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ABSTRACT

The fundamental challenge of few-shot image classification stems from inade-
quate distributional representations due to limited training samples. This paper
presents a Human Cognitive-Inspired Bayesian Distribution Calibration method
(HC-BDC), inspired by human fast and slow thinking and the neurocognitive
mechanisms of convergent and divergent thinking. Unlike conventional ap-
proaches, our framework implements a dual-phase reasoning mechanism: the
fast-thinking phase employs a lightweight Mixture-of-Experts (MoE) model to
dynamically allocate existing knowledge for different few-shot tasks, while the
slow-reasoning phase utilizes Bayesian relation inference to simulate human con-
vergent and divergent thinking. This approach diversely generates associations
between novel concepts and prior knowledge from multiple perspectives, lead-
ing to more comprehensive distribution representations. Specifically, the fast-
thinking process automatically selects relevant knowledge components through
attention routing, whereas the slow-reasoning process constructs multi-view re-
lational graphs via Bayesian inference to dynamically capture diverse inter-class
relationships. Extensive experiments on multiple benchmark datasets demonstrate
that our approach outperforms current state-of-the-art methods. The HC-BDC
framework provides a novel direction for interpretable few-shot learning by mod-
eling the interaction between unconscious association and conscious reasoning
processes.

1 INTRODUCTION

While deep learning has achieved remarkable success in computer vision through leveraging large-
scale labeled data |Yan et al|(2016); [Lin et al.| (2020), its performance in data-scarce scenarios for
few-shot image classification remains challenging. Current few-shot learning approaches includes
meta-learning, metric learning, and data augmentation [Wang et al.| (2020). Most methods examine
class relationships from a single perspective and rely on fixed similarity measures (e.g., Euclidean
distance [Yang et al.| (2021) or parameter-frozen linear layers [Vinyals et al.| (2016))) for relationship
computation. These limitations constrain the performance of these models on few-shot tasks. In
contrast, humans demonstrate exceptional capability in learning novel concepts from limited exam-
ples by employing dual thinking modes of fast and slow thinking Kahneman| (2011)), along with the
ability to divergent and convergent thinking|Zhang et al.| (2020).

Inspired by these findings, we deconstruct human thinking mechanisms into two systems: fast think-
ing system and slow reasoning system, each incorporating elements of divergent exploration and
convergent integration. Our framework introduces two key innovations: (1) a lightweight gated MoE
that dynamically routes base-class knowledge via attention mechanisms, simulating fast-thinking
selection; and (2) a Bayesian relation inference module constructing multi-view Gaussian graphs
through probabilistic sampling, emulating slow-reasoning exploration and integration. Specifically,
we present the Human Cognitive-Inspired Bayesian Distribution Calibration (HC-BDC) framework,
a Bayesian relation inference approach with three main contributions:

* MoE-based Dynamic Knowledge Routing: We design a lightweight MoE component
that dynamically and divergently routes input samples to specialized experts through atten-
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tion mechanisms, simulating how humans flexibly associate novel instances with diverse
existing knowledge categories in fast thinking system.

* Bayesian Multi-View Relation Modeling: We develop a Bayesian relation inference mod-
ule that constructs multi-view Gaussian relational graphs through probabilistic sampling,
emulating human divergent and convergent thinking to adaptively capture and consolidate
inter-class relationships in slow reasoning system.

* Interpretable Cognitive Alignment: The framework demonstrates meaningful consis-
tency between the generated relational graphs and human reasoning patterns through visual
analysis, offering essential explainability for applications such as medical diagnosis.

Extensive experiments demonstrate our method’s superiority over state-of-the-art approaches across
multiple benchmarks. The proposed cognitive simulation mechanisms provide a new direction for
developing human-like learning systems, particularly valuable for scenarios requiring both data ef-
ficiency and interpretability.

2 RELATED WORKS

Few-shot learning aims to acquire correct knowledge from very limited samples. Existing meth-
ods can be broadly categorized into model-based, metric-based, and data augmentation approaches
Wang et al.| (2020).

Model-based methods use transfer learning; fine-tuning techniques [Nakamura & Haradal (2019)
adapt pre-trained networks but face catastrophic forgetting. Meta-learning solutions [Finn et al.
(2017); [Rusu et al.| (2018) simulate few-shot tasks during training, yet often incur high computa-
tional costs.

Metric-based paradigms learn discriminative embeddings. Prototypical Networks|Snell et al.|(2017)
use class prototypes, while Matching Networks|Vinyals et al.|(2016) apply attention-based similarity.
However, these rely on static prototype matching and fail to capture multi-view inter-class relations.
Recent relation-aware methods |Chen et al.[(2019);|Yang et al.|(2021)) model class dependencies but
still lack dynamic, context-aware reasoning as in human cognition |[Zhang et al.| (2020).

Data augmentation techniques address sample scarcity through feature space enrichment, where
semi-supervised methods Ren et al.| (2018a) leverage unlabeled data and contrastive learning [Yang
et al.| (2022) enhances discriminability. While effective for instance-level generalization, these
approaches lack mechanisms for modeling the hierarchical knowledge organization and multi-
perspective reasoning characteristic of human cognition |Zhang et al.[(2020). More recently, |Yang
et al.[ (2021)) introduce distribution calibration using Euclidean distances between class statistics,
while |Wei et al.[(2023) develop direction-driven weighting for feature distribution fitting. However,
compared with human thinking patterns, these works still exhibit certain deficiencies: (1) their rela-
tional thinking modes are singular, whereas humans possess complementary fast and slow thinking
systems that enable more comprehensive and efficient relational inference |[Kahneman| (2011); (2)
their relation generation processes remain single-viewed, failing to capture the diverse potential as-
sociations humans naturally consider during few-shot learning.

