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Heterogeneous Graph Transfer Learning for Category-aware
Cross-Domain Sequential Recommendation

Anonymous Author(s)∗

Abstract
Cross-domain sequential recommendation (CDSR) is proposed to
alleviate the data sparsity issue while capturing users’ sequential
preferences. However, most existing methods do not explore the
item transition patterns across different domains and can also not
be applied to a multi-domain scenario. Moreover, previous methods
rely on overlapping users as bridges to transfer knowledge, which
struggles to capture the complex associations across domains with-
out sufficient overlapping users. In this paper, we introduce item
attributes into CDSR, and propose a heterogeneous graph transfer
learning method to address these issues. Specifically, we construct a
cross-domain heterogeneous graph to allow the association of user,
item, and category nodes from different domains, and enhance the
flexibility of the model by enabling message propagation between
more nodes through edge expansion based on the semantic similar-
ity and co-occurrence probability. In addition, we devise meta-paths
from different perspectives for nodes at item, user and category lev-
els to guide information aggregation, which can transfer knowledge
across domains and reduce the reliance on the number of overlap-
ping users. We further design attention modules to capture users’
dynamic preferences from the item sequences they have interacted
with in each domain, and explore the transition patterns within
category sequences which reflect users’ coarse-grained preferences.
Finally, we perform knowledge transfer across different domains,
and predict themost likely items that users will interact with in each
domain. Extensive empirical studies on three real-world datasets in-
dicate that our HGTL significantly outperforms the state-of-the-art
baselines in all cases. The source codes of our HGTL and the datasets
are available at https://anonymous.4open.science/r/HGTL-C135.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Cross-domain recommendation, Sequential recommendation, Het-
erogeneous graph, Transfer learning
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Figure 1: Illustration of category-aware cross-domain sequen-
tial recommendation.

1 Introduction
Cross-domain sequential recommendation (CDSR) [6, 18, 25, 28, 29,
37] combines sequential recommendation (SR) [7, 10, 12, 16, 45]
with cross-domain recommendation (CDR) [5, 8, 23, 40, 42] by in-
troducing some extra source-domain data, aiming to capture item
transition patterns while alleviating the sparsity problem. As shown
in Fig. 1, taking the “Movie” and “Book” domains as an example, the
user’s interaction with the book “Murder on the Orient Express” is
mainly due to the fact that the user has watched the movie based on
the book, whereas it’s difficult to account for the transition between
the books “Oliver Twist” and “Murder on the Orient Express” in
the “Book” domain alone. In CDSR, a common approach to asso-
ciate two separated domains is to learn user features in different
domains separately, and perform knowledge transfer between them
to obtain comprehensive user preferences [1]. However, such an
approach relies on the same users in different domains as a bridge
for knowledge transfer, whereas the overlapping users may only
account for a small fraction [24, 44]. Therefore, information from
the item aspect has the potential to serve as a complementary way
to bridge two domains.

In SR, categories are commonly used as an auxiliary attribute [3,
22, 36] since the transition relationships between different cate-
gories in a user’s sequence also reveal coarse-grained transition
patterns. However, most existing methods only consider scenarios
where a single item corresponds to a single category, whereas in
practical applications, a single item often corresponds to multiple
categories. Moreover, there are also some complicated relationships
between items and categories across different domains, as shown
in Fig. 1 the category “Suspense” preferred by the user in both
domains can be utilized to reveal the relationships among some
items from two domains.

To address the above challenges, in this paper we study a new and
emerging problem, i.e., category-aware cross-domain sequential
recommendation (CCDSR). Our goal is to introduce category infor-
mation into CDSR, which can reflect users’ intra- and inter-domain
preferences over a period of time.

In CCDSR, we not only face the challenges existing in CDSR and
attribute-aware SR, but also need to consider the category-category
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relationships and category-item relationships across different do-
mains, as well as how to transfer knowledge of category features
and sequential features between domains. Furthermore, due to the
domain-specific characteristics in cross-domain scenarios, the intro-
duction of excessive additional information may result in noise and
the negative transfer problem. Moreover, in real-world applications,
the proportion of overlapping users is relatively small compared
to the total user population. For non-overlapping users, although
their behavioral sequences only exist in a single domain, this part
of data is also valuable for the model to learn from.

To tackle the above issues, we propose a novel solution named
heterogeneous graph transfer learning (HGTL). Specifically, we
construct a cross-domain heterogeneous graph to connect items
from different domains via user or category associations, which re-
duces the reliance on overlapping users as the only bridges between
different domains. In order to obtain richer contextual information
for nodes and achieve knowledge transfer across different domains,
we devise meta-paths from three different perspectives for nodes at
item, user and category levels, and adopt contrastive mechanisms to
jointly learn complementary information from different meta-paths.
Moreover, we further enhance the correlation between different do-
mains through edge expansion based on the semantic similarity and
co-occurrence probability, which enable message propagation be-
tween more nodes. For a user’s behavior sequence in each domain,
we employ the attention mechanisms to capture the item-based
sequential preferences. Furthermore, we design an item-category
attention layer to measure the importance of multiple categories for
a given item, and explore the category-based sequential preferences
that reflect coarse-grained transition patterns within the sequence.
Finally, we aggregate the information from different domains via
some transfer units and predict the most likely items that users
will interact with in each domain. It is worth mentioning that our
model can be applied to a multi-domain scenario by expanding
the heterogeneous graph and including more sequential preference
learning modules, for which we have also conducted experiments.

• We introduce the category information into CDSR and define
a new problem, for which we propose a novel solution named
heterogeneous graph transfer learning (HGTL).

• We associate nodes from different domains by constructing a
new cross-domain heterogeneous graph, and design a novel meta-
path guided node representation learning module for knowledge
transfer across domains, which can reduce the reliance on the
number of overlapping users.

• We design a novel category-aware sequential preference learning
module to capture the item-based and category-based prefer-
ences of users in each domain, and two specific transfer units to
adaptively aggregate the information from different domains.

• We conduct extensive empirical studies on three real-world datasets,
where the results show that our HGTL significantly outperforms
the state-of-the-art baselines in all cases.

2 Related Work
Cross-Domain Sequential Recommendation. 𝜋-Net [26] is one
of the earliest works for CDSR, which employs GRUs to capture
and share the sequential information in different domains. CD-
SASRec [1] is an improved version of SASRec [14] implemented for

