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Abstract
Phase retrieval is a fundamental problem in signal processing, where the goal is1

to recover a (complex-valued) signal from phaseless intensity measurements. It is2

known that natural non-convex formulations of phase retrieval do not have spurious3

local optima. However, the theoretical analyses of such landscape results often rely4

on strong assumptions, such as the sampling vectors being Gaussian distributed.5

In this paper, we propose and study the problem of outlier robust phase retrieval.6

We seek to recover a vector x ∈ Rd from n intensity measurements yi = (a⊤i x)
2,7

where the sampling vectors ai’s are initially i.i.d. Gaussian, but a small fraction of8

the (ai, yi) pairs are adversarially corrupted.9

Our main result is a near-sample-optimal and nearly-linear-time algorithm that10

provably recovers the ground-truth x in the presence of adversarial corruptions.11

We first solve a lightweight convex program to find a vector close to the ground12

truth. We then run robust gradient descent starting from this initial solution,13

leveraging recent advances in high-dimensional robust statistics. Our approach is14

conceptually simple and provides a framework for developing robust algorithms15

for other tractable non-convex problems.16

1 Introduction17

Phase retrieval is a fundamental problem in signal processing with applications in various fields, in-18

cluding electron microscopy [32], crystallography [33, 36], astronomy [11], and optical imaging [37].19

In these applications, one often has access to only the magnitudes of the Fourier transforms of a20

complex signal. This is because measuring magnitude (e.g., by aggregating energy over time) is21

much easier than measuring phase (which requires detecting rapid changes). We refer the reader to22

the survey articles [37, 26] for more details about the theory and applications of phase retrieval.23

In this paper, we focus on the real-valued generalized phase retrieval problem, where the Fourier24

transform is replaced by a general linear operator. We first give a formal definition of this problem.25

Definition 1.1 (Phase Retrieval). Let x ∈ Rd be the ground-truth vector. Let a1 . . . an ∈ Rd be n26

sampling vectors and let yi = ⟨ai, x⟩2 ∈ R be the corresponding intensity measurements. Given27

(ai, yi)
n
i=1 as input, the task is to recover x.28

Note that it is impossible to distinguish between x and −x, so it is sufficient to recover either one.29

Under certain assumptions (e.g., when the ai’s are Gaussian distributed), the phase retrieval problem30

in Definition 1.1 can be solved in polynomial time with provable recovery guarantees. This was first31

achieved via approaches based on semidefinite programming (SDP) relaxations (see, e.g., Candès32

et al. [5]). In practice, the problem is often solved using first-order optimization algorithms such as33

gradient descent. It is well-established that, although many natural formulations of phase retrieval34

have nonconvex objectives, all local optima are globally optimal under certain assumptions [34, 3, 40].35

An example of such objective function is the following:36

minimize f(z) =
∑n

i=1(yi − ⟨ai, z⟩2)2 subject to z ∈ Rd.37
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However, existing analyses of such landscape results often rely on strong assumptions, such as the38

sampling vectors ai’s are i.i.d. Gaussian. Our work is motivated by the following questions: Can we39

relax the assumptions used in proving landscape results in many tractable nonconvex problems? In the40

context of phase retrieval, what happens if a small fraction of the (ai, yi)’s are changed adversarially?41

We focus on the following strong contamination model (see, e.g., [13]).42

Definition 1.2 (ϵ-Corruption). An algorithm first specifies the number of samples n, and n samples43

are drawn independently from some unknown distribution D. The adversary is allowed to replace up44

to ϵn samples with arbitrary points. The modified set of n samples is then given to the algorithm as45

input. We say that a set of samples is ϵ-corrupted if it is generated by the above process. 146

Under the ϵ-corruption model for high-dimensional data, a common goal is to design efficient47

algorithms that can achieve dimension-independent error guarantees. Early work in robust statis-48

tics [42, 23, 25] provided sample-efficient estimators for various tasks, but with runtimes exponential49

in the dimension. A recent line of work, initiated by [13, 28], has developed computationally efficient50

robust algorithms for many fundamental high-dimensional tasks. There has been significant progress51

in the algorithmic aspects of robust high-dimensional statistics (see, e.g., [12]).52

We now formally define the main problem that we pose and study in this paper.53

Problem 1.3 (Outlier-Robust Phase Retrieval). Let ϵ > 0. Let x ∈ Rd be the ground-truth vector with54

∥x∥2 = 1. First, n sampling vectors (ai)ni=1 are drawn i.i.d. from N (0, I) ∈ Rd. Let yi = ⟨ai, x⟩255

be the corresponding intensity measurements. Then, an adversary arbitrarily corrupts an ϵ-fraction of56

the (ai, yi)’s. Finally, the corrupted (ai, yi)’s are given to the algorithm as input. The task is to find a57

vector z ∈ Rd such that min{∥z − x∥2 , ∥z + x∥2} ≤ ∆ for some precision parameter ∆ > 0.58

Note that we allow corruption in both the sampling vectors ai ∈ Rd and the intensity measurements59

yi ∈ R. We would like to answer the following algorithmic question:60

Can we design a provably robust and near sample-optimal algorithm for the61

ϵ-corrupted phase retrieval problem (Problem 1.3) that runs in nearly-linear time?62

1.1 Our Results and Contributions63

In this paper, we answer the above question affirmatively. We first state the main result of our paper.64

Theorem 1.4 (Main, Informal). Consider the outlier-robust phase retrieval problem (Problem 1.3).65

Let ∆ > 0. Given an ϵ-corrupted set of n = Ω̃(d log2(1/∆)) samples, we can compute z ∈ Rd in66

time Õ(nd) such that min(∥z − x∥2 , ∥z + x∥2) ≤ ∆ with probability at least 0.8.67

Our algorithm has near-optimal sample complexity, because even without corruption, recovering the68

ground-truth vector x in general requires Ω(d) samples because there are d degrees of freedom in x.69

Moreover, our algorithm runs in time nearly-linear in the size of the input, and provably recovers70

the ground-truth vector x with arbitrary precision ∆. The formal version of Theorem 1.4 is stated as71

Theorem 3.1 in Section 3.72

We remark that the success probability of Theorem 1.4 can be boosted to 1 − δ for any δ > 0 by73

incurring an additional factor of T = O(log(1/δ)) in the sample complexity and runtime. We can74

randomly partition the input into T equal-sized disjoint sets and run our algorithm on each set to75

obtain T solutions Z = {z1, . . . , zT }. If we output a solution z⋆ that has the maximum number of76

points in Z within distance 2∆, we can show that r(z⋆) ≤ 3∆ with probability at least 1− δ.77

Our main conceptual contribution is to propose and study the outlier-robust phase retrieval problem,78

where a small fraction of the input data is adversarially corrupted. Note that we allow arbitrary79

corruption in both the sampling vectors ai ∈ Rd and the intensity measurements yi ∈ R. The80

nonconvex optimization landscape of phase retrieval is well understood when the ai’s are Gaussian81

distributed, but the adversarial robustness of such landscape results is largely unexplored.82

Our main technical contributions include the design and analysis of a near sample-optimal and nearly-83

linear time algorithm that provably solves the phase retrieval problem in the presence of outliers.84

Our approach provides a conceptually simple two-step framework for developing outlier-robust85

algorithms for tractable nonconvex problems that combines the robustness of spectral initialization86

and the efficiency of the subsequent robust gradient descent.87

1We write G ⊆ [n] for the (remaining) good samples, and B = [n] \G for the corrupted samples.
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1.2 Our Approach and Techniques88

When there are infinite samples and no corruption, the objective function f(z) can be simplified as89

f(z) = E
a∼N (0,Id)

[
(⟨ai, z⟩2 − yi)

2
]
= 3 ∥x∥42 + 3 ∥z∥42 − 2 ∥x∥22 ∥z∥

2
2 − 4 ⟨x, z⟩2 . (1)

Even though f(z) is nonconvex, we know that it has no spurious local optima [34, 3, 40].90

Our approach follows the general structure of Candès et al. [3], which uses a two-step procedure.91

The first step uses spectral techniques to find an initial guess that is close enough to the ground truth.92

The second step applies gradient descent to converge to the final solution. However, both steps are93

susceptible to adversarial corruption. We develop nearly-linear time and provably robust algorithms94

for both steps and combine them to get our main result.95

Step 1: Robust Spectral Initialization. When there is no adversarial corruption, the empirical96

second-moment matrix Y = (1/n)
∑n

i=1 yiaia
⊤
i has expectation E [Y ] = I + 2xx⊤, so its top97

eigenvector is close to x. However, the adversary can arbitrarily change the top eigenvector.98

