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Exploring the Use of Abusive Generative AI Models on Civitai

ABSTRACT
The rise of generative AI is transforming the landscape of digital
imagery, and exerting a significant influence on online creative
communities. This has led to the emergence of AI-Generated Con-
tent (AIGC) social platforms, such as Civitai. These distinctive social
platforms allow users to build and share their own generative AI
models, thereby enhancing the potential for more diverse artis-
tic expression. Designed in the vein of social networks, they also
provide artists with the means to showcase their creations (gener-
ated from the models), engage in discussions, and obtain feedback,
thus nurturing a sense of community. Yet, this openness also raises
concerns about the abuse of such platforms, e.g., using models to
disseminate deceptive deepfakes or infringe upon copyrights. To
explore this, we conduct the first comprehensive empirical study of
an AIGC social platform, focusing on its use for generating abusive
content. As an exemplar, we construct a comprehensive dataset
covering Civitai, the largest available AIGC social platform. Based
on this dataset of 87K models and 2M images, we explore the char-
acteristics of content and discuss strategies for moderation to better
govern these platforms.

CCS CONCEPTS
• Human-centered computing → Empirical studies in collab-
orative and social computing.

KEYWORDS
Social Media, Generative AI, Empirical Study
ACM Reference Format:
. 2018. Exploring the Use of Abusive Generative AI Models on Civitai. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The commodification of AI Generated Content (AIGC) has had a
significant impact on online creative communities [4, 12]. For ex-
ample, the Generative Diffusion Model (GDM) [35] has achieved
state-of-the-art outcomes in the realm of image generation, with
open-source implementations like Stable Diffusion [33] easily ac-
cessible. Their open-source nature further enables fine-tuning and
extension of the models.

This has driven the emergence of AIGC social platforms such
as Civitai, PixAI, and Tensor.art. These are online platforms for
sharing models, images and discussing open-source generative AI.
They are designed akin to social media services, allowing users to
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showcase their creations, participate in discussions, and receive
feedback, thereby creating a sense of community. Uniquely, they
also allow users to develop and share their own generative AI mod-
els. For instance, bespoke models can be developed for generating
particular types of images (e.g., containing particular people or
artistic styles) and, subsequently, other users can then share the
outputs (images) from these models for further social discussion.
These unique features have attracted a significant number of cre-
ators sharing numerous novel models and artworks, catalyzing new
trends in AI content creation [3, 23].

However, the unrestricted proliferation of diverse models repre-
sents a double-edged sword: while they can help unleash creativity,
they also pose challenges and risks that require careful considera-
tion. Numerous issues concerning the abuse of generative AI have
already been reported, including flooding online communities with
not-safe-for-work (NSFW) images [38], disseminating deceptive
deepfakes [44], and infringing upon copyright [14]. Anecdotally
these platforms have often been the origin of the generative AI
models that produce the aforementioned abusive content, and also
where the abusive content is initially shared [17, 22]. Thus, the
proliferation of abusive content from these platforms can exert a
broader influence, permeating other social media communities.

As a result, there is an arguable need to somehow moderate the
use of these models on such platforms. However, to date, there
have been no prior studies that could inform the debate. With
this in-mind, we conduct the first large-scale empirical study of
an emerging AIGC social platform, focusing on the Civitai — the
largest social platform for image models [34]. As of November,
2023, it has attracted 10 million unique visitors each month. We
compile a dataset comprising all metadata (for both images and
models) shared on Civitai until 15𝑡ℎ , December, 2023, containing
87,042 generative models and 2,740,149 AI-generated images. Using
a range of techniques, we then label each model and image with
information about its themes and the presence of NSFW concepts.
We explore the following research questions:
• RQ1: As each model can be highly bespoke, what are the key

themes the models are designed to generate images for? Further,
what are the subsequent themes of the images generated, and do
they reflect a prevalence of abusive content?

• RQ2: How popular are models that are designed for generating
abusive images, and what types of image prompts do users utilize
to generate such content?

• RQ3: Are users more active in engaging with abusive models
and images, as measured by social metrics such as comments
and favorites?

• RQ4: Do the creators of abusive models and images exhibit
distinct positions within the wider social network (i.e. centrality),
as compared to creators who do not?

We offer the first characterization of the themes of models and
images on Civitai and reveal a prevalence of abusive content. Our
main findings include:
(1) We find a range of models (and subsequently generated images)

each geared towards a particular theme. 16.97% models and
1
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72.05% images contain tags related to NSFW content; 23.54%
models and 32.98% images are deepfakes. Moreover, deepfakes
in Civitai tend to be associated with NSFW content (e.g., naked
deepfakes), with a positive correlation between tags for NSFW
content and deepfakes (model: 𝜙 = 0.17; image: 𝜙 = 0.10). We
also find that over half of the deepfake victims are celebrities.