CDSR, which integrates the users’ preferences in the source domain
into the target domain. DA-GCN [9] constructs a domain-aware
graph to capture the explicit structural information and associations
among items of different domains. Recently, there are somemethods
that utilize the contrastive mechanism to enhance the capability of
model representation [4, 38, 41]. For example, C2DSR [4] proposes
a framework that incorporates two sequential objectives with a
contrastive objective, to jointly learn the single-domain and cross-
domain user representations. MGCL [38] adopts the contrastive
mechanism in an intra-domain item representation view and an
inter-domain user preference view. However, these methods neglect
to explore the rich information of item attributes, and rely on the
number of overlapping users as bridges to transfer knowledge.
Moreover, none of the above methods consider the multi-domain
recommendation scenario, i.e., utilizing data from more than two
domains and simultaneously improving the performance ofmultiple
domains, which is more common and more challenging in real-
world applications.
Attribute-Aware Sequential Recommendation. Efficiently uti-
lizing rich side information to learn higher-quality item represen-
tations has become a popular research topic in sequential recom-
mendation. CAFE [17] employs an attention mechanism to learn
user intent from item attributes and uses it as a prior knowledge
to guide item representation learning. NOVA [21] devises a non-
invasive attention mechanism to learn a better distribution of at-
tention instead of fusing side information directly into the item
representations. Moreover, there are some methods focusing on
modeling category information [3, 22, 36] since categories not only
provide rich contextual information, but also reveal coarse-grained
sequence transition patterns. For instance, CoCoRec [3] utilizes
item categories to retrieve users with similar preferences, enhanc-
ing collaborative learning among users. Although these methods
have been shown effective, none of them introduces cross-domain
data and may still suffer from the data sparsity problem. While in
the cross-domain scenario, there are also some complicated rela-
tionships between items and categories across different domains,
which is out of consideration in traditional single-domain methods,
resulting in the inability to associate multiple domains and perform
knowledge transfer. Furthermore, most existing works focus on
the problem in which an item only belongs to one single category,
which cannot be applied to a more realistic setting that an item
belongs to one or more categories.

3 Proposed Method
In this section, we formally define the CCDSR task and introduce
the components of our model in detail. Notice that for the sake
of brevity, we take two domains as an example, and our model
can be extended to a multi-domain scenario, for which we conduct
empirical studies in Section 4.

3.1 Problem Definition

Let U denote the set of users, for each user 𝑢 ∈ U, we represent
two single-domain behavior sequences (ordered by the interaction
time) of a user as 𝑆𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝐿} and 𝑆𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝐿},
where 𝐴𝑖 denotes an interaction at the time step 𝑖 in domain A. 𝐿
denotes the maximum length of a sequence from a single domain.

2
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If the length of the sequence is less than 𝐿, a padding item will be
repeatedly appended at the beginning of the sequence.

We employ categories as the auxiliary information of items and
denote the set of categories as C. Since an item may belong to more
than one category, we use 𝐴𝑖 = {𝑣𝐴

𝑖
, 𝑐

(1)
𝑖
, . . . , 𝑐

(𝑙 )
𝑖

} to denote the
𝑖th interaction of the user, where 𝑣𝐴

𝑖
represents the item ID and 𝑐 ( 𝑗 )

𝑖
represents the 𝑗th category of the interacted item 𝑖 . Given a user’s
behavior sequences 𝑆𝐴 and 𝑆𝐵 , the goal of CCDSR is to predict the
next preferred item 𝑣𝐴

𝑖+1 in domain A and 𝑣𝐵
𝑖+1 in domain B.

3.2 Heterogeneous Graph Construction

3.2.1 Heterogeneous graph A heterogeneous graph [2, 42] is
defined asG = {V, E}, whereV and E denote the sets of nodes and
edges, and it is associated with a node type function 𝜙 : V → A
and an edge type function 𝜑 : E → R, where A and R denote sets
of predefined node types and relation types, respectively, having
constraints |A| + |R| > 2.

As shown in Fig. 2(a), the heterogeneous graph contains three
types of nodes, including the user node 𝑢, the item node 𝑣 and
the category node 𝑐 , where the item node can be subdivided into
A-domain item node 𝑣𝐴 and B-domain item node 𝑣𝐵 . Meanwhile,
there are two types of relations. The edge between a user node and
an item node represents that the user interacted with the item, and
the edge between an item node and a category node represents that
the item belongs to that category.

By constructing a cross-domain heterogeneous graph, item nodes
in different domains can be associated, enabling rich knowledge
transfer between domains. It is worth mentioning that in traditional
cross-domain recommendation, it usually solely depends on the
overlapping users to bridge items from different domains, whereas
in our heterogeneous graph, items of different domains can also be
associated by common categories, which makes the performance
no longer severely rely the number of overlapping users.

3.2.2 Meta-path In a heterogeneous graph, two nodes can be
linked by different meta-paths [13]. A meta-path 𝜌 is defined as a

path in the form of A1
R1→ A2

R2→ · · · R𝑛−1→ A𝑛 , which describes a
composite relation R1 ◦ R2 ◦ · · · ◦ R𝑛−1 between a start node type
A1 and an end node type A𝑛 . We use ◦ to denote the composition
operator on relations. By utilizing the designed meta-paths, we can
identify pairs of entities in the heterogeneous graph that have a
certain association, despite being distant from each other.

As shown in Fig. 2(a), at the item level, two item nodes can
be linked by different meta-paths, such as item-user-item (I-U-I)
and item-category-item (I-C-I). For the design of meta-paths in the
context of a real-world scenario, different meta-paths often reveal
different semantics, e.g., I-U-I represents that two items have been
purchased by a same user, indicating a certain connection between
them. I-C-I represents two items belong to a same category, suggest-
ing that they share some similar features. We also design user-level
and category-level meta-paths. At the user level, we have user-
item-user (U-I-U) and user-item-category-item-user (U-I-C-I-U),
where the former connects two users who have purchased a same
item, and the latter connects two users who prefer a same category
of items. At the category level, we have category-item-category
(C-I-C), which associates different categories of a same item, and

category-item-user-item-category (C-I-U-I-C), which connects two
categories preferred by a same user.

3.2.3 Edge expansion Considering that in real-world scenarios,
there are some similar categories, and additionally there may be
associations between different categories. It would be helpful to link
such category nodes by some extra edges when constructing the
graph, so that the items can obtain useful information from more
categories, to alleviate the problem of a small number of overlapping
users. We measure the correlation between two category nodes in
terms of the semantic similarity and the co-occurrence patterns,
and link two nodes with a strong correlation via an extended edge.

Semantic similarity-based correlation. In most real-world
datasets, there are categories which may be semantically similar
but not literally identical, such as “Fantasy Films” and “Magical
Films”. Due to the limitation of data collection, items that should
belong to several categories may not be fully tagged. To address this
issue, we utilize a pre-trained BERT model for semantic encoding to
calculate the similarity between any two categories and link those
with a high similarity. In this paper, we employ cosine similarity as
a measure of semantic similarity, which can be defined as follows:

𝑠𝑖𝑚(𝑐𝑖 , 𝑐 𝑗 ) = 𝑐𝑜𝑠 (𝒉𝑐𝑖 ,𝒉𝑐 𝑗 ) =
𝒉𝑇𝑐𝑖𝒉𝑐 𝑗

∥𝒉𝑐𝑖 ∥∥𝒉𝑐 𝑗 ∥
, (1)

where 𝒉𝑐𝑖 ∈ R𝑑 denotes the embedding of category 𝑐𝑖 , and is
initialized by the pre-trained BERT model.

