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Abstract

Federated Learning (FL) has emerged as a promising paradigm for collaborative model
training without sharing local data. However, a significant challenge in FL arises from
the heterogeneous data distributions across participating clients. This heterogeneity leads
to highly variable gradient norms in the model’s final layers, resulting in poor generaliza-
tion, slower convergence, and reduced robustness of the global model. To address these
issues, we propose a novel technique that incorporates a gradient penalty term into partial
variance control. Our method enables diverse representation learning from heterogeneous
client data in the initial layers while modifying standard SGD in the final layers. This
approach reduces variance in the classification layers, aligns gradients, and mitigates the
effects of data heterogeneity on image classification tasks. Through theoretical analysis,
we establish convergence rate bounds for the proposed algorithm, demonstrating its po-
tential for competitive convergence compared to current FL methods in highly heteroge-
neous data settings. Empirical evaluations on three computer vision image classification
datasets validate our approach, showing enhanced performance and faster convergence over
state-of-the-art baselines across various levels of data heterogeneity. Our code is available
at https://anonymous.4open.science/r/FedPGVC-7F18.

1 Introduction

Federated learning (FL) facilitates collaborative training of a global model across multiple clients while
preserving data privacy by avoiding the need to transmit local data to a central server, in contrast to
traditional centralized methods McMahan et al. (2017). With the proliferation of decentralized data sources
like mobile devices, hospitals, and the Internet of Things (IoT), FL has gained traction as a solution for
training deep networks across distributed environments Zhang et al. (2022). However, a significant practical
obstacle encountered during federated training is data heterogeneity across clients Kairouz et al. (2021); Li
et al. (2020). Diverse user behaviors can lead to significant heterogeneity in the local data across different
clients, resulting in non-independent and identically distributed (non-IID) data. This heterogeneity has been
shown to cause unstable convergence, slow training progress, and ultimately suboptimal or even detrimental
model performance Li et al. (2022); Zhao et al. (2018). While FedAvg McMahan et al. (2017) has been
widely adopted and successful across multiple applications, it frequently encounters challenges in attaining
optimal accuracy and convergence, particularly in heterogeneous data distributions. This difficulty arises
from client drifts Karimireddy et al. (2020), a phenomenon resulting from the varying nature of data among
participating clients. Prior research has addressed the issue of client drift by introducing penalties for the
divergence between client and server model Li et al. (2020; 2021a), or by employing variance reduction
approaches during the client model update Karimireddy et al. (2020); Acar et al. (2021). Luo et al. (2021)
tackled data heterogeneity through classifier re-training utilizing virtual features. Another study uncovers
that a biased classifier significantly undermines the performance of federated training on heterogeneous data
and introduces a novel algorithm by re-training the classifier with learnable features Shang et al. (2022). A
recent study by Li et al. (2023) measures gradient variability across clients by calculating drift diversity,
especially in deeper layers, and proposes aligning classification layers using control variates. While this
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approach may enhance model performance, it can increase communication costs and relies on assumptions
that may not always hold in practical FL scenarios.

1.1 Empirical Observations

Based on these observations, we conducted two experiments: first, to empirically analyze gradient norms
for models trained on IID and non-IID data, aiming to understand gradient behavior across layers and its
impact on training stability; second, to determine which parts of the neural network are more sensitive to
data heterogeneity. We have taken the CIFAR100 dataset with α = 0.5 for non-IID data and α = 100 to
make IID data distribution and a CNN with 10 layers for both experiments. The detailed experimental
setting can be found in Section 4.1. Initially, we calculate aggregate metrics, including the mean, variance,
and maximum gradient norms for all layers. The Mean Gradient Norm is expressed as follows:

Mean(∥∇W∥) = 1
L

L∑
i=1
∥∇Wi∥ (1)

where L is the total number of layers, and ∥∇Wi∥ is the gradient norm of the ith layer, defined as:

∥∇Wi∥ =

√√√√ n∑
j=1

(∇Wi,j)2 (2)

where n is the number of weights in each layer. The Variance of the Gradient Norm is calculated as:

