

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 STREAM3R: SCALABLE SEQUENTIAL 3D RECONSTRUCTION WITH CAUSAL TRANSFORMER

Anonymous authors
Paper under double-blind review

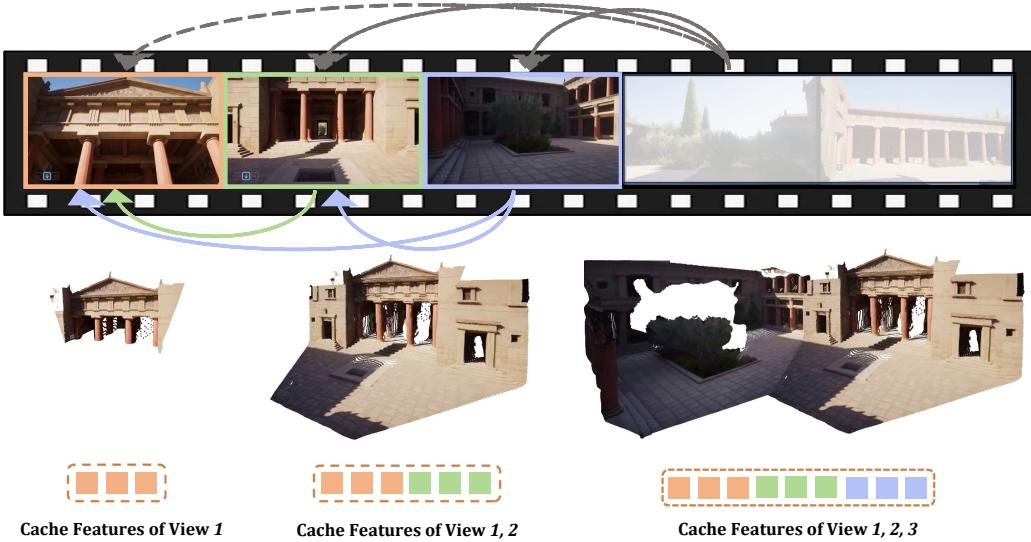


Figure 1: STREAM3R. Given a stream of input images, our method estimates dense 3D geometry for each incoming frame using a causal Transformer. Features from previously observed frames are cached as context for future inference. The demo video is from Genie 3 (Ball et al., 2025).

ABSTRACT

We present STREAM3R, a novel approach to 3D reconstruction that reformulates pointmap prediction as a decoder-only Transformer problem. Existing state-of-the-art methods for multi-view reconstruction either depend on expensive global optimization or rely on simplistic memory mechanisms, both of which scale poorly with sequence length. In contrast, STREAM3R introduces a streaming framework that efficiently processes image sequences using causal attention, inspired by advances in modern language modeling. By learning geometric priors from large-scale 3D datasets, STREAM3R generalizes well to diverse and challenging scenarios, including dynamic scenes where traditional methods often fail. Extensive experiments show that our method consistently outperforms prior work across both static and dynamic scene benchmarks. Moreover, STREAM3R is inherently compatible with LLM-style training infrastructure, enabling efficient large-scale pretraining and fine-tuning for various downstream 3D tasks. Our results highlight the potential of causal Transformer models for online 3D perception, paving the way for real-time 3D understanding in streaming environments.

1 INTRODUCTION

Reconstructing detailed 3D geometry from images is the crux in computer vision (Schonberger & Frahm, 2016; Schonberger et al., 2016; Chen et al., 2021) and serves as the prerequisite for a series of downstream applications, such as autonomous driving (Geiger et al., 2013), virtual reality (Zheng et al., 2023; Lan et al., 2024), robotics (Irshad et al., 2024), and more. While traditional visual-geometry methods like SfM (Schonberger & Frahm, 2016) and Multi-view Stereo (Yao et al., 2018; 2019) tackle this problem by solving a series of sub-problems through handcrafted designs, a recent

054 trend led by DUST3R (Wang et al., 2024d) has demonstrated a promising new way of directly re-
 055 regressing point clouds using powerful transformers. This paradigm, along with its follow-up works
 056 including MAST3R (Leroy et al., 2024), Fast3R (Yang et al., 2025), and VGG-T (Wang et al., 2025a),
 057 enables the reconstruction of 3D geometry from a number of input images—ranging from a single
 058 image to hundreds—offering a more unified solution to 3D reconstruction.

059 While these works focus on processing a fixed set of images, real-world applications often require
 060 continuously processing streaming visual input and updating the reconstruction on-the-fly (Davi-
 061 son et al., 2007), such as when an autonomous agent explores a new environment, or when pro-
 062 cessing a long video sequence. Handling streaming input poses significant new challenges. For
 063 example, naively running Fast3R or VGG-T every time a new image arrives would incur signifi-
 064 cant redundant computation, as they have to reconstruct from scratch without inheriting previous
 065 results. These methods also struggle with long videos due to the expensive full-attention operation.
 066 Spann3R (Wang & Agapito, 2024) extends DUST3R with a memory design (Cheng & Schwing,
 067 2022) to support incremental reconstruction, but it still suffers from significant accumulated drift
 068 and fails over dynamic scenes. The most relevant concurrent work is CUT3R (Wang et al., 2025b),
 069 which proposes a RNN paradigm (Zaremba et al., 2015) to handle unstructured or streaming inputs.
 070 However, the RNN-based design does not scale well with modern network architectures (Dao, 2024)
 071 and struggles with long-range dependency due to its limited memory size.

072 In light of the streaming nature of this task, in this work, we are interested in investigating *the use*
 073 *of a transformer with uni-directional causal attention to achieve online, incremental 3D reconstruc-*
 074 *tion*. In an LLM-style transformer with causal attention, the prediction at each step reuses previous
 075 computations through a KVCache, which has been proven successful in many language and audio
 076 tasks (Touvron et al., 2023; Copet et al., 2023). We observe that this property is also highly desir-
 077 able for addressing online 3D reconstruction from streaming data, as each step should build upon
 078 the previous reconstruction while integrating new content from the incoming frame.

079 Motivated by this, we propose STREAM3R, a comprehensive framework that performs 3D recon-
 080 struction from unstructured or streaming input images, and predicts the corresponding point maps
 081 in both world and local coordinates (Yang et al., 2025). Unlike concurrent works (Yang et al.,
 082 2025; Wang et al., 2025a) that resolve this issue by replacing DUST3R’s asymmetric decoders with
 083 bi-directional attention blocks (Devlin et al., 2019; Brooks et al., 2024), STREAM3R follows the
 084 modern *decoder-only* (Brown et al., 2020) transformer design, where incoming frames are sequen-
 085 tially processed and registered with causal attention (Chen et al., 2025). In this way, STREAM3R is
 086 naturally compatible with modern Large Language Models (LLMs) (Touvron et al., 2023) training
 087 and inference techniques such as window attention (Jiang et al., 2023) and KVCache (Brown et al.,
 088 2020), i.e., the tokens of processed observations will be saved as reference for registering incoming
 089 frames.

090 We train our method end-to-end on a large collection of 3D data, and benchmark the proposed
 091 method on a series of downstream applications. In summary, our key contributions are as follows:

- 092 1. We propose STREAM3R, a decoder-only transformer framework that reformulates dense
 093 3D reconstruction into a sequential registration task with causal attention, enabling scal-
 094 ability to unstructured and streaming inputs.
- 095 2. STREAM3R is inherently compatible with modern LLM-style training and inference tech-
 096 niques, allowing efficient and scalable context accumulation across frames.
- 097 3. Our architecture supports both world- and local-coordinate pointmap prediction, and nat-
 098 urally generalizes to large-scale novel view synthesis scenarios via splatting-based ren-
 099 dering.
- 100 4. We train the model end-to-end on diverse 3D data and demonstrate competitive or superior
 101 performance on standard benchmarks, with strong generalization and fast inference speed.

104 2 RELATED WORK

105 **Classic 3D Reconstruction.** Early 3D reconstruction pipelines – such as Structure-from-Motion
 106 (SfM) (Hartley & Zisserman, 2003; Schonberger & Frahm, 2016; Tang & Tan, 2018) and
 107 SLAM (Davison et al., 2007; Mur-Artal et al., 2015; Teed & Deng, 2021) – estimate sparse geometry

108 and camera poses from image collections via geometric reasoning. More recent approaches such as
 109 NeRF (Mildenhall et al., 2020; Zhang et al., 2020; Wang et al., 2021a) and Gaussian Splatting (Kerbl
 110 et al., 2023; Huang et al., 2024) shift the focus to high-fidelity novel view synthesis using contin-
 111 uous volumetric representations. However, these methods are typically trained per-scene with no
 112 learned priors, leading to slow convergence and poor generalization to sparse or occluded inputs—a
 113 limitation sometimes referred to as the *tabula rasa* assumption (Wang et al., 2025b). In contrast, we
 114 adopt a data-driven approach that learns geometric priors from large-scale 3D datasets (Ling et al.,
 115 2024; Reizenstein et al., 2021), enabling fast and generalizable reconstruction from unstructured or
 116 streaming inputs.

117 **Learning 3D Priors from Data.** Recent works leverage large-scale data to learn priors for depth es-
 118 timation (Yang et al., 2024b; Ke et al., 2024; Hu et al., 2025), pose+depth estimation (Li et al., 2024;
 119 Wang et al., 2024b), and bundle adjustment (Wang et al., 2024a). While these methods improve gen-
 120 eralization, most focus on monocular depth or two-view setups, limiting their ability to reconstruct
 121 full geometry in the absence of known intrinsics (Yin et al., 2023). VGGsFm (Wang et al., 2024a)
 122 introduces differentiable bundle adjustment by integrating neural feature matching with classic op-
 123 timization, but remains iterative and computationally heavy, impeding scalability. In the multi-view
 124 stereo domain, approaches such as MVSNeRF (Chen et al., 2021; 2024) and MVSNet (Yao et al.,
 125 2018) integrate neural networks into the MVS pipeline but typically require known camera poses
 126 and still heavily rely on hand-crafted components to effectively incorporate 3D geometry.

127 **Pointmap-based Representations.** Pointmap-based representations (Wang et al., 2024d; Leroy
 128 et al., 2024; Charatan et al., 2024; Xu et al., 2024; Szymanowicz et al., 2023; Zhang et al., 2024a;b)
 129 have recently emerged as a unifying format for dense 3D geometry prediction, aligning well with the
 130 output structure of neural networks. Compared to voxels (Sitzmann et al., 2019), meshes (Gkioxari
 131 et al., 2019), or implicit fields (Park et al., 2019; Mildenhall et al., 2020), pointmaps enable feedfor-
 132 ward inference and real-time rendering, and can directly support applications such as rasterization-
 133 based rendering (Kerbl et al., 2023), SLAM (Murai et al., 2024; Liu et al., 2024), and few-shot
 134 synthesis (Ye et al., 2025). DUS3R (Wang et al., 2024d) and follow-ups like MAST3R (Leroy et al.,
 135 2024) recast stereo 3D reconstruction as dense pointmap regression, jointly estimating depth, pose,
 136 and intrinsics from image pairs. However, their pairwise design fundamentally limits scalability
 137 – requiring quadratic fusion operations and complex global alignment procedures when handling
 138 multi-view scenarios. Our approach maintains the advantages of pointmap representations while
 139 overcoming these scalability limitations.

140 **4D Reconstruction from Monocular Videos.** Reconstructing dense geometry of dynamic scenes
 141 from monocular video is significant but challenging for conventional methods. Recent methods (Lei
 142 et al., 2024; Chu et al., 2024; Li et al., 2024; Kopf et al., 2021) leverages depth priors to resolve this
 143 challenge. Specifically, Robust-CVD (Kopf et al., 2021) and MegasAM (Li et al., 2024) requires
 144 time-consuming per-video optimization. MonST3R (Zhang et al., 2024a) builds on DUS3R to
 145 output pointmaps for dynamic scenes by fine-tuning DUS3R on the dynamic datasets. However, it
 146 still requires a sliding-window based per-video global alignment as post-processing. In contrast, our
 147 method enables feedforward 4D reconstruction directly from monocular videos, supporting online
 148 prediction without costly per-video optimization or post-processing alignment.

149 **Reconstruction Methods from Streaming Inputs.** Streaming approaches offer a more scal-
 150 able alternative solution for the 3D reconstruction problem, represented by the monocular SLAM
 151 pipelines (Davison et al., 2007; Liu et al., 2024; Zhu et al., 2024). Inspired by the existing learning-
 152 based online 3D reconstruction methods (Choy et al., 2016; Yu et al., 2021; Wang et al., 2021c), re-
 153 cently Spann3R (Wang & Agapito, 2024) introduces a memory-based extension to DUS3R, while
 154 Fast3R (Yang et al., 2025) and VGG-T (Wang et al., 2025a) replace asymmetric decoders with
 155 Transformer-based attention stacks to directly enable multi-view fusion. Despite these advances,
 156 these approaches still predominantly rely on global full-attention mechanisms, limiting their real-
 157 time scalability with increasing sequence length. CUT3R (Wang et al., 2025b) adopts an RNN-style
 158 architecture to process unstructured inputs incrementally, but suffers from limited memory capacity
 159 and poor compatibility with modern hardware acceleration techniques (Dao, 2024). Our method
 160 fundamentally re-conceptualizes pointmap prediction as a decoder-only Transformer task, enabling
 161 efficient causal inference through techniques like KVCache and windowed attention (Jiang et al.,
 162 2023; Brown et al., 2020). This architectural design allows us to scale effectively to long sequences
 163 while maintaining full compatibility with modern LLM-style training infrastructure and optimiza-
 164 tion techniques, overcoming the limitations of previous approaches.