Co-occurrence pattern-based correlation. On the other hand,
in real-world scenarios, there exists a certain dependency between
different categories, where some category often appears together
with the presence of another category. For example, “Thriller Films”
often appears alongside “Suspense Films”, indicating a strong con-
nection between them. To further explore and capture these im-
portant dependencies, we define their correlation by mining co-
occurrence patterns of categories in the data. Specifically, we model
the category dependency in the form of a conditional probabil-
ity, denoted as 𝑃𝑖, 𝑗 = 𝑃 (𝑐 𝑗 |𝑐𝑖 ), which represents the probability of
category 𝑐 𝑗 appearing when category 𝑐𝑖 is present. We use 𝑁𝑖 to
represent the number of occurrences of 𝑐𝑖 in the dataset and 𝑀𝑖 𝑗
to represent the number of co-occurrences of 𝑐𝑖 and 𝑐 𝑗 , and obtain
the conditional probability as follows:

𝑃𝑖 𝑗 = 𝑃 (𝑐 𝑗 |𝑐𝑖 ) =
𝑴𝑖 𝑗

𝑵 𝑖
. (2)

Finally, we determine whether to associate category 𝑐𝑖 with
category 𝑐 𝑗 based on the semantic similarity and co-occurrence
probability between them:

𝛿𝑖 𝑗 =

{
1, 𝑠𝑖𝑚(𝑐𝑖 , 𝑐 𝑗 ) ≥ 𝜏1 𝑜𝑟 𝑃𝑖 𝑗 ≥ 𝜏2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(3)

where 𝜏1 and 𝜏2 are two constants representing the thresholds for
edge expansion. When 𝛿𝑖 𝑗 is 1, we construct an extended edge
between node 𝑐𝑖 and node 𝑐 𝑗 .

Notice that when a meta-path passes through a category node,
we allow it to be connected to other category nodes via some ex-
tended edges, e.g., I-C-C-I. For instance, as shown in Fig. 2(a), item
node 𝑣𝐴1 can be directly connected to another item node 𝑣𝐴2 via the
category node 𝑐1. And if we allow a category node to be connected
to other category nodes via extended edges, item node 𝑣𝐴1 could

3
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（a) Cross-domain Heterogeneous Graph Construction
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Item-based
sequential preferences

Attention
Aggregation

Attention
Aggregation

Attention
Aggregation
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Transfer Unit
B      A
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Figure 2: The framework of our proposed HGTL (best viewed in color). We first construct a cross-domain heterogeneous graph
that connects users, items, and category nodes, and enhances their correlation via edge expansion. Then, we design different
meta-paths based on node types to aggregate information from their neighbors and employ contrastive learning to complement
each other. For each user, we input their behavior sequences in each domain into the category-aware sequential preferences
learning module to obtain item-based and category-based sequential preferences, and share the preferences from different
domains via the transfer unit. Notice that our HGTL can be easily expanded to a multi-domain version.

also be connected to category node 𝑐3 through category node 𝑐1,
and eventually find another item node 𝑣𝐵2 . With edge expansion, we
can further explore the important dependencies between categories,
enabling item nodes to find their neighboring nodes through more
useful meta-paths. On the other hand, two domains with weak asso-
ciation may limit the flexibility of the model due to fewer common
categories. By expanding the edges, we could allow more categories
to be associated with each other. Furthermore, constructing more
category bridges is also beneficial to alleviate the problem of few
overlapping users.

3.3 Meta-path Guided Node Representation Learning

3.3.1 Meta-path based neighbors As shown in Fig. 2(b), given a
start node 𝑖 and a type of meta-path, the meta-path-based neighbors
𝑁𝜌 (𝑖) of node 𝑖 is defined as the set of end nodes connected to
node 𝑖 via meta-path 𝜌 . It is obvious that for the same start node,
employing different types of meta-paths will lead to different sets
of neighboring nodes. Notice that since the number of neighbors
may be large, to improve model efficiency and effectiveness, we
only take the top 𝐾 nodes with the largest number of connections
(most relevant) as the set of neighbors for each type of meta-path.

3.3.2 Meta-path guided neighbor aggregation By construct-
ing meta-paths, node 𝑖 can identify nodes of a same type that are
associated with it. Our goal is to propagate messages between the
node and its neighboring node set, enabling it to gather richer con-
textual information and achieve knowledge transfer across different
domains. Since different nodes in the neighboring node set have
different influences on node 𝑖 , we adopt an attention aggregation
approach to aggregate the information of these nodes.

𝒉
𝜌

𝑖
=

∑︁
𝑘∈𝑁𝜌 (𝑖 )

𝑎𝑘𝒉𝑘 , (4)

𝑎𝑘 =
exp (𝜎 (𝒉𝒊𝑇𝒉𝑘 ))∑

𝑘
′ ∈𝑁𝜌 (𝑖 ) exp

(
𝜎

(
𝒉𝑇𝑖 𝒉𝑘 ′

)) , (5)

where 𝑎𝑘 is the weight assigned to 𝒉𝑘 , representing the importance
of the neighboring node 𝑘 to the target node 𝑖 , and 𝜎 (·) is the
sigmoid function.

3.3.3 Meta-path based contrastive learning According to Sec-
tion 3.2.2, for either the item, user or category level, we adopt two
different perspectives and design two different meta-paths to ex-
plore and aggregate its neighboring nodes. To jointly learn the
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complementary information from different sets of neighbors, we
apply a contrastive mechanism to the node embeddings that have
been aggregated via two different meta-paths. We conduct a con-
trastive task to maximize the mutual information between positive
pairs while minimizing the agreement between negative samples.

Specifically, we consider the aggregated node embeddings (i.e.,
𝒉
𝜌

𝑖
and 𝒉𝜌

′

𝑖
) of a same node 𝑖 via two different meta-paths 𝜌 and 𝜌′

of a same type level as a positive pair. Then, we naturally regard the
representations of different nodes (i.e.,𝒉𝜌

𝑖
and𝒉𝜌

′

𝑗
) as a negative pair.

We employ InfoNCE [31, 32] with a standard binary cross-entropy
loss form for optimization. The loss function can be formalized as:

L𝐶𝐿 = −
∑︁
𝑖

log(𝜎 (𝐷 (𝒉𝜌
𝑖
,𝒉
𝜌 ′

𝑖
))) + log(𝜎 (1 − 𝐷 (𝒉𝜌

𝑖
,𝒉
𝜌 ′

𝑗
))), (6)

where 𝐷 (·) is a dot product to measure the similarity between two
node representations. For each node at the item, user or category
level, we will calculate its corresponding contrastive loss.

3.4 Category-Aware Sequential Preference Learning

3.4.1 Item-based sequential preference learning
Heterogeneous graph embedding aggregation. As discussed

in Section 3.2.2, the aggregation of one node at the same level via
two different meta-paths results in two different representations,
which contain diverse information. To obtain the suitable node
representation, we employ mean pooling to aggregate them:

𝒉𝑖 =
𝒉
𝜌

𝑖
+ 𝒉

𝜌 ′

𝑖

2
, (7)

where 𝒉𝑖 can be the node embedding of any type of item, user and
category. Meanwhile, 𝜌 and 𝜌′ denote two different meta-paths of
the corresponding type.

Multi-head attention blocks. In order to capture the dynamic
preferences of users and the sequential dependencies among items,
we employ self-attention blocks as the encoder of item sequences
since it has been shown as an effective and efficient model in se-
quential recommendation [14]. For simplicity, we take a sequence
from domain A as an illustration.

