, especially in the global branch.

We demonstrate the effectiveness of decoder-only transformer against RNN design in the sequential 3D
pointmap prediction. The main baseline is CUT3R (Wang et al., 2025b), which leverages the RNN design to
achieve this. For a fair comparison, we re-train CUT3R and our method using the same dataset and pre-trained
model weights initialization. We include the training curve in Fig. 4a, where both models are trained with the
same hyperparameters and compute resources. As can be observed, STREAM3R converges faster compared to
CUT3R and performs 60% more training steps within the given time. This may sound counterintuitive since
STREAM3R is attending to a longer context against CUT3R’s constant state memory. However, since CUT3R
architecture requires a state-update operation after each state-readout interaction, while STREAM3R directly
attends to cached features of existing observations.

We also notice in Fig. 4b that the convergence of Headlocal is similar among the two architectures, while for
Headglobal, our proposed architecture shows noticeably faster convergence speed, as shown in Fig. 4c. This
demonstrates that using a single state makes the model harder to register incoming frames due to the limited
memory capacity.

Quantitatively, we benchmark the ablation models on both the video depth estimation and 3D reconstruction
in Tab. 5, which evaluates the Headlocal and Headglobal correspondingly. For a fair comparison, we evaluate
the checkpoints trained for the same number of iterations. As can be observed, our proposed architecture
consistently achieves better performance on both tasks.

6 CONCLUSION

We have introduced STREAM3R, a decoder-only transformer framework for dense 3D reconstruction from
unstructured or streaming image inputs. By reformulating reconstruction as a sequential registration task with
causal attention, STREAM3R overcomes the scalability bottlenecks of prior work and aligns naturally with
LLM-style training and inference pipelines. Our design allows efficient integration of geometric context across
frames, supports dual-coordinate pointmap prediction, and generalizes to novel-view synthesis over large-scale
scenes without requiring global post-processing. Through extensive experiments across standard benchmarks,
we show that STREAM3R achieves competitive or superior performance in the monocular/video-depth esti-
mation and 3D reconstruction tasks, with significantly improved inference efficiency. By bridging geometric
learning with scalable sequence modeling, we hope this work paves the way for more general-purpose, real-time
3D understanding systems. Please refer to appendix for the limitation discussion.
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7 REPRODUCIBILITY STATEMENT

We exclusively use publicly available datasets for model training, with complete details provided in the paper.
All code and model checkpoints will be publicly released to ensure reproducibility.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) are used exclusively for minor grammar corrections and stylistic polishing of
the manuscript. They are not involved in the design of the methodology, execution of experiments, analysis of
results, or any other aspect of the scientific contribution.

A.2 DATASET DETAILS

We train our model on 29 datasets that contains a diverse range of scene types, including static and dynamic
scene and objects. Specifically, we mainly follow the data splits of CUT3R (Wang et al., 2025b), and the
main 15 datasets with highest sampling ratio are: Co3Dv2 (Reizenstein et al., 2021), ScanNet++ (Yeshwanth
et al., 2023), ScanNet (Dai et al., 2017), HyperSim (Roberts et al., 2021), Dynamic Replica (Karaev et al.,
2023), DL3DV (Ling et al., 2024), BlendedMVS (Yao et al., 2020), Aria Synthetic Environments (Pan et al.,
2023), TartanAir (Wang et al., 2020), MapFree (Arnold et al., 2022), MegaDepth (Li & Snavely, 2018), Wil-
dRGBD (Xia et al., 2024), Waymo (Sun et al., 2020), Bedlam (Black et al., 2023), and ARKitScenes (Baruch
et al., 2022). We do not include 3D Ken Burns (Niklaus et al., 2019), IRS (Wang et al., 2021b), and Smart-
Portraits (Kornilova et al., 2022) for training since these datasets are either single view or fail to download
successfully. We adapt the official scripts provided by CUT3R (Wang et al., 2025b), DUSt3R (Wang et al.,
2024d), and Spann3R (Wang & Agapito, 2024) for dataset processing. For training STREAM3Rβ , we remove
all the single-view datasets as in VGG-T, leaving 19 datasets for training. We did not find performance degra-
dation when removing the single-view datasets. Please refer to the Tab. 6 of the CUT3R for more dataset
details.

A.3 MORE IMPLEMENTATION DETAILS

More Training Details. Our method conducts end-to-end training on all datasets on a hybrid of 12 different
resolutions, ranging from 224× 224 to 512× 384. Data augmentation side, we perform sequence-level color
jittering by applying the same color jitter across all frames in a sequence.