To circumvent this issue, we assign a (nonnegative) weight wi to each sample, and let Yw denote the99

weighted intensity-based second-moment matrix Yw =
∑n

i=1 wiyiaia
⊤
i . Ideally, if the weights w are100

uniformly distributed on the remaining clean samples, the top eigenvector of Yw will align with x.101

We propose a novel optimization problem that can be used to find a weighting w such that Yw must102

be close to the unknown unbiased expectation I + 2xx⊤. Moreover, we show that such a weight w103

can be computed in nearly-linear time.104

Step 2: Approximate Gradient Descent. Starting with the initial guess z1 ∈ Rd produced by the105

robust spectral initialization, we want to apply gradient descent to recover the ground truth x ∈ Rd.106

Without corruption, if the initialization is close enough to x, each iteration will bring z closer to x by107

a constant factor. This convergence guarantee can be compromised by the corrupted samples.108

At a high level, approximating the gradient at a specific point amounts to a robust mean estimation109

problem (for the underlying distribution of the gradients). When the input data is ϵ-corrupted, the110

gradients of the n samples can be viewed as an ϵ-corrupted set of vectors. We can approximate the111

true gradient using this ϵ-corrupted set of n gradients using robust mean estimation algorithms.112

1.3 Related and Prior Works113

Phase Retrieval. The problem of phase retrieval arises in many areas of science and engineering114

[11, 33]. Early research on this problem proposes error-reduction algorithms [22, 17, 18]. Convex115

and nonconvex optimization with various objective functions were later proposed and achieved exact116

recovery [43, 3–5, 38]. Follow-up works generalize to robust phase retrieval where the observations117

are subject to perturbations [45, 27, 7, 6, 31].118

Nonconvex Optimization. Even though optimizing a nonconvex function is NP-Hard in general,119

recent works showed that many nonconvex functions are locally optimizable due to discrete or120

rotational symmetry. Besides phase retrieval, it is known that all local optima are globally optimal121

for natural nonconvex formulations of a wide range of machine learning problems, such as matrix122

completion [21], matrix sensing [2], phase synchronization [1], dictionary learning [39], and tensor123

decomposition [20] (see also Chapter 7 of [44]). Closely related to our work, a recent line of work124

explored the robustness of these landscape results: [30] studied matrix sensing in the ϵ-corrupted125

model and [8, 19] studied matrix completion and matrix sensing in semi-random models.126

High-Dimensional Robust Statistics. Recent works in high-dimensional robust statistics developed127

nearly-linear time algorithms for the problem of robust mean estimation [9, 16, 29]. Prior works [35,128

14] developed meta-algorithms for finding first-order stationary points with dimension-independent129

accuracy guarantees, which is closely related to the robust gradient descent procedure that we use.130

1.4 Roadmap131

We first introduce notations and background in Section 2. Then we give an overview of our approach132

in Section 3. Next, we focus on how to get an initialization that is close enough to the ground truth x133

in Section 4. After the initialization, we use robust mean algorithms to estimate gradients to converge134

to the desired accuracy in Section 5. Finally, we conclude in Section 6 and discuss open problems.135
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2 Preliminary and Background136

Notation. We write [n] for the set of integers {1, . . . , n}. We use {e1, . . . , ed} for the standard unit137

vector basis in Rd and I for the identity matrix. For a vector x, we denote its ℓ1, ℓ2 and ℓ∞ norm as138

∥x∥1, ∥x∥2 and ∥x∥∞, respectively, and write the ith coordinate in x as xi. For vectors x, y ∈ Rd,139

we denote its inner product as ⟨x, y⟩ = x⊤y. For a matrix A, we use ∥A∥2, ∥A∥∗, and ∥A∥F as its140

operator norm, nuclear norm, and Frobenius norm, respectively. We write λk(A) as the kth-largest141

eigenvalues of A, and λk(A) as the sum of the k largest eigenvalues. A symmetric n× n matrix A142

is said to be positive semidefinite (PSD) if for all vectors x ∈ Rn, x⊤Ax ≥ 0. For two symmetric143

matrices A and B, we write A ⪯ B when B −A is positive semidefinite.144

Packing SDP. We will use nearly-linear time solvers for the following packing SDP.145

max
w
∥w∥1 subject to

n∑
i=1

wiAi ⪯ I, λk

(
n∑

i=1

wiBi

)
≤ k, wi ≥ 0,∀i. (*)

Lemma 2.1 ([10]). Given an instance of optimization (*) with semi-positive definite matrices146

Ai ∈ Rd1×d1 and Bi ∈ Rd2×d2 with Ai = CiC
⊤
i , Bi = DiD

⊤
i for all i = 1, 2, · · · ,m, together147

with integer k > 0, error tolerance ϵ0 ≥ 1/m2, and failure probability δ0, there is an algorithm that148

runs in time Õ((tC + tD + d1 + d2) poly(1/ϵ0, log 1/δ0)), where tCi
and tDi

are the time take to149

perform a matrix product with Ci and Di respectively and tC =
∑n

i=1 tCi
and tD =

∑n
i=1 tDi

, and150

outputs w′ with ∥w′∥1 ≥ (1− ϵ0)OPT where OPT is optimal value, with probability at least 1− δ0.151

Computing the Top Eigenvector. We use power method to compute the top eigenvector of a matrix.152

Lemma 2.2 (Power Method for Top Eigenvector, e.g., [41]). Let A ∈ Rd×d and let λ1 be its largest153

eigenvalue. For any δ ∈ (0, 1), there exists an algorithm that takes A and outputs a unit vector154

x ∈ Rd in time O(t log(d)/δ) such that xTAx ≥ (1− δ)λ1 with probability at least 0.99, where t is155

the time required to compute Av for an arbitrary v ∈ Rd.156

Robust Mean Estimation. Another tool we use is robust mean estimation in the ϵ-corruption model157

for distributions with bounded covariance. We use robust mean estimation algorithms to approximate158

the true gradient under adversarial corruption.159

Lemma 2.3 (Robust Mean Estimation, e.g., [15]). Let D be a distribution on Rd with unknown160

mean µ and unknown covariance matrix Σ where Σ ⪯ σ2I . Let ϵ0 be a sufficiently small universal161

constant. Let 0 < ϵ < ϵ0 and δ > 0. Given an ϵ-corrupted set of n samples drawn from D, we can162

output a vector µ̂ ∈ Rd in time Õ(nd log(1/δ)) such that, with probability at least 1− δ− exp(−nϵ),163

we have ∥µ̂− µ∥2 = O

(
√
ϵ+

√
d
nδ +

√
d(log d+log 1/δ)

n

)
σ.164

3 Overview165

We first state a formal version of our main result.166

Theorem 3.1 (Main). Consider the setting of Problem 1.3. Let 0 < ϵ < ϵ′ for some universal167

constant ϵ′ and let ∆ > 0. Given an ϵ-corrupted set of n = Ω̃(d log2(1/∆)) samples, we can168

compute a vector z ∈ Rd in time Õ(nd log(1/∆)) such that r(z) = min{∥z − x∥2 , ∥z + x∥2} ≤ ∆169

with probability at least 0.8.170

Theorem 3.1 requires two key technical lemmas: the robust spectral initialization (Lemma 3.2) and171

the approximate gradient descent (Lemma 3.3).172

We first show that the spectral initialization can be done in nearly linear time with high probability,173

the proof of which can be found in Section 4.174

Lemma 3.2 (Robust Spectral Initialization). Under the setting of Problem 1.3, for any 0 < ϵ < ϵ′ for175

some universal constant ϵ′ > 0, given an ϵ-corrupted set of n = Ω̃(d) samples, we can compute a vec-176

tor z0 ∈ Rd of the ground truth x in time Õ(nd) such that r(z1) = min{∥z1 − x∥2 , ∥z1 + x∥2} ≤
1
8177

with probability at least 0.95.178
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Then, with such initialization results, we can proceed to show that an approximate gradient descent179

algorithm can be used to find an arbitrary approximation of the ground truth in Section 5.180