(2) Models that are designed for NSFW content are more popular
than non-NSFW models. On average, NSFW models have gen-
erated 36.36 images (per model) vs. 24.20 for non-NSFWmodels.
However, we also find that non-NSFW models are frequently
re-purposed to generate NSFW content, via prompting. 37.05%
of the NSFW images are generated by prompting non-NSFW
models to contain NSFW concepts. Additionally, we find fre-
quent references to real person names in the textual description
of deepfake models. The most common victims are social media
celebrities, such as Instagram influencers or OnlyFans stars.

(3) Civitai users are more active in engaging with NSFW models
and images, as measured by common social network metrics.
Compared with their non-NSFW counterparts, NSFW mod-
els and images receive significantly more downloads/views
(models: 3.32x; images: 1.18x), favorites (models: 3.22x; images:
1.63x), and financial “tips” (models: 1.92x; images: 1.53x).

(4) Creators sharing abusive models and images are have higher
centrality in the social follower network. For example, creators
who have shared at least 3 NSFW or deepfake models/images
hold higher median centrality like betweenness (models: 2.59x;
images: 1.35𝑒−06 vs. 0), in-degrees (models: 1.50x; images: 6.00x),
and PageRank (models: 1.003x; images: 1.005x), compared with
those who haven’t. Therefore, these creators tend to have more
follower links, hold bridge positions and befriend more influen-
tial users.

2 PRIMER ON CIVITAI
As a social platform, Civitai enables users to share their AI mod-
els and generated images, as well as receive feedback, comments
and even tips from other users. In this section, we introduce the
necessary pre-knowledge about Civitai.
Models and images.Civiati hosts diffusionmodels andAI-generated
images, uploaded by creators. Every model/image is associated with
a unique ID and a preview web page public to any users. Various
social metadata is visible as well, involving tags (assigned by users
or Amazon Rekognition [9, 10]), statistics (e.g., number of down-
loads/views, likes, and rating scores), and text comments by other
registered users. Creators can also attach descriptive information
to their models and images, i.e. textual descriptions of models’ us-
age and images’ configurations, resources, and prompts used for
generation.
Users. Similar to common social platforms, Civitai users have pro-
file pages displaying their self-reported information and all their
models/images. Users can also attach external links to their profile
page, as promotion for their accounts on other social platforms (e.g.,
Instagram and X) or profitable platforms (e.g., Ko-fi and Patreon).
Furthermore, users can follow each other and leave rating scores
to the profile pages.

3 DATA COLLECTION METHODOLOGY
3.1 Data Collection
We compile a dataset containing the metadata of all models, images,
and creators on Civitai. To accomplish this, we utilize the Civitai
REST API1 and python Selenium WebDriver.
Model data.We collect 87,042 models’ metadata. The metadata con-
tains the number of downloads, likes, comments, and rating score
(range from 0 to 5), amount of tips, tags, a textual model description,
and flags for whether the model is a real-human deepfake or NSFW.
Of these models, 8.0% are checkpoint models (base models), 84.4%
are LoRA [11, 19] (or LyCORIS [46]) models (fine-tune models),
5.8% are embeddings and 1.8% are other models.
Image and prompt data.We collect 2,740,149 images’ metadata.
These are images generated from the shared models. The metadata
contains the number of consumers’ five reactions (cry, laugh, like,
dislike, and heart), number of comments, views, amount of tips,
tags, flags for whether the image is NSFW, and the model used to
generate the image. Note, as Civitai API does not identify deepfake
images, we annotate an image as real-human deepfake if it is gener-
ated by any one model explicitly reported as real-human deepfake.
Importantly, the metadata also includes the text prompts used for
1,534,922 images.
Creator data.We extract 56,779 creators, with 11,632 model cre-
ators and 52,546 image creators (7,399 are both model and image
creators). We also gather their lists of followers and followees.

3.2 Data Augmentation
We augment our data with two types of annotations: (i) labeling
models and images with their content themes (§4); and (ii) iden-
tifying person names as well as occupations, using the models’
descriptions (§5). Considering that our study covers a large-scale
dataset, we leverage ChatGPT for this, as relevant literature has
highlighted its potential in facilitating theme extraction [16, 42]
and person name recognition [40].
Model implementation.We use gpt-3.5-turbo-0125. We access
the model through OpenAI’s API with parameter temperature set
to 0 to make the response focused and deterministic.
Extracting tags’ themes.We first extract the top 500 most popular
text tags for the models and images, respectively (note, these are
tagged by the model/image uploader, other registered users, and
Amazon Rekognition [9, 10]). We then utilize ChatGPT to summa-
rize the potential thematic categories that the tags refer to. Our
prompts use a “system” message making ChatGPT respond in a
desired JSON format and a “user” message in JSON syntax [48]. We
begin by using the first prompt to extract general themes from the
tags:
[SYSTEM MESSAGE]: You are a helpful assistant designed to output JSON

within the desired format: [<potential_theme_of_tags>] [USER MESSAGE]:

{“Prompt”: “The followings are 500 most popular tags associated with

shared generative models on a AIGC platform. List potential themes of

these tags.”, “Tags”: [“Tag 1”, “Tag 2”, ...]}.