Var(∥∇W∥) = 1
L

L∑
i=1

(∥∇Wi∥ −Mean(∥∇W∥))2 (3)

The Maximum Gradient Norm is defined as:

Max(∥∇W∥) = max
i=1,...,L

∥∇Wi∥ (4)

We computed these metrics for each layer of the CNN model trained with both IID and non-IID data
distributions. The results, presented in Table 1, reveal that models trained on non-IID data exhibit higher
average gradient norms and greater variance compared to those trained on IID data. This indicates that non-
IID training leads to larger updates and potentially greater instability in the training process. In the second
experiment, we analyzed the gradient norms for each layer of the CNN model to understand the impact
of distribution shifts. The results, shown in Fig. 1, illustrate the variation of gradient norms across layers
for both IID and non-IID cases. Initial layers exhibit higher gradient norms, which decrease significantly in
subsequent layers. Both models display similar gradient patterns in the initial layers. However, the model
trained on non-IID data exhibits higher gradient norms in and near the classification layer, indicating larger
updates and greater instability in these regions due to data heterogeneity. These findings highlight that the
classification layer, along with its neighboring layers, significantly contributes to the observed instability and
slower convergence when training with non-IID data.

Table 1: Aggregate metrics for gradient norms of models trained on IID and non-IID data distribution.

Metric IID Model non-IID Model
Mean Gradient Norm 1.96 × 103 7.49 × 103

Variance of Gradient Norm 5.40 × 106 2.82 × 107

Maximum Gradient Norm 7.90 × 103 1.83 × 104

Inspired by the above empirical observations, we propose Federated Partial Gradient Variance Control
(FedPGVC) to stabilize noisy gradient norms to mitigate data heterogeneity without incurring additional
communication costs. FedPGVC calculates a gradient penalty term for each individual client, updating the
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Figure 1: Comparison of gradient norm of the two models (IID and non-IID) trained using FedAvg.

last layers of the neural network while the remaining layers are updated using a Stochastic Gradient Descent
(SGD) optimizer. In this work, we calculate the gradient penalty term inspired by the Wasserstein Distri-
butionally Robust Optimization (WDRO) Gao & Kleywegt (2023). This approach addresses distributional
uncertainties and deviations, enhancing the global model’s resilience to non-IID data across clients and im-
proving generalization to unseen data samples, even when they deviate from the training distribution. We
have performed experiments on the three widely used datasets, MNIST, FMNIST, and CIFAR100 datasets,
with varying degrees of data heterogeneity among clients. Our experimental results demonstrate that the
proposed FedPGVC requires fewer communication rounds to achieve the same level of accuracy as existing
approaches. Furthermore, with a fixed number of communication rounds, FedPGVC attains comparable or
superior top-1 accuracy. The key contributions of this work are as follows:

• We introduce FedPGVC to tackle the challenges of data heterogeneity in federated training by
incorporating a partial variance reduction technique utilizing client-specific gradient penalty terms.

• We have proposed a gradient penalty term for the weight updates of the final classification layers to
mitigate client drift, stabilize gradient diversity, and accelerate convergence in federated training.

• We offer a theoretical convergence for FedPGVC in both convex and non-convex scenarios, outlining
its limited reliance on measures of data heterogeneity.

• Experimental analysis shows that the proposed FedPGVC surpasses prior state-of-the-art methods
in both performance and convergence efficiency across different levels of data heterogeneity and a
range of diverse datasets.

2 Related work

Numerous studies have explored effective strategies for addressing the challenges of data heterogeneity in FL.
We have broadly categorized these approaches into three groups: 1) client drift mitigation, which adjusts the
local objectives of clients to align their models more closely with the global model; 2) aggregation schemes,
which enhance the server-side fusion mechanism for model updates; 3) personalized federated learning, which
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focuses on training personalized models for clients rather than a shared global model. In the proposed work,
we mainly focused on techniques based on client drift mitigation.