Lemma 3.3 (Robust Gradient Descent). Consider the setting of Problem 1.3. Let ∆ > 0 be181

the desired precision. Let 0 < ϵ < ϵ0 for some sufficiently small universal constant ϵ0. Given182

an ϵ-corrupted set of n = Ω̃(d log2(1/∆)) samples and an initial guess z1 such that r(z1) =183

min(∥z1 − x∥2 , ∥z1 + x∥2) ≤ 1/8, we can compute a vector z ∈ Rd in time Õ(nd) such that184

r(z) ≤ ∆ with probability at least 0.95.185

For technical reasons, we cannot use the same set of samples for both the robust spectral initialization186

and the approximate gradient descent. Therefore, we partition the ϵ-corrupted set of 2n samples into187

two equally sized disjoint sets, using one set for each algorithm.188

Proof of Theorem 3.1. Let 2n = Ω̃(d log2(1/∆)) be a set of ϵ/2-corrupted samples. We partition189

the input into two disjoint sets of n samples. Both sets are ϵ-corrupted. By Lemmas 3.2 and 3.3, for190

any ϵ ∈ [0, ϵ′] and ∆ > 0, our algorithm takes the first set of samples and output a vector z′ in time191

Õ(nd) such that r(z′) ≤ 1/8 with probability at least 0.95. Then, using z′ and the second set of192

samples, our algorithm can output z ∈ Rd in time Õ(nd) such that r(z) ≤ ∆ with probability at least193

0.95. The overall success probability is at least 0.8, and the combined running time is Õ(nd).194

4 Robust Spectral Initialization195

We dedicate this section to proving Lemma 3.2: Given an ϵ-corrupted set of (ai, yi)’s, we can compute196

an initial guess z1 ∈ Rd that is close to the ground truth x, where min(∥z1 − x∥2 , ∥z1 + x∥2) ≤197

1/8. To build some intuition, consider the following intensity-based covariance matrix Y =198
1
n

∑n
i=1 yiaia

⊤
i , where each ai is drawn independently from N (0, I) and yi = ⟨ai, x⟩2. The199

expectation of this matrix is E[Y ] = I + 2xx⊤. In other words, when there are enough samples and200

no adversarial corruption, we can obtain a good guess of the ground truth x (or −x) by computing201

the top eigenvector of Y . However, we cannot rely on this approach in adversarial settings.202

To tackle this issue, we propose a nearly-linear time preprocessing step (Algorithm 1) that can recover203

the true expectation of Y under adversarial corruptions. Algorithm 1 assigns a non-negative weight to204

each sample. For a weight vector w ∈ Rn and a set of indices S ⊆ [n], the weighted intensity-based205

covariance matrix is defined as YS,w
.
=
∑

i∈S wiyiaia
⊤
i , and we omit S when S = [n]. The feasible206

region for the weight vector is: ∆n,ϵ :=
{
w ∈ Rn : ∥w∥1 = 1 and ∀i ∈ [n], 0 ≤ wi ≤ 1

(1−ϵ)n

}
.207

A weight w defines an empirical distributions over the samples (ai, yi)ni=1, where the largest prob-208

ability assigned to any point is 1
(1−ϵ)n . Ideally, we would like to find a weight vector w∗ ∈ ∆n,ϵ209

that assigns its weight uniformly to all the uncorrupted samples, i.e., w∗
i = 1

(1−ϵ)n · 1i∈G. To find a210

suitable weighting w, we use the following optimization problem (**) in which λ2 returns the sum of211

the top two eigenvalues (commonly known as the Ky Fan k norm for k = 2).212

min
w

λ2

( n∑
i=1

wiyiaia
⊤
i

)
subject to 0 ≤ wi ≤ 1

(1−ϵ)n ,∀i ∈ [n],

n∑
i=1

wi = 1 . (**)

At a high level, our main observation is that yiaia⊤i is always a positive semidefinite matrix as yi ≥ 0.213

Consequently, the adversary can only add extra directions with large eigenvalues, but will not be able214

to remove the eigendirection of x. By minimizing the Ky Fan 2 norm, we can remove any directions215

added by the adversary and make sure that the only remaining large eigendirection is close to x.216

Let δ ≥ 0 be some constant to be determined. We show that we can obtain a robust spectral initial-217

ization by solving the packing SDP problem (*), which can be solved efficiently using Lemma 2.1.218

In particular, to fit the reweighting problem of (**) into the framework of the generalized packing219

problem (*), we define the following constraint matrices for all i ∈ [n] :220

Ai := (1− ϵ)n · eie⊤i , Bi :=
1
2 (1− δ)yiaia

⊤
i . (2)

The matrices (Ai)
n
i=1 are used to implement the constraint that w ∈ ∆n,ϵ. The matrices (Bi)

n
i=1 help221

make sure the sum of the top two eigenvalues of Yw must be at most roughly 4, because λ2(Yw∗) ≈ 4.222
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Algorithm 1 Robust Spectral Initialization
Input: ϵ-corrupted samples (ai, yi)i∈[n]

Output: The initial guess z′ ∈ Rd

1: function ROBUSTINIT({(ai, yi)}i∈[n])
2: {Ai, Bi} ← Constraint matrices as defined in Equation (2)
3: w′′ ← Solution to Optimization (*) with constraints {Ai, Bi}, k = 2, and precision ϵ0 = 0.9

as in Lemma 2.1
4: w′ ← w′′/ ∥w′′∥1
5: z1 ← TOPEIGENVECTOR(Yw′) as in Lemma 2.2 with sufficiently small constant δ.
6: return z1
7: end function

First, we show that the weight w′ computed by Algorithm 1 can ensure the weighted intensity-based223

covariance matrix Yw′ is close enough to the unbiased expectation I + 2xx⊤.224

Lemma 4.1. With probability at least 0.98, the w′ outputted by Algorithm 1 satisfies:225 ∥∥Yw′ − (I + 2xx⊤)
∥∥
2
= O(δ) (3)

In order to show Lemma 4.1, we need the following auxiliary Lemma 4.2, the proof of which can be226

found in Section A. Intuitively, Lemma 4.2 suggests that any weight w in the feasible region ∆n,2ϵ227

will not have a huge impact on the properties of uncorrupted measurements.228

Lemma 4.2. For any δ0 > 0, and sufficiently small ϵ ≥ 0, given a set of n ϵ-corrupted samples with229

n > Ω̃(d), with probability at least 0.98, we have
∥∥YG,w − (I + 2xx⊤)

∥∥
2
≤ δ0 for all w ∈ ∆n,2ϵ.230

Using Lemma 4.2, we provide a proof sketch for Lemma 4.1, and defer the details to Section A.231

Proof. We condition on the fact that the event of Lemma 4.2 holds (with probability at least 0.98)232

for δ0 = δ. Thus, for the remaining of the proof, we assume that for all w ∈ ∆n,2ϵ, it holds that233 ∥∥YG,w − (I + 2xx⊤)
∥∥
2
≤ δ.234

Let λ1 and λ2 be the top two eigenvalues of Yw′ , with v1 and v2 to be their corresponding eigenvectors.235

Note that the largest eigenvalue of I + 2xx⊤ is 3, and the rest of the eigenvalues are all 1. In the236

proof, we show that the eigenvalues of Yw′ are also close to the ones of I +2xx⊤. Our proof consists237

of two parts. We first establish lower bounds for λ1 and λ2, and then find an upper bound for λ1 +λ2.238

Lower Bound. Since yiaia
⊤
i ⪰ 0 for any i ∈ [n], for any positive weight vector w ∈ ∆n,ϵ, we239

have YG,w ⪯ Yw. Thus a lower bound on eigenvalues of YG,w′ will also be a lower bound on Yw′ .240

For the top eigenvalue λ1 of Yw′ , it holds241

λ1 = v⊤1 Yw′v1 ≥ x⊤Yw′x ≥ x⊤YG,w′x ≥ x⊤(I + 2xx⊤)x− δ = 3− δ. (4)
Similarly, for the second largest eigenvalue λ2 of Yw′ , we have:242

λ2 = v⊤2 Yw′v2 ≥ v⊤2 YG,w′v2 ≥ v⊤2 (I + 2xx⊤)v2 − δ = 1 + 2 ⟨v2, x⟩2 − δ ≥ 1− δ. (5)

Upper Bound. Through the optimization problem (*), a weight w′′ is calculated such that Yw′′243

are operator-norm upper-bounded by the constraint parameters. Let OPT be the value of the244

optimal solution of the optimization problem (*). The desired uniform weight vector over the good245

samples w∗ ∈ ∆n,2ϵ is also a feasible solution to this optimization problem because Yw∗ satisfy the246

optimization constraints due to Lemma 4.2. Since w′′ is an ϵ0-approximation to the problem, we have247