Next, we ask ChatGPT to annotate each of the tags with the
above extracted themes:

1https://github.com/civitai/civitai/wiki/REST-API-Reference.
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[SYSTEM MESSAGE]: You are a helpful assistant designed to output

JSON within the desired format: {“Tag”: <tag_to_categorize>, “Theme”:

<theme_of_the_tag>} [USER MESSAGE]: {“Prompt”: “Categorize the following

tag based on the given themes.”, “Tag”: “Tag input”}.

Following this, two authors manually review ChatGPT’s re-
sponses to correct any mis-classified tags and consolidate duplicate
categories (e.g., merging tags in the “Erotic Art” and “Mature Con-
tent” categories into a new category named “NSFW content”). In
all, ChatGPT extracts 158 themes from all tags (models: 47; images:
111) and we consolidate them into 6 general categories – “Human
attributes” (28 themes), “Deepfakes” (5 themes), “NSFW content” (8
themes), “Virtual character, fictional content, entertainment media”
(32 themes), “Scenery objects, decoration, clothing” (28 themes),
“Style of art and culture” (48 themes).2

Person name recognition. To inspect who are the victims tar-
geted by deepfake models, we leverage ChatGPT to extract real
people’s names from each model’s description. For this, we utilize
the following prompt:
[SYSTEM MESSAGE]: You are a helpful assistant designed to output JSON

within the desired format: {“Entities”: [{“Name”: <personal_named_entity>,

“Occupation”: <occupation_of_the_person>}]} [USER MESSAGE]: {“Prompt”:

“Identify all real person names with their occupations.”, “Text”: “Text

input”}

To validate the results, we manually label person names from
100 randomly sampled models. We find that ChatGPT reports the
correct occupations for all the person names. For additional context,
we then group these celebrities by their occupations and rank the
groups by the number of derived images. We manually review the
top-100 groups and consolidate duplicate groups by standardizing
their occupation names (e.g., merging all groups containing the
word “actor” into a general group named “actor”).

3.3 Baseline Prompt Datasets
Our study also contains a later comparative analysis of the usage
of NSFW content in prompts on Civitai vs. two mainstream AIGC
platforms: Stable Diffusion and Midjourney. For this, we make
use of two existing prompt datasets: DiffusionDB (1,528,512 dis-
tinct prompts from Stable Diffusion Discord) [39] and JourneyDB
(1,466,884 distinct prompts from Midjourney) [36]. Each of the two
datasets contains a large volume of user-generated prompts, allow-
ing us to understand the prompts used on those platforms.

For this, we also employ OpenAI’s moderation API, configured
with the text-moderation-006 model, to quantify the degree of
NSFW content exposed in each prompt’s text across our Civitai
dataset, plus DiffusionDB and JourneyDB. OpenAI’s moderation API
takes a prompt’s text as an input and then reports if it is NSFW
content (confidence score ranging from 0 to 1), as well as a flag
defining whether the prompt finally classified as NSFW. We choose
this moderation model because it is effective in detecting NSFW
content [25]. Indeed, it is already used to moderate ChatGPT’s
prompt input [31].
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Figure 1: CDF of the percentage of models and images, by the
creator that contain a specific theme.

4 EXPLORING MODEL AND IMAGE THEMES
(RQ1)

In this section, we investigate RQ1, inspecting the themes of models
and images. Our ultimate goal is to explore the potential prevalence
of abusive content on Civitai.

4.1 Overview of Themes
Recall, we use ChatGPT to identify the theme of each model and im-
age, based on their tags. Thus, we begin by examining the distribu-
tion of the six identified themes. Table 1 summarizes the themes of
models and images extracted by ChatGPT, as well as corresponding
statistics. Overall, while “Human attributes” is the most common
themes across both models and images, we observe that the focus
on themes varies between the creation of models vs. images. Model
development predominantly revolves around three themes: “Virtual
character, fictional content, entertainment media” (65.03% models),
“Human attributes” (53.85% models), and “Style of art and culture”
(34.58% models). In contrast, image creation focuses on “Scenery
objects, decoration, clothing” (87.53% images) and “NSFW” (72.05%
images). This suggests that the interests of themodel creators differs
from the image creators who use those models.

Worryingly, we also note that intuitively abusive themes play a
major role in both models and image creation. “Deepfakes” emerge
as a significant theme, covering 23.54% of models and 32.98% of
generated images. A notable portion of models (16.97%) and images
(72.05%) are tagged with the theme “NSFW content”. This suggests
that creative communities within Civitai may face issues with “abu-
sive” material, indicating a need for enhanced moderation efforts
(especially regarding deepfakes and NSFW content).

4.2 Overview of Creators’ Themes
We next examine the specific themes that each creator (primarily)
focuses on. To do this, for each user, we calculate the proportion
of each theme within their content portfolio. To reduce noise, we
exclude less active creators, who have fewer than 3 models or
images.

