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Abstract

Recent advances in deep learning have shown that uncertainty estimation is becoming
increasingly important in applications such as medical imaging, natural language processing,
and autonomous systems. However, accurately quantifying uncertainty remains a challenging
problem, especially in regression tasks where the output space is continuous. Deep learning
approaches that allow uncertainty estimation for regression problems often converge slowly
and yield poorly calibrated uncertainty estimates that can not be effectively used for
quantification. Recently proposed post hoc calibration techniques are seldom applicable
to regression problems and often add overhead to an already slow model training phase.
This work presents a fast calibrated uncertainty estimation method for regression tasks
called Likelihood Annealing, that consistently improves the convergence of deep regression
models and yields calibrated uncertainty without any post hoc calibration phase. Unlike
previous methods for calibrated uncertainty in regression that focus only on low-dimensional
regression problems, our method works well on a broad spectrum of regression problems,
including high-dimensional regression. Our empirical analysis shows that our approach is
generalizable to various network architectures, including multilayer perceptrons, 1D/2D
convolutional networks, and graph neural networks, on five vastly diverse tasks, i.e., chaotic
particle trajectory denoising, physical property prediction of molecules using 3D atomistic
representation, natural image super-resolution, and medical image translation using MRI.

1 Introduction

Uncertainty estimation is an essential building block to provide interpretability and secure reliability in
modern machine learning systems (Shafaei et al., 2018; Klds & Vollmer, 2018; Varshney & Alemzadeh,
2017; Hullermeier & Waegeman, 2021) that offer intelligent solutions for numerous real-world applications,
ranging from medical analytics (Leibig et al., 2017; Gillmann et al., 2021; Upadhyay et al., 2021b) to
autonomous driving (Xu et al., 2014; Shafaei et al., 2018; Besnier et al., 2021). Recent advances have explored
various formulations to provide accurate predictions and uncertainty estimates for deep neural networks, as
represented by Bayesian approaches (Gal & Ghahramani, 2016; Kendall & Gal, 2017; Maddox et al., 2019),
ensembles (Lakshminarayanan et al., 2017), pseudo-ensembles (Mehrtash et al., 2020; Franchi et al., 2020),
and quantile regression (Romano et al., 2019; Yan et al., 2018; Feldman et al., 2021) methods. However,
these existing methods are often computationally expensive — e.g., slow convergence rate during training
or inefficient inference cost due to multiple forward passes — while being poorly calibrated for uncertainty
estimates. Moreover, some of these methods are proposed for low-dimensional regression tasks (Chung et al.,
2021; Zhou et al., 2021; Chen et al., 2021) (i.e., regressing a scalar value) and do not scale for high-dimensional
regression (i.e., regressing large matrices or tensors). This paper presents a unified formulation to resolve
these issues for estimating fast, well-calibrated uncertainty in deep regression models for a wide spectrum of
regression problems, including chaotic particle trajectory denoising, physical property prediction of molecules
using 3D atomistic representation, natural image super-resolution, and medical image translation using MRI.

We propose to revisit deep regression models trained via maximum likelihood estimation (MLE), which
assumes a Gaussian distribution over the regression output and optimizes the negative log-likelihood to
estimate the target and uncertainty. Although such models can ensure low regression error (i.e., high accuracy)
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and encapsulate the predictive uncertainty, they often converge slowly at the beginning of training due to a
flat gradient landscape. Further, they may even risk gradient explosion caused by a steep gradient landscape
when reaching the optima (detailed in Section 3.1), leading to poorly calibrated uncertainty estimates that
do not offer credible interpretability for the model and cannot be used for downstream applications.

To reshape the aforementioned ill-posed gradient landscape that causes slow convergence and poorly calibrated
uncertainty, we propose a novel Likelihood Annealing (LIKA) scheme for deep regression models that alters
the original gradients by formulating a temperature-dependent improper likelihood to be optimized during
the learning phase. In contrast to the standard likelihood for regression that enforces a fixed Gaussian
distribution on the target, we introduce a temperature hyperparameter to impose an evolving distribution.

The proposed temperature-dependent likelihood brings crucial properties to regression uncertainty. First, the
multimodal distribution on the regression target ensures that at high residuals (between output and ground
truth, occurring in the initial learning phase), the gradients are much larger than the standard unimodal
Gaussian distribution (explained in detail in Section 3 and Figure 1) leading to faster convergence at the
beginning of the learning phase. Second, we also anneal the learning rate over the course of training along
with the temperature that avoids gradient explosion towards the end of the learning phase, a problem with
the standard heteroscedastic Gaussian-based likelihood distribution with sharp gradients at lower errors.
Third, we construct the temperature-dependent likelihood such that the predicted uncertainty is encouraged
to be calibrated at every step, by being close to the error between the prediction and ground truth.

The standard unimodal distribution faces slow convergence in the beginning and potential gradient explosion
towards the end of the learning phase and provides poorly calibrated uncertainty estimates. In contrast, our
LIKA method allows faster convergence and offers well-calibrated uncertainty estimates for a broad spectrum
of regressions. This also differs from uncertainty regression methods that estimate the full quantile as they
are often shown to be effective on low-dimensional regression.

Contributions. We introduce a temperature-dependent likelihood annealing scheme for deep regression
models with uncertainty estimation that leads to faster model convergence and offers better-calibrated uncer-
tainty (detailed in Section 3.3). We conduct a comprehensive evaluation on various datasets, including chaotic
particle trajectory denoising, physical property prediction of molecules using 3D atomistic representation,
image super-resolution, and medical image translation using MRI images, presented in Section 4.