∥w′′∥1 ≥ (1− ϵ0)OPT ≥ (1− ϵ0) ∥w∗∥1 = 1− ϵ0

By optimization constraints, the Ky Fan 2-norm of
∑

i w
′′
i Bi =

1
2 (1− δ)Yw′′ ≤ 2, and consequently,248

λ1 + λ2 =
1

∥w′′∥1
λ2(Yw′′) ≤ 4

(1−ϵ0)(1−δ) . (6)

By combining inequalities (4), (5), and (6), we have shown that the top two eigenvalues of Yw′ are249

close to 3 and 1. Since the rest of the eigenvalues of Yw′ can also be bounded, we can conclude that250 ∥∥Yw′ − (I + 2xx⊤)
∥∥
2
= O(δ).251
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We can now show the closeness between the top eigenvector of Yw′ and the ground truth.252

Lemma 4.3. There exists an universal constant ϵ′ such that if 0 ≤ ϵ ≤ ϵ′, and Algorithm 1 receives253

in input an ϵ-corrupted set of samples, then it outputs z1 ∈ Rd such that with probability at least 0.95254

it holds r(z1) ≤ 1
8 .255

Proof. We condition on the fact that the event of Lemma 4.1 holds (with probability at least 0.98).256

Let the eigendecomposition of Yw′ be Yw′ =
∑

i∈[d] λiviv
⊤
i , where λ1 ≥ . . . ≥ λd. Under257

the basis {v1, · · · , vd}, the ground truth x can be represented as x =
∑

i∈[d] αivi. Note that258

∥x∥22 =
∑

i∈[d] α
2
i = 1. By Lemma 4.1, we have

∥∥Yw′ − (I + 2xx⊤)
∥∥
2
= O(δ). Thus, we have259

x⊤Yw′x ≥ 3−O(δ) and

x⊤Yw′x ≤ λ1α
2
1 + λ2(1− α2

1) ≤ (3 +O(δ))α2
1 + (1 +O(δ))(1− α2

1) ≤ 1 + 2α2 +O(δ).

This implies α2
1 ≥ 1−O(δ). As a result,260

r2(v1) =
(
min{∥v1 − x∥22 , ∥v1 + x∥22}

)
= min{(α1 − 1)2, (α1 + 1)2}+

d∑
i=2

α2
i

= min{2− 2α1, 2 + 2α1} = O(δ).

The last inequality holds as long as δ is sufficiently small. Let z1 =
∑

i∈[d] βivi be the unit vector261

approximating v1 returned by the algorithm. By Lemma 2.2, we have that z⊤1 Yw′z1 ≥ (1 − δ)λ1262

with probability at least 0.99. Thus, we have:263

z⊤1 Yw′z1 ≥ (1− δ)λ1 ≥ (1− δ)(3−O(δ)) ≥ 3−O(δ + δ) and

z⊤1 Yw′z1 ≤ λ1α
2
1 + λ2(1− α2

1) ≤ 1 + 2β2
1 +O(δ).

Again, this implies that β2
1 ≥ 1 − O(δ + δ). We can show that min{∥v1 − z1∥22 , ∥v1 + z1∥22} =264

O(δ + δ). By the triangle inequality, we can conclude that r2(z1) = O(δ + δ) ≤ 1/64, where the265

last inequality is obtained by choosing sufficiently small δ and δ. Therefore, there exists an universal266

constant ϵ′ ≥ 0 such that for all 0 ≤ ϵ ≤ ϵ′, Algorithm 1 takes n = Ω̃(d) samples and outputs z1267

such that r(z1) ≤ 1/8 with probability at least 0.95.268

Lemma 4.4. Algorithm 1 runs in time Õ(nd).269

Proof of Lemma 4.4. Since we have the factorization of the rank-two matrices Ai and rank-one270

matrices Bi for all i = 1, 2, . . . , n, and the time to perform a matrix-vector product with Ci and Di is271

O(d). Therefore, by Lemma 2.1, with tC and tD to be Õ(nd), Line 3 runs in Õ(nd) time. In Line 5,272

by Lemma 2.2, the top eigenvector of Yw′ can be computed in Õ(n log d) time using power method.273

Scaling in Line 4 runs in O(n) time. As a result, Algorithm 1 runs in Õ(nd) time.274

We can directly combine Lemma 4.3 and Lemma 4.4 to finish the proof of Lemma 3.2.275

5 Robust Gradient Descent276

After the robust spectral initialization in Section 4, we have an initial guess z1 ∈ Rd that is close to277

the ground truth x or −x. Without loss of generality, we can assume that z1 is closer to x than to −x.278

In this section, we prove Lemma 3.3: Given an initial guess z1 with ∥z1 − x∥2 ≤ 1/8, we can use279

a robust gradient descent algorithm (Algorithm 2) to recover x to any desire precision ∆ > 0. It is280

well-known that gradient descent can achieve geometric convergence rates in non-adversarial settings.281

We show that Algorithm 2 achieves a similar convergence rate even when the input is ϵ-corrupted.282

Consider the natural nonconvex formulation: minz∈Rd

∑n
i=1 fi(z) where fi(z)

.
=
(
⟨ai, z⟩2 − yi

)2
.283

Let gi denote the gradient of fi with respect to z. Let Dz denote the distribution of gi(z) ∈ Rd when284

there is no adversarial corruption. Formally, g(z) ∼ Dz is distributed as285

g(z) =
∂

∂z

[(
⟨a, z⟩2 − ⟨a, x⟩2

)2]
= −4

(
⟨a, z⟩2 − ⟨a, x⟩2

)
⟨a, z⟩a where a ∼ N (0, I) . (7)
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To run gradient descent, we want to estimate the expected true gradient µz
.
= E g(z) using samples.286

The challenge is that the input samples {(ai, yi)}i∈[n] are ϵ-corrupted, and consequently the gradients287

{gi(z)}i∈[n] is an ϵ-corrupted set of vectors drawn from Dz . To address this, we use robust mean288

estimation algorithms (e.g., [16]) to approximate µz , the true mean of Dz .289

Algorithm 2 Robust Gradient Descent
Input: ϵ > 0, an ϵ-corrupted set of n samples {(ai, yi)}i∈[n], initial guess z1 ∈ Rd with

∥z1 − x∥ ≤ 1/8, and desired precision ∆ > 0.
Output: z ∈ Rd such that ∥z − x∥2 ≤ ∆ where x is the ground truth.

1: procedure ROBUSTGD(ϵ, {(ai, yi)}i∈[n], z1,∆)
2: T ← O(log(1/∆)), η ← 1/300
3: {N1, N2, · · · , NT } ← a random disjoint partition of [n] such that |Nt| = n/T for all t ∈ [T ]
4: for t = 1, 2, . . . , T do
5: µ̂zt ← Robust mean estimation on input {gi(zt)}i∈Nt

using Lemma 5.2
6: zt+1 ← zt − η µ̂zt
7: end for
8: return zT+1

9: end procedure

The error guarantee of robust mean estimation algorithms depends on the covariance matrix Σz of290

the distribution Dz . The next lemma upper bounds the spectral norm of Σz .291

Lemma 5.1. Let Dz be the distribution of gradients at z as defined in Equation (7). For any z ∈ Rd292

with ∥z − x∥2 ≤ 1, the covariance matrix Σz of Dz satisfies Σz ⪯ O(∥z − x∥22)I .293

The proof of Lemma 5.1 is deferred to Appendix B. Given Lemma 5.1, we can show that robust294

mean estimation algorithms can approximate µz with small error. For technical reasons, we randomly295

partition the input samples (ai, yi) into T subsets, and use one subset in each iteration. With high296

probability, each partition has at most (2ϵ)-fraction of corrupted samples297

Lemma 5.2. Consider any z ∈ Rd with ∥z − x∥2 ≤ 1. Let µz be the mean of Dz as defined in298

Equation (7). Fix universal constants c > 0 and ϵ0 = Θ(c2). Let 2ϵ < ϵ0 and δ > 0. Given299

a (2ϵ)-corrupted set of m = Ω(d log d/δ) samples drawn from Dz , we can compute µ̂z in time300

Õ(md log(1/δ)) such that ∥µ̂z − µz∥2 ≤ c ∥z − x∥2 with probability at least 1−O(δ).301