Figure 1a displays the CDF of the percentage of models by the
creator that contain each specific theme (see §3.2 for information

2We detail the full breakdown in the supplementary material.
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Theme Model Image

#Tag #Models Representatives #Tag #Images Representatives

Human attributes 68
(16.80%)

46,875
(53.85%) woman, female, girls, man, male 127

(25.40%)
2,537,481
(92.91%) woman, solo, female, person, lips, head, face

Deepfakes 35
(7.00%)

20,490
(23.54%) celebrity , actress, model, real person, realism 25

(5.00%)
900,796
(32.98%) bands, realistic

NSFW content 39
(7.80%)

14,773
(16.97%) sexy, nsfw, hentai, porn, pornstar 61

(12.20%)
1,967,678
(72.05%) breasts, sexy attire, adult, nudity, large breast

Virtual character, fictional content,
entertainment media

175
(35.00%)

56,602
(65.03%) character, anime, video game, cartoon, furry 25

(5.00%)
1,507,389
(55.20%) anime, comics, animal ears, cosplay, manga

Scenery objects, decoration, clothing 44
(8.80%)

7,803
(8.96%)

clothing, buildings, vehicle, landscape,
architecture

221
(44.20%)

2,390,418
(87.53%) clothing, outdoors, jewelry, cleavage, earrings

Style of art and culture 114
(22.80%)

30,095
(34.58%) style, lora, base model, portraits, art 26

(5.20%)
937,534
(34.33%) photography, blurry, art, fashion, painting

Miscellaneous 25
(5.00%)

8,025
(9.21%) concept, tool, fully automated, objects, animals 15

(3.00%)
321,586
(11.78%) animal, bara, mammal, electronics, leather

Table 1: A summary of thematic categories of models and images on Civitai. The theme “Miscellaneous” is for those tags
unable to be coded with any one of the six themes identified by ChatGPT. The column “#Tag” presents the number of tags
involved in corresponding themes. “#Models/#Images” presents the number ofmodels/images containing corresponding themes.
“Representatives” presents exemplar tags.
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Figure 2: Heat maps of phi coefficient showing pair-wise
category correlation between each of the six themes.

about themes). We observe that the theme “Virtual character, fic-
tional content, entertainment media” is the focus for the majority of
model creators, covering a median of 75% of each creator’s models.
In fact, 34% of creators fully (100%) focus on this theme. In contrast,
NSFW and Deepfake models are not the primary focus for most cre-
ators, with over 58% of creators not creating any NSFW or Deepfake
models. However, the situation for images is very different from
models. Figure 1b displays the CDF of the percentage of images
by the creator that contain a specific theme. Unlike models, NSFW
is a very popular theme for image creators: 95% of image creators
have at least one NSFW image, and 30% exclusively creating NSFW
images. The “Human attributes” theme for images (representative
tags include woman, lips, head, etc.) is also significantly different
from models. It it is the primary focus for most image creators, with
71% of creators exclusively creating “Human attributes” images.
Overall, the results confirm that deepfake and NSFW content are
prevalent themes among image creators, highlighting the necessity
for moderation.

4.3 Relationships between Themes
The prior subsection has revealed clear preferences for certain
themes of models and images within the Civitai community. Abu-
sive themes (NSFW & deepfakes) seem particularly prevalent for
images. That said, deepfakes themselves are not inherently abusive;
rather, they only become abusive when intertwined with other
themes. For instance, a satirical deepfake portraying a politician
may be innocuous, whereas one depicting a celebrity naked is prob-
lematic. Thus, we next examine the co-occurrence of themes, mea-
sured using the phi coefficient (𝜙). Figure 2 presents the category
phi correlation (𝜙) between each pair of themes, as a heatmap.

Perhaps unsurprisingly, we find that the theme “Deepfakes” and
“NSFW content” are positively correlated for both models (𝜙 = 0.17)
and images (𝜙 = 0.10). This finding indicates a likelihood that
deepfakes are associated with NSFW content on Civitai, raising
concerns about NSFW deepfakes [2]. Moreover, we observe a pos-
itive correlation of “Deepfakes” and “Human attributes” (model:
𝜙 = 0.25; image: 𝜙 = 0.18). Further investigation reveals that such
a relationship is particularly evident in the context of celebrity
deepfake models. Within the subset of 5,868 models tagged with
the themes “Deepfakes” and “NSFW content”, 55.74% (3,271 mod-
els) are also associated with celebrity tags.3 These results confirm
that deepfakes in Civitai are likely to be abusive, given the fre-
quent co-occurrence of deepfakes alongside NSFW content, as well
as real human attributes. Moreover, themes involving real-world
celebrities combined with NSFW deepfakes underscore a arguable
necessity for better moderation.