Network Architecture Details. We follow DUSt3R and use the CroCoNet (Weinzaepfel et al., 2023) pre-
trained ViT for the encoder and decoder design. We directly use the DPT (Ranftl et al., 2021) head for Headglobal
and Headlocal implementation. We apply RoPE to the query and key feature before each attention operation
for the ViT encoder, but ignore it for the ViT decoder to generalize to an arbitrary number of input views. For
ablation studies, we train our model on the same datasets but at resolution 224× 224.

For the sliding window attention version STREAM3Rβ-W[5], we always include the tokens of the first frame to
keep the canonical coordinate space unchanged. We set window size W= 5 since it trades off performance and
speed, and other window size also stably works. For the full attention version STREAM3Rβ-FA, we directly
use the causally trained model STREAM3Rβ and remove the causal mask in the SelfAttn. This is similar to
the “revisit” operation in CUT3R.

A.4 MORE COMPARISONS AND ANALYSIS

Video Depth Estimation. We further expand the video depth comparison in the main paper and include
a wider range of baseline methods, including single-frame depth methods Marigold (Ke et al., 2024) and
DepthAnything-V2 (Yang et al., 2024c), video depth approaches NVDS (Wang et al., 2023), DepthCrafter (Hu
et al., 2025), and ChronoDepth (Shao et al., 2024), and recent joint depth-and-pose estimation methods
such as Robust-CVD (Bârsan et al., 2018), CausalSAM (Zhang et al., 2022), DUSt3R (Wang et al., 2024d),
MASt3R (Leroy et al., 2024), MonST3R (Zhang et al., 2024a), and Spann3R (Wang & Agapito, 2024). Ex-
tended results are shown in Tab. 6. STREAM3Rα consistently outperforms its RNN-based counterpart CUT3R
under the per-sequence scale & shift setting, and even achieves state-of-the-art performance on the KITTI
dataset while also being the fastest in terms of FPS. Moreover, STREAM3Rβ delivers even stronger results,
attaining the best overall accuracy across the per-sequence scale & shift setting.

3D Reconstruction on NRGBD. We further include the comparison on NRGBD benchmark (Azinović et al.,
2022) in Tab. 7. Here, we also include the comparison with a concurrent work StreamVGGT (Zhuo et al., 2025),
which fine-tunes VGG-T into streaming version similar to our method. We also include VGG-T[streaming],
which indicates using VGG-T in the streaming setting by replace the full attention in VGG-T into the causal at-
tention. As can be seen, our method clearly outperforms all optimization-based and online methods, including
the official VGG-T model. Direct use of VGG-T in the streaming setting substantially degrades performance,
underscoring the need for fine-tuning under causal constraints. We also include STREAM3Rβ-FA for com-
parison, which indicates replacing the causal attention in STREAM3Rβ into full attention (FA). Interestingly,
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Table 6: Video Depth Evaluation. We report scale&shift-invariant depth, scale-invariant depth and metric
depth accuracy on Sintel, Bonn, and KITTI datasets. Methods requiring global alignment are marked “GA”,
while “Optim” and “Stream” indicate Optimzation-based and Streamne methods, respectively. We also report
the FPS on KITTI dataset using 512× 144 image resolution for all methods, except Spann3R which Stream
supports 224×224 inputs.

Sintel BONN KITTI
Alignment Method Type Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ<1.25 ↑ Abs Rel ↓ δ <1.25 ↑ FPS