Proof of Lemma 5.2. Since 2ϵ < ϵ0, we can view the (2ϵ)-corrupted set of m samples as ϵ0-corrupted.302

We need to replace 2ϵ with ϵ0 to reduce the failure probability of Lemma 2.3. This weakens the error303

guarantee of Lemma 2.3, but the resulting µ̂z is still accurate enough for our algorithm.304

We apply Lemma 2.3 to the ϵ0-corrupted set of m vectors drawn from Dz . By Lemma 5.1,305

the covariance matrix of Dz satisfies Σz ⪯ O(∥z − x∥22)I . Consequently, for sufficiently large306

m = Θ(d log d/δ) and sufficiently small ϵ0 = O(c2), the error guarantee of Lemma 2.3 is307

O

(
√
ϵ0 +

√
d
mδ +

√
d(log d+log(1/δ))

m

)
∥z − x∥2 ≤ c ∥z − x∥2. The success probability is at least308

1− δ − exp(−ϵ0m) = 1−O(δ).309

Lemma 5.2 shows that even with a (2ϵ)-corrupted set of gradients, the true gradient µz can be310

estimated up to an additive error proportional to the distance between z and x. The next lemma shows311

that such an approximate gradient is sufficient for gradient descent to converge, reducing the distance312

to the ground truth x by a constant factor in each iteration.313

Lemma 5.3. Suppose in iteration t of Algorithm 2, the current solution zt satisfies ∥zt − x∥2 ≤ 1/8,314

and the estimated gradient µ̂zt ∈ Rd satisfies ∥µ̂zt − µzt∥2 ≤ c ∥zt − x∥2 for c = 4. Then, we have315

∥zt+1 − x∥22 ≤ 0.99 ∥zt − x∥22.316

Proof Sketch of Lemma 5.3. We provide a proof sketch and defer the full proof to Appendix B. Our317

objective function is nonconvex (even with infinitely many samples and no corruption). However,318

when the starting point z1 is close to a global optimum, it is well-known that gradient descent is319
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well-behaved. More specifically, for any z close to the ground truth x, we can show that the (expected)320

true gradient µz aligns with the direction toward x:321

⟨µz, z − x⟩ ≥ 7.5 ∥z − x∥22 and ∥µz∥2 ≤ 29 ∥z − x∥2 ,

which is sufficient for proving geometric convergence. We can immediately see that this argument is322

robust to additive error in µz that is proportional to ∥z − x∥2. When ∥µ̂z − µz∥2 ≤ c ∥z − x∥2,323

⟨µ̂z, z − x⟩ ≥ (7.5− c) ∥zt − x∥22 and ∥µ̂zt∥2 ≤ (29 + c) ∥zt − x∥2 .

When c < 7.5, we can choose an appropriate step size η such that the distance between zt and x324

decreases by a constant factor in each iteration.325

We are now ready to prove Lemma 3.3, which states the performance guarantee, sample complexity,326

runtime, and success probability of Algorithm 2. We restate Lemma 3.3 before proving it.327

Lemma 3.3 (Robust Gradient Descent). Consider the setting of Problem 1.3. Let ∆ > 0 be328

the desired precision. Let 0 < ϵ < ϵ0 for some sufficiently small universal constant ϵ0. Given329

an ϵ-corrupted set of n = Ω̃(d log2(1/∆)) samples and an initial guess z1 such that r(z1) =330

min(∥z1 − x∥2 , ∥z1 + x∥2) ≤ 1/8, we can compute a vector z ∈ Rd in time Õ(nd) such that331

r(z) ≤ ∆ with probability at least 0.95.332

Proof of Lemma 3.3. First, we prove the success probability of Algorithm 2. Algorithm 2 can fail in333

two ways: (i) if some Nt has more than (2ϵ)-fraction of corrupted samples, or (ii) if Lemma 5.2 fails334

in some iteration t. The probability of event (i) is at most 0.01 for our choice of n, which follows335

from a standard application of Hoeffding’s inequality and a union bound over T iterations. For event336

(ii), we choose a sufficiently small δ = O(1/T ) in Lemma 5.2, so each robust gradient estimation337

fails with probability at most O(δ) = 0.01/T , and overall the probability of event (ii) is at most 0.01.338

For the rest of the proof, we assume these bad events do not happen.339

Next, we show the correctness of Algorithm 2. Without loss of generality, we can assume that z1 is340

closer to the ground truth x than to −x, which implies ∥z1 − x∥2 ≤ 1/8. By Lemma 5.2, we can341

obtain an approximation µ̂z1 of the true gradient µz1 at z1 such that ∥µ̂z1 − µz1∥2 ≤ c ∥z1 − x∥2.342

Then by Lemma 5.3, we know that ∥z2 − x∥2 ≤ 0.99 ∥z1 − x∥2 after one step of gradient descent.343

We can iteratively apply these two lemmas to show that, after T = O(log(1/∆)) iterations, we344

have ∥zT+1 − x∥2 ≤ ∆. One technical issue is that in iteration t, we need to use a fresh subset of345

samples Nt. By the principle of deferred decisions, we can view (ai, yi)i∈Nt
as being generated (and346

corrupted) after zt is chosen, which forms a (2ϵ)-corrupted set of gradients at zt.347

Finally, we analyze the sample complexity and runtime of Algorithm 2. Algorithm 2 requires in total348

n = mT = Ω(d log d log2(1/∆)) samples. A random partition can be computed in O(n) time by349

shuffling the input. In each iteration, the m gradients in Nt can be computed using Equation (7) in350

time O(md), and zt can be updated in time O(d). By Lemma 5.2, the true gradient can be robustly351

estimated in time Õ(md log T ) = Õ(md log log(1/∆)). The overall runtime of the algorithm is352

Õ(n+ (md log log(1/∆))T ) = Õ(nd log log(1/∆)) = Õ(nd).353

6 Conclusions and Future Directions354

In this paper, our main conceptual contribution is to propose and study the outlier-robust phase355

retrieval problem, where a constant fraction of the input data is corrupted. Notably, we allow356

corruption in both the sampled frequencies ai ∈ Rd and the intensity measurements yi ∈ R. Our357

main technical contribution is the design and analysis of a near-sample-optimal and nearly-linear-time358

algorithm that solves this problem with provably guarantees.359

An immediate technical question is whether our sample complexity can be tightened by removing360

some log(1/∆) factors. One potential approach is to open robust mean estimation algorithms instead361

of using them in a black-box manner. One could examine the stability conditions that these algorithms362

require, and see if these stability conditions can be proved without partitioning the samples and using363

fresh samples in each iteration. More broadly, we believe our framework can be used to develop364

outlier-robust algorithms for other tractable nonconvex problems, by first finding an initial solution in365

a saddle-free region near a global optimum and then converging to this global optimum using robust366

gradient descent.367
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A Omitted Proofs in Section 4471

Lemma A.1. [Lemma 4.2, Formal]. For any δ0 > 0, there exists constants ϵ0, c > 0 such that472

when n > c · d log d and we are given a set of n ϵ-corrupted samples, where 0 ≤ ϵ ≤ ϵ0, then with473

probability at least 0.98, it holds474

∀w ∈ ∆n,2ϵ,
∥∥YG,w − (I + 2xx⊤)

∥∥
2
≤ δ0 . (8)

Proof of Lemma A.1. We recall the definition of YG,w =
∑

i∈G wiyiaia
⊤
i . Let ℓ = ϵ · n and let475

{(an+i, yn+i)}ℓi=1 be the set of samples that were removed by the ϵ-corruption adversary. Let476

G′ = G ∪ {n+ 1, . . . , n+ ℓ}, n′ = n+ ℓ, and ϵ′ = ϵ/(1 + ϵ). Note that without loss of generality,477

we can assume that |G| = (1− ϵ)n and |G′| = (1− ϵ′)n′ = n.478

We define a mapping σ : ∆n,2ϵ → ∆n′,3ϵ′ such that479

σ(w)i =

{
wi i ∈ [n]

0 otherwise
. (9)

In other words, all the weights are the same for the samples with index in the set [n], and are equal to480

0 for the samples removed by the adversary. We can verify that σ(w) ∈ ∆n′,3ϵ′ for all w ∈ ∆n,2ϵ481

since σ(w)i ≤ wi ≤ 1/(1 − 2ϵ)n = 1/(1 − 3ϵ′)n′ for all i ∈ [n′], and ∥σ(w)∥1 = ∥w∥1 = 1.482