5 EXPLORING THE CREATION OF ABUSIVE
IMAGES (RQ2)

The previous section has exposed the presence ofmodels specifically
designed to generate abusive content, alongside a wealth of images

3Tags are celebrity, celeb, politician, actress, actor, singer, musician, kpop idol, idol,
influencer, Instagram model, streamer, YouTuber, artist
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Figure 3: Comparison of the distribution of productivity
among distinct types of models, measured as the number
of images per model.

generated using those models. Next, we focus on the popularity of
these models, and who they target.
Popularity of deepfake and NSFW models.We first inspect the
“popularity” of real-human deepfake and NSFW models, as this
can offer moderators a useful lens into the productivity of abusive
models. We measure popularity based on the number of images
that have been created using those models. Recall, that the Civitai
API returns whether a model is dedicated to deepfakes or NSFW.
Rather than using the tags, we therefore next use these labels to
classify each model. Overall, 13,516 models (15.53%) are classified
as real-human deepfakes, and 7,614 models (8.75%) are classified as
generating NSFW content.

Based on this classification, we see that NSFW and deepfake
models are commonly used by image creators. These models have
been used to produce 149,227 (5.46%) and 261,432 (9.54%) unique
images, respectively. This again implies that abusive models play
an important role in Civitai, where a notable portion of images are
produced by these models. However, their respective importance
has some nuance. Figure 3 compares the distribution of popularity of
each type of model, as measured by the number of images generated
per model. Compared with non-NSFW models (𝑚𝑖𝑑 = 14, 𝜇 =

24.20), we see that NSFW models are used to generate more images
(𝑚𝑖𝑑 = 22, 𝜇 = 36.36). In contrast, real-human deepfake models are
used to generate fewer images (𝑚𝑖𝑑 = 7, 𝜇 = 11.08) than the non-
real-human deepfake models (𝑚𝑖𝑑 = 16, 𝜇 = 27.88). Even though
15.53% of models are labeled as generating real-human deepfake
images, they only contribute 5.46% of all images. Thus, even though
NSFW models are more popular than the average, the real-human
deepfake models appear more niche, with a smaller group using
them. Naturally, this does not downplay the harm that such models
can cause.
Use of NSFW prompts. A curious finding is that 88.40% of images
reported above as NSFW are generated using non-NSFW models.
We suspect this is becausemanymodels can easily be repurposed for
generated NSFW content, using appropriate prompts. This dramat-
ically increases the complexity of moderating such model sharing,
motivating us to examine how much NSFW content appears in
prompts.

Recall, to explore this, we use OpenAI’s moderation API to derive
a NSFW score (0 to 1) for each prompt based on the prompt’s text.
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a degree exceeding the threshold (0.53) will be reported as
NSFW prompt by OpenAI’s moderation API.
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Figure 5: Comparison of the distribution of prompts’ NSFW
score between our Civitai dataset and other two selected
prompt datasets.

Figure 4 presents the distribution of the NSFW score for all prompts.
Here, OpenAI’s default threshold for tagging a prompt as NSFW is
0.53. We see a notable presence of NSFW prompts (score > 0.53)
in the data: 404,330 (27.24%). Moreover, for those NSFW images
that only employ non-NSFW models, 41.91% of them are generated
with NSFW prompts. This suggests that NSFW prompts can easily
repurpose models to generate NSFW images, even if these models
not designed for NSFW material. Thus, there is extensive scope to
repurpose non-NSFW models for NSFW purposes.

Additionally, we notice the distribution of prompts’ scores ap-
pears to be bimodal with the main peak at around = 0 and a lower
peak around score = 1. Notably, 39.12% of NSFW prompts contain a
very high NSFW score (> 0.9). This indicates that certain creators
tend to include extensive NSFW content in prompts’ text. More-
over, Figure 5 illustrates the distribution of NSFW score for prompts
within Civitai, Stable Diffusion Discord, andMidjourney. Recall that
these prompts involve 1,534,922 prompts from Civitai, 1,528,512
prompts from DiffusionDB [39], and 1,466,88 prompts from Jour-
neyDB [36]. This figure depicts the distribution of prompts’ NSFW
scores over two groups of prompts respectively – all prompts (a),
and those reported as NSFW prompts (scores > 0.53) (b). Regarding
all prompts, Civitai (𝑚𝑖𝑑 = 0.045, 𝜇 = 0.286) possesses a higher
distribution of NSFW scores in the prompts, compared to both
Midjourney (𝑚𝑖𝑑 = 0, 𝜇 = 0.007) and Stable Diffusion Discord
(𝑚𝑖𝑑 = 0, 𝜇 = 0.005) (Figure 5a). When it comes to only NSFW
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Occupation #Models #Images
(NSFW%) Representatives (#Images)

Actress 3,916 50,843
(9.73%)

Emma Watson (648), Natalie Portman (542), Ana
De Armas (500), Alexandra Daddario (445),
Scarlett Johansson (398)

Model 1,663 19,323
(13.31%)

Emily Bloom (187), Cara Delevingne (150),
Kendall Jenner (125), Jenna Ortega (110), Nicola
Cavanis (100)

Actor 717 7,877
(3.44%)