Per-sequence
scale & shift

Marigold (Ke et al., 2024) Stream 0.532 51.5 0.091 93.1 0.149 79.6 <0.1
Depth-Anything-V2 (Yang et al., 2024c) Stream 0.367 55.4 0.106 92.1 0.140 80.4 3.13
NVDS (Wang et al., 2023) Stream 0.408 48.3 0.167 76.6 0.253 58.8 -
ChronoDepth (Shao et al., 2024) Stream 0.687 48.6 0.100 91.1 0.167 75.9 1.89
DepthCrafter (Hu et al., 2025) Stream 0.292 69.7 0.075 97.1 0.110 88.1 0.97
Robust-CVD (Kopf et al., 2021) Stream 0.703 47.8 - - - - -
CasualSAM (Zhang et al., 2022) Optim 0.387 54.7 0.169 73.7 0.246 62.2 -
DUSt3R-GA (Wang et al., 2024d) Optim 0.531 51.2 0.156 83.1 0.135 81.8 0.76
MASt3R-GA (Leroy et al., 2024) Optim 0.327 59.4 0.167 78.5 0.137 83.6 0.31
MonST3R-GA (Zhang et al., 2024a) Optim 0.333 59.0 0.066 96.4 0.157 73.8 0.35
Spann3R (Wang & Agapito, 2024) Stream 0.508 50.8 0.157 82.1 0.207 73.0 13.55
CUT3R (Wang et al., 2025b) Stream 0.540 55.7 0.074 94.5 0.106 88.7 16.58
STREAM3Rα Stream 0.356 58.6 0.068 95.7 0.099 91.0 23.48
STREAM3Rβ Stream 0.205 70.8 0.062 97.4 0.071 95.1 12.95

Per-sequence scale

DUSt3R-GA (Wang et al., 2024d) Optim 0.656 45.2 0.155 83.3 0.144 81.3 0.76
MASt3R-GA (Leroy et al., 2024) Optim 0.641 43.9 0.252 70.1 0.183 74.5 0.31
MonST3R-GA (Zhang et al., 2024a) Optim 0.378 55.8 0.067 96.3 0.168 74.4 0.35
Spann3R (Wang & Agapito, 2024) Stream 0.622 42.6 0.144 81.3 0.198 73.7 13.55
Fast3R (Yang et al., 2025) FA 0.653 44.9 0.193 77.5 0.140 83.4 47.23
CUT3R (Wang et al., 2025b) Stream 0.421 47.9 0.078 93.7 0.118 88.1 16.58
STREAM3Rα Stream 0.478 51.1 0.075 94.1 0.116 89.6 23.48
STREAM3Rβ Stream 0.264 70.5 0.069 95.2 0.080 94.7 12.95

Metric scale
MASt3R-GA (Leroy et al., 2024) Optim 1.022 14.3 0.272 70.6 0.467 15.2 0.31
CUT3R (Wang et al., 2025b) Stream 1.029 23.8 0.103 88.5 0.122 85.5 16.58
STREAM3Rα Stream 1.041 21.0 0.084 94.4 0.234 57.6 23.48

Table 7: 3D Reconstruction Comparison on NRGBD (Azinović et al., 2022). Our proposed method
consistently achieves superior performance compared to optimization-based (Optim), streaming-
based (Stream), and even full attention (FA) methods. STREAM3Rβ-FA indicates adopting full
attention in our trained model for 3D reconstruction.

Method Type Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

VGG-T (Wang et al., 2025a) FA 0.073 0.018 0.077 0.021 0.910 0.990
DUSt3R-GA (Wang et al., 2024d) Optim 0.144 0.019 0.154 0.018 0.870 0.982
MASt3R-GA (Leroy et al., 2024) Optim 0.085 0.033 0.063 0.028 0.794 0.928

MonST3R-GA (Zhang et al., 2024a) Optim 0.272 0.114 0.287 0.110 0.758 0.843
STREAM3Rβ -FA Stream 0.057 0.014 0.028 0.013 0.910 0.993

Spann3R (Wang & Agapito, 2024) Stream 0.416 0.323 0.417 0.285 0.684 0.789
CUT3R (Wang et al., 2025b) Stream 0.099 0.031 0.076 0.026 0.837 0.971

StreamVGGT (Zhuo et al., 2025) Stream 0.084 0.044 0.074 0.041 0.861 0.986
VGG-T [Streaming] (Wang et al., 2025a) Stream 0.219 0.102 0.212 0.105 0.797 0.936

STREAM3Rβ Stream 0.065 0.017 0.034 0.014 0.900 0.991

STREAM3Rβ-FA yields comparable performance compared to VGG-T and even better results on the comple-
tion metric. This highlights the effectiveness and generality of our proposed method.