2 Related Work

Deep neural networks (DNNs) typically estimate inaccurate uncertainty due to their deterministic form that is
insufficient for characterizing the accurate confidence (Gal, 2016; Guo et al., 2017). Bayesian inference has been
widely studied to effectively estimate uncertainty. Directly performing Bayesian inference on deep nonlinear
networks is infeasible due to intractable computations. Hence, approximate inference has been explored by
variational inference (Graves, 2011; Blundell et al., 2015; Daxberger et al., 2021; Maddox et al., 2019) or
MCMC-based approximation (Welling & Teh, 2011; Chen et al., 2014). However, due to its approximation,
the estimated uncertainty may fail to follow the true uncertainty quantification (Lakshminarayanan et al.,
2017). Moreover, compared with typical DNNs, approximate Bayesian inference is computationally more
expensive and has slower convergence in practice. Non-Bayesian methods have been proposed as an alternative.
For instance, (Kendall & Gal, 2017; Lakshminarayanan et al., 2017) modeled two terms, i.e. predictive
mean and variance, as an output of DNN to estimate the uncertainty directly from the network’s output.
Another line of work estimates the uncertainty in the prediction in a non-parametric manner by estimating
different quantiles for a given input (Lin et al., 2021; Chen et al., 2021; Zhou et al., 2021; Chung et al.,
2021). Moreover, there are also works from conformal predictions that quantify uncertainty by constructing
prediction intervals, which are sets of possible outcomes that are believed to contain the true value with a
certain probability (Wieslander et al., 2020; Messoudi et al., 2020; Zhang et al., 2021).

In general, there are two broad types of uncertainties in deep learning: (i) Aleatoric and (ii) Epistemic.
Aleatoric uncertainty is the uncertainty that arises from the inherent randomness in the data. In contrast,
Epistemic uncertainty is the uncertainty that arises due to a lack of knowledge or information about the
data. In real-world scenarios with access to large datasets, aleatoric uncertainty is often critical because it is
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directly related to the variability in the data, which is essential to modeling real-world scenarios (Monteiro
et al., 2020; Mukhoti et al., 2021; Ayhan & Berens, 2018). For example, in medical imaging, different patients
may have different degrees of variability in their images due to different factors such as the presence of
diseases, body types, or imaging equipment (Wang et al., 2019; Valiuddin et al., 2021; Dohopolski et al.,
2020). By modeling aleatoric uncertainty, we can better capture this variability and improve the accuracy of
the model. On the other hand, epistemic uncertainty can be reduced by acquiring more data or improving
the model architecture (Chen & Techawitthayachinda, 2021; Kendall & Gal, 2017; Swiler et al., 2009). This
work focuses on estimating the aleatoric uncertainty in deep regression problems.

Calibrating the inaccurate uncertainty is another way to estimate accurate uncertainty (Guo et al., 2017).
In the regression task, calibration was first defined in a quantile manner (Kuleshov et al., 2018). That is,
the estimated credible interval with confidence level « (e.g. 95%) is calibrated if a% of the ground-truth
target is covered in that interval. There are post-processing methods for regression calibration (Kuleshov
et al., 2018; Pearce et al., 2018; Tagasovska & Lopez-Paz, 2019). For instance, (Kuleshov et al., 2018)
introduced an auxiliary model to adjust the output of the pre-trained model based on Platt-scaling, while
others use Gaussian process (Song et al., 2019) or maximum mean discrepancy (Cui et al., 2020). However,
an auxiliary model with enough capacity will always be able to recalibrate, even if the predicted uncertainty
is completely uncorrelated with the real uncertainty (Laves et al., 2020). Recently, (Levi et al., 2022)
extended the definition of calibration where a regressor is well calibrated if the predicted error is equal to
the difference between the ground truth and the predicted mean. Using this definition, (Laves et al., 2020)
proposed unbiasing the predicted error by optimizing a scaling factor in the post-processing step. However,
such methods often add overhead to an already slow model training phase.

3 Methodology: Likelihood Annealing

Our framework called Likelihood Annealing (LIKA) belongs to the family of models that are designed to
predict a distribution for the outputs (Kendall & Gal, 2017; Laves et al., 2020; Kompa et al., 2021; Upadhyay
et al., 2021¢;a; 2022) and the model is trained via a loss function derived from maximum likelihood estimation
(MLE). We describe the problem formulation and related methods along with their limitations in Section
3.1. We present LIKA that constructs temperature-dependent likelihood to learn faster, better-calibrated
regression uncertainty in Section 3.2, and analyze the effects of temperature annealing in Section 3.3.

3.1 Background and Motivation

Let D = {(x;,y:)}:=V be the dataset that comprises of samples from domain X and Y (i.e., x; € X,y; €
Y, Vi), where X,Y lies in R™ and R”, respectively. The goal of a regression task is to learn a function
W (;0): R™ — R™ (parameterized by ) that maps the input x to the output y. Let §; := ¥(x;;6) be the
estimate for the y; and ¢; := §; — y; be the residual between the prediction and the ground-truth. The
optimal parameters (*) are learned by minimizing the error (e.g., #1 or 5 loss) between the prediction
and ground truth using the labeled dataset. The ¢;/¢5 loss function to train regression models originate
by treating the residuals (i.e., ¢;) as following the i.i.d Laplace/Gaussian distribution. However, the i.i.d
assumption will not capture the heteroscedasticity, and will allow uncertainty estimation with the limiting
assumption of identical, i.e., homoscedastic, uncertainty values.