Furthermore, we have YG,w = YG′,σ(w) for all w ∈ ∆n,2ϵ. We denote with w∗ ∈ ∆n′,3ϵ′ the desired483

uniform weighting of the samples with index in G′, i.e., w∗
i = 1

(1−ϵ′)n′ 1i∈G′ .484

It suffices to show both
∥∥YG′,w∗ − (I + 2xx⊤)

∥∥
2
≤ δ0/2 and

∥∥YG′,σ(w)−w∗
∥∥
2
≤ δ0/2.485

By triangle inequality, for any w ∈ ∆n,2ϵ, it holds486 ∥∥YG′,σ(w) − (I + 2xx⊤)
∥∥
2
≤
∥∥YG′,w∗ − (I + 2xx⊤)

∥∥
2
+
∥∥YG′,σ(w)−w∗

∥∥
2
,

Thus, it suffices to show both
∥∥YG′,w∗ − (I + 2xx⊤)

∥∥
2
≤ δ0/2 and

∥∥YG′,σ(w)−w∗
∥∥
2
≤ δ0/2.487

We upper bound the first term. By using the definition of w∗, note that488

∥∥YG′,σ(w) − (I + 2xx⊤)
∥∥
2
=

∥∥∥∥∥∑
i∈G′

w∗
i yiaia

⊤
i − (I + 2xx⊤)

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈G′

1

|G′|
yiaia

⊤
i − (I + 2xx⊤)

∥∥∥∥∥
2

.

Since E(yiaia⊤i ) = I + 2xx⊤ for any i ∈ G′, we can use a concentration inequality to upper bound489

this term. By Lemma A.2, as long as n ≥ c1(δ0/2) · d log d, with probability at least 0.995, we have490 ∥∥YG′,w∗ − (I + 2xx⊤)
∥∥
2
≤ δ0/2 . (10)

It remains to show a high-probability upper bound to the second term
∥∥YG′,w∗−σ(w)

∥∥
2
≤ δ0/2.491

The first observation is that the weighting w∗ and σ(w) for any w ∈ ∆n,2ϵ cannot too different. In492

particular, we can show the following upper bound:493

∑
i∈G′

|w∗
i − σ(w)i| ≤

n′∑
i=1

|w∗
i − σ(w)i| ≤ sup

w,w′∈∆n′,3ϵ′

n′∑
i=1

|wi − w′
i| (11)

We observe that ∆n′,3ϵ′ can be seen as the convex combination of all possible uniform weighting494

over subsets of n′(1− 3ϵ′) samples. Thus, the maximum distance will be between two points of the495

convex hull, and we can upper bound (11) as:496

∑
i∈G′

|w∗
i − σ(w)i| ≤ sup

w,w′∈∆n′,3ϵ′

n′∑
i=1

|wi − w′
i| ≤

6ϵ′n

n′(1− 3ϵ′)
≤ 6ϵ . (12)
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For a fixed unit vector z ∈ Sd−1 with z = px+ qu where u ∈ Sd−1 and ⟨u, x⟩ = 0, we have:497

max
w∈∆n,2ϵ

∣∣z⊤YG′,w∗−σ(w)z
∣∣ = max

w

∣∣∣∣∣∑
i∈G′

(w∗
i − σ(w)i) ⟨ai, x⟩2 ⟨ai, z⟩2

∣∣∣∣∣
= max

w

∣∣∣∣∣∑
i∈G′

(w∗
i − σ(w)i) ⟨ai, x⟩2 (p ⟨ai, x⟩+ q ⟨ai, u⟩)2

∣∣∣∣∣
≤ 2max

w

∣∣∣∣∣∑
i∈G′

(w∗
i − σ(w)i)(⟨ai, x⟩4 + ⟨ai, x⟩2 ⟨ai, u⟩2)

∣∣∣∣∣
≤ 2max

w

∑
i∈G′

|w∗
i − σ(w)i| ⟨ai, x⟩4

+ 2max
w

∑
i∈G′

|w∗
i − σ(w)i| ⟨ai, x⟩2 ⟨ai, u⟩2 .

For ease of notation, let βi
.
= |w∗

i −σ(w)i|. Observe that 0 ≤ βi ≤ 1
(1−2ϵ)n for all i, and

∑
i βi ≤ 6ϵ498

due to (11). We have:499

max
w∈∆n,2ϵ

∣∣z⊤YG′,w∗−σ(w)z
∣∣ ≤ 2 max

β:
∑

i∈G′ βi≤6ϵ and 0≤βi≤ 1
(1−2ϵ)n

∑
i∈G′

βi ⟨ai, x⟩4

+ 2 max
β:

∑
i∈G′ βi≤6ϵ and 0≤βi≤ 1

(1−2ϵ)n

∑
i∈G′

βi ⟨ai, x⟩2 ⟨ai, u⟩2

≤ 2

(1− 2ϵ)n
max

L⊆G′,|L|=6ϵn

∑
i∈L

⟨ai, x⟩4

+
2

(1− 2ϵ)n
max

L⊆G′,|L|=6ϵn

∑
i∈L

⟨ai, x⟩2 ⟨ai, u⟩2 . (13)

Inequality (13) follows by assigning the maximum possible βi to the largest entries of the sum until500

we hit the budget 6ϵ due to (11).501

We bound maxL
∑

i∈L ⟨ai, x⟩
4 first. Let Xi = ⟨ai, x⟩ ∼ N (0, 1) for i ∈ G′, and define the502

threshold function hr(z) =

{
0, z ≤ r

z, z > r
for r = C2 · ln2(1/ϵ) with constant C > 0 to be determined.503

Note that z ≤ r + hr(z) for all z > 0. Therefore,504

max
L⊆G′,|L|=6ϵn

1

n

∑
i∈L

X4
i ≤ max

L

1

n

∑
i∈L

r +max
L

1

n

∑
i∈L

hr(X
4
i )

≤ 6ϵr +
1

n

∑
i∈G′

hr(X
4
i ).

Then, we consider to bound exp
(∑

i∈G′ c · hr(X
4
i )
)

for some c > 0 to be determined. For any505

i ∈ G′ and z ≥ 1, with C = 6, for all ϵ > 0, we have506

Pr
[
exp

(
c · hr(X

4
i )
)
≥ z
]
≤ Pr

[
hr(X

4
i ) ≥ 0

]
= Pr

[
Xi ≥ r1/4

]
≤ exp(−

√
r/2)

≤ exp(ln ϵ · C/2)

≤ ϵ3.

At the same time, with c < 1/200, for all z ≥ 1, we have507

Pr
[
exp

(
c · hr(X

4
i )
)
≥ z
]
≤ Pr

[
exp(c ·X4

i ) ≥ z
]
≤ Pr

[
X4

i ≥
ln z

c

]
≤ exp

(
−
√

ln z

c
/2

)
≤ z−3.
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Therefore, Pr
[
exp

(
c · hr(X

4
i )
)
≥ z
]
≤ min{z−3, ϵ3}, and for all ϵ < 1/2, we have508

E
[
exp

(
c · hr(X

4
i )
)]

=

∫ ∞

0

Pr
[
exp

(
c · hr(X

4
i )
)
≥ z
]
dz

≤
∫ 1

0

1dz +

∫ 1/ϵ

1

ϵ3dz +

∫ ∞

1/ϵ

z−3dz

= 1 + ϵ2 − ϵ3 +
1

2
ϵ2

≤ 1 + ϵ2

≤ exp(ϵ2).

Since {Xi}i∈G′ are independent, we have509

E

[
exp

(∑
i∈G′

c · hr(X
4
i )

)]
= E

[∏
i∈G′

exp
(
c · hr(X

4
i )
)]
≤ exp(ϵ2n).

Finally, by Markov’s inequality, for any constant δ1 > 0, as long as ϵ ≤
√
δ1c, we have510

Pr

[∑
i∈G′

hr(X
4
i ) ≥ 2δ1n

]
= Pr

[
exp

(∑
i∈G′

c · hr(X
4
i )

)
≥ exp(2δ1cn)

]
≤ exp(ϵ2n− 2δ1cn) ≤ exp(−δ1cn).

As a result, with sufficiently large n ≥ c2(δ1) · d log d and sufficiently small ϵ such that 6ϵr ≤ δ1,511

Pr

[
ϵr +

1

n

∑
i∈G′

hr(X
4
i ) ≥ 3δ1

]
≤ exp(−δ1cn) ≤ 0.995 · 9−d.