Camera Pose Estimation. Following CUT3R (Wang et al., 2025b), we evaluate camera pose estimation
accuracy on the Sintel (Butler et al., 2012), TUM-dynamics (Sturm et al., 2012), and ScanNet (Dai et al., 2017)
datasets. Sintel and TUM-dynamics both feature substantial dynamic motion, posing significant challenges
to conventional SfM and SLAM pipelines. We report Absolute Translation Error (ATE), Relative Translation
Error (RPEtrans), and Relative Rotation Error (RPErot) after Sim(3) alignment with the ground truth, following
the protocol in (Teed & Deng, 2021; Zhang et al., 2024a; Wang et al., 2025b). Our approach operates with-
out requiring camera calibration, similar to the compared baselines (Teed & Deng, 2021). While many prior
methods (Kopf et al., 2021; Zhang et al., 2022) address this via test-time optimization, which jointly estimates
intrinsics and dense depth for each sequence. We focus on purely online processing. Tab. 8 reports results
for Streaming (Stream) and Optimization (Optim) categories, with DUSt3R (Wang et al., 2024d) included in
the latter (aligning all frames to the first frame without global alignment). Although optimization-based sys-
tems still achieve the lowest errors overall, our method establishes the strongest performance among streaming
approaches, and notably surpasses CUT3R (Wang et al., 2025b) on both TUM-dynamics and ScanNet, demon-
strating particular robustness in dynamic environments.
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Table 8: Camera Pose Evaluation on Sintel (Butler et al., 2012), TUM-dynamic (Sturm et al., 2012),
and ScanNet (Dai et al., 2017) datasets. Our method achieves comparable performance with CUT3R
on most benchmarks.

Sintel TUM-dynamics ScanNet

Method Type ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓
Particle-SfM (Zhao et al., 2022) Optim 0.129 0.031 0.535 - - - 0.136 0.023 0.836
Robust-CVD (Kopf et al., 2021) Optim 0.360 0.154 3.443 0.153 0.026 3.528 0.227 0.064 7.374
CasualSAM (Zhang et al., 2022) Optim 0.141 0.035 0.615 0.071 0.010 1.712 0.158 0.034 1.618
DUSt3R-GA (Wang et al., 2024d) Optim 0.417 0.250 5.796 0.083 0.017 3.567 0.081 0.028 0.784
MASt3R-GA (Leroy et al., 2024) Optim 0.185 0.060 1.496 0.038 0.012 0.448 0.078 0.020 0.475
MonST3R-GA (Zhang et al., 2024a) Optim 0.111 0.044 0.869 0.098 0.019 0.935 0.077 0.018 0.529

DUSt3R (Wang et al., 2024d) Stream 0.290 0.132 7.869 0.140 0.106 3.286 0.246 0.108 8.210
Spann3R (Wang & Agapito, 2024) Stream 0.329 0.110 4.471 0.056 0.021 0.591 0.096 0.023 0.661
CUT3R (Wang et al., 2025b) Stream 0.213 0.066 0.621 0.046 0.015 0.473 0.099 0.022 0.600
STREAM3Rβ Stream 0.213 0.076 0.868 0.026 0.013 0.330 0.052 0.021 0.850

3D Reconstruction on ETH3D. To further verify performance on large-scale data with longer sequences,
we include 3D reconstruction experiments on the ETH3D (Schöps et al., 2017) dataset, as shown in Tab. 9.
As can be seen, global alignment (GA)-based methods (DUSt3R, MASt3R) perform significantly worse
than feed-forward reconstruction methods (CUT3R and Ours), indicating that they struggle to generalize
to challenging scenes and long video sequences. Furthermore, our method significantly outperforms other
streaming approaches (CUT3R, Span3R, SLAM3R). While the full-attention offline method VGGT per-
forms strongly, our streaming method achieves the best Completeness score among all methods (0.245 vs.
VGGT 0.305) and remains competitive in accuracy.

Table 9: 3D Reconstruction Comparison on ETH3D (Schöps et al., 2017). Our proposed
method achieves competitive performance compared to optimization-based (Optim), streaming-
based (Stream), and full attention (FA) methods.

Method Type Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

DUSt3R-GA (Wang et al., 2024d) Optim 2.582 2.034 2.126 1.544 0.548 0.573
MASt3R-GA (Leroy et al., 2024) Optim 2.682 2.458 2.206 1.734 0.531 0.540

Fast3R (Yang et al., 2025) FA 0.832 0.691 0.978 0.683 0.667 0.766
VGG-T (Wang et al., 2025a) FA 0.280 0.185 0.305 0.182 0.853 0.950

CUT3R (Wang et al., 2025b) Stream 0.617 0.525 0.747 0.579 0.754 0.848
Spann3R (Wang & Agapito, 2024) Stream 1.730 1.107 1.373 0.742 0.545 0.634

SLAM3R (Liu et al., 2024) Stream 1.678 1.288 0.996 0.499 0.615 0.681
STREAM3Rβ Stream 0.363 0.227 0.245 0.094 0.812 0.943

Robustness of the Anchor View. Using the first frame as the global coordinate system is a standard con-
vention across DUSt3R and its follow-up works, including MASt3R, MonST3R, CUT3R, VGGT, and ours.
As shown in the Fig. 5 (b), even when the first frame has very little overlap, our model still shows strong
implicit relative pose-learning capability for the other views.