To estimate the uncertainty, the existing works (Kendall & Gal, 2017) relax the i.i.d assumption and learn
to model the heteroscedasticity as well. Such models are learned by maximizing the likelihood. Assuming
that residuals follow Gaussian distribution, i.e., ¢; ~ N(0,4;), the likelihood, P(D|f), is a factored Gaussian

j— v |2
distribution, P(D|0) = [T,=; \/21 — exp(— |y12&52”| ). the MLE estimates for the parameters are obtained by
G2 B

minimizing the negative-log likelih(;od,

I
2

%

log 62 Vi — vil?
—log P(D|0) = 0g20'z + |yz262yz‘ + Const. (1)
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i
The DNN is modified to output both the prediction (i.e., the mean of Gaussian) as well as the uncertainty
estimate (i.e., the variance of Gaussian) learned using the above equation, i.e., ¥(x;;0) = {§;,5;}. While
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Figure 1: (Left) Objective function based on negative log-likelihood of standard heteroscedastic Gaussian
distribution (blue) and temperature-dependent regularizer (orange) from Equation 4 as a function of
residual and the estimated standard deviation. (Right) The 2D plot showing surfaces for a fixed predicted
variance. The error and predicted variance are high at the beginning of the learning phase. The gradient
of the temperature-dependent regularizer is higher (orange) than the gradient for the standard objective
(blue), see Point a on both curves. Towards the end of training (with small error, predicted variance, and
low temperatures), the objective from Equation 4 is dominated by the negative log-likelihood of standard
heteroscedastic Gaussian with non-zero gradients. While gradients from the regularizer are zero, see Point b.

this method allows predicting the uncertainty estimates in single forward pass post training, it has several
downsides, as discussed in the following. The blue surface in Figure 1-(Left) shows the loss from Equation 1
(which is derived by taking the negative log of Gaussian likelihood). It consists of two variables: the residual
yvi — ¥i (denoted by u) and the standard deviation &; (denoted by v). At the beginning of the training
phase, the residual between the prediction and the ground truth is large along with significantly large
predicted variance. Still, the corresponding gradient at that point is small (see Point a on the blue curve in
Figure 1-(Right)), leading to slower convergence towards optima. As the learning progresses, the residual
between prediction and ground truth reduces substantially and so does the predicted variance, which leads to
very high gradients potentially causing gradient explosion, a phenomenon often observed in practice (see
Point b on the blue curve in Figure 1-(Left)). Together, this leads to slower model convergence as gradients,
in the beginning, are too small. At the same time, the learning rate would also have to be substantially smaller
to avoid gradient explosion later. Moreover, the works in (Laves et al., 2020; Levi et al., 2022; Phan et al.,
2018) have shown that this method requires an additional post hoc calibration phase to tackle miscalibration.

3.2 Constructing Temperature Dependent Improper Likelihood

To tackle the slow convergence issue while providing well-calibrated uncertainty estimates, we formulate a
temperature-dependent likelihood function that facilitates faster convergence with the help of temperature
annealing. Our formulation imposes an explicit condition on the uncertainty estimates, keeping them
calibrated throughout the learning phase, leading to calibrated uncertainty estimates without any post-hoc
calibration phase. While Equation 1 denotes the negative log-likelihood for the standard Gaussian distribution,
We formulate a new improper likelihood distribution on the network output given by,

=N izl —Ts{ Iyi — (yi + 6i)|z,5’i > Vi }
P(D‘Q) = € 12 y 6—T2(\)7z‘*yz‘\2) % e |Yz' - (yZ- — O’l)| Vi < Vi (2)
i=1 27a;
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Where, Ty, T5 are hyper-parameters that we refer to as temperature. We then use the improper maximum
likelihood estimator, as also used in (Coretto & Hennig, 2016; 2017; Aghaei et al., 2008) to derive an objective
function. We do this by taking the negative log of improper likelihood from Equation 2, leading to the
following objective (omitting the constants for clarity and simplification):

:N ~ 2 ~ A 2 A
log 67 - Vil Iy — (vi + 6%, 3 > yi }
— + T il?)+ T > . > . 3
z:: 2 20i2 2(19: = i) 3{ i — (yvi —0)*, 5 <vi )

We note that the above equation can be re-written as,

=N

log&? | |yi—vi .
3 8% B B9, - i)+ Tl — 191 - il (1)
i=1

Equation 4 has two additional terms (i.e., To(|9; — y:|?) and T3(|6; — |§: — y:||?)) compared to Equation 1.
To understand the effects of our proposed temperature-dependent improper likelihood, we first, look at the
newly introduced temperature-dependent regularizers, represented by L., given by,

Lieg = To(|y — yI*) + T3(16 — 5 — y1I*). (5)

Figure 1-(Left) shows the surface corresponding to L,cs in orange for substantially large temperature values.
We notice that at the beginning of the training phase, with temperature hyper-parameters set to high values,
Equation 4 is dominated by Lyes. As shown in Figure 1-(Right), the corresponding gradient at the beginning
of the training (dominated by L,eg) is much higher (see Point a on the orange curve). This encourages faster
convergence at the beginning of the training phase, unlike the Equation 1.

To further understand the effects of the newly introduced
temperature-dependent regularizers, we look at the conceptual
schematic, shown in Figure 2, that illustrates the soft constraint
imposed by the regularizers, represented by Lycq. As discussed — Low Error and Variance
above, we propose to start with high values for the T» and High Brror and Variance
T3 hyper-parameters and gradually decrease them during the

course of training. We observe that at high temperatures (i.e.,

at the beginning of the training phase), the objective function o; a;
from Equation 4 is dominated by the last two terms that are )
controlled by T and T3. We show these two terms (i.e., Lreg) in
Figure 2 as a function of y for a fixed ground truth y and a fixed . — -
&, and note that minimizing £,., encourages the prediction y O

to be close to the ground truth y, while also ensuring that the Figure 2: Schematic of the temperature-
discrepancy between the prediction and ground truth |y — y|?> dependent regularizer characterized by
is close to the predicted variance 62, encouraging calibration of {¥,¥,6}. This enforces the prediction to be
the predicted variance without the need of post-hoc techniques close to ground truth and the uncertainty
(orange bold curve in Figure 2). estimate to be close to the error, i.e., cali-
brated (shown in orange). When the pre-
dicted variance is small, all the optimums
come close to each other (shown in blue).

Lo = To(|5: — v:*) + T(l6: = 3: — v:I)

1
1
1
1
1
1

Moreover, as the training progresses and the temperature de-
creases, ¥ comes closer to y and the predicted variance & also
decreases, we notice that this leads to the local optimums com-
ing closer, and eventually collapsing at § =y in the limit (blue bold curve in Figure 2). Throughout the
early phase of training (with high temperature), the regularizer encourages the prediction y to be close to
ground truth y and the predicted variance 62 to be close to error |y — y|2. This way, the regularizer imposes
a soft constraint for calibration of the predicted uncertainty estimate throughout the training.