Also, maxL
∑

i∈L ⟨ai, x⟩
2 ⟨ai, u⟩2 has a similar tail bound and therefore can be bounded in the same512

way. We can then bound the operator norm via an epsilon-net argument. Set δ1 = δ0/24. By an513

1/4-net on Sd−1 with |N | ≤ 9d, we have that514

Pr

[
max

z∈Sd−1

∣∣z⊤YG′,w∗−σ(w)z
∣∣ ≥ δ0/2

]
≤ 9d · 0.99 · 9−d ≤ 0.99.

By combining the above inequality with Equation (10), we can conclude that, for any δ0 > 0, there515

exists ϵ0 > 0, such that when n ≥ max{c1(δ0), c2(δ0)} · d log d and 0 ≤ ϵ ≤ ϵ0, with probability at516

least 0.98,517

∀w ∈ ∆n,2ϵ,
∥∥YG,w − (I + 2xx⊤)

∥∥
2
=
∥∥YG′,σ(w) − (I + 2xx⊤)

∥∥
2
≤ δ0.

Therefore, with probability at least 0.98, we have
∥∥YG,w − (I + 2xx⊤)

∥∥
2
≤ δ0 for all w ∈ ∆n,2ϵ.518

519

A.1 Concentration Inequalities520

For the undisturbed samples, we have the following concentration result.521

Lemma A.2 ([3] Section A.4.2). Let x ∈ Rd. For any δ > 0, there exists a constant C(δ) > 0522

such that when n > C · d log d and we are given a set of n samples {(ai, yi)}ni=1 with ai ∼ N (0, I)523

independently and yi = ⟨ai, x⟩2 for all i ∈ [n], then with probability at least 0.99, it holds524 ∥∥∥∥∥ 1n
n∑

i=1

yiaia
⊤
i − (I + 2xx⊤)

∥∥∥∥∥
2

≤ δ.
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B Omitted Proofs in Section 5525

Lemma 5.1. Let Dz be the distribution of gradients at z as defined in Equation (7). For any z ∈ Rd526

with ∥z − x∥2 ≤ 1, the covariance matrix Σz of Dz satisfies Σz ⪯ O(∥z − x∥22)I .527

Proof of Lemma 5.1. Recall that g ∼ Dz is distributed as528

g =
∂

∂z

[(
⟨a, z⟩2 − ⟨a, x⟩2

)2]
= −4

(
⟨a, z⟩2 − ⟨a, x⟩2

)
⟨a, z⟩a where a ∼ N (0, 1) .

Because Eg∼Dz [g] = µz , the spectral norm of Σz can be upper bounded as follows:529

∥Σz∥2 =

∥∥∥∥ E
g∼Dz

[
gg⊤

]
− µzµ

⊤
z

∥∥∥∥
2

≤
∥∥∥∥ E
g∼Dz

[
gg⊤

]∥∥∥∥
2

.

Consequently, it suffices to upper bound
∥∥Eg∼Dz

[
gg⊤

]∥∥
2
. Let h = z − x.530 ∥∥∥∥ E

g∼Dz

[
gg⊤

]∥∥∥∥
2

= max
∥v∥2=1

v⊤ E
g∼Dz

[
gg⊤

]
v = max

∥v∥2=1
E
g

[
⟨g, v⟩2

]
= 16 max

∥v∥2=1
E

a∼N (0,I)

[
(⟨a, z⟩2 − ⟨a, x⟩2)2 ⟨a, z⟩2 ⟨a, v⟩2

]
= 16 max

∥v∥2=1
E

a∼N (0,I)

[
⟨a, h⟩2 ⟨a, 2x+ h⟩2 ⟨a, x+ h⟩2 ⟨a, v⟩2

]
≤ 16 max

∥v∥2=1

(
E
a

[
⟨a, h⟩8

]
E
a

[
⟨a, 2x+ h⟩8

]
E
a

[
⟨a, x+ h⟩8

]
E
a

[
⟨a, v⟩8

])1/4

= 16 max
∥v∥2=1

(
1054 ∥h∥82 ∥2x+ h∥82 ∥x+ h∥82 ∥v∥

8
2

)1/4
= (16 · 105) ∥h∥22 ∥2x+ h∥22 ∥x+ h∥22 = O(∥h∥22) .

The first inequality is due to Cauchy-Schwarz inequality. The last step uses the fact that ∥x∥2 = 1531

and ∥h∥2 ≤ 1.532

Lemma 5.3. Suppose in iteration t of Algorithm 2, the current solution zt satisfies ∥zt − x∥2 ≤ 1/8,533

and the estimated gradient µ̂zt ∈ Rd satisfies ∥µ̂zt − µzt∥2 ≤ c ∥zt − x∥2 for c = 4. Then, we have534

∥zt+1 − x∥22 ≤ 0.99 ∥zt − x∥22.535

Proof of Lemma 5.3. Recall that g ∼ Dz is distributed as536

g =
∂

∂z

[(
⟨a, z⟩2 − ⟨a, x⟩2

)2]
where a ∼ N (0, I) .

We can compute the mean of Dz using moments of Gaussian:537

µz = E
g∼Dz

g =
(
12 ∥z∥22 − 4 ∥x∥22

)
z − 8⟨x, z⟩x . (14)

Consider one step of gradient descent in Algorithm 2: zt+1 = zt−ηµ̂zt , where µ̂zt is an approximate538

gradient. We have539

∥zt+1 − x∥22 = ∥zt − ηµ̂zt − x∥22 = ∥zt − x∥22 − 2η⟨µ̂zt , zt − x⟩+ η2⟨µ̂zt , µ̂zt⟩

To prove convergence, we need to lower bound ⟨µ̂zt , zt − x⟩ and upper bound ⟨µ̂zt , µ̂zt⟩.540

We write z = zt and h = z − x to simplify notation. We can substitute z = x+ h in Equation (14):541

µz =
(
16⟨x, h⟩+ 12 ∥h∥22

)
x+

(
8 ∥x∥22 + 24⟨x, h⟩+ 12 ∥h∥22

)
h .
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Recall the assumptions of this lemma: ∥x∥2 = 1, ∥h∥2 ≤ 1/8, and ∥µ̂z − µz∥2 ≤ c ∥h∥2.542

First we lower bound ⟨µ̂z, h⟩.543

⟨µ̂z, h⟩ = ⟨µz, h⟩+ ⟨µ̂z − µz, h⟩
= 16⟨x, h⟩2 + 36⟨x, h⟩ ∥h∥22 + 8 ∥x∥22 ∥h∥

2
2 + 12 ∥h∥42 + ⟨µ̂z − µz, h⟩

≥ − 81
4 ∥h∥

4
2 + 8 ∥x∥22 ∥h∥

2
2 + 12 ∥h∥42 − ⟨µ̂z − µz, h⟩

≥ (8− 33
256 − c) ∥h∥22

≥ (7.5− c) ∥h∥22 .

The first inequality uses the fact that 16⟨x, h⟩2 + 36⟨x, h⟩ ∥h∥22 is a second-order polynomial of544

⟨x, h⟩, which has minimum value − 81
4 ∥h∥

4
2 for all ⟨x, h⟩ ∈ R.545

Next we upper bound ⟨µ̂z, µ̂z⟩ using the triangle inequality.546

∥µ̂z∥2 ≤ ∥µz∥2 + ∥µ̂z − µz∥2
≤
(
16⟨x, h⟩+ 12 ∥h∥22

)
∥x∥2 +

(
8 ∥x∥22 + 24⟨x, h⟩+ 12 ∥h∥22

)
∥h∥2 + c ∥h∥2

≤
(
16 + 12

8 + 8 + 24
8 + 12

64 + c
)
∥h∥2

≤ (29 + c) ∥h∥2 .

Putting everything together, we have547

∥zt+1 − x∥22 = ∥zt − x∥22 − 2η⟨µ̂zt , zt − x⟩+ η2⟨µ̂zt , µ̂zt⟩
≤
[
1− 2(7.5− c)η + (29 + c)2η2

]
∥zt − x∥22 .