In cognitive science, human thinking is divided into two systems: fast (rapid, intuitive) and slow
(deliberate, analytical) |Kahneman| (2011). Furthermore, human creative cognition is increasingly
understood through the dual mechanisms of divergent and convergent thinking |[Zhang et al.| (2020).
These processes are regulated by metacontrol states that bias cognition toward flexibility (broad as-
sociative thinking) or persistence (focused problem-solving) Hommel| (2015); Mekern et al.| (2019).
Such neural dynamics facilitate the multi-perspective relational reasoning and dynamic knowledge
integration that underlie human-like learning and creativity |[Kounios & Beeman|(2014). These in-
sights provide a foundational framework for developing models that more accurately emulate human
cognitive processes.

Our proposed HC-BDC framework breaks through existing limitations by: (1) achieving dynamic
knowledge retrieval through gated MoE mechanisms that simulate the selective attention process in
human fast thinking, and (2) replacing static metrics with probabilistic multi-view relation graphs
that emulate the divergent-convergent thinking in human slow reasoning processes, thereby enabling
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multi-perspective relational reasoning. This dual innovation bridges the gap between existing Al

models and cognitive science principles in few-shot learning.

3 METHOD

(b) Bayesian Relation Inference for Slow Reasoning
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Figure 1: The overall architecture of the proposed Human Cognitive-Inspired Bayesian Distribution
Calibration (HC-BDC) framework for few-shot learning.

3.1 PIPELINE OF HC-BDC

The overall pipeline of HC-BDC is shown in the lower part of Figure [l The input of HC-
BDC is an n-way k-shot few-shot learning episode. The episode includes labeled support set
S = {(xi,y:)}>}" and unlabeled query set Q@ = {x; };n:ql First, we adopt a pre-trained feature
extractor fy(-) to extract features from the support and query images:

h; = fg(Xi), Vx; € SU Q, (D)
where x; € R¥>*7*W represents an input RGB image with height H and width W, and h; € R?
is the extracted feature vector. Each extracted feature vector h; is then processed by MoE fast
thinking component (The Bayesian relation inference module for slow reasoning is invoked within
this component.) to generate multiple fusion features that represent the underlying distribution:

F; = MoE(h;), 2
N

where F; = {fik} iy denotes the set of Ngays fusion features generated for input h;. Details of the

MoE component are described in Each fusion feature f* € RY captures a distinct perspective of
the input feature’s distribution through multi-view relational reasoning. All fusion features generated
by support features and their corresponding labels are used to train a logistic regression classifier:

3)
where Fy,p, represents all fusion features generated by support features and y,pp represents their

labels. For each query set feature h;, we represent it using a single fusion feature f; from one
perspective and employ the trained classifier to perform the classification task.

§; = Classifier (f;) .

Classifier <— Traing g (Fsupp, ¥supp) »

“4)
3.2 MOE FOR FAST THINKING
The HC-BDC framework emulates human cognitive mechanisms [Kahneman| (2011) for few-shot

distribution calibration. Our approach utilizes a Mixture-of-Experts (MoE) architecture to simu-
late fast thinking processes, integrating Bayesian relation inference for slow reasoning to generate
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multi-view fusion features F (Eq. [2). The MoE component initiates with a gating network that
implements divergent thinking through dynamic attention allocation across experts. Each expert
maintains distinct base-class prototypes, which are selected from the training data and kept static
during optimization. For each episode, support set features are aggregated to compute expert atten-
tion weights:

a = GatingNetwork(Hs), (5)
where Hs = {h;}7F represents all support set image features, and & = [, g, ..., an,] | €
RN= denotes the attention weight vector satisfying Zivjl a, = 1, with Ng being the number

of experts. The gating network employs the standard self-attention method from the Transformer
encoder architecture for attention computation [Vaswani et al.|(2017).

For any input feature h; in this episode, the model utilizes these attention weights for expert allo-
cation. Within each expert, we invoke the Bayesian relation inference module in [3.3] to simulate
slow reasoning system and generate multi-perspective fusion features. The final output combines all
expert features through attention-weighted fusion:

Fi = BayesianModule(h;, H;), (6)
NEg
Fi=) o Ff, ™
e=1
where Hi = {hij ;le represents the base-class prototypes for expert e, and Ff = {f ok fcvjl"*

denotes the multi-perspective fusion features generated by expert e, F; = {ff}gj‘fs is the final set

of multi-view fusion features output by the MoE fast thinking component.

3.3 BAYESIAN RELATION INFERENCE FOR SLOW REASONING

Human slow-reasoning systems are crucial for reducing judgment errors and improving decision
reliability [Kahneman| (2011)), while divergent and convergent thinking underpin creative cognition
Zhang et al [(2020). Inspired by these mechanisms, we develop a Bayesian relation inference module
to simulate slow reasoning for feature enhancement.

As shown in the upper part of Figure[I] each module incorporates N base-class prototypes H; from
the training set, mimicking humans’ structured prior knowledge. For an input feature h;, the module
first establishes divergent associations with base classes, generating relational edge embeddings:

e;; = ¢([hilh ]), ¢:R* = R%, (8)

where | denotes concatenation and ¢ is a linear neural encoder to simulate human mind-wandering.
A key to creative behavior is gathering ideas together through convergent thinking (illumination)
Wallas|(1926); Zhang et al.| (2020). Therefore, we simulate human cognitive integration by coupling
these edge embeddings into a single summary edge, representing the aggregated inter-class relational
strength after synthesizing divergent associations. Recent research suggests that humans engage in
numerous unconscious perceptions during relational thinking, which can be modeled as sampling
from a binomial distribution with parameters n — oo and A — 0 |Huang et al.| (2020). And the
coupling process can be viewed as sampling from this distribution. Based on the De Moivre-Laplace
theorem and prior studies [Huang et al.[(2020); Liu & Jial (2023)), we transform this sampling into a
Gaussian approximation via the following conversion (see the Appendix for justification):

Hij = C (Lmean (e”)) + €, (9)
0ij = ( (Lsta (€35)) , (10)
1+ 2Mij012j — /14 4;;%0%
mij = 5 : (11)

where ¢ denotes the softplus activation function, € is a small constant, and Lyean(-) and Lgq(+)
are neural networks that estimate the mean and standard deviation of the Gaussian distribution
N (45, ij) approximating the binomial distribution B(n, A) under n — oo, A — 0. The graph
M = [m;;] couples the cognitive relations between novel and each base class to a specific numer-
ical value. We employ variational inference to train this module, thereby ensuring the stability of



Under review as a conference paper at ICLR 2026

the generated relational graph M. Specifically, we generate two coupled graphs using an identical
architecture: one serves as the prior graph, while the other is referred to as the ”summary graph”.
The summary graph is utilized for subsequent multi-view Gaussian graph generation.