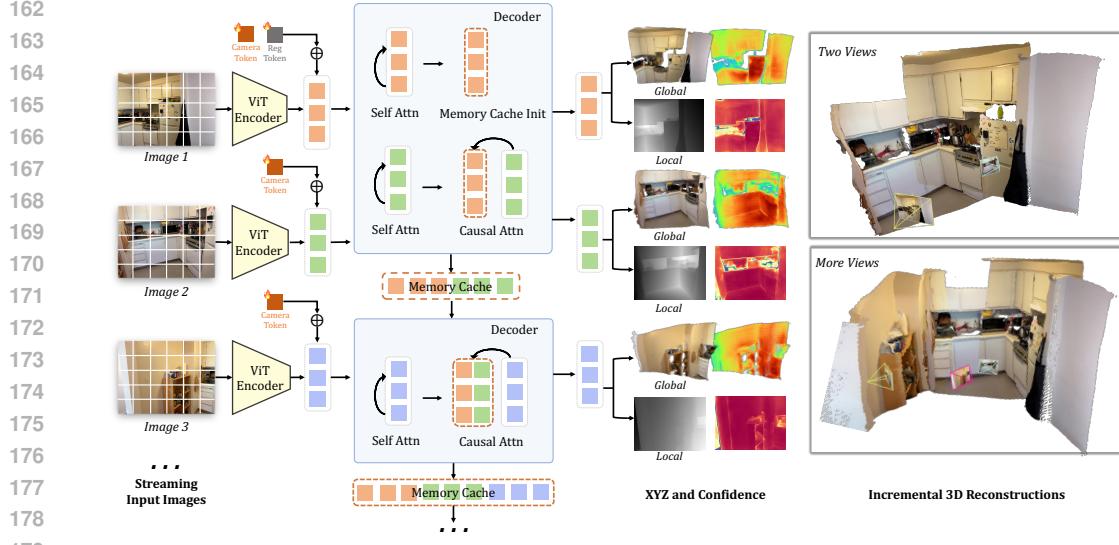


Figure 2: Method Overview. Built on a causal transformer, STREAM3R processes streaming images sequentially for 3D reconstruction. Each input image is first tokenized using a shared-weight ViT encoder, and the resulting tokens are passed to our causal decoder. Each decoder layer begins with frame-wise self-attention. For subsequent views, the model applies causal attention to the memory tokens cached from previous observations. The outputs include point maps and confidence maps in both world and camera coordinate systems, as long as the camera pose as shown on the right. Note that we visualize the point cloud of the $\text{Head}_{\text{local}}$ with its depth map.

3 PRELIMINARIES: DUST3R

We reformulate DUST3R (Wang et al., 2024d) to accept a stream of images as input. In DUST3R, each incoming image \mathbf{I}_t is initially patchified into a set of K tokens, $\mathbf{F}_t = \text{Encoder}(\mathbf{I}_t)$, where $\mathbf{F}_t \in \mathbb{R}^{K \times C}$ and Encoder is a weight-sharing ViT (Dosovitskiy et al., 2021). Specifically, DUST3R is designed to ingest two input images at a time, i.e., $t \in \{1, 2\}$. The encoded images yield two sets of tokens:

$$\mathbf{F}_1 = \text{Encoder}(\mathbf{I}_1), \quad \mathbf{F}_2 = \text{Encoder}(\mathbf{I}_2). \quad (1)$$

Afterwards, the decoder networks Decoder_t reason over both of them through a series of transformer blocks with cross attention layer:

$$G_1^i = \text{DecoderBlock}_1^i(G_1^{i-1}, G_2^{i-1}), \quad G_2^i = \text{DecoderBlock}_2^i(G_2^{i-1}, G_1^{i-1}), \quad (2)$$

with i ranging from 1 to B , representing the block index in a decoder of B blocks in total. $G_1^0 := \mathbf{F}_1$ and $G_2^0 := \mathbf{F}_2$. Finally, the corresponding regression head of each branch predicts a pointmap with an associated confidence map:

$$\hat{\mathbf{X}}_{1,1}, \hat{\mathbf{C}}_{1,1} = \text{Head}_1(G_1^0, \dots, G_1^B), \quad \hat{\mathbf{X}}_{2,1}, \hat{\mathbf{C}}_{2,1} = \text{Head}_2(G_2^0, \dots, G_2^B). \quad (3)$$

Note that DUST3R is designed for two-view inputs and requires an expensive and unscalable global alignment process to incorporate more input views.

4 METHOD

We introduce STREAM3R, a transformer that ingests uncalibrated streaming images as inputs and yields a series of 3D attributes as output. The input can be either unstructured image collections or video. Unlike existing approaches (Wang et al., 2025a; Yang et al., 2025) that address this issue by adopting costly bi-directional attention over the entire input sequence or using fixed-size memory buffers (Wang & Agapito, 2024; Wang et al., 2025b), STREAM3R instead caches features from the past frames as *context* and processes incoming frame sequentially using causal attention over the accumulated observations. This design not only enables faster training and quicker convergence but also aligns with the architectural principles of modern LLMs, allowing us to leverage the advances of that domain. We first introduce the problem formulation in Sec. 4.1, the architecture in Sec. 4.2, and the training objectives in Sec. 4.3, and the implementation details in Sec. 5. An overview of the proposed method is shown in Fig. 2. Also note that STREAM3R shares the same architecture design with DUST3R, and please refer to the appendix for the preliminaries.

216 4.1 PROBLEM DEFINITION AND NOTATION
217

218 STREAM3R is a regression model that sequentially takes a streaming of N RGB images $(\mathbf{I})_t^N$, where each
219 image $\mathbf{I} \in \mathbb{R}^{3 \times H \times W}$ belongs to the same 3D scene. The streaming inputs are successively transformed into a
220 set of 3D annotations corresponding to each frame:

$$221 \quad f_{\theta}((\mathbf{I})_t^N) = (\hat{\mathbf{X}}_t^{\text{local}}, \hat{\mathbf{X}}_t^{\text{global}}, \hat{\mathbf{P}}_t)_t^N. \quad (4)$$

223 Technically, STREAM3R is implemented as a causal transformer that maps each image \mathbf{I}_t into its cor-
224 responding pointmap of the local coordinate $\hat{\mathbf{X}}_t^{\text{local}} \in \mathbb{R}^{3 \times H \times W}$ and its pointmap in a global coordinate
225 $\hat{\mathbf{X}}_t^{\text{global}} \in \mathbb{R}^{3 \times H \times W}$, which is indicated by the first input frame \mathbf{I}_0 , and its relative camera pose $\hat{\mathbf{P}}_t \in \mathbb{R}^9$
226 including both intrinsics and extrinsics. We devise later how these 3D attributes are predicted.

227 4.2 CAUSAL TRANSFORMER FOR 3D REGRESSION
228

229 **Causal Attention for Long-context 3D Reasoning.** As mentioned in Sec. 3, given the streaming inputs, for
230 each current image, \mathbf{I}_t , our method first tokenizes it into the features $\mathbf{F}_t = \text{Encoder}(\mathbf{I}_t)$. The main difference
231 lies in the decoder side: rather than performing bi-directional attention over the whole sequence (Yang et al.,
232 2025) or interacting with a learnable *state* as in Wang et al. (2025b), we draw inspiration from the LLMs (Tou-
233 vron et al., 2023; Brown et al., 2020; DeepSeek-AI et al., 2024) and perform causal attention efficiently with
234 previous observations. Specifically, after performing frame-wise self-attention in each decoder block, the cur-
235 rent feature G_t^{i-1} will cross-attend to the features of previously observed frames corresponding to the same
236 layer:

$$236 \quad G_t^i = \text{DecoderBlock}^i \left(G_t^{i-1}, G_0^{i-1} \oplus G_1^{i-1} \oplus \dots \oplus G_{t-1}^{i-1} \right). \quad (5)$$

237 This interaction ensures efficient information transfer to handle long-context dependencies. Note that this operation
238 is easy to implement and well optimized with KV cache during inference for efficient computation (Brown
239 et al., 2020; Touvron et al., 2023).

240 **Simplified Decoder Design.** To achieve this, several network architecture modifications are required. In
241 DUS3R, the decoder follows a symmetric design, i.e., two separate decoders $\text{Decoder}_1, \text{Decoder}_2$ are em-
242 ployed to handle two input views. To extend to an arbitrary number of inputs, we remove the symmetric design
243 and only retain a *single* decoder Decoder to process all the input frames. Specifically, each block in the de-
244 coder contains a SelfAttn block for *frame-wise* attention, and a CrossAttn block for causally attending to the
245 features of all previous observations. Note that we process the first two frames following the convention of
246 DUS3R due to the lack of historical context. All incoming frames afterwards follow the causal operation in
247 Eq. (5). Note that to indicate the canonical world space, we add a learnable register token $[\text{reg}]$ to the tokens
248 of the first frame $\mathbf{F}_1 = \mathbf{F}_1 + [\text{reg}]$, in an element-wise manner, as shown in Fig. 2. In this way, the model
249 learns to output the global points without introducing N separate decoders. Unlike Yang et al. (2025), we did
250 not impose positional embedding for other frames for simplicity.

251 **Prediction Heads.** After the decoding operation, the 3D attributes corresponding to each frame can be pre-
252 dicted accordingly. Following existing works (Wang et al., 2025b;a), we predict two sets of point maps
253 $\hat{\mathbf{X}}_t^{\text{local}}, \hat{\mathbf{X}}_t^{\text{global}}$ with their corresponding confidence maps $\hat{\mathbf{C}}_t^{\text{local}}, \hat{\mathbf{C}}_t^{\text{global}}$. Specifically, the local point map $\hat{\mathbf{X}}_t^{\text{local}}$
254 is defined in the coordinate frame of the viewing camera, and the global point map $\hat{\mathbf{X}}_t^{\text{global}}$ is in the coordinate
255 frame of the first image \mathbf{I}_1 . We use two DPT (Ranftl et al., 2021) heads for point map prediction:

$$255 \quad \hat{\mathbf{X}}_t^{\text{local}}, \hat{\mathbf{C}}_t^{\text{local}} = \text{Head}_{\text{local}}(G_t^0, \dots, G_t^B), \quad (6)$$

$$256 \quad \hat{\mathbf{X}}_t^{\text{global}}, \hat{\mathbf{C}}_t^{\text{global}} = \text{Head}_{\text{global}}(G_t^0, \dots, G_t^B), \quad (7)$$

$$258 \quad \hat{\mathbf{P}}_t = \text{Head}_{\text{pose}}(G_t^0, \dots, G_t^B), \quad (8)$$

259 where this redundant prediction has been demonstrated to simplify training (Jiang et al., 2025) and facilitates
260 training on 3D datasets with partial annotations (Liu et al., 2022; Yu et al., 2023).

261 4.3 TRAINING OBJECTIVE
262

263 STREAM3R is trained using a generalized form of the pointmap loss introduced in DUS3R. Given a sequence
264 of N randomly sampled images, sourced either from a video or an image collection, we train the model to
265 produce pointmap predictions denoted by $\mathcal{X} = \{\hat{\mathbf{X}}^{\text{local}}, \hat{\mathbf{X}}^{\text{global}}\}$, where $\hat{\mathbf{X}}^{\text{local}} = \{\hat{\mathbf{X}}_t^{\text{local}}\}_{t=1}^N$ and $\hat{\mathbf{X}}^{\text{global}} =$
266 $\{\hat{\mathbf{X}}_t^{\text{global}}\}_{t=1}^N$. The corresponding confidence scores are denoted as $\hat{\mathbf{C}}$.