FedAvg is a predominant optimization method in FL and has witnessed widespread adoption McMahan et al.
(2017). However, in heterogeneous settings where local objectives diverge significantly, FedAvg encounters
performance degradation due to client drift, limiting its effectiveness in non-IID data scenarios Karimireddy
et al. (2020). Li et al. (2020) introduced a proximal regularization term to manage the divergence between
client and server models but fails to align global and local optimal points effectively. Li et al. (2021b) employs
local batch normalization (LBN) to mitigate feature shift before server-side model averaging. Sahoo et al.
(2024) introduces a novel loss function and an innovative way of calculating adaptive proximal term to tackle
heterogeneous data settings. Additionally, it uses Self-organizing map (SOM) based server-side aggregation.
Several techniques like FedBabu Oh et al. (2021) and TCT Yu et al. (2022) aim to enhance FL models by fine-
tuning classifiers using standalone datasets or simulated features derived from client models. Similarly, Luo
et al. (2021) addresses data heterogeneity by re-training classifiers with virtual features obtained from an
approximated GMM model. MOON introduces a model-contrastive FL framework that aligns local client
representations with the global model using a contrastive loss Li et al. (2021a). It employs a momentum
encoder to provide a stable target for the contrastive loss, acting as a temporal ensemble of the global model
and mitigating client drift. Stochastic variance reduction based methods like SVRG Johnson & Zhang
(2013), SAGA Defazio et al. (2014), and their variations utilize control variates to mitigate the variance
inherent in traditional SGD, enabling linear convergence rates for strongly convex optimization problems.
SCAFFOLD Karimireddy et al. (2020) and DANE Shamir et al. (2014) have incorporated variance reduction
techniques for the whole model on convex problems without exploring their performance in non-convex setups.
Despite potential benefits, these approaches incur higher communication costs due to transmitting additional
control variates, posing challenges for resource-constrained IoT devices Halgamuge et al. (2009). Additionally,
the existing methods have shown rapid convergence in simpler models, and their effectiveness on deep
networks He et al. (2015); Huang et al. (2018), remains largely unexplored. FedPVR Li et al. (2023) offers a
novel perspective on FedAvg’s performance in deep neural networks, uncovering substantial heterogeneity in
client-specific final classification layers. By introducing targeted variance reduction exclusively for these last
layers, FedPVR achieves remarkable improvements over established benchmarks. Motivated by the previous
observations, our research focuses on improving the partial variance control of individual clients to mitigate
data heterogeneity problems.

3 Method

3.1 Problem Statement

The primary aim of this work is to develop a robust model that can learn collaboratively from decentralized
clients without the need for data sharing. The focus is on enhancing performance during federated training,
particularly in scenarios with non-IID data. Given K clients, where each client k ∈ {1, . . . , K} possesses a
local dataset Dk, the aim is to learn a generalized global model over D =

⋃K
k=1 Dk. The global objective

function is defined as:

arg min
w

L(w) =
K∑

k=1

|Dk|
|D|

Lk(w), (5)

where the local objective function Lk(w) for client k measures the local empirical loss over the data distri-
bution Dk and is given by:

Lk(w) = Ex∼Dk
[ℓk(w; x)], (6)

Here, ℓk is the loss function for client k, while w denotes the global model parameters to be optimized. This
work emphasizes addressing the issue of data heterogeneity in FL due to the non-IID distribution of data
across clients.
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3.2 Theoretical Analysis

As mentioned in the introduction, non-IID data distributions among clients in federated learning environ-
ment result in increased gradient diversity, particularly in the last layers of the network. To tackle this
challenge, we suggest a straightforward but powerful enhancement to the standard FedAvg algorithm. Our
approach introduces a carefully designed gradient penalty term with the standard SGD to align gradient
norms effectively in the final layers. This method not only reduces the effects of client data heterogeneity
but also enhances model performance and accelerates convergence In the FL framework, each client k is
associated with a local dataset Dk and computes the gradient of the loss function with respect to the model
parameters w′. The local loss function for client k is defined by Eq. 28.

Lk(w) = 1
|Dk|

∑
i∈Dk

ℓ(w′; xi, yi) (7)

where ℓ(w′; xi, yi) is the loss for sample (xi, yi). The gradient of the local loss function for client k is given
by Eq. 29.