To enhance the creative capacity of the component, we again emulate human divergent thinking
Zhang et al.|(2020) by transforming the summary graph into multiple Gaussian relational graphs via
a multi-view Gaussian graph transformation. This process introduces Gaussian random variables
associated with the edge weights of the summary graph, updating them from diverse perspectives.
Each Gaussian graph is generated as follows for view k:

Q55 = mij(l.O—mij) - €+ myj, (12)
Sﬁ — M Gy misjtd -/ .557 (13)
—k k ~
Q55 = Sj - i, (14)
k ~k
agy = ¢ (@) , (15)
where € and aﬁ are standard Gaussian variables, S¥ = [sﬁ] represents the edge-related Gaussian
variable, ¢ denotes the operation of normalizing values to the range [—1, 1]. Each Gaussian graph
Ak = [ai—"j}, corresponding to a unique perspective on class relationships, serves as the posterior

graph in variational inference (we demonstrate in Section [3.4] that the choice of view does not affect
the variational result). Finally, these graphs are used to produce a diverse set of fused features:

fi’c =(1- w)(AkHb) +wh;, we]0,1), (16)

where H,; denotes the base-class prototypes and w controls the balance between integrated prior
knowledge and the original features.

3.4 LEARNING OF HC-BDC

Learning of Bayesian Relation Inference In order to train the Bayesian relation inference compo-
nent more effectively, inspired by VRNN (Chung et al.| (2015)), we use a graph variational inference
method to train the model. We use two random variables requiring optimization to describe the
same stochastic process. Specifically, we treat any view of Gaussian graph as the posterior graph
q (M*, SF | h;, 1), where the random variables M* and S* can describe the same stochastic pro-

cess that generate a Gaussian graph. The prior graph p (M(O) | hy, Hﬁ) can also be represented by

these two random variables through Gaussian graph transformation: p (M(O), S | hy, H{;). Our
goal is to minimize the following KL divergence:

KL <q (M*, 8% | by, 1) [Ip <M<0>,S(°) | hi,H{;)) . (17)

In this equation, m;; € M is a sample from the binomial distribution B(n, \) that can be ap-

proximated by a Gaussian proxy. Since each variable in S is affected by & in Eq.(I2), we have

sij | @ij ~ N (duj * iz, @ij * 07;), the KL term can be further written as:

L, =KL(B(n, Aiy)[|B(n, ) +

» Nig

Binomial term
Ea,, KLV (aij * s, iy % 07;) (18)
0)2
D1

- 0) ~
[NV (@ * Mz('j)vaij * 04

Gaussian term

The calculation of this KL term does not depend on the random variable S. By this equation we
avoid the need to find the KL term for a large number of multi-view Gaussian graphs, which greatly
simplifies the calculation. In Eq.(T8), the Gaussian term can be calculated easily. According to
recent research Liu & Jial(2023)); Huang et al.|(2020), we can use the Gaussian approximation of the
binomial distribution to perform the approximate calculation. (The upper bound on the error of this
approximation is guaranteed. For the detailed proof, please refer to the Appendix.).
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Learning of HC-BDC In our framework, classification of the query fusion features is accomplished
by training a simple logistic regression classifier. This classifier operates independently within each
episode, undergoing complete parameter initialization and training adopting the fusion features of
support set Fqpp. The optimization of HC-BDC combines the cross-entropy loss on the query set
with the KL divergence loss Lk from the Bayesian relation inference module:

Ltotal = Log + Lk, 7V € (O, 1]. (19)

4 EXPERIMENTS

4.1 COMPARISON EXPERIMENTS

To validate the effectiveness of the proposed model, we compare it with different baseline methods
for few-shot learning on minilmagenet Russakovsky et al.|(2015), tieredImagenet|Ren et al.| (2018b)
and Dermnet[2022|dataset as shown in Table|I|and[2] The minilmagenet and tieredImagenet datasets
are standard few-shot datasets, while the Dermnet dataset is a long-tail dataset of dermatological
images. For fair comparison, we use the same setting to conduct comparisons with state-of-the-
art methods (SOTAs) on the three datasets. We adopt a ResNet-18 pre-trained model as backbone
network in each dataset. The dataset is divided in the same way as our method is set up.

Table 1: Comparison of HC-BDC and baselines in accuracy on the minilmagenet and tieredImagenet
dataset under 5-way 1-shot/5-shot scenarios

minilmagenet tieredImagenet

Method T-shot(%) S5-shof(%) 1-shof(%) 5-shot(%)
MAML 2017 48.70 63.11 60.85 78.82
PN 2017 49.42 68.20 61.33 80.02
MN 2016 43.44 55.31 62.80 81.16
DC[2021 68.12 83.08 78.19 89.90
Sum-min 2022 68.32 82.71 73.63 87.59
DDWM 2023 68.58 84.65 80.02 87.85
Sem-Few 2024 78.94 86.49 82.37 89.89
AMU-Tuning 2024 80.57 88.55 83.75 93.10

HC-BDC (ours) 86.12:101s  97.17+100s  86.68+022  95.311012

The value following the &+ symbol represents the 95% confidence interval.