267 Following Wang et al. (2025a), we apply a confidence-aware regression loss to the pointmaps: $\mathcal{L}_{\text{conf}} =$
268 $\sum_{(\hat{\mathbf{x}}, \hat{\mathbf{c}}) \in (\hat{\mathbf{X}}, \hat{\mathbf{C}})} (\hat{\mathbf{c}} \cdot \|\frac{\hat{\mathbf{x}}}{\hat{\mathbf{s}}} - \frac{\mathbf{x}}{s}\|_2 - \alpha \log \hat{\mathbf{c}})$, where $\hat{\mathbf{s}}$ and s are scale normalization factors for $\hat{\mathbf{X}}$ and \mathbf{X} for scale-
269 invariant supervision (Wang et al., 2024c). We also set $\hat{\mathbf{s}} := s$ for metric-scale datasets as in MAS3R (Leroy

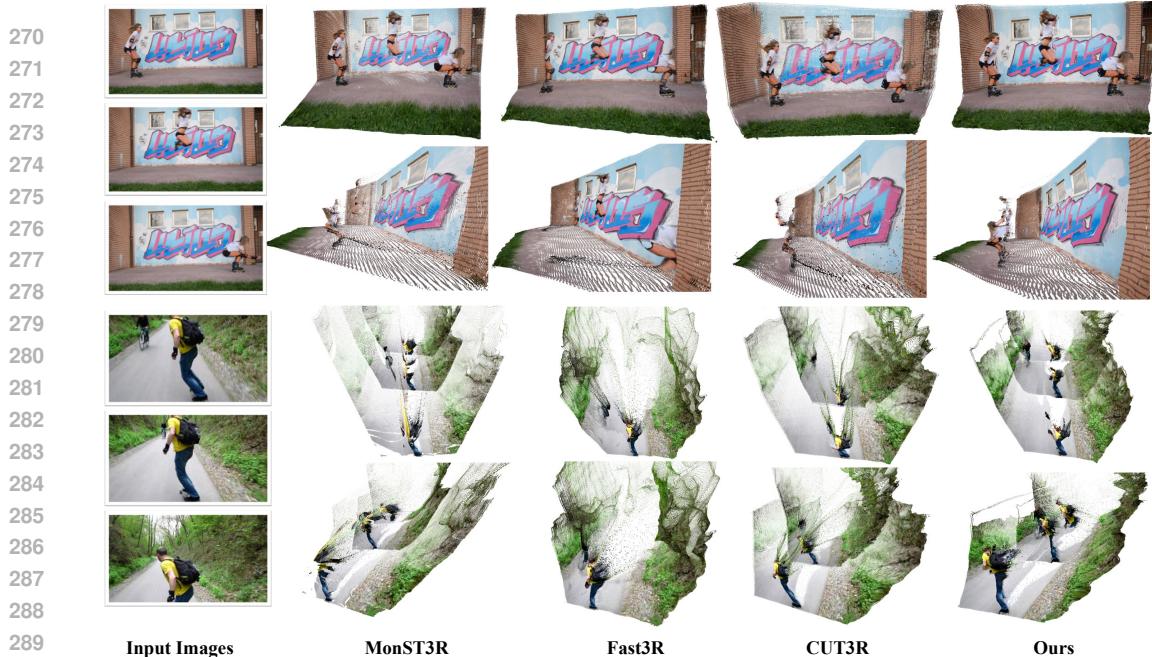


Figure 3: Qualitative results on in-the-wild images. We compare our method, STREAM3R $^\alpha$, with MonST3R, Fast3R, and CUT3R, and demonstrate that it achieves superior visual quality.

et al., 2024) to enable metric-scale pointmaps prediction. For the camera prediction loss, we parameterize pose \hat{P}_t as quaternion \hat{q}_t , translation $\hat{\tau}_t$ and focal \hat{f}_t , and minimize the L2 norm between the prediction and ground truth: $\mathcal{L}_{\text{pose}} = \sum_{t=1}^N \left(\|\hat{q}_t - q_t\|_2 + \left\| \frac{\hat{\tau}_t}{s} - \frac{\tau_t}{s} \right\|_2 + \left\| \hat{f}_t - f_t \right\|_2 \right)$.

5 EXPERIMENTS

Datasets. We train our method on a large and diverse collection of 3D datasets, e.g., Co3Dv2 (Reizenstein et al., 2021), ScanNet++ (Yeshwanth et al., 2023), ScanNet (Dai et al., 2017), HyperSim (Roberts et al., 2021), Dynamic Replica (Karaev et al., 2023), DL3DV (Ling et al., 2024), BlendedMVS (Yao et al., 2020), Aria Synthetic Environments (Pan et al., 2023), TartanAir (Wang et al., 2020), MapFree (Arnold et al., 2022), MegaDepth (Li & Snavely, 2018), and ARKitScenes (Baruch et al., 2022). Please check the appendix for the full dataset details.

Implementation Details. We provide two versions of STREAM3R, where STREAM3R $^\alpha$ is inspired and fine-tuned from DUS3R (Wang et al., 2024d) pre-trained weights, and STREAM3R $^\beta$ is initialized from the flagship VGG-T (Wang et al., 2025a) model. For STREAM3R $^\alpha$, we inherit the 24-layer CroCo ViT (Weinzaepfel et al., 2023) as our encoder, and retrofit its 12-layer decoder network by only retaining the first decoder Decoder = Decoder₁. The DPT-L (Ranftl et al., 2021) heads are used to map the decoded tokens to the local and global point maps accordingly. For STREAM3R $^\beta$, we replace the SelfAttn layer in the Global Attention of VGG-T with CausalAttn and fine-tune all the parameters. For memory-efficient and stable training, we inject QK-Norm (Dehghani et al., 2023) to each transformer layer and leverage FlashAttention (Dao, 2024) for BFLOAT16 mixed precision training.

Training Details. Our model is trained with the AdamW optimizer on a batch size of 64 with a learning rate 1e-4 for 400K iterations. For each batch, we randomly sample 4 – 10 frames from a random training scene. The input frames are cropped into diverse resolutions, ranging from 224×224 to 512×384 to improve generalization. The training runs end-to-end on 8 NVIDIA A100 GPUs over seven days. Gradient checkpointing is also adopted to optimize memory usage.

Baselines. We compare our methods against a set of baselines that are designed to take a pair of views as input: DUS3R (Wang et al., 2024d), MAST3R (Leroy et al., 2024), and MonST3R (Zhang et al., 2024a). Besides, we include the comparison against concurrent methods Span3R (Wang & Agapito, 2024), CUT3R (Wang et al., 2025b), SLAM3R (Liu et al., 2024), and Fast3R (Yang et al., 2025) that are specifically designed for handling a varying number of input images. We also include the flagship 3D geometry model VGG-T (Wang et al., 2025a) for reference. Note that Fast3R and VGG-T are bi-directional attention methods, and we group them together with methods that require global optimization (GA). We group other concurrent methods together as streaming methods that support processing sequential inputs. Note that for all methods except for VGG-T

324 Table 1: Single-frame Depth Evaluation. We report the performance on Sintel, Bonn, KITTI, and
 325 NYU-v2 (static) datasets. The best and second best results in each category are **bold** and underlined
 326 respectively. Our method achieves better or comparable performance against existing methods.

328 Method	329 Sintel		330 Bonn		331 KITTI		332 NYU-v2	
	333 Abs Rel \downarrow	334 $\delta < 1.25 \uparrow$	335 Abs Rel \downarrow	336 $\delta < 1.25 \uparrow$	337 Abs Rel \downarrow	338 $\delta < 1.25 \uparrow$	339 Abs Rel \downarrow	340 $\delta < 1.25 \uparrow$
VGG-T (Wang et al., 2025a)	0.271	67.7	0.053	97.3	0.076	93.3	0.060	94.8
Fast3R (Yang et al., 2025)	0.502	52.8	0.192	77.3	0.129	81.2	0.099	88.9
DUS3R (Wang et al., 2024d)	0.424	58.7	0.141	82.5	0.112	86.3	<u>0.080</u>	90.7
MAS3R (Leroy et al., 2024)	0.340	60.4	0.142	82.0	<u>0.079</u>	94.7	0.129	84.9
MonST3R (Zhang et al., 2024a)	0.358	54.8	<u>0.076</u>	<u>93.9</u>	0.100	89.3	0.102	88.0
Spann3R (Wang & Agapito, 2024)	0.470	53.9	0.118	85.9	0.128	84.6	0.122	84.9
CUT3R (Wang et al., 2025b)	0.428	55.4	<u>0.063</u>	<u>96.2</u>	0.092	<u>91.3</u>	<u>0.086</u>	90.9
STREAM3R $^{\alpha}$	<u>0.350</u>	<u>59.0</u>	0.075	93.4	<u>0.088</u>	<u>91.3</u>	0.091	89.9
STREAM3R $^{\beta}$	0.228	70.7	0.061	96.7	0.063	95.5	0.057	95.7

336 Table 2: Video Depth Evaluation. We evaluate scale-invariant and metric depth accuracy on the
 337 Sintel, Bonn, and KITTI datasets. Methods that require global alignment are denoted as “GA”.
 338 The “Type” column indicates whether the method is Optimization-based (“Optim”), streaming
 339 (“Stream”), or full-attention (“FA”). We also report inference speed in FPS on the KITTI dataset
 340 using 512×144 resolution for all methods on an A100 GPU, except for Spann3R, which supports
 341 Stream 224×224 inputs. Our method achieves performance that is better than CUT3R, while of-
 342 fering FAter inference. For STREAM3R $^{\beta}$ -W[5], we indicate using sliding window attention on
 343 STREAM3R $^{\beta}$ with window size 5. Note that STREAM3R $^{\beta}$ -W[5] achieves the fastest FPS among
 344 all streaming-based methods.

345 Alignment	346 Method	347 Type	348 Sintel		349 Bonn		350 KITTI	
			351 Abs Rel \downarrow	352 $\delta < 1.25 \uparrow$	353 Abs Rel \downarrow	354 $\delta < 1.25 \uparrow$	355 Abs Rel \downarrow	356 $\delta < 1.25 \uparrow$
	VGG-T (Wang et al., 2025a)	FA	0.297	68.8	0.055	97.1	0.073	96.5
	Fast3R (Yang et al., 2025)	FA	0.653	44.9	0.193	77.5	<u>0.140</u>	<u>83.4</u>
	DUS3R-GA (Wang et al., 2024d)	Optim	0.656	45.2	0.155	83.3	0.144	81.3
	MAS3R-GA (Leroy et al., 2024)	Optim	0.641	43.9	0.252	70.1	0.183	74.5
	MonST3R-GA (Zhang et al., 2024a)	Optim	0.378	<u>55.8</u>	<u>0.067</u>	<u>96.3</u>	0.168	74.4
357 Per-sequence scale	Spann3R (Wang & Agapito, 2024)	Stream	0.622	42.6	0.144	81.3	0.198	73.7
	CUT3R (Wang et al., 2025b)	Stream	0.421	47.9	0.078	93.7	0.118	88.1
	STREAM3R $^{\alpha}$	Stream	0.478	51.1	0.075	94.1	0.116	89.6
	STREAM3R $^{\beta}$	Stream	0.264	70.5	<u>0.069</u>	<u>95.2</u>	0.080	94.7
	STREAM3R $^{\beta}$ -W[5]	Stream	0.279	68.6	0.064	96.7	<u>0.083</u>	95.2
358 Metric scale	MAS3R-GA (Leroy et al., 2024)	Optim	1.022	14.3	0.272	70.6	0.467	15.2
	CUT3R (Wang et al., 2025b)	Stream	<u>1.029</u>	23.8	<u>0.103</u>	<u>88.5</u>	0.122	85.5
	STREAM3R $^{\alpha}$	Stream	1.041	<u>21.0</u>	0.084	94.4	0.234	<u>57.6</u>
								23.48

359 and STREAM3R $^{\beta}$, we conduct inference with the largest dimension of 512. For VGG-T based methods, we
 360 conduct inference with the largest dimension of 518 due to the requirement of DINO-V2 tokenizer (Oquab
 361 et al., 2023). Regarding FPS, we benchmark the inference speed on the A100 GPU with FP32. Comparisons
 362 of more concurrent methods (Zhuo et al., 2025; Yang et al., 2024b) are included in the appendix.

363 5.1 MONOCULAR AND VIDEO DEPTH ESTIMATION

364 **Mono-Depth Estimation.** Following previous methods (Zhang et al., 2024a; Wang et al., 2025b), we first eval-
 365 uate monocular depth estimation on Sintel (Butler et al., 2012), Bonn (Palazzolo et al., 2019), KITTI (Geiger
 366 et al., 2013), and NYU-v2 (Silberman et al., 2012) datasets, which cover dynamic and static, indoor and out-
 367 door, realistic and synthetic data. These datasets are not used for training and are suitable for benchmarking the
 368 zero-shot performance across different domains. Our evaluation includes the absolute relative error (Abs Rel)
 369 and percentage of inlier points within a 1.25-factor of true depth $\delta < 1.25$, following the convention of existing
 370 methods (Hu et al., 2025; Yang et al., 2024a). Per-frame median scaling is imposed as in DUS3R. We include
 371 the quantitative results in Tab. 1. As can be seen, our method achieves state-of-the-art compared to streaming-
 372 based methods, and even performs best compared to VGG-T on Sintel, KITTI, and NYU-2. Also note that our
 373 method uses fewer datasets and compute resources compared to CUT3R. Specifically, CUT3R adopts a cur-
 374 riculum training of four stages for $100 + 35 + 40 + 10 = 185$ epochs, while our method is trained end-to-end
 375 for only 7 epochs using a partial of CUT3R’s datasets due to the computational resources constraints.

376 **Video Depth Estimation.** We also benchmark our model on the video depth task, which evaluates both per-
 377 frame depth quality and inter-frame depth consistency by aligning the output depth maps to the ground truth
 378 depth maps using a given per-sequence scale. Metric point map methods like MAS3R, CUT3R, and ours
 379 are also reported without alignment. The quantitative results for both methods are included in Tab. 2. Over
 380 per-sequence scale alignment, our method surpasses optimization-based baselines DUS3R-GA (Wang et al.,

Table 3: 3D Reconstruction Evaluation on 7-Scenes (Shotton et al., 2013). Despite operating in the streaming setting, our method delivers competitive performance, matching or even exceeding that of offline optimization-based methods that leverage global alignment.