∇Lk(w′) = 1
|Dk|

∑
i∈Dk

∇ℓ(w′; xi, yi) (8)

In the FedAvg algorithm, the global model parameters are updated according to the Eq. 30.

wt+1 = wt − ηg
1
K

K∑
k=1

∆w
′

k (9)

where ∆wk = ∇Lk(wt) is the local update from client k and wt is the global model parameter for round t.

In IID settings, the data distribution remains consistent across all clients, leading to similar gradient norms.
Let σiid represent the standard deviation of gradient norms in IID settings presented in Eq. 31.

E[||∇Liid(w)||] = σiid (10)

Here, w represents the global model parameter. In non-IID settings, where data distributions vary across
clients, gradient norms exhibit higher variability compared to IID settings. We represent this in Eq. 32.

E[||∇Lnon−iid(w)||] = σnon−iid ≫ σiid (11)

The deeper layers of a neural network are responsible for learning more specific features, resulting in higher
gradient norms in non-IID settings, as illustrated in Fig. 1. We formalize this relationship in Eq. 33.

E[||∇Ll,non−iid||]≫ E[||∇Ll,iid||] (12)

where l denotes the index for the last layers. To address this gradient diversity, we propose to use a client-
specific term called gradient penalty (ρi) to ensure better alignment of the gradients of the last layers of the
model as presented in Eq. 34.

∆wt+1,l = wt − ηlρl∇Ll (13)

where ρl reduces gradient norm variations. We can choose ρl as presented in Eq. 35.

ρl = σiid

||∇Ll,non−iid||
(14)

This ensures the alignment of the gradients so that they become similar to IID settings as presented in
Eq. 15.

||ρl∇Ll,non−iid|| = σiid (15)
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3.3 Proposed Method

Motivated by these empirical and theoretical observations, we introduce FedPGVC, an innovative method for
managing data heterogeneity in federated learning. Our algorithm (Algo. 1) includes three main components:
i) client update (Eq. 18 and Eq. 20), ii) computation of client gradient penalty term (Eq. 19), and iii) server
update (Eq. 21). Initially, we define a vector e ∈ Rd containing 0 or 1, with v non-zero elements (v ≪ d) as
specified in Eq. 16. This vector serves as a mask to differentiate between the initial layers of the model and
those adjacent to or comprising the classifier. For the subset of indices j where ej = 1 (denoted as Sgvc in
Eq. 17), we modify the corresponding weights yi,Sgvc

to minimize variance. This is achieved by introducing
a client-specific gradient penalty term (ρi ∈ Rv) as formulated in Eq. 19. Subsequently, we update the
weights of the corresponding layer using Eq. 20. For the remaining indices, denoted as Ssgd, we update the
corresponding weights yi,Ssgd

using standard SGD as formulated in Eq. 18. In each communication round,
the process unfolds as follows: Every client receives a copy of the server model, denoted as ω. Subsequently,
each client independently executes K model updating steps, leveraging the cross-entropy loss function as the
optimization objective. These updating steps are governed by the equations (refer to Eq. 18, Eq. 19, and
Eq. 20), which encapsulate the core operations involved in a single step. Once the local model updates are
completed, the clients transmit their updated models, represented as yi, back to the server. The server then
aggregates these individual client models through the aggregation mechanism defined in Eq. 21.

e := {0, 1}, v = Σe (16)

Sgvc := {j : ej = 1}, Ssgd := {j : ej = 0} (17)

y(i,Ssgd) ← y(i,Ssgd) − ηlgi(y(i,Ssgd)) (18)

ρi ←
1
B

B∑
b=1

ℓ(θ, xb)∇θℓ(θ, xb) (19)

y(i,Sgvc) ← y(i,Sgvc) − ηl ∗ ρi ∗ gi(y(i,Sgvc)) (20)

ω ← (1− ηg)ω + 1
N

∑
i∈N

yi (21)

Where B is the batch size, gi(.) represents the gradient, ℓ(θ, xb) is the loss function evaluated on the bth data
point xb with model parameters θ, ∇θℓ(θ, xb) is the gradient of the loss function with respect to the model
parameters θ, evaluated on the bth data point xb, ηl is the local learning rate, ηg is the global learning rate
and N is the total number of clients. The convergence proof of the proposed method for both convex and
non-convex settings is presented in Section 5 of the Appendix.