To take into account the positions of the previous items, a learn-
able position embedding 𝑷 = {𝒑1,𝒑2, . . . ,𝒑𝐿} ∈ R𝐿×𝑑 is added to
the embedding of theA-domain sequence 𝑽𝐴 = {𝒉𝑣𝐴1 ,𝒉𝑣𝐴2 , . . . ,𝒉𝑣𝐴𝐿 } ∈
R𝐿×𝑑 . Then, we obtain the position-aware input embedding 𝑿𝐴 =

{𝒙𝑣𝐴1 , 𝒙𝑣𝐴2 , . . . , 𝒙𝑣𝐴𝐿 } ∈ R𝐿×𝑑 :

𝒙𝐴𝑖 = 𝒉𝐴𝑖 + 𝒑𝑖 , 𝑖 ∈ {1, 2, . . . , 𝐿}. (8)

Next, as shown in the top half of Fig. 2(c), we feed the A-domain
input sequence into some stacked self-attention blocks (SABs).
Omitting the residual connection layers and the normalization
layers, each 𝑆𝐴𝐵 is regarded as a self-attention layer 𝑆𝐴𝐿 followed
by a feed-forward network 𝐹𝐹𝑁 :

𝑆𝐴𝐵(𝑿 ) = 𝐹𝐹𝐿(𝑆𝐴𝐿(𝑿 )), (9)

𝑿 ′ = 𝑆𝐴𝐿(𝑿 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑸𝑲𝑇
√
𝑑

)𝚫 · 𝑽 , (10)

𝐹𝐹𝐿(𝑿 ′) = 𝑅𝑒𝐿𝑈 (𝑿 ′𝑾1 + 𝒃1)𝑾2 + 𝒃2, (11)

where 𝑸 = 𝑿𝑾𝑄 , 𝑲 = 𝑿𝑾𝐾 and 𝑽 = 𝑿𝑾𝑉 with𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 ∈
R𝑑×𝑑 are the projected query, key and value matrices, respectively.
𝚫 is the causality mask used to ensure that only the previous 𝑡

items are taken into account when predicting the (𝑡 + 1)th item.
𝑾1,𝑾2 ∈ R𝑑×𝑑 and 𝒃1, 𝒃2 ∈ R1×𝑑 are learnable weights and biases
for the two layers of the feed-forward network, respectively.

Stacking 𝑆𝐴𝐵s is usually helpful for themodel to extract themore
complex sequential patterns. Finally, we take the final output vector
𝒇𝑉 ,𝐴𝑡 from the top 𝑆𝐴𝐵 as the item-based sequential preferences of
the user at time step 𝑡 in domain A.

3.4.2 Category-based sequential preference learning
Item-category attention layer. A user’s dynamic preferences

can be reflected not only from a sequence of items he or she inter-
acts with but also from the transition patterns between categories
within the sequence. Considering that an item often belongs to
multiple categories, most traditional approaches cannot be directly
applied to model such sequences. To address this, we design an
item-category attention layer to measure the association between
an item and its categories, and aggregate multiple category features
into a comprehensive category representation.

Specifically, for a user’s interaction sequence 𝑆𝐴 = {𝐴1, 𝐴2, . . . , 𝐴𝐿}
in domainA,where for the 𝑖th interactionwe have𝐴𝑖 = {𝑣𝐴

𝑖
, 𝑐

(1)
𝑖
, . . . ,

𝑐
(𝑙 )
𝑖

}. We consider the item embedding 𝒉𝑣𝑖 of the interacted item 𝑣𝐴
𝑖

as the query in the attention network, and all the category embed-
dings {𝒉

𝑐
(1)
𝑖

,𝒉
𝑐
(2)
𝑖

, . . . ,𝒉
𝑐
(𝑙 )
𝑖

} of the item 𝑣𝐴
𝑖
as the keys and values:

𝒄𝑣𝐴
𝑖
=

𝑙∑︁
𝑗=1

𝑎 𝑗𝒉𝑐 ( 𝑗 )
𝑖

, (12)

𝑎 𝑗 =

exp
(
𝜎

(
𝒉𝒗𝒊

𝑇𝒉
𝑐
( 𝑗 )
𝑖

))
∑
𝑗
′ exp

(
𝜎

(
𝒉𝑇𝑖 𝒉𝑐 ( 𝑗

′ )
𝑖

)) , (13)

where 𝑎 𝑗 represents the weight assigned to 𝒉
𝑐
( 𝑗 )
𝑖

, indicating the

importance of category 𝑗 in characterizing the attributes of item 𝑣𝐴
𝑖
,

and 𝜎 is the sigmoid function. Finally, we use 𝒄𝑣𝐴
𝑖
as the category

representation of item 𝑣𝑖𝐴 .
Category-based sequential preferences. After obtaining the

user’s category representation sequence 𝑿𝐴𝑐 = {𝒄𝑣𝐴1 , 𝒄𝑣𝐴2 , . . . , 𝒄𝑣𝐴𝐿 },
we feed it into the attention module 𝑆𝐴𝐵(𝑿𝐴𝑐 ) described in 3.4.1, to
explore the patterns of category transitions in the user’s behavior
sequence, which reflects the coarse-grained preferences of the user.
Finally, we take the output 𝒇𝐶,𝐴𝑡 from the top 𝑆𝐴𝐵 as the user’s
category-based sequential preferences at time step 𝑡 in domain A.

3.4.3 Cross-domain sequential preference learning
Considering that a user’s interaction in one domain may affect

his or her next interaction in other domains, which implies that
there are also some transition patterns across different domains.
Therefore, we focus on cross-domain knowledge transfer by con-
sidering user preferences in both the target and source domains.

Specifically, as shown in the bottom half of Fig. 2(c), we feed a
user’s item sequence 𝑿𝐵 = {𝒙𝐵𝑣1 , 𝒙

𝐵
𝑣2 , . . . , 𝒙

𝐵
𝑣𝐿
} into the 𝑆𝐴𝐵 mod-

ule described in Section 3.4.1 and obtain the item-based sequen-
tial preferences 𝒇𝑉 ,𝐵

𝑡
′ in domain B. Similar to domain A, we also

feed the user’s interaction sequence 𝑆𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝐿} into the
item-category attention layer to obtain the category representation
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sequence 𝑿𝐵𝑐 = {𝒄𝑣𝐵1 , 𝒄𝑣𝐵2 , . . . , 𝒄𝑣𝐵𝐿 }, and finally capture B-domain

category-based sequential preferences 𝒇𝐶,𝐵
𝑡
′ . Notice that 𝑡 ′ is the

most recent time step at which the same user interacted with an
item in domain B before the real moment corresponding to the
time step 𝑡 in domain A. This is to ensure the causality of the user
behaviors from the source domain to the target domain.

It is clear that our model can easily be extended to a multi-
domain version when performing cross-domain heterogeneous
graph construction and category-aware sequence preference learn-
ing. This differs from most previous methods that only utilize a
single source domain to assist the target domain [4, 26]. Our HGTL
enables knowledge transfer across multiple domains, as well as im-
proves the performance of multiple domains simultaneously, which
is of significant importance in real-world applications.

3.5 Prediction Layer
In the prediction layer, we aim to aggregate information from dif-
ferent domains. To alleviate the problem of inconsistencies in dis-
tribution between two domains, we draw inspiration from the idea
of domain adaptation [43] and employ a cross-domain transfer unit
to map users’ preferences from the source domain to the feature
space of the target domain.