Table 2: Comparison of HC-BDC and baselines in accuracy on the Dermnet dataset under 5-way
1-shot/5-shot scenarios

Method 1-shot(%) 5-shot(%)
MAML 2017 44.05 60.17
PN 2017 43.76 60.22
MN 2016 4423 61.13
DC2021 48.99 66.75
tSF[2022 49.38 68.15
AMU-Tuning 2024 46.58 65.13
GAP[2023 48.92 68.89

HC-BDC (ours) 52.20+028  70.93+0.13

The value following the & symbol represents the 95% confidence interval.

The results demonstrate our model’s state-of-the-art performance in both 5-way 1-shot and 5-way
5-shot scenarios. Traditional methods like MAML [Finn et al.| (2017), PN |Snell et al.| (2017) and
MN |Vinyals et al.| (2016) achieve limited accuracy due to their inability to fully utilize available
training data. While Distribution Calibration (DC) Yang et al,| (2021)) shows improved perfor-
mance by generating relation graphs through Euclidean distance, its fixed metric fails to capture
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complex inter-class relationships, leaving room for improvement in both accuracy and interpretabil-
ity. Recent advances in few-shot learning |Afrasiyabi et al.| (2022)); Kang et al.| (2023); [Lai et al.
(2022); |Wet et al.| (2023); Zhang et al.| (2024)); [Tang et al.| (2024) have achieved notable perfor-
mance improvements. However, these methods remain limited by (1) inadequate exploitation of
base-class knowledge and (2) absence of human-like multi-perspective relational reasoning. Our
HC-BDC framework addresses these limitations by integrating a gated mixture-of-experts mecha-
nism for dynamic base-class knowledge selection, simulating fast-thinking processes, along with
Bayesian multi-view Gaussian graphs that emulate slow-reasoning exploration. This cognitively-
inspired dual-phase design supports comprehensive relationship modeling and efficient knowledge
transfer, achieving state-of-the-art performance.

4.2 ABLATION STUDIES

4.2.1 ANALYSIS OF COMPONENT EFFECTIVENESS

To investigate the contribution of each component and the effectiveness of simulating human cog-
nition, we design the ablation studies by constructing three variants of HC-BDC. Specifically, the
three ablated models are constructed as follows: w/o Bayes, MoE removes both the Bayesian relation
inference module and the MoE component, using only a single expert with a linear layer for fea-
ture fusion; w/o Bayes eliminates the Bayesian module while retaining the MoE-based fast thinking;
and w/o MoE removes the mixture-of-experts component but preserves the slow-reasoning Bayesian
relation inference. The performance of each variant on minilmageNet is shown in Table

Table 3: Performance comparison of HC-BDC and its variants on the minilmagenet dataset.

Variant of HC-BDC 5-way 1-shot (%) 5-way 5-shot (%)

w/o Bayes, MoE 38.24 47.73
w/o Bayes 48.76 62.86
w/o MoE 84.76 96.80

HC-BDC (ours) 86.12 97.17

The results in Table [3| reveal that both the MoE fast-thinking component and the Bayesian slow-
reasoning module contribute to model performance. Notably, removing the Bayesian component
(w/o Bayes) leads to a more significant performance drop compared to removing the MoE compo-
nent (w/o MoFE). This aligns with the cognitive finding that the slow-reasoning system plays a critical
role in reducing judgment errors |Kahneman|(2011). The MoE component also provides a clear ben-
efit, supporting flexible knowledge association as in fast thinking. The full HC-BDC framework,
integrating both cognitive mechanisms, achieves the best performance, validating the importance of
simulating dual-phase human reasoning for few-shot learning.

4.2.2 PERFORMANCE WITH VARYING NUMBERS OF GAUSSIAN RELATION GRAPH VIEWS

The Bayesian relation inference module’s core functionality is to infer class relationships from mul-
tiple perspectives. To validate the effectiveness of multi-view relational inference, we conduct ex-
periments with varying numbers of Gaussian relation graph views (Ngays) ranging from 1 to 1000,
as shown in Table 4l

The results demonstrate a clear performance improvement as the number of views increases, partic-
ularly when transitioning from few to moderate numbers of views. This confirms that multi-view re-
lational inference is crucial for the model’s effectiveness in few-shot classification tasks. At around
100 views, the model achieves an optimal balance between computational efficiency and classifi-
cation accuracy, indicating it has sufficiently learned multi-perspective relationships at this point.
Notably, we observe a slight performance degradation when increasing views from 500 to 1000
(87.21% to 87.06% for 5-way 1-shot), suggesting that 500 views may already provide sufficient
diversity for learning inter-class relationships, while additional views might introduce redundant
perspectives that slightly harm performance.
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Table 4: Performance with varying numbers of Gaussian relation graph views

Views 5-way 1-shot (%) 5-way 5-shot (%)

1 33.09 84.62
2 52.72 92.24
5 70.54 96.67
10 77.81 96.40
20 83.67 97.16
50 85.49 96.54
100 86.12 97.17
200 86.61 96.63
500 87.21 97.18
1000 87.06 96.98

4.3 VISUAL ANALYSIS

Interpretability is crucial for relation inference methods, especially in sensitive domains such as
medical diagnosis. To validate the reliability of our HC-BDC framework, we visualize relation
graphs for images from both minilmagenet and Dermnet datasets (Figure 2] and 3. For each image,
we average the multi-view Gaussian graphs from the expert with highest attention weights. Re-
lationship intensities between target and base classes are shown as heatmaps, with three strongly
positive-correlated and three strongly negative-correlated base classes selected for comparison.

4.3.1 VISUALIZATION ON minilMAGENET DATASET

We conduct visual analysis on two minilmagenet image sets, each containing two images from the
same class but with visual differences. The relation graphs show that HC-BDC yields interpretable
reasoning results consistent with human cognition.

In Image Set 1, both target images depict the same bird species, and the model consistently iden-
tifies another bird category (Base 8) as strongly positively correlated. Positively correlated classes
are mostly animals, while negative ones are typically man-made objects, aligning with human cate-
gorical reasoning. Moreover, relation graphs for different images of the same category show strong
consistency: Base 8 and Base 10 maintain high positive correlations, while Base 4 and Base 7 show
strong negative correlations. This intra-class consistency reveals the interpretability of our model’s
relation graphs.