3.3.1 Usefulness of Introducing Gradient Penalty (ρ)

The intuition behind introducing the gradient penalty term ρ into the standard SGD for the last layers of
the model is to encompass both the direction and strength of the gradients, along with the loss landscape
for each client’s data distribution. Prioritizing the gradients from clients which have data distributions that
significantly deviate from global distribution allows us to better handle the most challenging situations within
a specific range around each client’s observed data distribution. Incorporating ρ into the weight updates for
the final classification layers of the neural network allows us to achieve better alignment of these layers across
clients, mitigating the issue of client drift caused by data heterogeneity. Specifically, we update the weights
of the classification layers as presented in Eq. 19. This approach has the advantage of not requiring any
additional communication overhead like prior methods such as SCAFFOLD and FedPVR Karimireddy et al.
(2020); Li et al. (2023). Moreover, it strikes a balance between diversity and uniformity across the layers of
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the neural network, allowing the feature extraction layers to learn rich representations while ensuring better
alignment of the final layers across clients.

Algorithm 1 Federated Partial Gradient Variance Control (FedPGVC)
1: Server: Initialize the global model parameters ω0, Global learning rate ηg.
2: Client: Initialize the local model parameters y0

i , Local learning rate ηl.
3: Define a mask e ∈ {0, 1}d, where ej = 1 for the last few layers and 0 for the rest layers.
4: Let Ssgd = {j : ej = 0} and Sgvc = {j : ej = 1}.
5: for r = 1, 2, . . . , R do
6: Server broadcasts the global model ω0 to all clients.
7: for each client i = 1, 2, . . . , N in parallel do
8: for k = 1, 2, . . . , K do
9: y

(r,k)
i,Ssgd

= y
(r,k−1)
i,Ssgd

− ηl∇Ssgdfi(y(r,k−1)
i )

10: ρr−1
i ← 1

B

∑B
b=1 ℓ(θ, xb)∇θℓ(θ, xb)

11: y
(r,k)
i,Sgvc

= y
(r,k−1)
i,Sgvc

− ηl∇SgvcLi(y(r,k−1)
i , ρr−1

i )
12: end for
13: Client i sends the updated model y

(r,K)
i to the server.

14: end for
15: Server aggregates the client models and updates the global model:
16: ωr = (1− ηg)ω(r−1) + 1

N

∑
i y

(r,K)
i

17: end for

(a) (b)

Figure 2: The distribution of MNIST data, indicating the number of images per client per class, varied
according to different levels of heterogeneity, with (a) α = 0.5 representing severe non-iid and (b) α = 1.0
indicating moderate non-iid.