Specifically, taking domain A as the target domain, we concate-
nate item-based sequential preferences 𝒇𝑉 ,𝐵

𝑡
′ and category-based

sequential preferences 𝒇𝐶,𝐵
𝑡
′ from domain B. Then, the concatena-

tion is fed into MLP to acquire the final representation of the user’s
sequential preferences in domain B:

𝒇𝐵𝑡 =𝑾𝐴
[
𝒇𝑉 ,𝐵
𝑡
′ ,𝒇𝐶,𝐵

𝑡
′

]
+ 𝒃𝐴, (14)

where 𝑾𝐴 ∈ R𝑑×2𝑑 and 𝒃𝐴 ∈ R𝑑 are learnable parameters of
cross-domain transfer unit from domain B to domain A.

Next, we aggregate the item-based sequential preferences 𝒇𝑉 ,𝐴𝑡
and category-based sequential preferences 𝒇𝐶,𝐴𝑡 from domain A,
the sequential preferences 𝒇𝐵𝑡 from domain B, and the user node
representation 𝒖 learned in heterogeneous graph to obtain the final
representation of the user’s preferences:

𝒇𝐴𝑡 =𝑾
′𝐴

[
𝒇𝑉 ,𝐴𝑡 ,𝒇𝐶,𝐴𝑡 ,𝒇𝐵𝑡 , 𝒖

]
+ 𝒃

′𝐴, (15)

where𝑾
′𝐴 ∈ R𝑑×2𝑑 and 𝒃

′𝐴 ∈ R𝑑 are learnable parameters. Finally,
the prediction score of the next recommended item 𝑖 in domain A
can be formalized as follows:

𝑟𝐴𝑡,𝑖 = 𝒇𝐴𝑡 (𝒗𝑖 )𝑇 . (16)

We adopt the binary cross-entropy loss function as the A-domain
recommendation loss in our model:

L𝐴𝑟 = −
∑︁
𝑢∈U

𝐿−1∑︁
𝑡=1

𝛿 (𝑣𝑡+1) [log(𝜎 (𝑟𝐴𝑡,𝑣𝑡+1 )) + log(1 − 𝜎 (𝑟𝐴𝑡,𝑗 ))], (17)

where 𝑗 ∈ V𝐴\S𝑢 is a sampled negative item and 𝜎 (·) is the
sigmoid function. The indicator function 𝛿 (𝑣𝑡+1) = 1 only if 𝑣𝑡+1 is
not a padding item, and 0 otherwise.

Similarly, we can transfer the user’s sequential features from
domain A to domain B, and calculate the loss in domain B:

L𝐵𝑟 = −
∑︁
𝑢∈U

𝐿−1∑︁
𝑡=1

𝛿 (𝑣𝑡+1) [log(𝜎 (𝑟𝐵𝑡,𝑣𝑡+1 )) + log(1 − 𝜎 (𝑟𝐵𝑡,𝑗 ))] . (18)

Finally, we combine the two recommendation losses and the
contrastive loss as the final training loss of our model:

L = L𝐴𝑟 + L𝐵𝑟 + 𝜆L𝐶𝐿, (19)

where 𝜆 is the hyper-parameter to control the intensity of the
contrastive task.

We have analyzed the model complexity in terms of heteroge-
neous graph construction and attention networks in Appendix A.1.

4 Experiments
In this section, we give a brief introduction to the experimental
settings, and conduct extensive empirical studies to answer the
following research questions: RQ1: How does our HGTL perform
compared with the state-of-the-art methods?RQ2:What’s the influ-
ence of various components in our HGTL? RQ3: Can the proposed
HGTL alleviate the data sparsity issue? RQ4: How does our model
perform with different proportions of overlapping users?

4.1 Experimental Settings

4.1.1 Datasets We conduct empirical studies on the Amazon1
data [27], which contains overlapping users in multiple domains
and records categories of items. According to the setting in [14, 38],
we choose three datasets with different types, i.e., “Movie”, “CD” and
“Book” from the Amazon data, and preprocess the datasets. More
details of the datasets processing are introduced in Appendix A.2.

4.1.2 Baselines To study the effectiveness of our HGTL, we com-
pare it with fifteen competitive baselines, including five sequen-
tial recommendation methods (i.e., GRU4Rec [11], Caser [30], GC-
SAN [35], SASRec [14] and CL4SRec [33]), seven cross-domain se-
quential recommendationmethods (i.e., DA-GCN [9], CD-SASRec [1],
Tri-CDR [25], RecGURU [15], C2DSR [4],MGCL [38] and TJAPL [39])
and three attribute-aware sequential recommendation methods (i.e.,
CAFE [17], NOVA [21] and DIF-SR [34]). Notice that some of our
experimental results are copied from [38] for fair comparison. We
employ two widely used ranking-oriented metrics, i.e., HR@10
(hit ratio) and NDCG@10 (normalized discounted cumulative gain)
for evaluation. More details of the evaluation metrics and baseline
methods are introduced in Appendix A.3 and Appendix A.4.

4.1.3 Implementation details For the general setting, the latent
dimensionality 𝑑 is configured as 𝑑 = 50. The mini-batch size is set
to 128, the dropout rate is set to 0.5 and the maximum length of a
sequence 𝐿 is set to 100. For our HGTL, we adopt the Adam opti-
mizer with a learning rate of 0.001, and set the maximum number of
node neighbors 𝐾 to 10. For other baselines, the key parameters are
configured following the suggestions of the corresponding papers
or are tuned on the validation data.

For CDR methods, we only report the performance of the best-
performingmodel with the corresponding source domain (i.e., when
the target domain is “Movie”, we use “CD” or “Book” as a source
domain to assist in training, and only show the best results). For
our proposed HGTL, we further report the results of the multi-
domain version (i.e., HGTL-Multi) which can simultaneously
utilize two other datasets as source domains. More implementa-
tion details and hyper-parameter settings of our method and the
baselines are introduced in Appendix A.5 and Appendix A.6.

1http://jmcauley.ucsd.edu/data/amazon/
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4.2 Overall Performance Comparison (RQ1)

Table 1 illustrates the results of our HGTL and the baselines. The
best results among all methods are marked in bold, and the results
of the strongest baselines are underlined.

From the comparison results, we can observe that our HGTL
significantly outperforms all the baselines on all three datasets,
and gains 14.58% NDCG@10 and 12.52% HR@10 improvements on
average against the strongest baseline, which demonstrates that our
HGTL can effectively utilize data as well as category information
from multiple domains by constructing a cross-domain heteroge-
neous graph, and explore the transition patterns across domain
through knowledge transfer and attention modules. Moreover, it
can be observed that among the methods within the same group,
the attention-based methods tend to achieve the best results, which
demonstrates the effectiveness of Transformer in capturing sequen-
tial patterns. Additionally, cross-domain sequential methods and
attribute-aware sequential methods generally achieve better per-
formance than traditional sequential methods. This verifies the
significance of introducing the cross-domain data and attribute
information, while also demonstrating the potential of their com-
bination. Furthermore, the multi-domain version of our HGTL
(i.e., HGTL-Multi) achieves the best results on the “Movie” dataset
and the “Book” dataset, while on the “CD” dataset our HGTL that
leverages only two domains to assist each other performs better.
The reason is that although knowledge transfer across multiple
domains simultaneously can utilize more information to alleviate
the sparsity problem, there may be a negative transfer problem
when the source and target domains are not strongly related.

4.3 Ablation Study (RQ2)

In this subsection, we conduct an ablation study to evaluate the
contribution of different components of our HGTL.