Henry Cavill (271), Fares Fares (135), Nicolas
Cage (107), Arnold Schwarzenegger (88),
Harrison Ford (82)

Singer 757 7,296
(10.36%)

Billie Eilish (253), Dua Lipa (230), Taylor Swift
(221), Avril Lavigne (214), Britney Spears (170)

Internet
influencer 296 3,323

(13.12%)
Belle Delphine (164), Brooke Monk (100), Ricardo
Milos (74), Dasha Taran (71), Kris H Collins (67)

Character 225 2,698
(10.08%)

Hermione Granger (99), Jill Valentine (87), Sabine
Wren (69), 2B (61), El Chavo del Ocho (60)

Pornstar 210 2,376
(18.56%)

Katja Kean (76), Simone Peach (60), Teagan
Presley (59), Alex Coal (58), Anita Blond (50)

Adult Model 275 2,239
(8.35%)

Lucid Lavender (64), Matthew Rush (39), Sean
Cody (39) Hailey Leigh (36), Bunny Colby (34)

Streamer 145 1,745
(15.70%)

Valkyrae/Rachell Hofstetter (166), Alexandra
Botez (80), Sasha Grey (78), Andrea Botez (62)

Idol 166 1,239
(7.75%)

Akina Nakamori (52), Cherprang Areekul (38),
Song Yi (37), Yuino Mashu (36) Kim Ji-Woo (35)

Table 2: Top-10 occupations of celebrities involved in creation
of deepfake models, ranked by their counts of derivative
images. “#Models/#Images” presents the number of deepfake
models/derivative images containing person names within
corresponding occupation. “NSFW%” shows the percentage
of images labeled as NSFW by Civitai API.

prompts, prompts in Civitai (𝑚𝑖𝑑 = 0.841, 𝜇 = 0.816) and Midjour-
ney (𝑚𝑖𝑑 = 0.844, 𝜇 = 0.815) contains noticeably higher NSFW score
than those in Stable Diffusion Discord (𝑚𝑖𝑑 = 0.775, 𝜇 = 0.771) (Fig-
ure 5b). A one-sided two-sample Kolmogorov–Smirnov test reports
that Civitai still holds a significantly (𝑝 < 0.001) higher distribution
of NSFW score in prompts than Stable Diffusion Discord (𝐷 = 0.150)
and Midjourney (𝐷 = 0.023) though. These findings indicate that
these emerging AIGC social platforms may face a considerable in-
flux of NSFW prompts, alongside a inclination among creators to
use prompts to repurpose even non-NSFW models.
Exploration of victims. As implied by our thematic analysis, real-
world celebrities may have been directly targeted within deepfakes
using models from Civitai (§4). We next inspect which celebrities
and industries are the main victims in the prompts. We extract
person names with their occupations from the textual usage de-
scriptions of real-human deepfake models (see §3.2). In all, within
deepfake models, ChatGPT identifies 8,297 distinct person names
from 10,170 (75.24%) models, as well as 116,994 (78.40%) images gen-
erated using these models. This confirms a prevalence among image
creators to target celebrities when creating real-human deepfakes.

Table 2 summarizes the top-10 occupations and statistics of the
corresponding models and images. We find that celebrities from
three industries are the main targets of deepfakes on Civitai: en-
tertainment (e.g., actress/actor, model, and singer), adult (e.g., porn-
star and adult model), and social media (Internet influencer and
streamer). Interestingly, models associated with celebrities from
social media industries are more common (14.01% labeled as NSFW)
than targeting celebrities from entertainment (10.01%), or even

adult (13.61%) industries. Through manual inspection, we find that
most of them are either closely associated with subscription plat-
forms (e.g., Belle Delphine with OnlyFans and Andrea Botez with
Fanhouse) or well-known as Instagram models (e.g., Kris H Collins
and Brooke Monk). Whereas prior work has revealed a prominence
of victims from entertainment and politics [7], only 841 (1.71%)
deepfake images target politicians on Civitai. Instead, our findings
highlight that it is far more common to target online celebrities.

6 EXPLORING USER ENGAGEMENTWITH
ABUSIVE MODELS AND IMAGES (RQ3)

Prior literature has underscored the importance social engagement
in encouraging users to share more abusive media [26, 29]. Civitai
allows users to interact and, for example, post comments and likes
on models or the images that they generate. Inspired by this, we
inspect the level of social engagement received by models and
images labeled as abusive.
Metrics to quantify engagement.We rely on several metrics to
quantify social engagement with models and images:
• Number of downloads/views: The total number of times that a

model has been downloaded or an image has been viewed.
• Number of favorites: The total number of favorites that a model

or image has received.4
• Number of comments: The total number of comments that a mod-

el/image has received.
• Rating score: The overall rating score (0 to 5) the model possesses

(this is not supported for images).
• Buzz: The volume of Buzz a model/image accumulates by receiv-

ing tips from users. Here, the Buzz is the in-site digital currency
on Civitai [8].