Method	Type	Acc↓		Comp↓		NC↑		FPS
		Mean	Med.	Mean	Med.	Mean	Med.	
VGG-T (Wang et al., 2025a)	FA	0.087	0.039	0.091	0.039	0.787	0.890	12.00
Fast3R (Yang et al., 2025)	FA	0.164	0.108	<u>0.163</u>	0.080	0.686	0.775	30.92
DUSt3R-GA (Wang et al., 2024d)	Optim	<u>0.146</u>	<u>0.077</u>	0.181	<u>0.067</u>	<u>0.736</u>	<u>0.839</u>	0.68
MASt3R-GA (Leroy et al., 2024)	Optim	0.185	0.081	0.180	0.069	0.701	0.792	0.34
MonST3R-GA (Zhang et al., 2024a)	Optim	0.248	0.185	0.266	0.167	0.672	0.759	0.39
Spann3R (Wang & Agapito, 2024)	Stream	0.298	0.226	0.205	0.112	0.650	0.730	12.97
SLAM3R (Liu et al., 2024)	Stream	0.287	0.155	0.226	0.066	0.644	0.720	38.40
CUT3R (Wang et al., 2025b)	Stream	<u>0.126</u>	0.047	<u>0.154</u>	<u>0.031</u>	<u>0.727</u>	<u>0.834</u>	17.00
STREAM3R ^α	Stream	0.148	0.077	0.177	0.058	0.700	0.801	26.40
STREAM3R ^β	Stream	0.122	0.044	0.101	0.038	0.746	0.856	20.12

2024d) and MAS3R-GA (Leroy et al., 2024) (static-scene assumption) and even MonST3R-GA (Zhang et al., 2024a) (dynamic-scene, optical flow (Teed & Deng, 2020) dependent). Against the streaming state-of-the-art CUT3R, we achieve higher accuracy on all three benchmarks while running 40% faster. STREAM3R also outperforms full-attention Fast3R (Yang et al., 2025), streaming approaches Spann3R (Wang & Agapito, 2024), and the flagship model VGG-T on Sintel. Notably, STREAM3R $^{\beta}$ -W, using sliding-window attention (Jiang et al., 2023) for constant cache, exceeds STREAM3R $^{\beta}$ on Bonn and KITTI despite accessing only five past frames.

5.2 3D RECONSTRUCTION

We also benchmark scene-level 3D reconstruction on the 7-scenes (Shotton et al., 2013) dataset and use accuracy (Acc), completion (Comp), and normal consistency (NC) metrics, following the convention of existing methods (Wang & Agapito, 2024; Wang et al., 2025b; 2024d). Following CUT3R, we assess the model’s performance on image collections with minimal or no overlap by evaluating using sparsely sampled images, i.e., 3 to 5 frames per scene. The quantitative results are included in Tab. 3. Our method achieves better performance compared to optimization-based methods and strong baselines including Spann3R, Fast3R, CUT3R, and SLAM3R. Compared to CUT3R, our method shows better performance with over 50% times faster during the inference. While SLAM3R achieves the fastest inference, it yields noticeably lower reconstruction accuracy than our method. This performance gap can be partially attributed to SLAM3R being trained and evaluated at a lower input resolution of 224×224 . The comparison results on NRGBD (Azinović et al., 2022) benchmark is included in the appendix.

5.3 MEMORY USAGE

Tab. 4 illustrates the peak GPU memory usage comparison under different numbers of input frames. All measurements are conducted on a single NVIDIA A100 GPU using FlashAttention (Dao, 2024), with input image resolution set to 448×448 . While naive attention implementations will cause quadratic memory usage with respect to sequence length, FlashAttention reduces this from quadratic to linear. Unlike bi-directional methods that process all views jointly, our causal version processes streaming views sequentially, resulting in linearly increasing KV Cache memory.

Our method naturally supports sliding window attention without requiring any fine-tuning. We implement STREAM3R-W[5], a window attention mechanism that always attends to the features of the first frame and the five most recent frames from previous observations. With this approach, the KV Cache size remains constant regardless of input sequence length. Furthermore, as shown in Tab. 2, using window attention achieves comparable or even better performance in video depth evaluation.

5.4 ABLATION ON THE EFFECTIVENESS OF THE PROPOSED ARCHITECTURE

Here, we conduct detailed ablation analysis on STREAM3R to demonstrate the effectiveness of its designs. Due to the extensive computational resources required to train the model, we only train the ablation models on

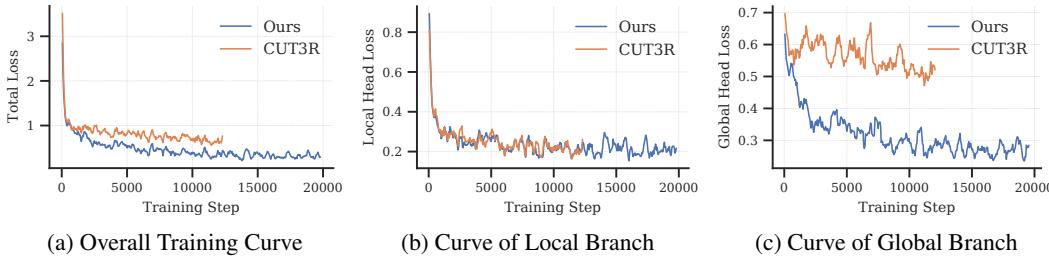
Table 4: GPU Memory Usage Comparison (GB).

Input Frames	1	20	40	60	80	100
VGG-T	4.70	9.99	18.66	30.48	45.47	63.63
CUT3R	3.34	3.71	4.11	4.48	4.86	5.25
MonST3R-GA	3.05	12.36	22.52	32.69	42.81	52.96
STREAM3R $^{\alpha}$	3.02	5.64	8.31	10.98	13.65	16.32
STREAM3R $^{\beta}$	4.70	6.29	8.71	11.83	14.95	18.08
STREAM3R $^{\alpha}$ -W[5]	3.02	3.72	3.72	3.72	3.72	3.72
STREAM3R $^{\beta}$ -W[5]	4.70	5.18	5.18	5.18	5.18	5.18

432 Table 5: Ablation on Video Depth Estimation and 3D Reconstruction. Comparison between RNN-
 433 based CUT3R and our proposed architecture STREAM3R $^\alpha$. Results show consistent improvements
 434 across both video depth estimation (Sintel, BONN, KITTI) and 3D reconstruction (7-Scenes).

436 437 438 439 440 441	Method	Video Depth Estimation						3D Reconstruction (7-Scenes)								
		Sintel			BONN			KITTI			Acc \downarrow		Comp \downarrow		NC \uparrow	
		Abs Rel $\delta < 1.25$	Abs Rel $\delta < 1.25$	Abs Rel $\delta < 1.25$	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.		
CUT3R	0.598	40.7	0.102	90.7	0.157	77.4	0.480	0.365	0.330	0.148	0.555	0.583				
STREAM3R $^\alpha$	0.535	47.0	0.083	94.2	0.141	81.8	0.328	0.261	0.255	0.095	0.605	0.659				

442 224 \times 224 resolution images. All the datasets are included to train the models. Note that for a fair comparison,
 443 we initialize all the models below using the pre-trained MAS3R (Leroy et al., 2024) checkpoints and train the
 444 models using the same hyper-parameters and compute resources.



445 Figure 4: Ablation of our proposed STREAM3R. Compared to Wang et al. (2025b), our decoder-
 446 only network yields better convergence with faster training speed in the 3D point map prediction
 447 task, especially in the global branch.

448 We demonstrate the effectiveness of decoder-only transformer against RNN design in the sequential 3D
 449 pointmap prediction. The main baseline is CUT3R (Wang et al., 2025b), which leverages the RNN design to
 450 achieve this. For a fair comparison, we re-train CUT3R and our method using the same dataset and pre-trained
 451 model weights initialization. We include the training curve in Fig. 4a, where both models are trained with the
 452 same hyperparameters and compute resources. As can be observed, STREAM3R converges faster compared to
 453 CUT3R and performs 60% more training steps within the given time. This may sound counterintuitive since
 454 STREAM3R is attending to a longer context against CUT3R’s constant *state* memory. However, since CUT3R
 455 architecture requires a *state-update* operation after each *state-readout* interaction, while STREAM3R directly
 456 attends to cached features of existing observations.

457 We also notice in Fig. 4b that the convergence of Head_{local} is similar among the two architectures, while for
 458 Head_{global}, our proposed architecture shows noticeably faster convergence speed, as shown in Fig. 4c. This
 459 demonstrates that using a single *state* makes the model harder to register incoming frames due to the limited
 460 memory capacity.

461 Quantitatively, we benchmark the ablation models on both the video depth estimation and 3D reconstruction
 462 in Tab. 5, which evaluates the Head_{local} and Head_{global} correspondingly. For a fair comparison, we evaluate
 463 the checkpoints trained for the same number of iterations. As can be observed, our proposed architecture
 464 consistently achieves better performance on both tasks.

475 6 CONCLUSION

476 We have introduced STREAM3R, a decoder-only transformer framework for dense 3D reconstruction from
 477 unstructured or streaming image inputs. By reformulating reconstruction as a sequential registration task with
 478 causal attention, STREAM3R overcomes the scalability bottlenecks of prior work and aligns naturally with
 479 LLM-style training and inference pipelines. Our design allows efficient integration of geometric context across
 480 frames, supports dual-coordinate pointmap prediction, and generalizes to novel-view synthesis over large-scale
 481 scenes without requiring global post-processing. Through extensive experiments across standard benchmarks,
 482 we show that STREAM3R achieves competitive or superior performance in the monocular/video-depth esti-
 483 mation and 3D reconstruction tasks, with significantly improved inference efficiency. By bridging geometric
 484 learning with scalable sequence modeling, we hope this work paves the way for more general-purpose, real-time
 485 3D understanding systems. Please refer to appendix for the limitation discussion.

486

7 REPRODUCIBILITY STATEMENT

487
488 We exclusively use publicly available datasets for model training, with complete details provided in the paper.
489 All code and model checkpoints will be publicly released to ensure reproducibility.
490491

REFERENCES

493 Eduardo Arnold, Jamie Wynn, Sara Vicente, Guillermo Garcia-Hernando, Áron Monszpart, Victor Adrian
494 Prisacariu, Daniyar Turmukhambetov, and Eric Brachmann. Map-free visual relocalization: Metric pose
495 relative to a single image. In *ECCV*, 2022.

496 Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, and Justus Thies. Neural rgb-d
497 surface reconstruction. In *CVPR*, pp. 6290–6301, June 2022.

498 Philip J. Ball, Jakob Bauer, Frank Belletti, Bethanie Brownfield, Ariel Ephrat, Shlomi Fruchter, Agrim Gupta,
499 Kristian Holsheimer, Aleksander Holynski, Jiri Hron, Christos Kaplanis, Marjorie Limont, Matt McGill,
500 Yanko Oliveira, Jack Parker-Holder, Frank Perbet, Guy Scully, Jeremy Shar, Stephen Spencer, Omer Tov,
501 Ruben Villegas, Emma Wang, Jessica Yung, Cip Baetu, Jordi Berbel, David Bridson, Jake Bruce, Gavin
502 Buttimore, Sarah Chakera, Bilva Chandra, Paul Collins, Alex Cullum, Bogdan Damoc, Vibha Dasagi,
503 Maxime Gazeau, Charles Gbadamosi, Woohyun Han, Ed Hirst, Ashyana Kachra, Lucie Kerley, Kristian
504 Kjems, Eva Knoepfel, Vika Koriakin, Jessica Lo, Cong Lu, Zeb Mehring, Alex Moufarek, Henna Nandwani,
505 Valeria Oliveira, Fabio Pardo, Jane Park, Andrew Pierson, Ben Poole, Helen Ran, Tim Salimans, Manuel
506 Sanchez, Igor Saprykin, Amy Shen, Sailesh Sidhwani, Duncan Smith, Joe Stanton, Hamish Tomlinson,
507 Dimple Vijaykumar, Luyu Wang, Piers Wingfield, Nat Wong, Keyang Xu, Christopher Yew, Nick Young,
508 Vadim Zubov, Douglas Eck, Dumitru Erhan, Koray Kavukcuoglu, Demis Hassabis, Zoubin Gharamani, Raia
509 Hadsell, Aäron van den Oord, Inbar Mosseri, Adrian Bolton, Satinder Singh, and Tim Rocktäschel. Genie
510 3: A new frontier for world models. 2025.

511 Ioan Andrei Bârsan, Peidong Liu, Marc Pollefeys, and Andreas Geiger. Robust dense mapping for large-scale
512 dynamic environments. In *ICRA*, pp. 7510–7517, 2018.

513 Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon
514 Joffe, Daniel Kurz, Arik Schwartz, and Elad Shulman. Arkitscenes: A diverse real-world dataset for 3d
515 indoor scene understanding using mobile rgb-d data, 2022. URL <https://arxiv.org/abs/2111.08897>.

516 Michael J. Black, Priyanka Patel, Joachim Tesch, and Jinlong Yang. BEDLAM: A synthetic dataset of bodies
517 exhibiting detailed lifelike animated motion. In *CVPR*, pp. 8726–8737, June 2023.

518 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
519 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
520 generation models as world simulators. 2024. URL <https://openai.com/research/video-generation-models-as-world-simulators>.

521 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
522 are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

523 D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow
524 evaluation. In A. Fitzgibbon et al. (Eds.) (ed.), *ECCV*, Part IV, LNCS 7577, pp. 611–625. Springer-Verlag,
525 October 2012.

526 David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian splats from
527 image pairs for scalable generalizable 3d reconstruction. In *CVPR*, 2024.

528 Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf:
529 Fast generalizable radiance field reconstruction from multi-view stereo. In *ICCV*, pp. 14124–14133, 2021.