Quantitatively, we further follow the degradation pipeline of Real-ESRGAN (Wang et al.) to corrupt the
first frame of each sequence, and then evaluate VGGT, CUT3R, and our method on the 7-Scenes dataset.
This directly examines scenarios where the first frame is low-quality. As shown in Table 10, all methods
experience some degradation. However, CUT3R’s Accuracy error increases markedly from 0.126 to 0.335,
whereas that of STREAM3R rises only from 0.122 to 0.223, indicating that our method is considerably more
robust under such challenging conditions.

We further add visualizations for unordered image inputs and even the case with the non-overlapping an-
choring view in Fig. 5. Fig. 5(a) demonstrates that STREAM3R also performs well on unordered inputs,
beyond the streaming setting. Fig. 5(b) further shows that when the first frame has very little overlap, our
model still yields strong implicit relative pose-learning capability for the other views.

Comparison with VGGT-SLAM. We compare our method with VGGT-SLAM (Maggio et al., 2025) on
both static scenes (NRGBD) and dynamic scenes (Sintel and TUM-dynamics). As shown in Tab. 11, our
approach performs on par with SLAM-specialized techniques for static scene reconstruction. Moreover,
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Table 10: Impact of First-View Degradation on 3D Reconstruction (7-Scenes). We compare the
robustness of different methods against input degradation. The values in parentheses indicate the
performance drop compared to the clean setting, marked in red.

Method Acc (Mean) ↓ Acc (Med.) ↓ Comp (Mean) ↓ Comp (Med.) ↓ NC (Mean) ↑ NC (Med.) ↑
VGGT (Wang et al., 2025a) 0.087 0.039 0.091 0.039 0.787 0.890
CUT3R (Wang et al., 2025b) 0.126 0.047 0.154 0.031 0.727 0.834
STREAM3Rβ 0.122 0.044 0.101 0.038 0.746 0.856

VGGT (w/ 1st view deg.) 0.144 (+0.057) 0.062 (+0.023) 0.172 (+0.081) 0.060 (+0.021) 0.708 (-0.079) 0.811 (-0.079)
CUT3R (w/ 1st view deg.) 0.335 (+0.209) 0.270 (+0.223) 0.320 (+0.166) 0.276 (+0.245) 0.666 (-0.061) 0.752 (-0.082)
STREAM3Rβ (w/ 1st view deg.) 0.223 (+0.101) 0.117 (+0.073) 0.214 (+0.113) 0.139 (+0.101) 0.695 (-0.051) 0.789 (-0.067)

（b）Non-Overlapping Anchor View（a）Unordered Input

Figure 5: Visualizations of input permutation and non-overlapping anchoring views. (a)
STREAM3R maintains high accuracy under unordered input sequences. (b) STREAM3R success-
fully reconstructs the scene even when the anchoring view has no overlap with the rest of the se-
quence.

Tab. 12 and Fig. 6 demonstrates that our method can robustly reconstruct dynamic scenes, a capability that
conventional SLAM-based methods typically lack.

We further emphasize that our method targets a different problem setting from SLAM-based approaches.
Our goal is to develop a unified streaming 3D/4D reconstruction pipeline capable of handling both (dynamic)
foreground and background regions, whereas SLAM-based methods primarily focus on reconstructing static
backgrounds and estimating accurate camera poses.

Despite these differing objectives, our approach is fully compatible with feed-forward SLAM systems and
can be seamlessly integrated into their pipelines. As demonstrated in a recent work SLAM-Former (Yuan
et al., 2025), streaming-based 3D reconstruction with KV caching can effectively support frontend tasks
such as keyframe selection, tracking, and mapping within a SLAM system.

Table 11: 3D Reconstruction Comparison on Dense NRGBD (∼150 frames). Our method achieves
comparable performance to SLAM-based methods on static scenes.