Engagement with deepfake and NSFW models and images. Us-
ing the above metrics, we inspect whether abusive content triggers
more active user engagement. For this, we first group models and
images as either real-human deepfakes or NSFW, independently.
We then perform the Mann-Whitney U test to assess in-group dif-
ference on each of the aforementioned metrics.

Table 3 summarizes the comparison results on the user engage-
ment for the model/image groups, categorized by their label as
real-human deepfakes or NSFW. All comparisons possess statis-
tical significance (𝑝 < 0.001), which suggests that models and
images related to abusive content receive different engagement
levels. We find that NSFW models and images have a higher volume
across almost all engagement metrics, on average. Compared with
non-NSFW ones, NSFW models and images are more likely to be
downloaded or viewed (models: 3.32x; images: 1.18x), gain more fa-
vorites (models: 3.22x; images: 1.63x) and more tips (models: 1.92x;
images: 1.53x). Additionally, NSFW models not only attain a higher
rating score (1.96x non-NSFW models’ rating score), they also trig-
ger viewers to leave more comments and tips (1.09x non-NSFW
models’ comments volume).

Interestingly, these trends get reversed for real-humandeefakes.
Real-human deepfake models or images get a lower volume of all
engagement metrics on average. For example, compared with not

4While a model has a favourites count, an image’s favorites are represented by two
emoji-based reactions, “like” and “heart”, left by viewers under the image.
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Real-human deepfake NSFW

Mean diff
(True vs. False) p-value Mean diff

(True vs. False) p-value

Number of downloads 0582.42 < 1539.32 *** 3842.83 > 1155.68 ***
Number of favorites 066.55 < 237.61 *** 569.23 > 176.72 ***
Number of comments 2.32 < 3.24 *** 4.53 > 2.31 ***
Rating score 3.27 < 3.43 *** 3.58 > 3.28 ***
Buzz 06.64 < 45.24 *** 70.33 > 36.54 ***

(a) Engagement with models

Real-human deepfake NSFW

Mean diff
(True vs. False) p-value Mean diff

(True vs. False) p-value

Number of views 747.25 < 958.80 *** 1030.18 > 866.550 ***
Number of favorites 1.51 < 2.54 *** 3.09 > 1.89 ***
Number of comments 0.017 < 0.032 *** 0.029 < 0.033 ***
Rating score - - - -
Buzz 0.15 < 0.47 *** 0.55 > 0.36 ***

(b) Engagement with images

Table 3: Comparison on metrics of user engagement by the
Mann-Whitney U test between models/images groups catego-
rized by their label as real-human deepfakes or NSFW. “Mean
diff” column shows the comparison results of themean value
of corresponding metrics between two groups; ***: 𝑝 < 0.001.

real-human deepfake ones, real-human deepfake models and im-
ages are less likely to be downloaded or viewed (models: 0.38x;
images: 0.78x), gain less favorites (models: 0.28x; images: 0.59x) and
less tips (models: 0.15x; images: 0.32x).
Engagement and model productivity. One explanation for the
above is that NSFW models gain more engagement by being used
to produce more images than deepfake ones. We refer to this as a
model’s “productivity”. To explore this relation, we calculate the
Pearson correlation between each models’ volume of generated im-
ages vs. the users’ engagement with these models. Table 4 presents
the results of the correlation analysis across the models, grouped
as real-human deepfakes or NSFW. Confirming our intuition, all
engagement metrics exhibit a significant (𝑝 < 0.001) positive cor-
relation with models’ productivity (𝑟 > 0). In other words, the
models that are used to generate images more often tend to also
gain more social engagement. Moreover, given that NSFW models
(𝑚𝑖𝑑 = 22, 𝜇 = 36.36) have produced more images than deepfake
models (𝑚𝑖𝑑 = 16, 𝜇 = 27.88), this correlation can explain why
NSFW models trigger more user engagement than deepfake ones.
The higher productivity and engagement for these models suggests
that NSFW content existing within a wider community of active
users.

7 EXPLORING THE NETWORK POSITIONS OF
ABUSIVE CREATORS (RQ4)

One potential explanation for the above prevalence of abusive mod-
els and images is that help creators to gain a greater social status.
To explore this, we next investigate whether the sharing of abusive
models and images is correlated with a creator’s social network
position (e.g., centrality).

Real-human deepfake NSFW

Pearson’s 𝑟 p-value Pearson’s 𝑟 p-value

Number of downloads 0.344 *** 0.287 ***
Number of favorites 0.313 *** 0.349 ***
Number of comments 0.288 *** 0.223 ***
Rating score 0.281 *** 0.408 ***
Buzz 0.032 *** 0.113 ***

Table 4: Correlation analysis by measuring Pearson’s 𝑟 be-
tween models’ volume of generated images and users’ en-
gagement with the models. ***: 𝑝 < 0.001.