530 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann. Diffusion
531 forcing: Next-token prediction meets full-sequence diffusion. *NeurIPS*, 37:24081–24125, 2025.

532 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen Cham,
533 and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images. *arXiv preprint
arXiv:2403.14627*, 2024.

540 Ho Kei Cheng and Alexander G. Schwing. XMem: Long-term video object segmentation with an atkinson-
 541 shiffrin memory model. In *ECCV*, 2022.

542 Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3D-r2n2: A unified
 543 approach for single and multi-view 3D object reconstruction. In *ECCV*, volume 9912 of *Lecture Notes in
 544 Computer Science*, pp. 628–644. Springer, 2016.

545 Wen-Hsuan Chu, Lei Ke, and Katerina Fragkiadaki. Dreamscene4d: Dynamic multi-object scene generation
 546 from monocular videos. *NeurIPS*, 2024.

548 Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
 549 Défossez. Simple and controllable music generation. *Neurips*, 36, 2023.

550 Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner.
 551 Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *CVPR*, 2017.

553 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *ICLR*, 2024.

554 Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. Monoslam: Real-time single camera
 555 slam. *TPAMI*, 29(6):1052–1067, 2007.

556 DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
 557 Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli
 558 Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang, Honghui
 559 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
 560 Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang Guan, Lean Wang,
 561 Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang,
 562 Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao
 563 Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li,
 564 Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang,
 565 Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
 566 Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q. Li, Xiangyue
 567 Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaosha Chen,
 568 Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai Yu, Xinnan Song, Xinyi Zhou,
 569 Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei, Y. X. Zhu, Yanhong Xu, Yanping Huang,
 570 Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong
 571 Zhao, Ying He, Ying Tang, Yishi Piao, Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo,
 572 Yuchen Zhu, Yuduan Wang, Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu,
 573 Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong
 574 Shao, Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and Ziwei
 575 Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model, 2024. URL
 576 <https://arxiv.org/abs/2405.04434>.

577 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Pe-
 578 ter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision transformers to
 579 22 billion parameters. In *ICML*, 2023.

580 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
 581 transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

582 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
 583 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
 584 Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.

585 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset.
 586 *IJRR*, 2013.

587 Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh R-CNN. In *ICCV*, pp. 9785–9795, 2019.

588 Richard Hartley and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge university
 589 press, 2003.

590 Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and Ying Shan.
 591 Depthcrafter: Generating consistent long depth sequences for open-world videos. In *CVPR*, 2025.

592 Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for geo-
 593 metrically accurate radiance fields. In *SIGGRAPH 2024 Conference Papers*. Association for Computing
 594 Machinery, 2024.

594 Muhammad Zubair Irshad, Mauro Comi, Yen-Chen Lin, Nick Heppert, Abhinav Valada, Rares Ambrus, Zsolt
 595 Kira, and Jonathan Tremblay. Neural fields in robotics: A survey, 2024. URL <https://arxiv.org/abs/2410.20220>.

597 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
 598 de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lampe, Lucile Saulnier, Lélio Renard Lavaud,
 599 Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
 600 William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

601 Zeren Jiang, Chuanxia Zheng, Iro Laina, Diane Larlus, and Andrea Vedaldi. Geo4d: Leveraging video genera-
 602 tors for geometric 4d scene reconstruction, 2025.

603

604 Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian Rupprecht.
 605 Dynamicstereo: Consistent dynamic depth from stereo videos. *CVPR*, 2023.

606 Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad Schindler.
 607 Repurposing diffusion-based image generators for monocular depth estimation. In *CVPR*, pp. 9492–9502,
 608 2024.

609 Nikhil Keetha, Norman Müller, Johannes Schönberger, Lorenzo Porzi, Yuchen Zhang, Tobias Fischer, Arno
 610 Knapitsch, Duncan Zauss, Ethan Weber, Nelson Antunes, Jonathon Luiten, Manuel Lopez-Antequera,
 611 Samuel Rota Bulò, Christian Richardt, Deva Ramanan, Sebastian Scherer, and Peter Kontschieder. Ma-
 612 pAnything: Universal feed-forward metric 3D reconstruction, 2025. arXiv preprint arXiv:2509.13414.

613

614 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D gaussian splatting for
 615 real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4):1–14, 2023.

616 Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In *CVPR*, 2021.

617

618 Anastasiia Kornilova, Marsel Faizullin, Konstantin Pakulev, Andrey Sadkov, Denis Kukushkin, Azat
 619 Akhmetyanov, Timur Akhtyamov, Hekmat Taherinejad, and Gonzalo Ferrer. Smartportraits: Depth powered
 620 handheld smartphone dataset of human portraits for state estimation, reconstruction and synthesis, 2022.
 621 URL <https://arxiv.org/abs/2204.10211>.

622 Yushi Lan, Feitong Tan, Di Qiu, Qiangeng Xu, Kyle Genova, Zeng Huang, Sean Fanello, Rohit Pandey, Thomas
 623 Funkhouser, Chen Change Loy, and Yinda Zhang. Gaussian3diff: 3d gaussian diffusion for 3d full head
 624 synthesis and editing. In *ECCV*, 2024.

625 Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, and Kostas Daniilidis. Mosca: Dynamic gaussian
 626 fusion from casual videos via 4d motion scaffolds. *arXiv preprint arXiv:2405.17421*, 2024.

627 Vincent Leroy, Yohann Cabon, and Jerome Revaud. Grounding image matching in 3d with mast3r, 2024.

628

629 Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet photos. In
 630 *ICCV*, pp. 2041–2050, 2018.

631

632 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo Kanazawa, Alek-
 633 sander Holynski, and Noah Snavely. MegaSaM: Accurate, fast and robust structure and motion from casual
 634 dynamic videos. *arXiv preprint*, 2024.

635 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo, Zixun Yu,
 636 Yawen Lu, et al. DL3dv-10k: A large-scale scene dataset for deep learning-based 3d vision. In *CVPR*, pp.
 637 22160–22169, 2024.

638 Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan, Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang,
 639 and Li Yi. Hoi4d: A 4d egocentric dataset for category-level human-object interaction. In *CVPR*, pp.
 640 21013–21022, June 2022.

641 Yuzheng Liu, Siyan Dong, Shuzhe Wang, Yingda Yin, Yanchao Yang, Qingnan Fan, and Baoquan Chen.
 642 Slam3r: Real-time dense scene reconstruction from monocular rgb videos. *arXiv preprint arXiv:2412.09401*,
 643 2024.

644 Dominic Maggio, Hyungtae Lim, and Luca Carlone. Vggt-slam: Dense rgb slam optimized on the sl (4)
 645 manifold. *Neurips*, 39, 2025.

646

647 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
 648 NeRF: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.

648 Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. ORB-SLAM: a versatile and accurate
 649 monocular SLAM system. *IEEE Transactions on Robotics*, 31(5):1147–1163, 2015.

650

651 Riku Murai, Eric Dexheimer, and Andrew J. Davison. MAST3R-SLAM: Real-time dense SLAM with 3D
 652 reconstruction priors. *arXiv preprint*, 2024.

653 Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d ken burns effect from a single image. *ACM Transac-*
 654 *tions on Graphics*, 38(6):184:1–184:15, 2019.

655

656 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-
 657 nandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao Huang, Hu Xu, Vasu
 658 Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nicolas Ballas, Gabriel Synnaeve,
 659 Ishan Misra, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOV2:
 660 Learning robust visual features without supervision, 2023.

661

662 E. Palazzolo, J. Behley, P. Lottes, P. Giguère, and C. Stachniss. ReFusion: 3D Reconstruction in Dynamic
 663 Environments for RGB-D Cameras Exploiting Residuals. *arXiv*, 2019. URL <https://arxiv.org/abs/1905.02082>.

664

665 Xiaqing Pan, Nicholas Charron, Yongqian Yang, Scott Peters, Thomas Whelan, Chen Kong, Omkar Parkhi,
 666 Richard Newcombe, and Yuheng (Carl) Ren. Aria digital twin: A new benchmark dataset for egocentric 3d
 667 machine perception. In *ICCV*, pp. 20133–20143, October 2023.

668

669 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf: Learning
 670 continuous signed distance functions for shape representation. In *CVPR*, pp. 165–174, 2019.

671

672 René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. *ArXiv*
 673 *preprint*, 2021.

674

675 Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut, and David Novotny.
 676 Common objects in 3d: Large-scale learning and evaluation of real-life 3d category reconstruction. In *ICCV*,
 677 2021.

678

679 Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista, Nathan Paczan, Russ
 680 Webb, and Joshua M. Susskind. Hypersim: A photorealistic synthetic dataset for holistic indoor scene
 681 understanding. In *ICCV*, 2021.

682

683 Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In *CVPR*, pp. 4104–4113,
 684 2016.

685

686 Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view selection
 687 for unstructured multi-view stereo. In *ECCV*, 2016.

688

689 Thomas Schöps, Johannes L. Schönberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc Pollefeys,
 690 and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and multi-camera videos.
 691 In *CVPR*, 2017.

692

693 Jiahao Shao, Yuanbo Yang, Hongyu Zhou, Youmin Zhang, Yujun Shen, Vitor Guizilini, Yue Wang, Matteo
 694 Poggi, and Yiyi Liao. Learning temporally consistent video depth from video diffusion priors, 2024. URL
 695 <https://arxiv.org/abs/2406.01493>.

696

697 Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew Fitzgibbon.
 698 Scene coordinate regression forests for camera relocalization in rgbd images. In *CVPR*, June 2013.

699

700 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
 701 inference from rgbd images. In *ECCV*, pp. 746–760. Springer-Verlag Berlin, October 2012. ISBN
 978-3-642-33714-7. URL <https://www.microsoft.com/en-us/research/publication/indoor-segmentation-support-inference-rgbd-images/>.

702

703 Vincent Sitzmann, Justus Thies, Felix Heide, Matthias NieBner, Gordon Wetzstein, and Michael Zollhofer.
 704 DeepVoxels: Learning persistent 3D feature embeddings. In *CVPR*, pp. 2432–2441. IEEE, 2019. ISBN
 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00254. URL <https://ieeexplore.ieee.org/document/8953309/>.

705

706 Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A benchmark for the
 707 evaluation of rgbd slam systems. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*,
 708 pp. 573–580, 2012. doi: 10.1109/IROS.2012.6385773.

702 Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,
 703 Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei
 704 Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng
 705 Chen, and Dragomir Anguelov. Scalability in perception for autonomous driving: Waymo open dataset. In
 706 *CVPR*, June 2020.

707 Stanislaw Szymanowicz, Christian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast single-view 3D
 708 reconstruction. In *arXiv*, 2023.

709 Chengzhou Tang and Ping Tan. BA-Net: Dense bundle adjustment network. *arXiv preprint arXiv:1806.04807*,
 710 2018.

711 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow, 2020. URL <https://arxiv.org/abs/2003.12039>.

712 Zachary Teed and Jia Deng. DROID-SLAM: Deep visual SLAM for monocular, stereo, and RGB-D cameras.
 713 *NeurIPS*, pp. 16558–16569, 2021.

714 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
 715 Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
 716 Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023. URL <https://arxiv.org/abs/2302.13971>.

717 Hengyi Wang and Lourdes Agapito. 3d reconstruction with spatial memory. *arXiv preprint arXiv:2408.16061*,
 718 2024.

719 Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual geometry grounded
 720 deep structure from motion. In *CVPR*, pp. 21686–21697, 2024a.

721 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David Novotny.
 722 Vggt: Visual geometry grounded transformer. In *CVPR*, 2025a.

723 Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. NeuS: Learning neu-
 724 ral implicit surfaces by volume rendering for multi-view reconstruction. *arXiv preprint arXiv:2106.10689*,
 725 2021a.

726 Qiang Wang, Shizhen Zheng, Qingsong Yan, Fei Deng, Kaiyong Zhao, and Xiaowen Chu. Irs: A large natural-
 727 istic indoor robotics stereo dataset to train deep models for disparity and surface normal estimation, 2021b.
 728 URL <https://arxiv.org/abs/1912.09678>.

729 Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo
 730 Martin-Brualla, Noah Snavely, and Thomas A. Funkhouser. IBRNet: Learning Multi-View Image-Based
 731 Rendering. In *CVPR*, 2021c.

732 Qianqian Wang, Vickie Ye, Hang Gao, Weijia Zeng, Jake Austin, Zhengqi Li, and Angjoo Kanazawa. Shape
 733 of motion: 4d reconstruction from a single video. *arXiv preprint arXiv:2407.13764*, 2024b.

734 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Continuous 3d
 735 perception model with persistent state. *arXiv preprint arXiv:2501.12387*, 2025b.

736 Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang, Yu Deng, Xin Tong, and Jiaolong Yang. Moge: Un-
 737 locking accurate monocular geometry estimation for open-domain images with optimal training supervision,
 738 2024c. URL <https://arxiv.org/abs/2410.19115>.

739 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d
 740 vision made easy. In *CVPR*, pp. 20697–20709, 2024d.

741 Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor,
 742 and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In *IROS*, 2020.

743 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind super-
 744 resolution with pure synthetic data. In *ICCVW*.

745 Yiran Wang, Min Shi, Jiaqi Li, Zihao Huang, Zhiguo Cao, Jianming Zhang, Ke Xian, and Guosheng Lin.
 746 Neural video depth stabilizer. In *ICCV*, pp. 9466–9476, October 2023.