3.3 Effects of Temperature Annealing

The temperature-dependent improper likelihood in Equation 2 leads to objective in Equation 4 that allows
us to control the contribution of individual terms by changing the temperature hyper-parameters 75, T5.
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As described in Section 3.2, annealing the temperature hyperparameters allow faster convergence of the
uncertainty-aware regression with better-calibrated uncertainty methods. We start by initializing Ts, T3 with a
high value of 100 and progressively reduce them according to the training epochs using exponential annealing
— referred to as temperature annealing. At higher temperatures, the overall objective is dominated by the

Decreasing Temperature

T, T3 = 16_1, le7? Ty, T3 = 1674, le 15 = 1677, le7”

Z:;?—l- 3 Z:ZACreg=T2u2—4-T3(v—|u|)2

Figure 3: Effects of temperature annealing. As we anneal the temperature in Equation 4, the proposed
temperature-dependent regularizer L., from Equation 5 (shown in orange) gradually changes from (a), (b),
(¢) to (d), which provides faster convergence at the beginning of training while ensuring convergence to the
same optima as the standard objective function as described in Equation 1 (shown in blue).

temperature-dependent terms (L,eg). Figure 3-(a)) shows the loss surface for the negative log-likelihood
derived from standard Gaussian (i.c., Equation 1) and the newly introduced temperature-based regularize L, eg.

As the temperatures decrease, the overall loss is close to the standard loss function. This can also be seen from
Figure 3-(b,c), where the surface corresponding to L,e, flattens out at lower temperature, eventually coming
close to plane surface as temperatures approach 0 as shown in Figure 3-(d)). Note that, when temperatures
are zero Lyeg = 0 and Equation 4 reduces to Equation 1. This dynamic contribution from different terms
allows the network to converge faster in the beginning (as gradients from the temperature-dependent loss
terms are higher than the standard loss term), and ensures stable convergence to the same optima as the
standard loss, thus leading to faster, better-calibrated uncertainty.

3.4 Normalizing the improper Likelihood

We further study our proposed improper likelihood (presented at Equation 2) to convert it into proper
likelihood. This is achieved by normalizing Equation 2. Let the normalizing constant be Z;. Then the proper
likelihood is given by,

i=N —13i-vil? —Ts { |yl <yl + &Z)Evyz >Yyi }
P(DI0) = [ Zie” &0 x e 099" e Vi — (vi = &)1 9 < i (6)
i=1

&2T3(2(72T2+1) 252,
o _ = 7 =203
2ﬁoeXp< 252 (To+T3) 71 (erf( %L&Q(TQ-}—T;;H—Q)‘FI)

In the above, Z; =
/462 (T2 +T3)+2

. The negative log-likelihood of Equa-

tion 6 leads to following objective,

i=N 52T 20 T + 1) 262Ts Iy — y'|2
Loorm = ZA + log | erf L +1) —05logs? + 22—
¢ ; ( (Th +T3) +1 s V462 (Ty + T3) + 2 87 262

+1o(3: — yil*) + Ts(16: — |3 — vil ) (7)
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4 Experiments

We first provide a detailed description of our experimental setup, including the datasets used for training
and evaluation, the evaluation metrics employed to assess the performance of our model in Section 4.1. We
compare our model to a wide variety of state-of-the-art methods quantitatively and qualitatively in Section 4.2.
Finally, we also provide an ablation analysis in Section 4.2 to study the rationale of our model formulation.

4.1 Experimental Setup

Datasets and Tasks. We conduct experiments on five datasets (three small scale problems, two large scale
problems) to solve the regression task and provide uncertainty estimation.

We choose the following three low-dimensional regression problems. They highlight the different complexities
and network architectures that are required to solve them. In Chaotic System using Lorenz Attractor (referred

to as Lorenz Attractor), the Lorenz equations describe non-linear chaotic systems given by, % =10(z2 — 21),

% = 21(28 — z3) — 29, % = 2129 — 823/3. Similar to (Garcia Satorras et al., 2019), to generate a trajectory
we run the Lorenz equations with a 0t = 107° from which we sample with a time step of ¢t = 0.05. Each
point is then perturbed with Gaussian noise of standard deviation 0.5 to produce pairs of noisy and clean
trajectories split into non-overlapping train/validation/test sets. We use a 1D CNN to map the noisy input
to clean output. The Physical Properties of Molecules (Atom3D) (Townshend et al.) is a 3D molecular
structure dataset aiming to predict the physical property such as the dipole moment given the 3D atomistic
representation. We use the standard Graph Neural Network (GNN) for this task. The House Price Prediction
(Boston-housing) (Harrison Jr & Rubinfeld, 1978; Belsley et al., 2005) dataset is used to predict the house
prices using various attributes using Multi Layer Perceptrons (MLPs).

To show the generalization of our method to high-dimensional regression problems, we use the following two
datasets. In Super-resolution of Natural Images (Super-resolution), we learn mapping from low-resolution to
high-resolution images using CNNs, using DIV2K dataset (Timofte et al., 2018; Ignatov et al., 2019). We do
4x downsampling to create the corresponding low-resolution images. The dataset is split into 800/100,/100
images for training/val/test sets. In Medical Image Translation (MRI Translation), We translate one imaging
modality to another, i.e., T1 MRI to T2 MRI images. As T1 and T2 MRI from the same patient in the
same orientation are often not available and T2 takes longer to acquire, learning a mapping from T1 to T2 is
desirable. Asin (Upadhyay et al., 2021a), we use T1 and T2 MRI of 500 patients from IXI dataset (Robinson
et al., 2010) (200/100/200 for training/val/test) in a 2D CNN based on U-Net (Ronneberger et al., 2015).