Choosing c = 4 and η = 1/300 gives that ∥zt+1 − x∥22 ≤ 0.99 ∥zt − x∥22.548

C Counter-examples549

Prior robust phase retrieval algorithms [24, 45] focus on the setting where the observations yi’s are sub-550

ject to adversarial perturbation while the measuring vectors ai’s are independently sampled from the551

Gaussian distribution. The Median Truncated Wirtinger Flow Algorithm [45] first initialize z(0) by the552

spectral method, calculating z(0) as the top eigenvector of Y := 1
m

∑m
i=1 yiaia

⊤
i 1|yi|≤α2 med({yi}m

i=1)
553

using a truncated set of samples, where the threshold is determined by med({yi}mi=1), the median554

over all yi’s. As long as the fraction of of outliers is not too large and the sample complexity is large555

enough, the initialization is guaranteed to be within a small neighborhood of the ground truth.556

In this section, we present a counter-example where robust phase retrieval algorithms [24, 45] can be557

insufficient when directly applied to the ϵ-corruption phase retrieval problem.558

Let x ∈ Sd−1 be the ground truth unit vector. Here we construct an ϵ-corruption adversary that can559

manipulate the top eigenvector of the empirical covariance matrix Y =
∑n

i=1 yiaia
⊤
i , even when yi560

are accurately calculated as yi = (a⊤i x)
2.561

Let u ∈ Sd−1 be a unit vector such that x⊤u = 0. Suppose the adversary changes 1% of the ai’s562

to ai =
√
d− 1/25 · u + 1/5x, and suppose all the yi’s are accurate. In particular, the length of563

the corrupted ai’s is comparable to Gaussian vectors, and the corresponding yi = (a⊤i x)
2 = 1/25.564

Consequently, the median-truncated initialization in [45] will not be able to filter out such yi. However,565

the top eigenvector of E [Y ] = E
[∑n

i=1 yiaia
⊤
i

]
= O(d)uu⊤ +O(

√
d)(ux⊤ + xu⊤) +O(1)(I +566

2xx⊤) will be manipulated to u, which is far from the ground truth x.567
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• It is OK to report 1-sigma error bars, but one should state it. The authors should730

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis731

of Normality of errors is not verified.732

• For asymmetric distributions, the authors should be careful not to show in tables or733

figures symmetric error bars that would yield results that are out of range (e.g. negative734

error rates).735

• If error bars are reported in tables or plots, The authors should explain in the text how736

they were calculated and reference the corresponding figures or tables in the text.737

8. Experiments Compute Resources738

Question: For each experiment, does the paper provide sufficient information on the com-739

puter resources (type of compute workers, memory, time of execution) needed to reproduce740

the experiments?741

Answer: [NA]742

Justification: The paper is a theory paper, and it has no experiments.743

Guidelines:744

• The answer NA means that the paper does not include experiments.745

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,746

or cloud provider, including relevant memory and storage.747

• The paper should provide the amount of compute required for each of the individual748

experimental runs as well as estimate the total compute.749

• The paper should disclose whether the full research project required more compute750

than the experiments reported in the paper (e.g., preliminary or failed experiments that751

didn’t make it into the paper).752

9. Code Of Ethics753

Question: Does the research conducted in the paper conform, in every respect, with the754

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?755

Answer: [Yes]756

Justification: The paper conforms with the NeurIPS Code of Ethics.757

Guidelines:758

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.759

• If the authors answer No, they should explain the special circumstances that require a760

deviation from the Code of Ethics.761

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-762

eration due to laws or regulations in their jurisdiction).763

10. Broader Impacts764

Question: Does the paper discuss both potential positive societal impacts and negative765

societal impacts of the work performed?766

Answer: [NA]767

Justification: The paper provides a theoretical result. We do not believe there are potential768

societal consequences of our work, aside from advancing the field of Machine Learning.769

Guidelines:770

• The answer NA means that there is no societal impact of the work performed.771

• If the authors answer NA or No, they should explain why their work has no societal772

impact or why the paper does not address societal impact.773
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• Examples of negative societal impacts include potential malicious or unintended uses774

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations775

(e.g., deployment of technologies that could make decisions that unfairly impact specific776

groups), privacy considerations, and security considerations.777

• The conference expects that many papers will be foundational research and not tied778

to particular applications, let alone deployments. However, if there is a direct path to779

any negative applications, the authors should point it out. For example, it is legitimate780

to point out that an improvement in the quality of generative models could be used to781

generate deepfakes for disinformation. On the other hand, it is not needed to point out782

that a generic algorithm for optimizing neural networks could enable people to train783

models that generate Deepfakes faster.784

• The authors should consider possible harms that could arise when the technology is785

being used as intended and functioning correctly, harms that could arise when the786

technology is being used as intended but gives incorrect results, and harms following787

from (intentional or unintentional) misuse of the technology.788

• If there are negative societal impacts, the authors could also discuss possible mitigation789

strategies (e.g., gated release of models, providing defenses in addition to attacks,790

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from791

feedback over time, improving the efficiency and accessibility of ML).792

11. Safeguards793

Question: Does the paper describe safeguards that have been put in place for responsible794

release of data or models that have a high risk for misuse (e.g., pretrained language models,795

image generators, or scraped datasets)?796

Answer: [NA]797

Justification: The paper only contains theoretical results.798

Guidelines:799

• The answer NA means that the paper poses no such risks.800

• Released models that have a high risk for misuse or dual-use should be released with801

necessary safeguards to allow for controlled use of the model, for example by requiring802

that users adhere to usage guidelines or restrictions to access the model or implementing803

safety filters.804

• Datasets that have been scraped from the Internet could pose safety risks. The authors805

should describe how they avoided releasing unsafe images.806

• We recognize that providing effective safeguards is challenging, and many papers do807

not require this, but we encourage authors to take this into account and make a best808

faith effort.809

12. Licenses for existing assets810

Question: Are the creators or original owners of assets (e.g., code, data, models), used in811

the paper, properly credited and are the license and terms of use explicitly mentioned and812

properly respected?813

Answer: [NA]814

Justification: The paper only contains theoretical results. Previous work is properly cited.815

Guidelines:816

• The answer NA means that the paper does not use existing assets.817

• The authors should cite the original paper that produced the code package or dataset.818

• The authors should state which version of the asset is used and, if possible, include a819

URL.820

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.821

• For scraped data from a particular source (e.g., website), the copyright and terms of822

service of that source should be provided.823

• If assets are released, the license, copyright information, and terms of use in the824

package should be provided. For popular datasets, paperswithcode.com/datasets825

has curated licenses for some datasets. Their licensing guide can help determine the826

license of a dataset.827
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• For existing datasets that are re-packaged, both the original license and the license of828

the derived asset (if it has changed) should be provided.829

• If this information is not available online, the authors are encouraged to reach out to830

the asset’s creators.831

13. New Assets832

Question: Are new assets introduced in the paper well documented and is the documentation833

provided alongside the assets?834

Answer: [NA]835

Justification: The paper does not introduce any new asset.836

Guidelines:837

• The answer NA means that the paper does not release new assets.838

• Researchers should communicate the details of the dataset/code/model as part of their839

submissions via structured templates. This includes details about training, license,840

limitations, etc.841

• The paper should discuss whether and how consent was obtained from people whose842

asset is used.843

• At submission time, remember to anonymize your assets (if applicable). You can either844

create an anonymized URL or include an anonymized zip file.845

14. Crowdsourcing and Research with Human Subjects846

Question: For crowdsourcing experiments and research with human subjects, does the paper847

include the full text of instructions given to participants and screenshots, if applicable, as848

well as details about compensation (if any)?849

Answer: [NA]850

Justification: This point does not apply to our paper.851

Guidelines:852

• The answer NA means that the paper does not involve crowdsourcing nor research with853

human subjects.854

• Including this information in the supplemental material is fine, but if the main contribu-855

tion of the paper involves human subjects, then as much detail as possible should be856

included in the main paper.857

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,858

or other labor should be paid at least the minimum wage in the country of the data859

collector.860

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human861

Subjects862

Question: Does the paper describe potential risks incurred by study participants, whether863

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)864

approvals (or an equivalent approval/review based on the requirements of your country or865

institution) were obtained?866

Answer: [NA]867

Justification: This point does not apply to our paper.868

Guidelines:869

• The answer NA means that the paper does not involve crowdsourcing nor research with870

human subjects.871

• Depending on the country in which research is conducted, IRB approval (or equivalent)872

may be required for any human subjects research. If you obtained IRB approval, you873

should clearly state this in the paper.874

• We recognize that the procedures for this may vary significantly between institutions875

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the876

guidelines for their institution.877

• For initial submissions, do not include any information that would break anonymity (if878

applicable), such as the institution conducting the review.879
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