747 Philippe Weinzaepfel, Thomas Lucas, Vincent Leroy, Yohann Cabon, Vaibhav Arora, Romain Brégier, Gabriela
 748 Csurka, Leonid Antsfeld, Boris Chidlovskii, and Jérôme Revaud. CroCo v2: Improved Cross-view Comple-
 749 tion Pre-training for Stereo Matching and Optical Flow. In *ICCV*, 2023.

756 Hongchi Xia, Yang Fu, Sifei Liu, and Xiaolong Wang. Rgbd objects in the wild: Scaling real-world 3d object
 757 learning from rgb-d videos, 2024. URL <https://arxiv.org/abs/2401.12592>.

758

759 Jiale Xu, Shenghua Gao, and Ying Shan. Freesplatter: Pose-free gaussian splatting for sparse-view 3d recon-
 760 struction. *arXiv preprint arXiv:2412.09573*, 2024.

761

762 Jianing Yang, Alexander Sax, Kevin J. Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai, Franziska
 763 Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one forward pass. In *CVPR*,
 764 June 2025.

765

766 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything:
 767 Unleashing the power of large-scale unlabeled data. In *CVPR*, 2024a.

768

769 Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything:
 770 Unleashing the power of large-scale unlabeled data. In *CVPR*, 2024b.

771

772 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
 773 anything V2. *arXiv preprint arXiv:2406.09414*, 2024c.

774

775 Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth inference for unstructured multi-
 776 view stereo. *ECCV*, 2018.

777

778 Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, and Long Quan. Recurrent mvsnet for high-resolution
 779 multi-view stereo depth inference. *CVPR*, 2019.

780

781 Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan. Blended-
 782 mvs: A large-scale dataset for generalized multi-view stereo networks. *CVPR*, 2020.

783

784 Botao Ye, Sifei Liu, Haofei Xu, Li Xuetong, Marc Pollefeys, Ming-Hsuan Yang, and Peng Songyou. No pose,
 785 no problem: Surprisingly simple 3d gaussian splats from sparse unposed images. In *ICLR*, 2025.

786

787 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-fidelity dataset
 788 of 3d indoor scenes. In *ICCV*, pp. 12–22, 2023.

789

790 Wei Yin, Chi Zhang, Hao Chen, Zhipeng Cai, Gang Yu, Kaixuan Wang, Xiaozhi Chen, and Chunhua Shen.
 791 Metric3d: Towards zero-shot metric 3d prediction from a single image. In *CVPR*, pp. 9043–9053, 2023.

792

793 Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. PixelNeRF: Neural radiance fields from one or
 794 few images. In *CVPR*, 2021.

795

796 Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu, Chongjie Ye, Yushuang Wu, Zizheng Yan, Tianyou
 797 Liang, Guanying Chen, Shuguang Cui, and Xiaoguang Han. MVImgNet: A large-scale dataset of multi-
 798 view images. In *CVPR*, 2023.

799

800 Yijun Yuan, Zhuoguang Chen, Kenan Li, Weibang Wang, and Hang Zhao. Slam-former: Putting slam into one
 801 transformer. *arXiv preprint arXiv:2509.16909*, 2025.

802

803 Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization, 2015. URL
 804 <https://arxiv.org/abs/1409.2329>.

805

806 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun, and
 807 Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion. *arXiv
 808 preprint arXiv:2410.03825*, 2024a.

809

810 Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving neural
 811 radiance fields. *arXiv preprint arXiv:2010.07492*, 2020.

812

813 Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu. Gs-lrm:
 814 Large reconstruction model for 3d gaussian splatting. *ECCV*, 2024b.

815

816 Lvmin Zhang and Maneesh Agrawala. Packing input frame contexts in next-frame prediction models for video
 817 generation. *Arxiv*, 2025.

818

819 Zhoutong Zhang, Forrester Cole, Zhengqi Li, Michael Rubinstein, Noah Snavely, and William T Freeman.
 820 Structure and motion from casual videos. In *ECCV*, pp. 20–37. Springer, 2022.

821

822 Wang Zhao, Shaohui Liu, Hengkai Guo, Wenping Wang, and Yong-Jin Liu. Particlesfm: Exploiting dense
 823 point trajectories for localizing moving cameras in the wild. In *ECCV*, 2022.

810 Yufeng Zheng, Wang Yifan, Gordon Wetzstein, Michael J. Black, and Otmar Hilliges. Pointavatar: Deformable
811 point-based head avatars from videos. In *CVPR*, 2023.

812 Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R Oswald, Andreas Geiger, and Marc Polle-
813 feys. Nicer-slam: Neural implicit scene encoding for rgb slam. In *3DV*, March 2024.

814

815 Dong Zhuo, Wenzhao Zheng, Jiahe Guo, Yuqi Wu, Jie Zhou, and Jiwen Lu. Streaming 4d visual geometry
816 transformer. *arXiv preprint arXiv:2507.11539*, 2025.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864
865

A APPENDIX

866
867

A.1 USE OF LARGE LANGUAGE MODELS

868
869
870

Large Language Models (LLMs) are used exclusively for minor grammar corrections and stylistic polishing of the manuscript. They are not involved in the design of the methodology, execution of experiments, analysis of results, or any other aspect of the scientific contribution.

871

A.2 DATASET DETAILS

872
873

We train our model on 29 datasets that contains a diverse range of scene types, including static and dynamic scene and objects. Specifically, we mainly follow the data splits of CUT3R (Wang et al., 2025b), and the main 15 datasets with highest sampling ratio are: Co3Dv2 (Reizenstein et al., 2021), ScanNet++ (Yeshwanth et al., 2023), ScanNet (Dai et al., 2017), HyperSim (Roberts et al., 2021), Dynamic Replica (Karaev et al., 2023), DL3DV (Ling et al., 2024), BlendedMVS (Yao et al., 2020), Aria Synthetic Environments (Pan et al., 2023), TartanAir (Wang et al., 2020), MapFree (Arnold et al., 2022), MegaDepth (Li & Snavely, 2018), WildRGBD (Xia et al., 2024), Waymo (Sun et al., 2020), Bedlam (Black et al., 2023), and ARKitScenes (Baruch et al., 2022). We do not include 3D Ken Burns (Niklaus et al., 2019), IRS (Wang et al., 2021b), and Smart-Portraits (Kornilova et al., 2022) for training since these datasets are either single view or fail to download successfully. We adapt the official scripts provided by CUT3R (Wang et al., 2025b), DUSt3R (Wang et al., 2024d), and Spann3R (Wang & Agapito, 2024) for dataset processing. For training STREAM3R^β , we remove all the single-view datasets as in VGG-T, leaving 19 datasets for training. We did not find performance degradation when removing the single-view datasets. Please refer to the Tab. 6 of the CUT3R for more dataset details.

884
885

A.3 MORE IMPLEMENTATION DETAILS

886
887

More Training Details. Our method conducts end-to-end training on all datasets on a hybrid of 12 different resolutions, ranging from 224×224 to 512×384 . Data augmentation side, we perform sequence-level color jittering by applying the same color jitter across all frames in a sequence.

888
889
890
891
892
893
894
895

Network Architecture Details. We follow DUSt3R and use the CroCoNet (Weinzaepfel et al., 2023) pre-trained ViT for the encoder and decoder design. We directly use the DPT (Ranftl et al., 2021) head for $\text{Head}_{\text{global}}$ and $\text{Head}_{\text{local}}$ implementation. We apply RoPE to the query and key feature before each attention operation for the ViT encoder, but ignore it for the ViT decoder to generalize to an arbitrary number of input views. For ablation studies, we train our model on the same datasets but at resolution 224×224 .

896
897
898
899
900

For the sliding window attention version STREAM3R^β -W[5], we always include the tokens of the first frame to keep the canonical coordinate space unchanged. We set window size $W=5$ since it trades off performance and speed, and other window size also stably works. For the full attention version STREAM3R^β -FA, we directly use the causally trained model STREAM3R^β and remove the causal mask in the SelfAttn. This is similar to the “revisit” operation in CUT3R.

901
902

A.4 MORE COMPARISONS AND ANALYSIS

903
904
905
906
907
908
909
910
911

Video Depth Estimation. We further expand the video depth comparison in the main paper and include a wider range of baseline methods, including single-frame depth methods Marigold (Ke et al., 2024) and DepthAnything-V2 (Yang et al., 2024c), video depth approaches NVDS (Wang et al., 2023), DepthCrafter (Hu et al., 2025), and ChronoDepth (Shao et al., 2024), and recent joint depth-and-pose estimation methods such as Robust-CVD (Bârsan et al., 2018), CausalSAM (Zhang et al., 2022), DUSt3R (Wang et al., 2024d), MAST3R (Leroy et al., 2024), MonST3R (Zhang et al., 2024a), and Spann3R (Wang & Agapito, 2024). Extended results are shown in Tab. 6. STREAM3R^α consistently outperforms its RNN-based counterpart CUT3R under the per-sequence scale & shift setting, and even achieves state-of-the-art performance on the KITTI dataset while also being the fastest in terms of FPS. Moreover, STREAM3R^β delivers even stronger results, attaining the best overall accuracy across the per-sequence scale & shift setting.

912
913
914
915
916
917

3D Reconstruction on NRGBD. We further include the comparison on NRGBD benchmark (Azinović et al., 2022) in Tab. 7. Here, we also include the comparison with a concurrent work StreamVGGT (Zhuo et al., 2025), which fine-tunes VGG-T into streaming version similar to our method. We also include VGG-T[streaming], which indicates using VGG-T in the streaming setting by replace the full attention in VGG-T into the causal attention. As can be seen, our method clearly outperforms all optimization-based and online methods, including the official VGG-T model. Direct use of VGG-T in the streaming setting substantially degrades performance, underscoring the need for fine-tuning under causal constraints. We also include STREAM3R^β -FA for comparison, which indicates replacing the causal attention in STREAM3R^β into full attention (FA). Interestingly,

918
919 Table 6: Video Depth Evaluation. We report scale&shift-invariant depth, scale-invariant depth and metric
920 depth accuracy on Sintel, Bonn, and KITTI datasets. Methods requiring global alignment are marked “GA”,
921 while “Optim” and “Stream” indicate Optimization-based and Streamne methods, respectively. We also report
922 the FPS on KITTI dataset using 512×144 image resolution for all methods, except Spann3R which Stream
923 supports 224×224 inputs.

924 Alignment	925 Method	926 Type	927 Sintel		928 BONN		929 KITTI		930 FPS
			931 Abs Rel \downarrow	932 $\delta < 1.25 \uparrow$	933 Abs Rel \downarrow	934 $\delta < 1.25 \uparrow$	935 Abs Rel \downarrow	936 $\delta < 1.25 \uparrow$	
925 Per-sequence 926 scale & shift	926 Marigold (Ke et al., 2024)	927 Stream	928 0.532	929 51.5	930 0.091	931 93.1	932 0.149	933 79.6	934 <0.1
	926 Depth-Anything-V2 (Yang et al., 2024c)	927 Stream	928 0.367	929 55.4	930 0.106	931 92.1	932 0.140	933 80.4	934 3.13
	926 NVDS (Wang et al., 2023)	927 Stream	928 0.408	929 48.3	930 0.167	931 76.6	932 0.253	933 58.8	934 -
	926 ChronoDepth (Shao et al., 2024)	927 Stream	928 0.687	929 48.6	930 0.100	931 91.1	932 0.167	933 75.9	934 1.89
	926 DepthCrafter (He et al., 2025)	927 Stream	928 0.292	929 69.7	930 0.075	931 97.1	932 0.110	933 88.1	934 0.97
	926 Robust-CVD (Kopf et al., 2021)	927 Stream	928 0.703	929 47.8	930 -	931 -	932 -	933 -	934 -
	926 CasualSAM (Zhang et al., 2022)	927 Optim	928 0.387	929 54.7	930 0.169	931 73.7	932 0.246	933 62.2	934 -
	926 DUS3R-GA (Wang et al., 2024d)	927 Optim	928 0.531	929 51.2	930 0.156	931 83.1	932 0.135	933 81.8	934 0.76
	926 MAST3R-GA (Leroy et al., 2024)	927 Optim	928 0.327	929 59.4	930 0.167	931 78.5	932 0.137	933 83.6	934 0.31
	926 MonST3R-GA (Zhang et al., 2024a)	927 Optim	928 0.333	929 59.0	930 0.066	931 96.4	932 0.157	933 73.8	934 0.35
935 Per-sequence 936 scale	936 Spann3R (Wang & Agapito, 2024)	937 Stream	938 0.508	939 50.8	940 0.157	941 82.1	942 0.207	943 73.0	944 13.55
	936 CUT3R (Wang et al., 2025b)	937 Stream	938 0.540	939 55.7	940 0.074	941 94.5	942 0.106	943 88.7	944 16.58
	936 ST3REAM3R $^\alpha$	937 Stream	938 0.356	939 58.6	940 0.068	941 95.7	942 0.099	943 91.0	944 23.48
	936 ST3REAM3R $^\beta$	937 Stream	938 0.205	939 70.8	940 0.062	941 97.4	942 0.071	943 95.1	944 12.95
	936 DUS3R-GA (Wang et al., 2024d)	937 Optim	938 0.656	939 45.2	940 0.155	941 83.3	942 0.144	943 81.3	944 0.76
	936 MAST3R-GA (Leroy et al., 2024)	937 Optim	938 0.641	939 43.9	940 0.252	941 70.1	942 0.183	943 74.5	944 0.31
	936 MonST3R-GA (Zhang et al., 2024a)	937 Optim	938 0.378	939 55.8	940 0.067	941 96.3	942 0.168	943 74.4	944 0.35
	936 Spann3R (Wang & Agapito, 2024)	937 Stream	938 0.622	939 42.6	940 0.144	941 81.3	942 0.198	943 73.7	944 13.55
	936 Fast3R (Yang et al., 2025)	937 FA	938 0.653	939 44.9	940 0.193	941 77.5	942 0.140	943 83.4	944 47.23
	936 CUT3R (Wang et al., 2025b)	937 Stream	938 0.421	939 47.9	940 0.078	941 93.7	942 0.118	943 88.1	944 16.58
940 Metric scale	940 ST3REAM3R $^\alpha$	941 Stream	942 0.478	943 51.1	944 0.075	945 94.1	946 0.116	947 89.6	948 23.48
	940 ST3REAM3R $^\beta$	941 Stream	942 0.264	943 70.5	944 0.069	945 95.2	946 0.080	947 94.7	948 12.95
	940 MAST3R-GA (Leroy et al., 2024)	941 Optim	942 1.022	943 14.3	944 0.272	945 70.6	946 0.467	947 15.2	948 0.31
941 Metric scale	941 CUT3R (Wang et al., 2025b)	942 Stream	943 1.029	944 23.8	945 0.103	946 88.5	947 0.122	948 85.5	949 16.58
	941 ST3REAM3R $^\alpha$	942 Stream	943 1.041	944 21.0	945 0.084	946 94.4	947 0.234	948 57.6	949 23.48