Evaluation Metrics. To measure the quality of regression output, we adopt the standard metrics: mean
absolute error (MAE) and mean square error (MSE). In addition, for the super-resolution and medical image
translation tasks, we use PSNR and SSIM to measure the structural similarity between two images (Wang
et al., 2004). To measure the quality of uncertainty estimates (6%), we compute (i) the correlation coefficient
(Corr. Coeff.) between uncertainty estimates (62) and the error (| —y|?). (ii) Uncertainty calibration
error (UCE) for regression tasks (Laves et al., 2020; Levi et al., 2022). Following (Guo et al., 2017), the
uncertainty output 62 of a deep model is partitioned into M bins with equal width (each represented
by B,, for Vm € {1,2..M}). A weighted average of the difference between the predictive error and

uncertainty is used, UCE = S ‘B—J\’f”err(Bm) — uncer(By,)|. Where, err(B,,) = ﬁ 2ien, I9i —

m=1
yi||? and uncer(B,,) := ﬁ Yien,, 07 - (iii) UCE for the re-calibrated uncertainty estimates (R.UCE). We
use post-hoc calibration technique introduced in (Laves et al., 2020), called o-scaling, that optimizes
for the scaling factor (s), post training to produce uncertainty estimates (62) and predictions (§) using,

v — . 2
s* = argmin [N log(s) + 7= Zf;l M . In addition, we present the (iv) expected calibration error
S

&3
(ECE) and (v) sharpness (Sharpness). While ECE is another metric to quantify the calibration of the
uncertainty estimates, one must note that it may be possible to have an uninformative, yet average calibrated
model (Chung et al., 2021; Zhou et al., 2021). Therefore it is necessary to also present the Sharpness metric
that encourages more-concentrated distributions. Finally, we present the (vi) predictive log-likelihood that
assesses how well the predicted conditional distribution fits the data.

Implementation Details. Our LIKA method is generalizable across different types of architectures. Here
we perform experiments with MLPs, 1D/2D CNNs, and GNNs. We take the well-established networks for
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Figure 4: Plots comparing the required convergence time (number of epochs to converge) for different methods
and corresponding ECE during the training on (i) Super-resolution, (ii) MRI translation, (iii) Atom3D.

the respective problems and modify them to produce the uncertainty estimates as described in (Kendall &
Gal, 2017; Sudarshan et al., 2021). All the networks were trained using Adam optimizer (Kingma & Ba,
2014). The initial learning rate was set to 2e~* and cosine annealing was used to decay the learning rate over
the course of the learning phase. The hyper-parameters, (T2, 75) (Equation 4) were set to (100, 100) and
scheduled to exponentially decay over the course of the training. We provide the code in the supplementary.

4.2 Comparing to Uncertainty Estimation Methods

Compared methods. For each of the regression tasks, we compare our model (LIKA) to eight representative
state-of-the-art methods for uncertainty estimation using DNNs for regression tasks, belonging to a diverse
class of methods, i.e. Bayesian ensemble, test-time data augmentation, maximum likelihood and variants
of the same, and finally quantile regression methods. In addition, we evaluate LIKA-Norm for some of our
experiments. This method uses proper likelihood-based objective to train the network given by Equation 6.

Bayesian methods: In (DO) (Gal & Ghahramani, 2016) the weights of the neural network are randomly
dropped at training and inference time. Multiple forward passes for the same input at inference time allow
us to estimate the uncertainty. In Concrete Dropout (Conc. DO.) (Gal et al., 2017) the optimal dropout
probability for the weights of the neural network is learned at training. While the above methods only
consider the epistemic uncertainty, we also evaluate DO-NLL, which is similar to DO, except the head is split
into two to predict both the mean and variances using the Gaussian-NLL loss function, along with dropouts
during training and evaluation for Boston Housing and Atoms3D dataset. For DO-NLL, we consider the
aleatoric uncertainty for evaluation obtained as the mean of variance head outputs at evaluation for a single
sample with 100 forward passes and dropouts activated.

Ensemble Methods: In Deep Ensemble (Ens) (Lakshminarayanan et al., 2017) multiple deterministic net-
works are trained to make the final prediction with uncertainty estimates. In Anchored Ensemble (Anch.
Ens.) (Pearce et al., 2020) the weights of the neural networks in the ensemble are regularized about values
drawn from a prior distribution, allowing approximate Bayesian inference. While the above estimates epistemic
uncertainty, to capture the aleatoric uncertainty, We also evaluate Ens-NLL for Boston Housing and Atoms3D
dataset, which is an ensemble of 5 similar models except for the head of each model in the ensemble is split
into two to predict both the mean and variances using the Gaussian-NLL loss. Each ensemble model is
trained independently, with different weight parameter initializations. The aleatoric uncertainty considered
in evaluation of Ens-NLL is the mean of variance head for all the models in the ensemble.

Test-time Data Augmentation Methods: In Test Time Data Augmentation (TTDA) (Wang et al., 2019;
Ayhan & Berens, 2018; Gawlikowski et al., 2021) multiple perturbed copies of the input are passed through a
deterministic network to estimate the predictive uncertainty at the inference stage.



Under review as submission to TMLR

Mazimum likelihood methods: In this method (NLL) (Kendall & Gal, 2017; Sudarshan et al., 2021) the
network is modified to predict the mean and variance and then trained by optimizing negative log-likelihood.
The variance head then provides uncertainty estimates for the prediction at the inference time. For Boston
Housing and Atoms3D data, we also evaluate (Stirn et al., 2022) (called NLL-FH) that uses a modified
objective instead of the NLL of heteroscedastic Gaussian, using a backbone architecture similar to NLL (and
other methods in this work), with the head split to predict both mean and variance as (Kendall & Gal, 2017).