Image Set 2 further demonstrates human-aligned reasoning: categories with strong positive corre-
lations share morphological and color traits with the targets. Relation graphs for different target
images within the same category also exhibit high consistency. These results confirm HC-BDC’s
ability to capture semantic relationships resembling human cognitive processes, offering essential
explainability for few-shot classification decisions.

4.3.2 VISUAL ANALYSIS ON DERMNET DATASET

The target image in relation visualization 1, Figure [3|is Perioral Steroid, belonging to the Acne and
Rosacea major class in the Dermnet dataset. The image shows a diffuse inflammatory response.
The three most relevant base classes (Atopic Dermatitis, Poison Ivy and other Contact Dermatitis,
and Vasculitis) each represent a distinct inflammatory type, lending high medical confidence to the
model’s relation graph. Notably, although the target’s onset site is the lip, the model does not treat
location as decisive for positive correlation. Meanwhile, the three strongest negatively correlated
diseases exhibit clearly different symptoms and onset sites, indicating that the model does not rely
primarily on lesion location.

In relation visualization 2, the target tufted-folliculitis belongs to Alopecia and other Hair Diseases.
The strongest positively correlated base class also falls under this category, and both exhibit hair loss,
showing a strong association. Conversely, the most negatively correlated base classes are visually
distinct from the target.



Under review as a conference paper at ICLR 2026

Image Set 1
Negative
Correlation
Base 8 \

Negative
| Correlation
Target Image 2

Base 3

> #
b e, N

Target Image 1

Base 10

‘I

Base 10 I Based
( “le ) correlation intensity .
B i correlation intensity [l | - . -. ] g
c— .
Base 2 EE u Base 1 S Base 7
S Berh 8l 88
mage Set 2
Negative Negative
Correlation Correlation
2 Target Image 1 S Target Image?
Base 3 - / _ Base Base 7 I /
. , Sy .
/3 — d TN —
Base 7 % Base 6

I os Base 5 o
correlation intensity » - g - -/‘“ 8 correlation intensity I .

\ . .o oW Basc 8 .
R Base 3 N

3405 61 8 3 W

Figure 2: Visual analysis on minilmagenet dataset. The heat map represents the associations between
the target image and base classes, with brighter colours representing positive correlations and darker
colours representing negative correlations.

These results confirm the model’s interpretability and its ability to capture clinically meaningful
inter-class relationships, supporting its applicability in medical scenarios.
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Figure 3: Visual analysis of HC-BDC on Dermnet dataset.

5 CONCLUSION

We propose HC-BDC, a human cognition-inspired few-shot learning framework that bridges ma-
chine learning and cognitive science by simulating dual-phase human reasoning. It integrates a
fast-thinking MoE component for dynamic knowledge selection with a slow-reasoning Bayesian
relation inference module for multi-view relational modeling, effectively capturing both adaptive
knowledge retrieval and diverse associative capabilities characteristic of human cognition.

Extensive experiments on standard and medical benchmarks show that HC-BDC achieves state-
of-the-art classification accuracy while providing interpretable, human-aligned relational graphs.
Its balance of performance and explainability, underpinned by cognitive principles, offers strong
potential for real-world applications and points toward a new direction for building human-like
learning systems.
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6 REPRODUCIBILITY STATEMENT AND ETHICS STATEMENT

We provide an open-source implementation of HC-BDC in the supplementary material, along with
the dataset splitting code for Dermnet.

The authors do not foresee any negative social impacts of this work. All authors disclosed no relevant
relationships.
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A EXPERIMENT CONFIGURATION AND DETAILS

A.1 PRELIMINARIES OF FEW-SHOT LEARNING

In the standard n-way k-shot classification setting, a model is presented with a support set S =
(x4,y;) containing k labeled examples for each of n novel classes, and a query set @ = (x;) of un-
labeled instances. The goal is to predict labels for query samples by leveraging limited information
from the support set.

Our model employs n-way k-shot episodes for training, validation, and testing, while randomly
selecting a set of classes from the training dataset as base classes.

A.2 BASELINE METHODS DETAILS

To validate the effectiveness of the proposed model, we compare it with different baseline methods
for few-shot learning. The baseline methods we compare are shown as follows:

MAML [Finn et al.{(2017): An algorithm for meta-learning which is model-agnostic.

Prototypical Networks (PN) |Snell et al| (2017): A classical Metric-Based meta-learning
method.

Matching Networks (MN) |Vinyals et al.| (2016): A classical Metric-Based meta-learning
method which uses LSTM to augment the network.

Distribution Calibration (DC) |Yang et al.| (2021): A method for distribution calibration
based on manually set Euclidean distances.

PatchProto + tSF (tSF) [Lai et al.| (2022): A transformer-based semantic filter with Patch-
Proto network for few-shot classification.

GAP|Kang et al.|(2023): A meta-learning method with a geometry-adaptive preconditioner.

Sum-min |Afrasiyabi et al.| (2022): A method for extracting and matching sets of feature
vectors for few-shot image classification.

DDWM Wei et al.| (2023): An orientation-driven weighting method to make the feature
distribution of a few-shot class accurately fit the true distribution.

Sem-Few |Zhang et al.|(2024)): A semantic-aided few-shot learning framework that employs
a Semantic Evolution process to automatically generate high-quality semantics from class
names.

AMU-Tuning [Tang et al.| (2024): A CLIP-based few-shot learning method that learns ef-
fective logit bias by exploiting auxiliary features.

A.3 TRAINING DETAILS

The details of the resources for training and the versions of the software are provided in Table [5]

Table 5: The hardware and software configuration for training.

Python 3.10
Software PyTorch 1.13.1+cull6
numpy 1.24.3
torchvision 0.14.1+cull6
CPU Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
Hardware RAM 128 GB
GPU GeForce RTX 3090
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A.4 IMPLEMENTATION DETAILS

For the training stage, we use the Adam optimizer and set the learning rate to le-4. We train the
network for 1000 epochs and save the best performing model across 200 validation episodes for
testing. The average accuracy of 1000 episodes is reported as the final result. The details of the
hyperparameters are provided in Table 6]

Table 6: The configuration of hyper-parameters for training.