Specifically, we separate out the important components of our
HGTL: (1) “w/o node representation learning” represents the ver-
sion of our HGTL without meta-path guided node representation
learning, (2) “w/o edge expansion” represents the version without
edge expansion in heterogeneous graph construction, (3) “w/o edge
contrastive learning” represents the version without meta-path
based contrastive learning, (4) “w/o category-based preferences”
represents the version without category-based sequential prefer-
ence learning, and (5) “w/o cross-domain preferences” represents
the version only utilizing data from a single target domain.

From Table 2, we observe that the largest decrease in perfor-
mance occurs when the meta-path guided node representation
learning is removed, which indicates that constructing heteroge-
neous graphs on such sparse datasets and utilizing meta-paths for
node aggregation plays an important role in improving the per-
formance. Moreover, there is also a significant decrease in the per-
formance of the version without cross-domain preferences, which
demonstrates the significance of performing knowledge transfer
across domains to alleviate the sparsity problem. Furthermore, it
is evident that if any individual component is removed, the per-
formance will decrease. We can thus see that the superiority of
our proposed HGTL comes from the contribution of these novel
components.
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Figure 3: Performance of SASRec and our HGTL w.r.t. differ-
ent sequence lengths in the target domain.
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Figure 4: Performance of our HGTL w.r.t. different sequence
lengths in the source domain.

4.4 Performance Analysis w.r.t. Sparsity (RQ3)
In this subsection, we conduct experiments to explore the effect
of target-domain sequence length and source-domain sequence
length on the performance, in order to verify the effectiveness of
introducing cross-domain data to alleviate the data sparsity problem.
Notice that we report the results on “Movie” and “CD” by leveraging
the “Book” domain for knowledge transfer, and the results on “Book”
by leveraging the “Movie” domain, since they achieve the best
performance in a single source-domain scenario.

4.4.1 Effect of target-domain sequence length We divide
users into five groups according to their behavior sequence lengths
in the target domain, and compare the performance of SASRec and
HGTL in different user groups.

From Fig. 3, we can see that the short sequences dominate the ma-
jority in the target domain, and the number of sequences decreases
as the sequences become longer, which demonstrates the overall
sparsity of user behaviors is serious. Moreover, our HGTL shows its
most significant improvement over SASRec in the short-sequence
interval, since the single-domain method (i.e., SASRec) struggles to
capture transition patterns on such a sparse data. In contrast, our
HGTL can leverage abundant source domain data to enhance the
learning of user preferences via knowledge transfer, effectively al-
leviating the issue of data sparsity. Furthermore, it can be seen that
our HGTL outperforms SASRec in all cases, which demonstrates
the superiority of our HGTL in sequential recommendation.

4.4.2 Effect of source-domain sequence length To examine
the influence of source-domain sequence length, we fix the target-
domain sequence in the shortest interval, and divide users into
groups based on their sequence lengths in the source domain. The
results are presented in Fig. 4.

It can be observed that similar to the target domain, the shortest
source-domain sequence interval contains the largest number of
sequences. Moreover, we find that the performance in the target
domain generally benefits from longer source-domain sequences.
This is because the richer source-domain data enables the model
to capture more comprehensive preferences, which can then be
transferred to and exploited by the target domain more effectively.
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Table 1: Recommendation performance of our HGTL and the baselines on three datasets.

Method Movie CD Book

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10

SR

GRU4Rec 0.1017 0.1984 0.1210 0.2247 0.1066 0.2162
Caser 0.1231 0.2243 0.1267 0.2473 0.1163 0.2274
GCSAN 0.1576 0.2889 0.1783 0.3206 0.1291 0.2409
SASRec 0.1740 0.3126 0.1965 0.3539 0.1402 0.2597
CL4SRec 0.1821 0.3179 0.1936 0.3350 0.1409 0.2556

CDSR

DA-GCN 0.1736 0.3124 0.1897 0.3458 0.1283 0.2375
CD-SASRec 0.1787 0.3159 0.1995 0.3610 0.1438 0.2677
Tri-CDR 0.1735 0.3190 0.1873 0.3331 0.1480 0.2716
RecGURU 0.1884 0.3433 0.2044 0.3649 0.1373 0.2556
C2DSR 0.1922 0.3423 0.1978 0.3435 0.1486 0.2752
MGCL 0.2092 0.3693 0.2156 0.3797 0.1542 0.2842
TJAPL 0.2133 0.3769 0.2199 0.3907 0.1632 0.2984

A-SR
CAFE 0.1874 0.3332 0.1925 0.3647 0.1445 0.2794
NOVA 0.2040 0.3602 0.2128 0.3694 0.1526 0.2752
DIF-SR 0.2124 0.3712 0.2195 0.3741 0.1634 0.2826

HGTL 0.2335 0.4052 0.2437 0.4262 0.1942 0.3475
HGTL-Multi 0.2386 0.4129 0.2344 0.4131 0.1978 0.3549

Improv. 11.86% 9.55% 10.82% 9.09% 21.05% 18.93%

Table 2: Recommendation performance in ablation studies
of our HGTL with different architectures.

Architecture
Movie CD Book

NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10
HGTL 0.2355 0.4052 0.2437 0.4262 0.1942 0.3475
w/o node representation learning 0.2009 0.3611 0.2123 0.3726 0.1727 0.3091
w/o edge expansion 0.2298 0.3960 0.2376 0.4159 0.1914 0.3396
w/o contrastive learning 0.2279 0.3918 0.2340 0.4059 0.1742 0.3228
w/o category-based preferences 0.2237 0.3896 0.2323 0.4084 0.1721 0.3247
w/o cross-domain preferences 0.2209 0.3850 0.2304 0.4027 0.1776 0.3192

Table 3: Recommendation performance with different por-
tions of overlapping users ranging from 0% to 100%.

Dataset OverlapRadio Movie CD Book

Meritic NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10 HR@10
SASRec – 0.1740 0.3126 0.1965 0.3539 0.1402 0.2597
DIF-SR – 0.2124 0.3712 0.2985 0.3741 0.1634 0.2826

CD-SASRec

0% 0.1669 0.2985 0.1957 0.3518 0.1387 0.2561
20% 0.1697 0.3022 0.2026 0.3561 0.1404 0.2613
40% 0.1759 0.3078 0.2053 0.3598 0.1475 0.2644
60% 0.1771 0.3129 0.2042 0.3597 0.1472 0.2673
100% 0.1787 0.3159 0.1995 0.3610 0.1438 0.2677

MGCL

0% 0.1752 0.3154 0.1964 0.3521 0.1425 0.2654
20% 0.1779 0.3216 0.1995 0.3554 0.1484 0.2725
40% 0.1881 0.3405 0.2069 0.3651 0.1516 0.2774
60% 0.1957 0.3479 0.2114 0.3723 0.1527 0.2825
100% 0.2092 0.3693 0.2156 0.3797 0.1542 0.2842

HGTL

0% 0.2212 0.3793 0.2343 0.4084 0.1833 0.3274
20% 0.2243 0.3827 0.2364 0.4102 0.1894 0.3318
40% 0.2276 0.3861 0.2408 0.4138 0.1912 0.3391
60% 0.2314 0.3925 0.2418 0.4186 0.1936 0.3469
100% 0.2335 0.4052 0.2437 0.4262 0.1942 0.3475

4.5 Study of Overlapping Users (RQ4)
In order to verify the performance of our model in scenarios with
different user overlap proportions, we vary the overlapping user
proportions to 0%, 20%, 40%, 60% and 100%. Specifically, we retain
the entire training data of all users in the target domain, and ran-
domly select a corresponding number of users according to the
overlap proportion, retaining only the connections of these users
in the source domain and the target domain. For SR methods and
A-SR methods, varying the proportion of overlapping users does

not affect the performance since these models only utilize data
from a single domain. However, for most previous cross-domain
recommendation methods, reducing the proportion of overlapping
users results in fewer bridges for knowledge transfer, which may
lead to performance degradation.