Quantile Regression Methods: In Calibrated Quantile Regression Method (BPLoss) (Chung et al., 2021)
proposes a model that specifies the full quantile function for the predictions and achieves a balance between
calibration and sharpness. In Collaborating Networks for estimating uncertainty intervals (CN) (Zhou et al.,
2021) two networks are trained simultaneously, one to estimate the cumulative distribution function, and
the other approximates its inverse. We note that some baseline methods (i.e., BPLoss and CN) have only
been proposed for low-dimensional regression settings (where the output of a model is single scalar) and it is
non-trivial and inefficient to scale it to high-dimensional regression settings (e.g., image translation, where
the output for an input is a high-dimensional matrix/tensor). Therefore such models are compared only on
low-dimensional regression tasks where they are applicable.

Quantitative results on convergence. In this experiment, we train different models to perform the
different kinds of regression task and keep track of the training and validation loss to identify if the model
has converged. For all the models we used the same optimizer (i.e., Adam (Kingma & Ba, 2014)) with the
same initial learning rate (i.e., 1r= 2e~%) and identical decaying schedule (i.e., cosine annealing for 1r).

We observe in Figure 4 that the baseline methods consistently take longer time to converge while our proposed
method (LIKA) consistently has faster convergence. For instance, on the super-resolution task, our method
takes about 4,000 epochs to converge while the other baseline methods consistently take longer than 8000
epochs to converge. In particular, the NLL baseline takes the longest to converge. We also note that in the
early phase of training, our LIKA has much higher loss, this is due to the additional temperature dependent
loss terms (in Equation 4) that contribute to the overall loss. However, the higher values of the temperature
T, and T3 in the beginning of the training phase also allow faster convergence, as explained in Section 3.
Moreover, towards the end of the training phase, the temperature parameters are annealed to a low value
(close to zero) and the over all loss function reduces to a low value.

Figure 4 (second row) shows the evolution of ECE for the derived uncertainty using various methods during
the training. Again we see that our LIKA achieves the lowest ECE much faster than the other methods. A
similar trend is observed for the other datasets. For example, on Atom3D dataset, the proposed method
converges at about 2000 epochs, much faster than other baselines, similarly, it achieves the lowest ECE
much faster than other methods. These results show that our method converges much faster than the other
methods, which is in line with our motivation to ensure a faster convergence for the regression uncertainty
model along with better-calibrated uncertainty as described in Section 3.3.

Quantitative results on regression and uncertainty. Uncertainty-aware regression models must be
evaluated on two fronts which are (i) the regression performance, i.e., the quality of the target predictions and
(ii) the quality of estimated uncertainty (the uncertainty should be sharp and well calibrated). We evaluate the
model performance based on two set of metrics: (1) task-specific metrics that evaluate the regression results
using MAE, MSE, PSNR, SSIM, and (2) calibration-specific metrics that evaluate the quality of the uncertainty
estimates using C.Coeff., UCE, R.UCE, ECE, Sharp., and Log-likeli. Table 1 shows the quantitative
results that evaluate regression and the quality of uncertainty estimates for different methods on multiple
regression tasks. Our LIKA method also obtains high quality regression outputs. In two tasks (including
super-resolution, and MRI translation), our LIKA achieves the best or competitive performance compared to
the other methods. We note that while no single metric can indicate the “goodness” of uncertainty estimates
(as there is no groundtruth for uncertainty values), the collective set of metrics such as C.Coeff ., UCE, R.UCE,
ECE, Log-likeli, Sharp. provide a holisitic indication of “goodness” of uncertainty metric. The proposed
method, LIKA, consistently performs well in terms of the above metrics. Overall, these quantitative results
show that our method performs well in providing both satisfactory regression and uncertainty estimates.

Qualitative results on regression and uncertainty. Figure 5 shows the regression output on different
datasets. Figure 5-(i) & (ii) visualizes the generated images for image super-resolution and MRI translation