Hyper-parameter ~ Value

N_Gaus 100
Edge_Dim 128
G_Dim 256
Batch_Size 64
Epoch 1000
Learning_Rate le-4
Lambdal Se-4
Lambda2 4e-4
Weight_Decay 3e-4
N_Base 10
Experts 1
Omega 0.5
ValRuns 200
ImageSize 224

A.5 CODE AND DATASET

The HC-BDC model and the code for processing the Dermnet dataset are packaged in the supple-
mentary materials.

We use miniImagenelERussakovsky et al.| (2015), tieredImagenetRen et al. (2018b), and Dermne
dataset for experiments. minilmagenet dataset contains 100 classes with 600 images per class, and
is divided into 64 base classes, 16 validation classes, and 20 novel classes in all experiments. tiered-
Imagenet dataset contains 34 major categories, each containing 10 to 30 subcategories (i.e. classes,
608 subcategories in total). These are divided into 20 training categories, 6 validation categories,
and 8 test categories. Dermnet dataset contains 23 broad classes of dermatology images and can be
manually divided into more specific classes. The images in the dataset are in JPEG format, consist-
ing of 3 channels, i.e., RGB. We divide the images in Dermnet dataset into secondary classes based
on their names and removed all classes with less than 10 images to ensure that the Sway-5shot task
could be completed. Finally, we divide the dataset into 344 classes with 17,206 images.The classes
are randomly divided into training set, validation set and test set in the ratio of 7:1.5:1.5.

B PROOFS OF KEY THEOREMS

B.1 THEOREM 1

Let NV (i, 0%) denotes a Gaussian distribution with ¢ < 1/2, and let B(n, A) denotes a Binomial
distribution with n — 400 and A — 0, where n is increasing while \ is decreasing. There exists a
real constant m such that if m = n and if we define:

"https://paperswithcode.com/dataset/mini-imagenet
“https://www.kaggle.com/datasets/shubhamgoel27/dermnet
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fi(z) = KL (N (2, 2(1 — 2)) |V (1, 0%))
fa(@) = KLV (z, (1 — 2)) [NV (nA, nA(1 = A)))
5= mmin fa(x), where z € (0,1)

according to exist works|/Huang et al.|(2020), we have that: f;(z) attains its minimum on the interval
(0,1) and fo(x) — f3 is bounded on the interval (0, v/2/2 — 1/2), with:

202
1-2p

14+1—V1+412

===, where [ =

r=m =

Suppose we are given a Gaussian distribution A/ ([Li, &f), whose parameter fi; is specifically pa-
rameterized by the neural network that can guarantee ji; < 1/2. By De Moivre-Laplace theorem,
we have that A (n\;,n\; (1 — \;) is a good approximation for B (n, \;). They are asymptotically
equivalent as n increases. Let m; = n);, direct parameterization of both the infinite parameter n
and the near-zero parameter \; ; can be avoided by adopting a re-parametrization trick [Kingma &
Welling| (2013). This trick draws samples from such Binomial distribution via its Gaussian proxy

B.2 THEOREM 2

Suppose we are given two Binomial distributions, B(n, A) and B (n, \°) with n — +00, A% — 0
and A — 0, where n is increasing while A and \° are decreasing. There exists a real constant m and
another real constant m(?), such that if m = nAandm(©® = nA© and if A > A9, we have:

0 m
KL (B(n,\)||B (n,\°) < mlogm

1—m+m?/2
— m(0) + m(0)2/2

+(1—m)log1

By Theorem 2 which is proofed in previous work [Huang et al.| (2020), we have a closed-form
solution that is irrelevant to n for the ELBO.

B.3 PROOF OF THEOREM 1

Let NV (i, 0%) denotes a Gaussian distribution with ¢ < 1/2, and let B(n, \) denotes a Binomial
distribution with n — 400 and A — 0, where n is increasing while A is decreasing. There exists a
real constant /m such that if m = nA and if we define:

fi(z) =KL (N(x,x(l —z))||IN (u, 02))
fa(z) = KL(N (2, 2(1 — 2)) [N (nA, nA(1 = X))
5= mgcin fa(x), where z € (0,1)

we have that: fi () attains its minimum on the interval (0,1) and f2(x) — f5 is bounded on the
interval (0,v/2/2 — 1/2), with:

— 2 2
LHEVIFE - where | = 22

T=m= 2 ) 12u

Proof. The derivative of the function f; () over z can be written as:

f{(x): 2<1+ 202 )x+ o2

1-2u 1—-2p

We set it as 0 and solve for z, giving:
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— w lf:u’<1/2 h | = 202 1
v IR f > 1/2 WACTE L= 1oa M

Let x = nJ, the function f5() can be written as:

1—n\ 1—A

L) =\ T3 T ag =y ~ V2
Let g(nA) = limy_0 f2(nA), we have:
g(nX) = \/17n)\+ﬁ —-1/2

Let z = v/1 — n\, we have:

9(z) =2 +1/(22*) —1/2

The derivative of function g(z) over z can be written as:

g(z)=1-1/2
Given that z € (0, 1), we have ¢’(z) < 0. Then g(z) attains its minimum 1 when z approaches 1.
Equivalently, f>(n\) attains its minimum 1 when n\ approaches 0.

Considering Eq.(1), we find that n\ is bounded on (0,1/2) if 1 < 1/2, We then calculate the
difference between f>(nA) and its minimum. It can be written as:

Afa(n) = lim [fa() - f5]
=g(n\) —1

1
:\/1fn)\+2

(1—n\) 3/2

Let m = n), the derivative of function A f5(m) over m can be written as:

1—(1—m)3/?