We can observe from Table 3 that the traditional CDSR methods
do not perform well when the percentage of overlapping users
is low, and in some cases are even worse than the single-domain
recommendation methods (especially when the users are entirely
non-overlapping) since they rely on overlapping users as a bridge
to transfer knowledge. In contrast, our model achieves the best
results in all cases due to its ability to utilize the information of
non-overlapping users through categories, which demonstrates the
robustness of our model in terms of the overlapping user proportion.

5 Conclusions and Future Work
In this paper, we study a new and emerging problem, i.e., category-
aware cross-domain sequential recommendation, and propose our
HGTL to deal with it. Specifically, we associate nodes from differ-
ent domains by constructing a cross-domain heterogeneous graph,
and design a meta-path guided node representation learning mod-
ule for knowledge transfer across domains. Moreover, we enhance
the correlation between different domains via an edge expansion
module. After that, we employ a category-aware sequential prefer-
ence learning module to capture the item-based and category-based
preferences in each domain, which reflect the coarse-grained and
fine-grained interests of users, respectively. Notice that our HGTL
can be applied to a multi-domain scenario, which is more adapt-
able and flexible in real-world applications. Extensive empirical
studies on three real-world datasets indicate that our HGTL signifi-
cantly outperforms various competitive baselines in all cases. For
future works, we intend to employ our HGTL for cross-domain or
cross-organization privacy-aware federated recommendation [20].
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A APPENDIX

A.1 Complexity Analysis

We can analyze model complexity in terms of two main modules:
heterogeneous graph construction and attention networks:

The complexity of a graph neural networkmainly depends on the
way the graph is constructed and the way message is propagated
between nodes. We employ a meta-path approach to constructing
the graph, which in a practical implementation would only connect
the head and tail nodes on the eligible paths, and these two head
and tail nodes can be considered as neighboring nodes to each
other.

Assuming there are |V| items, |U| users, and |C| categories,
the time complexity for constructing the meta-paths with two
edges (i.e., I-C-I, U-I-U, C-I-C, I-U-I) is 𝑂 ( |V||𝑁𝑐 |), 𝑂 ( |U||𝑁𝑢𝑖 |),
𝑂 ( |C| |𝑁𝑐𝑖 |) and𝑂 ( |V||𝑁𝑢 |), respectively. Here |𝑁𝑐 | represents the
number of categories contained under each item, |𝑁𝑢𝑖 | represents
the number of items each user has interacted with, |𝑁𝑐𝑖 | represents
the number of items each category contains, and |𝑁𝑢 | represents
the number of users each item being interacted with. Since the
values of |𝑁 | are generally not too large, the time complexity re-
mains relatively low. For meta-paths with four edges (i.e., U-I-C-
I-U, C-I-U-I-C), the time complexity is 𝑂 ( |U||𝑁𝑢𝑖 | |𝑁𝑐 | |𝑁𝑐𝑖 |) and
𝑂 ( |C| |𝑁𝑐𝑖 | |𝑁𝑢 | |𝑁𝑢𝑖 |), respectively, which is still within an accept-
able range.

For the self-attention block, it generally consists of the following
steps: mapping the input features to query, key, and value, cal-
culating similarity, normalizing the similarity using the softmax
function, calculating the weighted sum, and finally passing through
the non-linear layer FFN. The time complexity of the above steps
are 𝑂 (3𝐿𝑑2), 𝑂 (𝐿2𝑑), 𝑂 (𝐿2), 𝑂 (𝐿2𝑑), and 𝑂 (2𝐿𝑑2), where 𝐿 is the
length of the sequence, and 𝑑 is the dimensionality of embedding. If
we ignore the constant term, then we can get the time complexity
of SASRec as 𝑂 (2𝐿2𝑑 + 5𝐿𝑑2).

For our model, the time complexity of the item-based attention
block and category-based attention block is the same as the self-
attention block, and the time complexity of the item-category atten-
tion layer is 𝑂 (𝐿(2|𝑁𝑐𝑖 |𝑑 + |𝑁𝑐𝑖 |2)), which does not significantly

Table 4: Statistical details of the datasets.

Dataset # Users # Items # Categories # Interactions Density
Movie 10929 59513 733 460226 0.07%
CD 10929 91169 670 344221 0.03%
Book 10929 236049 581 607657 0.02%

increase the complexity due to the small value of |𝑁𝑐𝑖 |. Finally, the
complexity of all attention networks in the cross-domain scenario
can be summarized as𝑂 ( |𝑀 | [4𝐿2𝑑 + 10𝐿𝑑2 + 𝐿(2|𝑁𝑐𝑖 |𝑑 + |𝑁𝑐𝑖 |2)]),
where |𝑀 | denotes the number of domains. Since we only need to
train one model to accomplish the goal of making recommendations
on multiple domains at the same time, and the self-attention layer
is amenable to GPU acceleration, there is no significant increase
in time complexity compared with the methods that train in each
domain separately.

A.2 Details of Experimental Datasets

We conduct empirical studies on the Amazon2 data [27], which
contains overlapping users in multiple domains and records cat-
egories of items. According to the setting in [14, 38], we choose
three datasets with different types, i.e., “Movie”, “CD” and “Book”
from the Amazon data, and preprocess the datasets as follows:
(1) We take the occurrence of interaction behaviors as positive

feedback and use the timestamps to determine the order of the
interactions.

(2) We retain only users and items with at least five interactions,
and discard later duplicate (user, item) pairs.

(3) We only keep the sequence of a user who has interactions in all
the three domains.

(4) We adopt the leave-one-out evaluation which divides a user’s
sequence into three parts, i.e., the last interaction for test, the
penultimate interaction for validation and the rest for training.
Table 4 shows the statistical details of the processed datasets. No-

tice that the dataset is constructed with fully overlapping users for
a fair comparison with traditional cross-domain recommendation
methods. To verify that our model can also perform well with a
small number of overlapping users, we have conducted experiments
in Section 4.5.

A.3 Evaluation Metrics
We employ two widely used ranking-oriented metrics, i.e., HR@10
(hit ratio) and NDCG@10 (normalized discounted cumulative gain)
for evaluation , where the former corresponds to recall because
there is exactly one preferred item for each user in the test data
in our case. In particular, HR@10 denotes to the proportion of
ground-truth items presenting in the top-10 recommended lists,
while NDCG@10 is sensitive to the exact ranking positions of the
items in the lists. To avoid heavy computation on all the (user, item)
pairs, we follow the common strategy in [14, 38] which samples
some negative items as candidates. And these sampled items have
not been interacted with by the corresponding users and based on
the popularity to ensure that they are informative and representa-
tive [19]. Notice that we do not use the full item set as candidates
since the evaluation results for all baselines are extremely poor
on such a sparse data, and the parameter settings as well as the

2http://jmcauley.ucsd.edu/data/amazon/
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randomness of the neural network have a significant impact on the
results in this scenario.