Under review as submission to TMLR

T | Methods Metrics o
MAE| MSE| SSIMt PSNRt C.Coeff. 1 UCE, R.UCE] Loglikeli. 1 ECE| Sharp. |
DO (Gal & Ghahramani, 2016) 2851 13.26 - - 0.014 10.76 10.18 246 10.2 8.66
DO-NLL (Gal & Ghahramani, 2016) 2661 12.83 - - 0.116 8783 8.226 221 9.32 8.48
Cone. DO (Gal et al., 2017) 2413 1018 - - 0.135 9882 9126 2.15 9.18 9.16
Ens (Lakshminarayanan et al., 2017) 2971 1376 - - 0.011 11.26 10.78 241 103 8.87
@ | Ens-NLL (Lakshminarayanan et al., 2017) 2913 12.82 - - 0.114 10.38 9.98 -2.33 10.1 8.27
‘Z | Anch. Ens. (Pearce et al., 2020) 10.11 - - 0.154 9.547 9.135 232 9.92 9.82
i TTDA (Wang et al., 2019; Ayhan & Berens, 2018; Gawlikowski et al., 2021) . 10.30 - - 0.007 14.32 13.85 224 11.8 9.28
£ | NLL (Kendall & Gal, 2017) 2663 10.75 - - 0.107 1267 1223 242 115 8.21
& | NLL-FH (Stirn et al., 2022) 2551 10.14 - - 0.103 13.63  13.11 -2.62 17 8.33
BPLoss (Chung et al., 2021) 2684 1149 - - 0.237 9216 8.837 211 9.72 9.01
CN (Zhou et al., 2021) 2504 1113 - - 0213 1084 9722 -2.23 9.65 9.67
LIKA (ours) 2593 1051 - - 0.348 0756  0.637 -2.06 6.37 8.22
LIKA-Norm (ours) 2633 1094 - - 0311 0818 0.682 2,08 6.87 9.14
DO (Gal & Ghahramani, 2016) 1950 5.828 B - 0.085 5380  5.054 0.24 212 1.32
DO-NLL (Gal & Ghahramani, 2016) 0950  1.224 - - 0.135 4177 3.956 0.22 1.92 411
Cone. DO (Gal et al., 2017) 1834 5212 - - 0.136 1879 4122 0.21 1.81 118
Ens (Lakshminarayanan et al., 2017) 1215 2.388 - - 0.138 1623 4.376 0.23 1.69 417
o | Ens-NLL (Lakshminarayanan ot al., 2017) 092 0983 - - 0.166 4115 3.977 0.22 1.66 4.02
2 | Anch. Ens. (Pearce et al., 2020) 1087 1743 - - 0.182 1124 3763 -0.26 1.42 3.95
:f TTDA (Wang et al., 2019; Ayhan & Berens, 2018; Gawlikowski et al., 2021) | 0.903  1.301 - - 0.157 4167 3.988 0.38 1.94 478
NLL (Kendall & Gal, 2017) 0.498  0.463 - - 0.164 3358  3.335 0.22 1.38 3.32
NLL-FH (Stirn et al., 2022) 0507 0.582 - - 0.112 1468 4112 0.32 224 3.82
BPLoss (Chung et al., 2021) 0527 0.873 - - 0.189 3527 3.166 0.21 1.55 3.12
CN (Zhou et al., 2021) 0521 0845 - - 0.087 4311 2971 -0.16 177 3.18
LIKA (ours) 0513 0495 - - 0.567 0296  0.277 0.18 1.37 3.17
LIKA-Norm (ours) 0554 0585 - - 0511 0377 0315 0.20 1.68 3.92
DO (Gal & Ghahramani, 2016) 1373 3.463 - 20.85 0.281 2861 2134 0.16 131 5.67
£ | Conc. DO (Gal et al., 2017) 1247 3198 - 30.34 0.311 2379 2136 0.14 113 5.22
£ | Ens. (Lakshminarayanan ct al., 2017) 2544 1165 - 24.32 0.778 6726 6.294 0.22 10.4 8.43
Z | Anch. Ens. (Pearce ct al., 2020) 2122 1012 - 25.64 0.432 8756 8.154 0.29 10.7 9.43
2 | TTDA (Wang et al, 2019; Ayhan & Berens, 2018; Gawlikowski et al,, 2021) | 1.391 3764 - 20.16 0.438 3325 3.077 017 5.96 8.91
& | NLL (Kendall & Gal, 2017) 0172 0.048 - 31.28 0.588 2.368 1.933 013 4.33 7.87
LIKA (ours) 0.153  0.029 - 0.821 0779  0.356 -0.11 136 9.12
DO (Gal & Ghahramani, 2016) 0832 0548 0.947 0.033 0748 0519 20.38 167 6.32
5 | Conc. DO (Gal et al., 2017) 0.801 0423 0951 0.134 0711 0.494 -0.36 143 .82
Z | Ens. (Lakshminarayanan et al., 2017) 0793 0462 0953 0.029 0941 0.733 0.36 8.76 102
Z | Anch. Ens. (Pearce et al., 2020) 0755 0441 0957 0.178 0883  0.713 0.41 .11 9.21
£ | TTDA (Wang et al.,, 2019; Ayhan & Berens, 2018; Gawlikowski et al., 2021) | 0.883 0691  0.939 0.047 1175 0.994 -0.39 113 103
2 | NLL (Kendall & Gal, 2017) 0693 0414 095 0.189 0581 0512 -0.36 1.45 273
LIKA (ours) 0.618  0.351  0.962 0518  0.104  0.053 -0.16 0.74 0.83
DO (Gal & Ghahramani, 2016) 0732 0683 0912 0.159 0.864  0.771 -0.33 148 6.23
£ | Conc. DO (Gal et al., 2017) 0715 0612 0917 0.189 1125 0932 0.31 112 7.89
Ens. (Lakshminarayanan et al., 2017) 0681 0611 0927 0.110 1143 0974 0.36 4.86 7.21
Anch. Ens. (Pearce et al., 2020) 0655  0.532 0933 0.166 1122 0913 0.34 5.88 7.32
TTDA (Wang et al., 2019; Ayhan & Berens, 2018; Gawlikowski ot al., 2021) | 0755  0.720  0.904 0.128 1483 1153 0.37 7.21 9.74
NLL (Kendall & Gal, 2017) 0632 0582 0938 0.134 1.673 1.448 -0.28 4.03 5.12
LIKA (ours) 0.615 0537  0.946 0432 0.098  0.062 -0.30 3.26 5.78

Table 1: Evaluating different methods on five datasets using MAE, MSE, PSNR, SSIM (where applicable, to
evaluate regression) and C.Coeff., UCE, R.UCE, Log-Likeli., ECE, Sharp. (to measure quality of uncertainty
estimates). 1/| indicates higher/lower is better. “T”: tasks. Best results are in bold.

tasks. While the other methods often generate relatively blurry images with artifacts in colours, our model
produces better output visually more similar to the ground-truth. Moreover, Figure 5-(i) & (ii) also shows
the uncertainty maps, along with the prediction and error for super-resolution and MRI translation. We
observe that for compared methods, uncertainty maps do not always agree with error maps at pixel level
(i.e., higher/lower uncertainty than the corresponding error), whereas our uncertainty maps are in agreement
with the errors. This suggests that our model provides better-calibrated uncertainty. Figure 5-(iii) shows the
plots for predictions vs ground-truth on the Atom3D dataset. We can see that compared to other methods,
our method yields predictions much closer to the ground-truth e.g., on the Atom3D dataset, our method
produces regression output more highly correlated with the ground-truth. Figure 5-(iv) shows the input noisy
trajectory, denoised output and the corresponding ground-truth for the Lorentz attractor dataset. We can
see that compared to other methods, our method yields smoother trajectories.

4.3 Ablation Analysis of Annealing

Table 2 shows the ablation study of two temperature hyperparameters in our formulated temperature-
dependent likelihood (Equation 2) along with different choices of priors for the super-resolution task.
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Figure 5: Qualitative results: input, predictions, groundtruth, and the error.