942
943 Table 7: 3D Reconstruction Comparison on NRGKD (Azinović et al., 2022). Our proposed method
944 consistently achieves superior performance compared to optimization-based (Optim), streaming-
945 based (Stream), and even full attention (FA) methods. ST3REAM3R $^\beta$ -FA indicates adopting full
946 attention in our trained model for 3D reconstruction.

947 Method	948 Type	949 Acc \downarrow		950 Comp \downarrow		951 NC \uparrow	
		952 Mean	953 Med.	954 Mean	955 Med.	956 Mean	957 Med.
VGG-T (Wang et al., 2025a)	FA	0.073	0.018	0.077	0.021	0.910	0.990
DUS3R-GA (Wang et al., 2024d)	Optim	0.144	0.019	0.154	<u>0.018</u>	0.870	0.982
MAST3R-GA (Leroy et al., 2024)	Optim	0.085	0.033	<u>0.063</u>	0.028	0.794	0.928
MonST3R-GA (Zhang et al., 2024a)	Optim	0.272	0.114	0.287	0.110	0.758	0.843
ST3REAM3R $^\beta$ -FA	Stream	0.057	0.014	0.028	0.013	0.910	0.993
Spann3R (Wang & Agapito, 2024)	Stream	0.416	0.323	0.417	0.285	0.684	0.789
CUT3R (Wang et al., 2025b)	Stream	0.099	<u>0.031</u>	0.076	<u>0.026</u>	0.837	0.971
StreamVGGT (Zhuo et al., 2025)	Stream	<u>0.084</u>	0.044	<u>0.074</u>	0.041	<u>0.861</u>	<u>0.986</u>
VGG-T [Streaming] (Wang et al., 2025a)	Stream	0.219	0.102	0.212	0.105	0.797	0.936
ST3REAM3R $^\beta$	Stream	0.065	0.017	0.034	0.014	0.900	0.991

958 ST3REAM3R $^\beta$ -FA yields comparable performance compared to VGG-T and even better results on the comple-
959 tion metric. This highlights the effectiveness and generality of our proposed method.

960 **Camera Pose Estimation.** Following CUT3R (Wang et al., 2025b), we evaluate camera pose estimation
961 accuracy on the Sintel (Butler et al., 2012), TUM-dynamics (Sturm et al., 2012), and ScanNet (Dai et al., 2017)
962 datasets. Sintel and TUM-dynamics both feature substantial dynamic motion, posing significant challenges
963 to conventional SfM and SLAM pipelines. We report Absolute Translation Error (ATE), Relative Translation
964 Error (RPE_{trans}), and Relative Rotation Error (RPE_{rot}) after Sim(3) alignment with the ground truth, following
965 the protocol in (Teed & Deng, 2021; Zhang et al., 2024a; Wang et al., 2025b). Our approach operates with-
966 out requiring camera calibration, similar to the compared baselines (Teed & Deng, 2021). While many prior
967 methods (Kopf et al., 2021; Zhang et al., 2022) address this via test-time optimization, which jointly estimates
968 intrinsics and dense depth for each sequence. We focus on purely online processing. Tab. 8 reports results
969 for Streaming (Stream) and Optimization (Optim) categories, with DUS3R (Wang et al., 2024d) included in
970 the latter (aligning all frames to the first frame without global alignment). Although optimization-based sys-
971 tems still achieve the lowest errors overall, our method establishes the strongest performance among streaming
972 approaches, and notably surpasses CUT3R (Wang et al., 2025b) on both TUM-dynamics and ScanNet, demon-
973 strating particular robustness in dynamic environments.

972 Table 8: Camera Pose Evaluation on Sintel (Butler et al., 2012), TUM-dynamic (Sturm et al., 2012),
 973 and ScanNet (Dai et al., 2017) datasets. Our method achieves comparable performance with CUT3R
 974 on most benchmarks.

976 977 Method	978 979 980 981 982 983 984 Type	976 977 Sintel			976 977 TUM-dynamics			976 977 ScanNet		
		978 979 980 981 982 983 984 ATE \downarrow	978 979 980 981 982 983 984 RPE trans \downarrow	978 979 980 981 982 983 984 RPE rot \downarrow	978 979 980 981 982 983 984 ATE \downarrow	978 979 980 981 982 983 984 RPE trans \downarrow	978 979 980 981 982 983 984 RPE rot \downarrow	978 979 980 981 982 983 984 ATE \downarrow	978 979 980 981 982 983 984 RPE trans \downarrow	978 979 980 981 982 983 984 RPE rot \downarrow
Particle-SfM (Zhao et al., 2022)	Optim	0.129	0.031	0.535	-	-	-	0.136	0.023	0.836
Robust-CVD (Kopf et al., 2021)	Optim	0.360	0.154	3.443	0.153	0.026	3.528	0.227	0.064	7.374
CasualSAM (Zhang et al., 2022)	Optim	0.141	0.035	0.615	0.071	0.010	1.712	0.158	0.034	1.618
DUS3R-GA (Wang et al., 2024d)	Optim	0.417	0.250	5.796	0.083	0.017	3.567	0.081	0.028	0.784
MAS3R-GA (Leroy et al., 2024)	Optim	0.185	0.060	1.496	0.038	0.012	0.448	0.078	0.020	0.475
MonST3R-GA (Zhang et al., 2024a)	Optim	0.111	<u>0.044</u>	0.869	0.098	0.019	0.935	0.077	0.018	<u>0.529</u>
DUS3R (Wang et al., 2024d)	Stream	0.290	0.132	7.869	0.140	0.106	3.286	0.246	0.108	8.210
Spann3R (Wang & Agapito, 2024)	Stream	0.329	0.110	4.471	0.056	0.021	0.591	0.096	0.023	<u>0.661</u>
CUT3R (Wang et al., 2025b)	Stream	0.213	0.066	0.621	<u>0.046</u>	<u>0.015</u>	0.473	0.099	<u>0.022</u>	0.600
STREAM3R $^{\beta}$	Stream	0.213	<u>0.076</u>	<u>0.868</u>	0.026	0.013	0.330	<u>0.052</u>	0.021	0.850

985
 986 **3D Reconstruction on ETH3D.** To further verify performance on large-scale data with longer sequences,
 987 we include 3D reconstruction experiments on the ETH3D (Schöps et al., 2017) dataset, as shown in Tab. 9.
 988 As can be seen, global alignment (GA)-based methods (DUS3R, MAS3R) perform significantly worse
 989 than feed-forward reconstruction methods (CUT3R and Ours), indicating that they struggle to generalize
 990 to challenging scenes and long video sequences. Furthermore, our method significantly outperforms other
 991 streaming approaches (CUT3R, Span3R, SLAM3R). While the full-attention offline method VGGT per-
 992 forms strongly, our streaming method achieves the best Completeness score among all methods (0.245 vs.
 993 VGGT 0.305) and remains competitive in accuracy.

994 Table 9: 3D Reconstruction Comparison on ETH3D (Schöps et al., 2017). Our proposed
 995 method achieves competitive performance compared to optimization-based (Optim), streaming-
 996 based (Stream), and full attention (FA) methods.

997 998 Method	999 Type	997 998 Acc \downarrow		997 998 Comp \downarrow		997 998 NC \uparrow	
		999 Mean	999 Med.	999 Mean	999 Med.	999 Mean	999 Med.
DUS3R-GA (Wang et al., 2024d)	Optim	2.582	2.034	2.126	1.544	0.548	0.573
MAS3R-GA (Leroy et al., 2024)	Optim	2.682	2.458	2.206	1.734	0.531	0.540
Fast3R (Yang et al., 2025)	FA	<u>0.832</u>	<u>0.691</u>	<u>0.978</u>	<u>0.683</u>	<u>0.667</u>	<u>0.766</u>
VGG-T (Wang et al., 2025a)	FA	0.280	0.185	0.305	0.182	0.853	0.950
CUT3R (Wang et al., 2025b)	Stream	<u>0.617</u>	<u>0.525</u>	<u>0.747</u>	0.579	<u>0.754</u>	<u>0.848</u>
Spann3R (Wang & Agapito, 2024)	Stream	1.730	1.107	1.373	0.742	0.545	0.634
SLAM3R (Liu et al., 2024)	Stream	1.678	1.288	0.996	<u>0.499</u>	0.615	0.681
STREAM3R $^{\beta}$	Stream	0.363	<u>0.227</u>	<u>0.245</u>	0.094	0.812	0.943

1006
 1007 **Robustness of the Anchor View.** Using the first frame as the global coordinate system is a standard convention
 1008 across DUS3R and its follow-up works, including MAS3R, MonST3R, CUT3R, VGGT, and ours.
 1009 As shown in the Fig. 5 (b), even when the first frame has very little overlap, our model still shows strong
 1010 implicit relative pose-learning capability for the other views.

1011 Quantitatively, we further follow the degradation pipeline of Real-ESRGAN (Wang et al.) to corrupt the
 1012 first frame of each sequence, and then evaluate VGGT, CUT3R, and our method on the 7-Scenes dataset.
 1013 This directly examines scenarios where the first frame is low-quality. As shown in Table 10, all methods
 1014 experience some degradation. However, CUT3R’s Accuracy error increases markedly from 0.126 to 0.335,
 1015 whereas that of STREAM3R rises only from 0.122 to 0.223, indicating that our method is considerably more
 1016 robust under such challenging conditions.

1017 We further add visualizations for unordered image inputs and even the case with the non-overlapping anchoring
 1018 view in Fig. 5. Fig. 5(a) demonstrates that STREAM3R also performs well on unordered inputs,
 1019 beyond the streaming setting. Fig. 5(b) further shows that when the first frame has very little overlap, our
 1020 model still yields strong implicit relative pose-learning capability for the other views.

1021
 1022 **Comparison with VGGT-SLAM.** We compare our method with VGGT-SLAM (Maggio et al., 2025) on
 1023 both static scenes (NRGBD) and dynamic scenes (Sintel and TUM-dynamics). As shown in Tab. 11, our
 1024 approach performs on par with SLAM-specialized techniques for static scene reconstruction. Moreover,

1026 Table 10: Impact of First-View Degradation on 3D Reconstruction (7-Scenes). We compare the
 1027 robustness of different methods against input degradation. The values in parentheses indicate the
 1028 performance drop compared to the clean setting, marked in red.

Method	Acc (Mean) \downarrow	Acc (Med.) \downarrow	Comp (Mean) \downarrow	Comp (Med.) \downarrow	NC (Mean) \uparrow	NC (Med.) \uparrow
VGGT (Wang et al., 2025a)	0.087	0.039	0.091	0.039	0.787	0.890
CUT3R (Wang et al., 2025b)	0.126	0.047	0.154	0.031	0.727	0.834
STREAM3R $^{\beta}$	0.122	0.044	0.101	0.038	0.746	0.856
VGGT (w/ 1st view deg.)	0.144 (+0.057)	0.062 (+0.023)	0.172 (+0.081)	0.060 (+0.021)	0.708 (-0.079)	0.811 (-0.079)
CUT3R (w/ 1st view deg.)	0.335 (+0.209)	0.270 (+0.223)	0.320 (+0.166)	0.276 (+0.245)	0.666 (-0.061)	0.752 (-0.082)
STREAM3R $^{\beta}$ (w/ 1st view deg.)	0.223 (+0.101)	0.117 (+0.073)	0.214 (+0.113)	0.139 (+0.101)	0.695 (-0.051)	0.789 (-0.067)



(a) Unordered Input (b) Non-Overlapping Anchor View

1051 Figure 5: Visualizations of input permutation and non-overlapping anchoring views. (a) STREAM3R
 1052 maintains high accuracy under unordered input sequences. (b) STREAM3R successfully
 1053 reconstructs the scene even when the anchoring view has no overlap with the rest of the
 1054 sequence.