A.4 Details of Baseline Methods

To study the effectiveness of our HGTL, we compare it with fifteen
competitive baselines, including five sequential recommendation
methods (i.e., GRU4Rec [11], Caser [30], GCSAN [35], SASRec [14]
and CL4SRec [33]), seven cross-domain sequential recommenda-
tion methods (i.e., DA-GCN [9], CD-SASRec [1], Tri-CDR [25],
RecGURU [15], C2DSR [4], MGCL [38] and TJAPL [39]) and three
attribute-aware sequential recommendationmethods (i.e., CAFE [17],
NOVA [21] and DIF-SR [34]). Notice that some of our experimental
results are copied from [38] for fair comparison.

• GRU4Rec [11]. An RNN-based method for sequential recommen-
dation which adopts GRU to model users’ behavior sequences.

• Caser [30]. A CNN-based model which adopts horizontal and
vertical convolutional filters to capture the item dependencies
over the sequences.

• GCSAN [35]. A GNN-based model which constructs a directed
graph for each session and employs gated GNNs to learn the
node representations in the graph.

• SASRec [14]. An attention-based model that captures the dy-
namic preferences of users by applying the attention mechanism.

• CL4SRec [33]. A self-supervised model that adopts different data
augmentation approaches to construct contrastive learning tasks.

• DA-GCN [9]. A GNN-based model which employs graph convo-
lution networks to learn the complicated relationships and the
structural information in a cross-domain sequence graph.

• CD-SASRec [1]. An improved method based on SASRec [14]
which fuses the source-domain aggregated vector into the target-
domain item embedding to transfer information across domains.

• Tri-CDR [25]. A novel model which jointly models the source-
domain, target-domain, and mixed behavior sequences to explore
the triple correlation and learn more accurate multi-domain rep-
resentations.

• RecGURU [15]. An adversarial learning model which employs a
self-attentive autoencoder to derive latent user representations,
and unify user embeddings generated from different domains
into a single global generalized user representation, in order to
captures the overall preferences of users.

• C2DSR [4]. A novel model which devises two sequential ob-
jectives with a contrastive objective to jointly learn the single-
domain and cross-domain user representations.

• MGCL [38]. A novel model which adopts the contrastive mecha-
nism in an intra-domain item representation view and an inter-
domain user preference view to learn the dynamic sequential
information and the static collaborative information.

• TJAPL [39]. A novel model which tackles the CDSR problem
from the perspective of attentive preference learning, transfering
knowledge from multiple source domains to a target domain.

• CAFE [17]. An attribute-aware model which learns intents from
coarse-grained sequences and fuses intent representations into
the output of the item encoder to obtain item representations.

• NOVA [21]. An improved model under the BERT framework
which makes use of side information to generate better attention
distribution, rather than directly altering the item embeddings.

• DIF-SR [34]. An extended model based on NOVA [21] which
moves the fusion process from the input layer to the attention
layer and proposes an auxiliary attribute predictor to activate
the interaction between the attributes and items.

A.5 Implementation Datails of the Methods

We implement our HGTL by PyTorch and follow the released
codes3-12 to implement the baselines. For the general setting, the
latent dimensionality 𝑑 is chosen from {10, 20, 30, 40, 50} and finally
configure it as 𝑑 = 50 since we find that on such sparse datasets,
these methods usually benefit from a larger value of 𝑑 [14, 30]. The
mini-batch size is set to 128, the dropout rate is set to 0.5 and the
maximum length of a sequence 𝐿 is set to 100. For our HGTL, we
adopt the Adam optimizer with a learning rate of 0.001. We select
the value of the maximum number of node neighbors 𝐾 from the
range of {5, 10, 15, 20, 25}, and finally obtained the best result on
the validation set with 𝐾 = 10. For the other hyper-parameters, like
the weight of the contrastive learning task 𝜆, and the value of the
thresholds of edge expansion (i.e., 𝜏1 for the semantic similarity
and 𝜏2 for the co-occurrence probability), we conduct experiments
to study the influence on the model performance in Session A.6.

For Caser, the numbers of vertical and horizontal filters are set
to 4 and 16, respectively. For the methods with Transformer archi-
tectures, we adopt single-head attention layers and two attention
blocks. For all GNN-based methods, the depth of the GNN layer is
set to 2. For the attribute-aware methods, we regard the categories
of items as attributes. For the shared-account recommendation
methods (i.e., 𝜋-Net and DA-GCN), the latent user number is set to
1. For other baselines, the key parameters are configured following
the suggestions of the corresponding papers or are tuned on the
validation data.

For cross-domain recommendation methods, we only report the
performance of the best-performing model with the corresponding
source domain (i.e., when the target domain is “Movie”, we use “CD”
or “Book” as a source domain to assist in training, and only show
the best results). For our proposed HGTL, since our model can be
applied to a multi-domain scenario, we further report the results
of the multi-domain version (i.e., HGTL-Multi) which utilizes two
other datasets as source domains. All the models are trained using
Tesla V100 PCIe GPU with 32 GB memory. The source codes of
our HGTL and datasets are available at https://anonymous.4open.
science/r/HGTL-C135.

A.6 Influence of Hyper-parameter
In this subsection, we study the influence of hyper-parameters
on the model performance. Specifically, we vary the value of the
weight of the meta-path based contrastive learning task 𝜆 in the
range of {0, 0.25, 0.5, 0.75, 1}, and the value of the thresholds of
3https://github.com/hidasib/GRU4Rec
4https://github.com/graytowne/caser_pytorch
5https://github.com/kang205/SASRec
6https://github.com/YChen1993/CoSeRec
7https://github.com/hulkima/Tri-CDR
8https://github.com/Chain123/RecGURU
9https://github.com/cjx96/C2DSR
10https://csse.szu.edu.cn/staff/panwk/publications/MGCL/
11https://github.com/JiachengLi1995/CAFE
12https://github.com/AIM-SE/DIF-SR
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Figure 5: Performance of our HGTL with different weight on
the contrastive loss.
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Figure 6: Performance of different edge expansion methods.

edge expansion (i.e., 𝜏1 for the semantic similarity and 𝜏2 for the
co-occurrence probability) in the range of {0.25, 0.5, 0.75, 1}.

From Fig. 5, we observe that the performance improves on all
datasets as the value of the parameter 𝜆 increases from 0 to some
larger values, which indicates the effectiveness of the contrastive
learning task. Moreover, when the parameter value is set to 0.5,
our model can achieve the best results in most cases, but as the
parameter value further increases to 1, the performance gradu-
ally decreases. This suggests that over-focusing on the contrastive
learning task may hurt the recommendation performance, since the
supervised signal should assist rather than dominate the training
process.

From Fig. 6, we observe that when the values of 𝜏1 and 𝜏2 become
extremely high or low, the model tends to be less effective. That’s
because larger parameter values indicate stricter conditions for edge
expansion, whereas smaller values imply more relaxed conditions.
When the value of the parameter equals to 1, it indicates that this
type of edge expansion method is not employed. And a small value
of the parameter expands lots of weakly correlated edges, in which
case the introduction of extra information and noise would degrade
the performance.
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