2(1 —m)? >0

Afy(m) =

Then Af>(m) is monotonically increasing over (0,1/2). Therefore Afy(m) is bounded on

(0,v2/2-1/2).

C SUPPLEMENTARY EXPERIMENT RESULTS AND FURTUER DISCUSSION

C.1 ABLATION STUDIES
C.1.1 EXPERT CONFIGURATION

In the MoE Relation Inference Component, we configure Ny experts, each containing Np base
classes. This component simulates the selective attention mechanism in human fast thinking, where
each expert maintains a set of prior knowledge (base classes) that may have varying degrees of
association with novel input categories. To investigate how the granularity of prior knowledge par-
titioning and the coverage of prior knowledge affect model performance, we conduct two ablation
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Table 7: Performance of HC-BDC under different expert-base configurations (Total base classes
fixed at 30)

Experts x Bases 5-way 1-shot (%) 5-way 5-shot (%)

1 x 30 80.53 95.48
3x10 86.12 97.17
5%x6 86.75 97.01
6 x5 86.88 97.37
10 x 3 86.96 97.48
30 x 1 87.52 97.49

studies focusing on: (1) the number of experts and (2) the base class allocation per expert. The
results are presented in Tables[7]and 8]

Table [/| shows the results when fixing the total amount of prior knowledge (30 base classes) while
distributing them among varying numbers of experts. The results demonstrate that overly coarse
allocation (using only one expert) leads to significant performance degradation. While gradually
increasing expert specialization improves model accuracy marginally, it comes with substantially
increased computational overhead due to each expert simulating a slow-thinking process. To balance
computational cost and model accuracy, we ultimately adopt a configuration with 3 experts, each
containing 10 base classes. This setup better aligns with human fast-thinking characteristics - being
unconscious (each expert maintains broad generalization) and rapid (fewer experts).

Table 8: Performance of HC-BDC with varying numbers of experts (10 base classes per expert)

Experts 5-way 1-shot (%) 5-way 5-shot (%)

1 84.76 96.80
2 84.96 96.78
3 86.12 97.17
4 85.47 96.64
5 86.33 97.18

Table [8| presents the results when fixing the number of base classes per expert while varying the
total number of experts. Increasing experts from 1 to 3 improves 5-way 1-shot accuracy by 1.36%
(from 84.76% to 86.12%), while further expansion to 5 experts yields only 0.21% additional gain.
This suggests that increasing base class coverage effectively improves model accuracy when prior
knowledge is scarce. However, beyond a certain threshold, additional base classes provide dimin-
ishing returns, possibly because excessive base classes make it harder for the model to identify the
most relevant knowledge.

C.1.2 ABLATION STUDY ON CLASSIFIER SELECTION

The final few-shot classification is accomplished by training a lightweight classifier on the enriched
fusion features. We evaluate several classifier options to identify the most suitable one for our model,
including Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Neu-
ral Network (NN), and Logistic Regression (LR), with results presented in Table E}

The results reveal significant performance variations across different classifiers. Both the neural
network and logistic regression achieve superior performance, with logistic regression slightly out-
performing the neural network while being more computationally efficient. Other traditional meth-
ods (SVM, RF, KNN) show notably lower accuracy. Based on these findings, we select logistic
regression as our final classifier due to its optimal balance between performance and efficiency.
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Table 9: Performance comparison of different classifiers

Classifier 5-way 1-shot (%) 5-way 5-shot (%)

SVM 80.52 96.41
RF 75.31 95.02
KNN 70.44 85.51
NN 86.02 96.92
LR 86.12 97.17

C.1.3 MORE INTUITIVE VISUAL ANALYSIS

In the proposed model, we use classes with a large amount of data as the base classes, which have
the advantage that the features of the base classes can portray the overall distribution of the classes
well. However, since there are also large differences between the images within each category (e.g.,
differences in the site of onset or even symptoms), this approach to base class selection results in the
generated relation between target and base classes being less intuitively, and some relation ambiguity
may occur. To solve this problem, we consider setting the base classes to some specific images to
obtain more intuitive inter-class relations. Specifically, we selected the most representative image
from each of the base classes with more obvious differences from other classes as the base classes,
and infer the relation through these images. For any input image of the target class, the generated
relation intensity graph is the relation between that image and the base class images, which can be
more intuitively expressed through visual analysis of the relations found by the Bayesian relation
inference module. The visualization result is shown in Figure ] and the accuracy result on 5-way
1-shot and 5-way 5-shot tasks is shown in Table

In the upper part of Figure d] we show the results of the visual analysis using single image as a
base classes. We average the multi-view Gaussian graphs and visualize the relationship between the
target image and different base class images in the form of heatmaps, and select three images with
strong positive and negative correlations respectively for further visualization analysis. It is worth
noting that the target picture and the picture with serial number 16 belong to the same category in the
Dermnet dataset, which indicates that the proposed HC-BDC can effectively capture the potential
relations between different objects. As can be seen from Table [I0] using a single image as the base
classes on the 5-way 1-shot and 5-way 5-shot tasks has a small decrease in accuracy (about 3% at
5-way 1/5-shot) compared to using a large number of images as base classes, which indicates that
the proposed method does not require a large number of images for base classes. A small number of
base class images can also provide a good distributional calibration for the target imags.

C.1.4 VISUAL ANALYSIS ON ROBUSTNESS

In the proposed model, we use base classes that are strongly related to the task (e.g., for the Dermnet
skin disease dataset, we use some of the dermatology classes in the dataset as base classes). In
practice, there may not be enough data to be used as base classes, so the performance of the model in
the absence of data strongly related to the task as base classes is important. To explore the robustness
of the Bayesian Distribution Calibration model, we replace the base classes with animal data that are
not relevant to skin diseases. This replacement aims to explore the ability of the Bayesian relation
inference component to infer potential relations between target class and base classes that is very
different from the target class. The visualization result is shown in Figure ] and the accuracy result
on 5-way 1-shot and 5-way 5-shot tasks is shown in Table [I0]

The bottom half of Figure ] shows the visualization result using animal image data as base classes.
From the result, it is seen that the categories that have strong correlations with the target images are
cat, horse and tiger. Intuitively, these three base categories have strong visual similarities, where
the two categories of cat and tiger belong to the same family of felines, which can prove that the
proposed Bayesian distribution calibration model is able to capture potential relations of the different
categories. As can be seen from Table [I0] the results using animal data as base classes still achieve
high level of accuracy, which can prove that the proposed model is robust to the selection of base
classes.
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Figure 4: Schematic representation of the results of relation inference obtained using single image
or animal data.