1056 Tab. 12 and Fig. 6 demonstrates that our method can robustly reconstruct dynamic scenes, a capability that
 1057 conventional SLAM-based methods typically lack.

1058 We further emphasize that our method targets a different problem setting from SLAM-based approaches.
 1059 Our goal is to develop a unified streaming 3D/4D reconstruction pipeline capable of handling both (dynamic)
 1060 foreground and background regions, whereas SLAM-based methods primarily focus on reconstructing static
 1061 backgrounds and estimating accurate camera poses.

1062 Despite these differing objectives, our approach is fully compatible with feed-forward SLAM systems and
 1063 can be seamlessly integrated into their pipelines. As demonstrated in a recent work SLAM-Former (Yuan
 1064 et al., 2025), streaming-based 3D reconstruction with KV caching can effectively support frontend tasks
 1065 such as keyframe selection, tracking, and mapping within a SLAM system.

1066
 1067 Table 11: 3D Reconstruction Comparison on Dense NRGBD (~ 150 frames). Our method achieves
 1068 comparable performance to SLAM-based methods on static scenes.

Method	Type	Acc \downarrow		Comp \downarrow		NC \uparrow	
		Mean	Med.	Mean	Med.	Mean	Med.
VGGT-SLAM Maggio et al. (2025)	SLAM-based	0.039	0.017	0.028	0.009	0.781	0.939
STREAM3R $^{\beta}$	Stream	0.046	0.020	0.012	0.005	0.756	0.923

1078 **Comparison Local and Global Point Map Prediction.** Our method supports both world-point maps and
 1079 local-point maps (from depth and intrinsics). By using the extrinsics predicted by the camera head, the

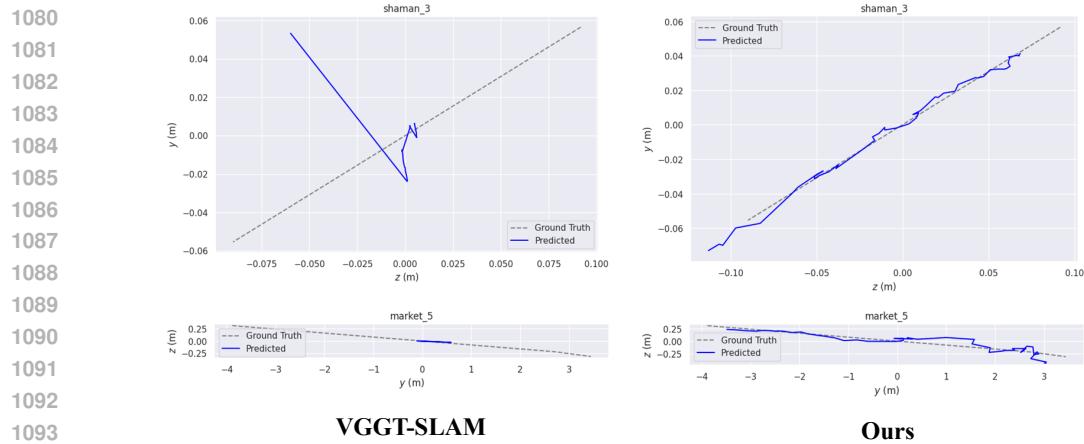


Figure 6: Visualizations of camera pose prediction on the dynamic Sintel dataset compared with VGGT-SLAM. As shown, our method demonstrates robustness in dynamic view reconstruction where static view consistency is not maintained, highlighting a capability that conventional SLAM-based methods typically lack.

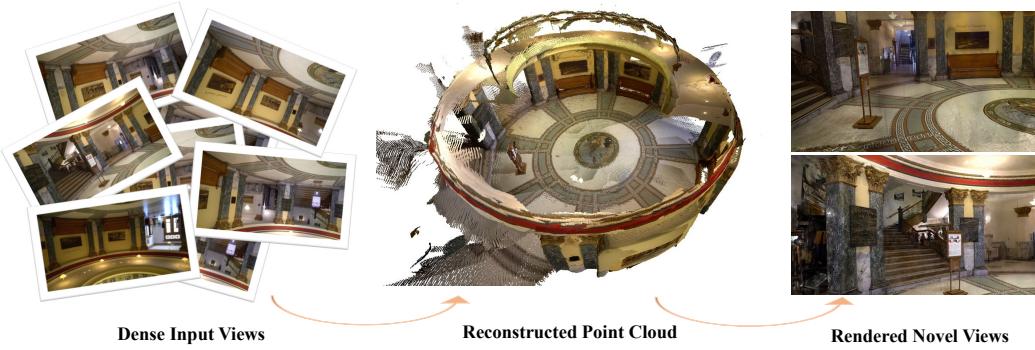


Figure 7: Visualizations of our reconstructed point cloud and rendered novel view from 3D Gaussian Splatting (Kerbl et al., 2023).

Table 12: Camera Pose Comparison with VGGT-SLAM on Sintel (Butler et al., 2012) and TUM-dynamics (Sturm et al., 2012). Compared to VGGT-SLAM, which focuses on static scene reconstruction, STREAM3R^β shows robust camera estimation performance on dynamic scenarios.

Method	Type	Sintel			TUM-dynamics		
		ATE ↓	RPE trans ↓	RPE rot ↓	ATE ↓	RPE trans ↓	RPE rot ↓
VGGT-SLAM	SLAM-based	0.305	0.082	4.140	0.041	0.014	0.879
STREAM3R ^β	Stream	0.213	0.076	0.868	0.026	0.013	0.330

local-point map can be further projected into the global coordinate frame. As shown in Table 13, the point cloud projected from the local stream achieves better performance than direct world-point prediction. This observation shows the advantage of decomposing the challenging task of global-point map estimation into simpler subproblems. This finding is consistent with insights reported in VGGT and MapAnything (Keetha et al., 2025).

Table 13: Comparison of Direct World Point Prediction and Local Depth Projection on ETH3D.

Method	Acc (Mean) ↓	Acc (Med.) ↓	Comp (Mean) ↓	Comp (Med.) ↓	NC (Mean) ↑	NC (Med.) ↑
<i>Ours (from Local)</i>	0.363	0.227	0.245	0.094	0.812	0.943
<i>Ours (from Global)</i>	0.449	0.215	0.280	0.131	0.809	0.929

1134
1135
1136
1137
1138
1139
1140

More Analysis on Window Attention. Here we provide additional analysis of the window-attention configuration of STREAM3R-W (with window sizes 4/8/16/32/64) on the NRGBD dataset with long sequences. As shown in Table 14, we find a positive correlation between attention window size and 3D reconstruction quality. This exposes a controllable trade-off between reconstruction quality and memory usage, allowing users to adapt the model to their specific hardware constraints.

1141
1142

Table 14: 3D Reconstruction Comparison on Dense NRGBD (~ 150 views) with Different Window Size. The memory is reported as peak memory in GB.

1143
1144
1145
1146
1147
1148
1149
1150

Method	Acc (Mean) \downarrow	Acc (Med.) \downarrow	Comp (Mean) \downarrow	Comp (Med.) \downarrow	NC (Mean) \uparrow	NC (Med.) \uparrow	Memory
STREAM3R $^\beta$ -W[4]	0.074	0.031	0.021	0.011	0.699	0.894	6.00
STREAM3R $^\beta$ -W[8]	0.075	0.030	0.019	0.010	0.693	0.889	6.65
STREAM3R $^\beta$ -W[16]	0.080	0.033	0.022	0.011	0.706	0.896	7.96
STREAM3R $^\beta$ -W[32]	0.069	0.028	0.021	0.010	0.729	0.910	10.58
STREAM3R $^\beta$ -W[64]	0.051	0.023	0.019	0.010	0.737	0.913	15.93
STREAM3R $^\beta$ -W[128]	0.048	0.021	0.016	0.009	0.752	0.921	24.51
STREAM3R $^\beta$ (Causal)	0.046	0.020	0.012	0.005	0.756	0.923	30.30

1151
1152
1153
1154
1155
1156
1157
1158

Reconstruction Results on Longer Sequences. To further evaluate long-sequence performance, we conduct experiments on NRGBD and 7-Scenes datasets using frame intervals of 2, 5, 7, 10, 20, and 40. As demonstrated in Table 15, our method consistently outperforms the baselines across all frame intervals and datasets, showing robust scalability to varying sequence lengths. We also report the performance of STREAM3R-W on a long trajectory of approximately 1.5K frames in Tab. 16. As can be seen, our method achieves substantially better performance than CUT3R on this challenging long-sequence setting, further demonstrating the advantages of our streaming design.

1159
1160
1161
1162

Table 15: 3D Reconstruction Comparison on Longer Sequences (NRGBD & 7-Scenes) with Different Intervals. We report the median metrics. The interval indicates the sampling sparsity, and the approximate number of input views is shown in parentheses.

1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Interval (Views)	NRGBD Dataset						7-Scenes Dataset					
	40 (~35)	20 (~75)	10 (~150)	7 (~210)	5 (~370)	2 (~750)	40 (~30)	20 (~60)	10 (~125)	7 (~140)	5 (~250)	2 (~500)
<i>Accuracy \downarrow</i>												
CUT3R (Wang et al., 2025b)	0.032	0.042	0.064	0.110	0.179	0.266	0.013	0.013	0.019	0.039	0.087	0.161
Spann3R (Wang & Agapito, 2024)	0.074	0.068	0.100	0.118	0.136	0.104	0.139	0.074	0.051	0.056	0.084	0.104
SLAM3R (Liu et al., 2024)	0.113	0.107	0.109	0.117	0.119	0.113	0.106	0.096	0.100	0.094	0.097	0.111
STREAM3R $^\beta$	0.019	0.019	0.020	0.022	0.025	0.028	0.013	0.012	0.010	0.015	0.021	0.021
<i>Completeness \downarrow</i>												
CUT3R (Wang et al., 2025b)	0.013	0.010	0.011	0.034	0.083	0.134	0.011	0.008	0.008	0.013	0.048	0.066
Spann3R (Wang & Agapito, 2024)	0.033	0.023	0.031	0.045	0.041	0.065	0.089	0.048	0.015	0.017	0.041	0.065
SLAM3R (Liu et al., 2024)	0.046	0.027	0.015	0.021	0.012	0.072	0.053	0.031	0.019	0.015	0.032	0.056
STREAM3R $^\beta$	0.008	0.006	0.005	0.009	0.016	0.018	0.012	0.009	0.006	0.009	0.015	0.021
<i>Normal Consistency (NC) \uparrow</i>												
CUT3R (Wang et al., 2025b)	0.943	0.908	0.825	0.726	0.686	0.638	0.806	0.750	0.693	0.602	0.595	0.573
Spann3R (Wang & Agapito, 2024)	0.750	0.724	0.657	0.624	0.611	0.570	0.710	0.699	0.641	0.571	0.518	0.538
SLAM3R (Liu et al., 2024)	0.764	0.729	0.686	0.693	0.637	0.625	0.655	0.623	0.590	0.569	0.609	0.576
STREAM3R $^\beta$	0.976	0.958	0.923	0.867	0.792	0.765	0.830	0.773	0.712	0.662	0.648	0.622

1176
1177
1178

Table 16: 3D Reconstruction Comparison on Thousands of Frames ($\sim 1.5k$). Our method demonstrates superior stability on extremely long sequences compared to CUT3R.

1179
1180
1181
1182
1183
1184
1185
1186
1187

Method	Acc (Mean) \downarrow	Acc (Med.) \downarrow	Comp (Mean) \downarrow	Comp (Med.) \downarrow	NC (Mean) \uparrow	NC (Med.) \uparrow
CUT3R (Wang et al., 2025b)	0.411	0.315	0.224	0.146	0.544	0.581
STREAM3R $^\beta$ -W[16]	0.094	0.039	0.028	0.015	0.627	0.716

Integration with Novel View Synthesis. We demonstrate the utility of our method for downstream applications by integrating it with Novel View Synthesis. Specifically, we utilize the dense point maps and camera poses predicted by our model as a geometric prior to initialize 3D Gaussian Splatting (Kerbl et al., 2023). By exporting our predictions to a COLMAP-compatible format (Schonberger & Frahm, 2016), we enable the effective optimization of 3D Gaussians on complex video sequences without relying on external

1188
 1189 Structure-from-Motion (SfM) tools. As shown in Fig. 7, STREAM3R-initialized point clouds and camera
 1190 poses facilitate high-quality novel view renderings.
 1191
 1192

1193 A.5 LIMITATIONS

1194 Our method comes with some limitations. First, the naïve causal modeling naturally suffers from error accumu-
 1195 lation and drifting (Zhang & Agrawala, 2025). Some inference strategies can be proposed to alleviate this issue.
 1196 Second, currently STREAM3R is still a regression model with deterministic outputs. Extending it further into
 1197 an autoregressive generative model (Chen et al., 2025; Zhang & Agrawala, 2025) shall further unlock a series of
 1198 downstream applications. Finally, since STREAM3R follows a similar design of modern LLMs, more training
 1199 techniques like MLA (DeepSeek-AI et al., 2024) can be introduced to further boost the training efficiency and
 1200 performance.
 1201

1202 A.6 ADDITIONAL VISUAL RESULTS AND VIDEOS

1203 We invite reviewers to refer to our supplementary *video demo* for further video results.
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241