Method Type Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

VGGT-SLAM Maggio et al. (2025) SLAM-based 0.039 0.017 0.028 0.009 0.781 0.939
STREAM3Rβ Stream 0.046 0.020 0.012 0.005 0.756 0.923

Comparison Local and Global Point Map Prediction. Our method supports both world-point maps and
local-point maps (from depth and intrinsics). By using the extrinsics predicted by the camera head, the
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OursVGGT-SLAM

Figure 6: Visualizations of camera pose prediction on the dynamic Sintel dataset compared with
VGGT-SLAM. As shown, our method demonstrates robustness in dynamic view reconstruction
where static view consistency is not maintained, highlighting a capability that conventional SLAM-
based methods typically lack.

Rendered Novel ViewsReconstructed Point CloudDense Input Views

Figure 7: Visualizations of our reconstructed point cloud and rendered novel view from 3D Gaussian
Splatting (Kerbl et al., 2023).

Table 12: Camera Pose Comparison with VGGT-SLAM on Sintel (Butler et al., 2012) and TUM-
dynamics (Sturm et al., 2012).Compared to VGGT-SLAM, which focuses on static scene recon-
struction, STREAM3Rβ shows robust camera estimation performance on dynamic scenarios.

Sintel TUM-dynamics

Method Type ATE ↓ RPE trans ↓ RPE rot ↓ ATE ↓ RPE trans ↓ RPE rot ↓
VGGT-SLAM SLAM-based 0.305 0.082 4.140 0.041 0.014 0.879
STREAM3Rβ Stream 0.213 0.076 0.868 0.026 0.013 0.330

local-point map can be further projected into the global coordinate frame. As shown in Table 13, the point
cloud projected from the local stream achieves better performance than direct world-point prediction. This
observation shows the advantage of decomposing the challenging task of global-point map estimation into
simpler subproblems. This finding is consistent with insights reported in VGGT and MapAnything (Keetha
et al., 2025).

Table 13: Comparison of Direct World Point Prediction and Local Depth Projection on ETH3D.

Method Acc (Mean) ↓ Acc (Med.) ↓ Comp (Mean) ↓ Comp (Med.) ↓ NC (Mean) ↑ NC (Med.) ↑
Ours (from Local) 0.363 0.227 0.245 0.094 0.812 0.943
Ours (from Global) 0.449 0.215 0.280 0.131 0.809 0.929
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More Analysis on Window Attention. Here we provide additional analysis of the window-attention con-
figuration of STREAM3R-W (with window sizes 4/8/16/32/64) on the NRGBD dataset with long sequences.
As shown in Table 14, we find a positive correlation between attention window size and 3D reconstruction
quality. This exposes a controllable trade-off between reconstruction quality and memory usage, allowing
users to adapt the model to their specific hardware constraints.

Table 14: 3D Reconstruction Comparison on Dense NRGBD (∼150 views) with Different Window
Size. The memory is reported as peak memory in GB.

Method Acc (Mean) ↓ Acc (Med.) ↓ Comp (Mean) ↓ Comp (Med.) ↓ NC (Mean) ↑ NC (Med.) ↑ Memory

STREAM3Rβ-W[4] 0.074 0.031 0.021 0.011 0.699 0.894 6.00
STREAM3Rβ-W[8] 0.075 0.030 0.019 0.010 0.693 0.889 6.65
STREAM3Rβ-W[16] 0.080 0.033 0.022 0.011 0.706 0.896 7.96
STREAM3Rβ-W[32] 0.069 0.028 0.021 0.010 0.729 0.910 10.58
STREAM3Rβ-W[64] 0.051 0.023 0.019 0.010 0.737 0.913 15.93
STREAM3Rβ-W[128] 0.048 0.021 0.016 0.009 0.752 0.921 24.51

STREAM3Rβ (Causal) 0.046 0.020 0.012 0.005 0.756 0.923 30.30

Reconstruction Results on Longer Sequences. To further evaluate long-sequence performance, we con-
duct experiments on NRGBD and 7-Scenes datasets using frame intervals of 2, 5, 7, 10, 20, and 40. As
demonstrated in Table 15, our method consistently outperforms the baselines across all frame intervals
and datasets, showing robust scalability to varying sequence lengths. We also report the performance of
STREAM3R-W on a long trajectory of approximately 1.5K frames in Tab. 16. As can be seen, our method
achieves substantially better performance than CUT3R on this challenging long-sequence setting, further
demonstrating the advantages of our streaming design.