C.1.5 COMPARISON OF CONVENTIONAL ALGORITHMS AND FEW-SHOT LEARNING
ALGORITHMS

In few-shot learning algorithms, training a model using conventional algorithms can be difficult due
to the large number of categories and the fact that the data for most of the categories is scarce. We
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Table 10: Performance of HC-BDC on Dermnet dataset with various base classes

Method Swaylshot(%) SwaySshot(%)
HC-BDC + Single image 49.56 68.04
HC-BDC + Animal image 48.99 67.25

HC-BDC(Ours) 52.20 70.93

divide the test set of the Dermnet dataset in a ratio of 8:2 into a new training and test set. Then
we generate a conventional algorithm model by replacing the few-shot classification part of the
Bayesian relation inference model (Multi-view Gaussian graph generation component and logistic
regression classifier) with a linear classification head. We freeze the Bayesian relation inference
module and fine-tune the classification head on the new training set and test it on the new test. We
compare the accuracy of this algorithm with that of the few-shot learning algorithms on the 5-way
1-shot task. The experiment result is shown in Table[TT]

Table 11: Comparison of few-shot algorithms and conventional algorithm on Dermnet dataset

Method Acc(%)
MAML 44.05
PN 43.76
MN 44.23
DC 48.99
tSF 49.38
GAP 48.92
HC-BDC + Conventional Algorthms —~ 43.50
HC-BDC(Ours) 52.20

Specifically, we adopt a three-layer artificial neural network as the linear classification head of the
conventional algorithm, trained for 1500 epochs using the Adam optimizer with the learning rate
of 0.0008. The result shows that the conventional algorithm’s accuracy is similar to that of the
early few-shot algorithms on the 5-way 1-shot task. It is worth noting that traing the conventional
algorithm is time-consuming and overall performs less well than the few-shot algorithms.

C.1.6 COMPARISON EXPERIMENTS ON CUB DATASET

We further compare the proposed model with different baseline methods for few-shot learning on
CUB [Wah et al (2011)) dataset. The results are shown in Table[T2]

Table 12: Comparison of HC-BDC and baselines in accuracy on the CUB dataset

Method Swaylshot(%) SwaySshot(%)
MAML 2017 50.45+0.97 59.60=0.84
PN 2017 72.99 86.64
MN 2016 73.49 84.45
DC 2021 78.29 88.92
Sum-min 2022 79.60 90.48
DDWM 2023 80.40 90.75
HC-BDC(Ours) 80.72 91.40

Due to limited arithmetic, we reduce the number of episodes tested on this dataset to 60 and report
the average accuracy as the result of our model. From the results, our model performs slightly better
than the baseline method we compared it to. In addition to the fact that we did not carefully set
the hyperparameters of the model, the reason for the lower performance of HC-BDC on the CUB
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dataset may be that the CUB dataset is a specialized bird classification dataset. Since the differences
between various birds are much smaller compared to the different categories in minilmagenet, it
may make it more difficult for the model to correctly infer relations between these classes.

D POSSIBLE QUESTIONS ABOUT THIS PAPER

Q1: What’s downstream task and “’conventional algorithms”? The downstream task represents
the few-shot classification in this paper and our model can be used for other few-shot downstream
tasks. Conventional algorithm denotes traditional deep learning method rather than few-shot learn-
ing method.

Q2: Is there more testimony on the viewpoint that manually set relations are often incomplete
and biased? Previous studies illustrate that manually set relations are biased. Adam Santoro et
al. noted that practitioners define the relations between symbols using the language of logic and
mathematics. But manual approaches are not robust to relational questions. Besides, the underlying
structure is characterized by sparse but complex relations, which is very difficult to model accurately
by manual methods Santoro et al.|(2017).

We also illustrate experimentally that manually set relations do not perform as well as the proposed
automatic relation inference method. The DC method in the comparison experiments is similar to the
proposed method in terms of model architecture, and the DC method uses manually set Euclidean
distances in comparing relations between classes and our HC-BDC method outperforms it.

Q3: Are there specific indicators to assess the interpretability of the relation intensity graphs
generated? There are no specific indicators or expert-assessed inter-class relations to quantitatively
analyze our relation graphs. However, the corresponding broad class has strong positive correlation
with most target images (e.g., acne-cystic in Acne). For Figure [ in the appendix, we can also
intuitively find some possible relations: tigers and cats both positively correlated with the target
image and belong to the same family of felids, which are biologically strongly positively correlated.
These can indicate that our HC-BDC can capture the potential relations between classes.

Q4: How are images converted into graphs? We refer to existing works on graph generation
methodsLiu & Jia (2023)); Huang et al.| (2020). Specifically, node embeddings are the feature of a
single target image or average features of each base classes generated by the backbone network.
The Bayesian relation inference component automatically generates relations between nodes.

Q5: The limitations of the work. There are no specific indicators or expert-assessed inter-class
relations to quantitatively analyze our relation graphs. Besides, since we are not professional derma-
tologists, the visual analysis of the Dermnet dataset may not be interpreted from a very specialized
point of view, but only from a generalist’s thinking, which may lead to an incomplete description
of the interpretability of the model. In addition, the generation of summary graphs is based on the
ideas presented in existing studies that humans engage in a myriad of unconscious perceptions when
performing relation thinking which can be viewed as a sampling of a binomial distribution with
n — oo and A — 0Huang et al.[(2020) instead of generating them without prior knowledge.
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