7.1 Social Network Definition
We induce a follower network based on users’ following connec-
tions. If a user (followee) is followed by another user (follower), we
assign a directed link from the follower to the followee. The result-
ing social network is a directed graph consisting of 214,218 nodes
and 1,731,805 edges. Among these users, we focus on active creators
who have shared at least 3 models or images. We further categorize
these creators as NSFW/deepfake if they have contributed at least 3
NSFW/deepfake models or images. In all, there are 26,180 (12.22%)
active creators who generate 1,699,606 (98.14%) connections on the
follower network. 19,160 (73.18%) are NSFW creators and 2,591
(9.89%) are deepfake creators. This means that the follower network
is predominately led by a small group of active creators, who com-
monly share models and images. This unsurprisingly seems to play
a key role in forming the connections.

7.2 Centrality Analysis
Graph centrality is a metric to assess users’ positions on a social
network [5]. We calculate three centrality metrics to quantify the
creators’ network positions [30, 47]: (i) Betweenness: Creators with
higher betweenness centrality hold a brokerage position, connect-
ing different communities within the social network; (ii) Indegree:
Creators with higher indegree are more popular, with more follow-
ers; (iii) PageRank: Creators with higher PageRank are followed by
other users, who have high influence.

To inspect whether abusive creators have different network posi-
tions, we calculate the above centrality metrics for all users. Figure 6
presents the results for the three centrality features between the
different types of creators. We observe that abusive creators do
possess higher centrality within the follower network.

Model creators who share deepfakemodels hold higher values for
all the three centrality metrics, compared to those who never share
any abusive models (Neither < Both, Deepfake-only). Similarly,
image creators who share NSFW images also hold higher values for
all the three centrality features (Neither, Deepfake-only < Both,
NSFW-only). Thus, abusive creators do demonstrate a higher level
of centrality within the follower network, indicating their distinct
position as brokerage position, popular followees, or neighbors of
influencers. We posit that this also impacts the earlier engagement
metrics, as users with more central positions in the social graph
will attain higher exposure.
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Figure 6: Comparison of network centrality between diverse types of creators. “Both” refers to the creators categorized as both
NSFW and deepfake at the same time. The statistical significance is reported by the Kruskal-Wallis test with Dunn’s post-hoc
test; ****: 𝑝 < 0.0001, ***: 𝑝 < 0.001, **: 𝑝 < 0.01, *: 𝑝 < 0.05, ns: none significance.

8 RELATEDWORK
Platforms for AI models. Previous studies have looked at online
platforms for AI models, with a particular emphasis on traditional
platforms like GitHub and Huggingface. These investigations cover
a wide range of perspectives, including machine learning [27, 37],
software engineering [20, 37], and social computing [1, 41]. Addi-
tionally, there are also studies that put forward innovative designs
for these platforms [18, 21]. In contrast, Civitai and other AIGC
social platforms also serve as a hub to showcase AIGC, and an
online community for AI creators, attracting a diverse user base
that extends beyond programmers and computer scientists. To the
best of our knowledge, this is the first large-scale empirical study
of an emerging AIGC social platform.
Abuse of generative AI. Several studies have examined the abuse
of generative AI. There are two perspectives closely related to our
work. The first issue concerns the spread of misinformation through
deepfakes [43]. Multiple studies have looked into the prevalence of
deepfakes on social media and their potential impact on security
and safety [7, 15, 24, 28, 32, 45]. The second issue involves the
creation of NSFW content more generally. Numerous studies have
highlighted the significant increase in AI-generated NSFW content
on the Internet, particularly on social media platforms. Concerns
have been raised about the lack of regulation and moderation of
this content, and the potential impact it may have on the online
environment and community building [6, 13, 17, 38, 41]. In contrast,
Civitai and other AIGC social platforms offer more than just AI-
generated images — they include generative AI models that produce
the abusive images. Overall, our research complements prior studies
by providing insights not only from the image angle, but also from

the model and creator perspective. We argue this can help in better
regulating and moderating potentially abusive models and images.

9 CONCLUSION AND DISCUSSION
Summary and implications. This paper performed a large-scale
study of the creative ecosystem of Civitai. Our analysis reveals
abusive use of generative models, mainly revolving around NSFW
content and deepfakes. Moreover, we flag several crucial points
related to the use of NSFW prompts, emerging deepfake attacks
on social media celebrities, and users’ active engagement with abu-
sive models and images. This motivates the need to better develop
moderation tools by analysing creators’ network positions.
Limitations and future work. Our research is based solely on
Civitai. Moving forward, we hope to include additional AIGC plat-
forms such as PixAI and Tensor.art. This expansion will allow us
to gain a wider perspective on the patterns of AI-generated abuse
across various platforms. Furthermore, so far, our focus is limited
to the exploration of NSFW content and deepfake abuses through
generative models. We wish to explore other forms of misuse, such
as copyright infringement, the creation of offensive memes, and
the production of false information.
Ethics consideration. Our study is based on public data from the
Civitai RESTful API. We do not attempt to de-anonymise users. We
only use the data to understand users’ behaviors associated with
abusive AIGC and discuss moderation strategies for Civitai. Our
analyses follow Civitai’s data policies.
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