Table 15: 3D Reconstruction Comparison on Longer Sequences (NRGBD & 7-Scenes) with Differ-
ent Intervals. We report the median metrics. The interval indicates the sampling sparsity, and the
approximate number of input views is shown in parentheses.

NRGBD Dataset 7-Scenes Dataset
Interval 40 20 10 7 5 2 40 20 10 7 5 2
(Views) (∼35) (∼75) (∼150) (∼210) (∼370) (∼750) (∼30) (∼60) (∼125) (∼140) (∼250) (∼500)

Accuracy ↓
CUT3R (Wang et al., 2025b) 0.032 0.042 0.064 0.110 0.179 0.266 0.013 0.013 0.019 0.039 0.087 0.161
Spann3R (Wang & Agapito, 2024) 0.074 0.068 0.100 0.118 0.136 0.104 0.139 0.074 0.051 0.056 0.084 0.104
SLAM3R (Liu et al., 2024) 0.113 0.107 0.109 0.117 0.119 0.113 0.106 0.096 0.100 0.094 0.097 0.111
STREAM3Rβ 0.019 0.019 0.020 0.022 0.025 0.028 0.013 0.012 0.010 0.015 0.021 0.021

Completeness ↓
CUT3R (Wang et al., 2025b) 0.013 0.010 0.011 0.034 0.083 0.134 0.011 0.008 0.008 0.013 0.048 0.066
Spann3R (Wang & Agapito, 2024) 0.033 0.023 0.031 0.045 0.041 0.065 0.089 0.048 0.015 0.017 0.041 0.065
SLAM3R (Liu et al., 2024) 0.046 0.027 0.015 0.021 0.012 0.072 0.053 0.031 0.019 0.015 0.032 0.056
STREAM3Rβ 0.008 0.006 0.005 0.009 0.016 0.018 0.012 0.009 0.006 0.009 0.015 0.021

Normal Consistency (NC) ↑
CUT3R (Wang et al., 2025b) 0.943 0.908 0.825 0.726 0.686 0.638 0.806 0.750 0.693 0.602 0.595 0.573
Spann3R (Wang & Agapito, 2024) 0.750 0.724 0.657 0.624 0.611 0.570 0.710 0.699 0.641 0.571 0.518 0.538
SLAM3R (Liu et al., 2024) 0.764 0.729 0.686 0.693 0.637 0.625 0.655 0.623 0.590 0.569 0.609 0.576
STREAM3Rβ 0.976 0.958 0.923 0.867 0.792 0.765 0.830 0.773 0.712 0.662 0.648 0.622

Table 16: 3D Reconstruction Comparison on Thousands of Frames (∼1.5k). Our method demon-
strates superior stability on extremely long sequences compared to CUT3R.

Method Acc (Mean) ↓ Acc (Med.) ↓ Comp (Mean) ↓ Comp (Med.) ↓ NC (Mean) ↑ NC (Med.) ↑
CUT3R (Wang et al., 2025b) 0.411 0.315 0.224 0.146 0.544 0.581
STREAM3Rβ-W[16] 0.094 0.039 0.028 0.015 0.627 0.716

Integration with Novel View Synthesis. We demonstrate the utility of our method for downstream ap-
plications by integrating it with Novel View Synthesis. Specifically, we utilize the dense point maps and
camera poses predicted by our model as a geometric prior to initialize 3D Gaussian Splatting (Kerbl et al.,
2023). By exporting our predictions to a COLMAP-compatible format (Schonberger & Frahm, 2016), we
enable the effective optimization of 3D Gaussians on complex video sequences without relying on external
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Structure-from-Motion (SfM) tools. As shown in Fig. 7, STREAM3R-initialized point clouds and camera
poses facilitate high-quality novel view renderings.

A.5 LIMITATIONS

Our method comes with some limitations. First, the naı̈ve causal modeling naturally suffers from error accumu-
lation and drifting (Zhang & Agrawala, 2025). Some inference strategies can be proposed to alleviate this issue.
Second, currently STREAM3R is still a regression model with deterministic outputs. Extending it further into
an autoregressive generative model (Chen et al., 2025; Zhang & Agrawala, 2025) shall further unlock a series of
downstream applications. Finally, since STREAM3R follows a similar design of modern LLMs, more training
techniques like MLA (DeepSeek-AI et al., 2024) can be introduced to further boost the training efficiency and
performance.

A.6 ADDITIONAL VISUAL RESULTS AND VIDEOS

We invite reviewers to refer to our supplementary video demo for further video results.
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