We test the baseline that removes both temperature-dependent terms (i.e. Tp = T3 = 0) with a uniform
prior, this is equivalent to the NLL method and is shown in the first row (MAE of 0.693). We then study
the effect of fixing one of the temperatures at a non-zero value while setting the other temperature to O.
With Ty = 100, T3 = 0, we see a slight improvement in regression performance (MAE of 0.614 vs. 0.693) and
much poorer performance with respect to uncertainty calibration (UCE of 1.169 vs. 0.581), this is due to
more weighting of fidelity term between the prediction and the ground-truth along with suppression of the
default calibration effect of NLL. On the other hand, T = 0,75 = 100 suppresses the default fidelity term for
NLL, therefore the output is of significantly worse quality (poor regression scores, MAE of 1.395 vs 0.693) this
further degrades the quality of the uncertainty estimates (UCE 3.733 vs 0.581). We notice that if the model
does not perform good regression, the quality of uncertainty estimate is also adversely effected.

We then study the effects of decaying one of the temperatures while setting other to 0. With 75, decaying
(i.e., Ty =, T3 = 0) we see slightly better performance than 75 = 100,73 = 0 (MAE of 0.612 vs. 0.614 and UCE
of 0.983 vs. 1.169), whereas with T decaying (i.e., To = 0,73 =]) we see good regression performance but
also an improved calibration performance (UCE of 0.152 vs. 0.581). With both the parameters decaying (i.e.,
T, =], T3 =]) we achieve improved regression and calibration results concluding that annealing works the
best. In addition to uniform prior setup (i.e., P(6) = U(0)), we evaluate two other priors (i) Gaussian prior
on the parameters of the network, i.e., P(0) = N (6) that is equivalent to ¢ regularization of weights and
(ii) Laplace prior, i.e., P(8) = £(0) that is equivalent to ¢; regularization of weights. With Gaussian/Laplace
prior we achieve MAE of 0.625/0.612 showing that carefully crafted priors may further boost the performance,
designing such priors will be explored in future works.

4.4 Evaluation on Out-of-Distribution Data

Previous works have studied the performance of various uncertainty-aware methods in the presence of
out-of-distribution (OOD) samples at the inference time (Ovadia et al., 2019; Hendrycks et al., 2019; Nandy
et al., 2020; Mundt et al., 2019). To evaluate if better quality of uncertainty estimates lead to better OOD
performance, we evaluate all the uncertainty trained model for MRI Translation on OOD samples. MRI
image acquisition is a noisy process that leads to noisy/corrupted images (Macovski, 1996; Parrish et al.,
2000; Wiest-Daesslé et al., 2008; Aja-Fernandez & Vegas-Sanchez-Ferrero, 2016). Similar to (Upadhyay
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Methods Metrics
MAE | MSE | PSNR 1 SSIM 1 C.Coeft. 1 UCE] R.UCE.} Log-likeli. T ECE | Sharp. |

T, =0,T3=0 0.693 0.414 37.15 0.955 0.189 0.581 0.512 -0.36 1.45 2.73
T5 =10,T5 = 10 0.667 0.396 37.33 0.958 0.184 0.577 0.503 -0.31 1.42 2.24
T5 =100,T3 =0 0.614 0.384 37.72 0.961 0.062 1.169 0.833 -0.41 1.77 2.82
Ty, =0,T3 =100 1.395 7.274 20.19 0.793 0.219 3.733 2.442 -0.44 2.12 3.11
T, =100 1,75 =0 0.612 0.344 37.76 0.961 0.077 0.983 0.797 -0.27 1.03 1.35
T, =0,T3 =100 ) 0.632 0.388 37.71 0.960 0.442 0.152 0.116 -0.20 0.85 0.98
T, =100 |,T5 = 100 | 0.618 0.351 37.87 0.962 0.518 0.104 0.083 -0.16 0.74 0.83
T, =100 ],75 =100 |

with P(0) = N(0) 0.625 0.358 36.98 0.952 0.488 0.168 0.133 -0.24 1.12 1.47
T> =100 ],75 =100 |

with P(0) = £(0) 0.612 0.353 37.92 0.966 0.503 0.118 0.102 -0.15 0.83 1.01

Table 2: Ablation study of temperature hyperparameters of the temperature-dependent likelihood used in
the proposed likelihood annealing (LIKA) method on image super-resolution task.
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Figure 6: Evaluation of different methods using out-of-distribution input samples for MRI translation.

et al., 2021a;c; Sudarshan et al., 2021), we study the performance of various uncertainty-aware models in
the presence of noisy input samples (corrupted with varying degrees of noise) at test time. Figure 6-(left)
shows the example of in-distribution (noise-level 0, NLO) and out-of-distribution samples (NL1 and NL2).
The severity of corruption gradually increases from NLO to NL2. From Figure 6-(middle and right), that
shows the regression and quality of uncertainty estimates in the presence of OOD samples, we observe that
the performance of various models degrades as severity of corruption increases from NLO to NL2, however
our LIKA method performs much better than the compared methods even at higher severity of corruption
both in terms of regression and uncertainty calibration metric.

5 Conclusion

This paper introduces a novel approach to improve the calibration of uncertainty estimates for regression
tasks. We propose a temperature-dependent likelihood that allows for faster and more accurate learning,
while avoiding the need for post-hoc calibration. Our method employs a temperature annealing technique
during training, which has been shown to lead to 1.5 to 6 times faster convergence compared to existing
approaches. Additionally, we demonstrate the effectiveness of our method in producing superior regression
results with better calibrated uncertainty estimates, compared to five existing uncertainty estimation methods,
across multiple datasets. We further investigate the potential of our approach in out-of-distribution scenarios,
showing its ability to generalize well and highlighting its robustness. Our study also includes an ablation
analysis, revealing key components of our method and providing valuable insights for future research in
uncertainty estimation. Overall, our proposed temperature-dependent likelihood represents a promising
direction for improving the efficiency and accuracy of uncertainty estimation in regression tasks.
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