4 Experimental results

4.1 Experimental setup

To evaluate the efficacy of FedPGVC, we conducted comprehensive experiments using three widely recognized
computer vision classification benchmarks: MNIST LeCun et al. (2010), FMNIST Xiao et al. (2017), and
CIFAR100 Krizhevsky (2009). For robustness and reliability, all experiments were repeated three times
with different seeds, and average value is reported along with standard deviation. We partitioned the entire
dataset client-wise using a strategy inspired by Lin et al. (2020) to create a real-world non-IID distribution.
This was achieved by distributing the data among clients using a Dirichlet distribution with a concentration
parameter α, which can take any real value. The measure of data heterogeneity across clients is governed
by the α with a smaller value, resulting in a more skewed data distribution, mimicking real-world scenarios
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where data is unevenly partitioned. Figure 2 illustrates an example of such a non-uniform data distribution
for the MNIST dataset. In our experiments, we adopted α values of 0.5 and 1.0, which are commonly
employed values Lin et al. (2020) to simulate varying levels of data heterogeneity. Each client possesses its
own local data partition, which remains unchanged throughout the communication rounds. This static data
distribution allows us to access the performance of our proposed method under realistic conditions where
clients do not exchange data. To assess the classification performance of the global model, we hold out a test
dataset at the server, which remains unseen during the training process. For our experiments, we utilized
the well-established LeNet LeCun et al. (1998) neural network for the MNIST and FMNIST datasets. For
CIFAR-100, we employed an 9-layer CNN following the approach described in Duan et al. (2023). We applied
the variance reduction technique to the last two layers of the selected models to address data heterogeneity.
Our experimental setup involved 10 participating clients in each communication round, with a batch size
of 32, consistent with the configurations reported in prior studies Li et al. (2023) and Yu et al. (2022). In
our experimental setup, each client performed two local epochs of model updating. Consistent with the
configuration outlined in Karimireddy et al. (2020), we fixed the server learning rate ηg = 1. To determine
the optimal client learning rate for each experiment, we conducted a grid search over 0.05, 0.01, 0.2, 0.3. Our
implementation of FedProx involved testing a range of proximal values 0.001, 0.1, 0.4, 0.7 to determine the
optimal setting. For FedNova, we selected the best proximal SGD value from the set 0.001, 0.003, 0.05, 0.1,
in accordance with the recommendations in Li et al. (2024). Across all experiments, we employed the Adam
optimizer for consistency.

Table 2: Top-1 accuracy (%) on MNIST, FMNIST, and CIFAR100 datasets with varying degrees of data
heterogeneity. The values in bold represent the highest accuracy achieved. Standard deviation values are
provided in parentheses.

MNIST FMNIST CIFAR100
α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0

Fedavg 99.00 (±0.03) 98.89 (±0.05) 88.65 (±0.22) 89.14 (±0.18) 24.25 (±0.16) 25.00 (±0.14)
FedProx 98.99 (±0.04) 99.02 (±0.03) 86.96 (±0.30) 89.10 (±0.21) 24.89 (±0.15) 25.56 (±0.13)
FedNova 98.91 (±0.05) 98.79 (±0.06) 87.52 (±0.25) 88.82 (±0.23) 22.29 (±0.19) 24.92 (±0.15)
FedBN 98.94 (±0.04) 99.03 (±0.04) 88.76 (±0.20) 89.17 (±0.18) 25.12 (±0.12) 25.66 (±0.13)
SCAFFOLD 98.95 (±0.05) 98.95 (±0.05) 87.98 (±0.28) 88.41 (±0.22) 24.30 (±0.17) 25.27 (±0.16)
FedPVR 98.93 (±0.04) 98.99 (±0.05) 87.28 (±0.31) 88.37 (±0.26) 20.59 (±0.25) 17.57 (±0.20)
Proposed 99.05 (±0.02) 99.04 (±0.03) 88.83 (±0.18) 89.35 (±0.17) 25.29 (±0.11) 25.74 (±0.12)

(a) (b)

Figure 3: The performance comparison of proposed FedPGVC with baseline approaches: (a) and (b) depict
the graphs on the MNIST dataset for α = 0.5 and 1.0 respectively.

4.2 Comparison with the State-of-the-art Methods

We evaluate our proposed FedPGVC against several notable FL algorithms, including FedAvg, FedProx,
FedNova, FedBN, SCAFFOLD and FedPVR. FedPGVC consistently achieves the highest accuracy across
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Figure 4: The performance comparison of proposed FedPGVC with baseline approaches: (a) and (b) depict
the graphs on the FMNIST dataset for α = 0.5 and 1.0 respectively.

Figure 5: The performance comparison of proposed FedPGVC with baseline approaches: (a) and (b) depict
the graphs on the CIFAR100 dataset for α = 0.5 and 1.0 respectively.

varying data heterogeneity levels (α = 0.5 and 1) on MNIST, FMNIST, and CIFAR100 datasets. On the
MNIST dataset with (α = 0.5), FedPGVC achieves a minimum accuracy improvement of 0.05% compared to
FedAvg and a maximum of 0.14% compared to FedNova. With (α = 1.0), it shows a minimum improvement
of 0.01% over FedBN and a maximum of 0.25% over FedNova. For the FMNIST dataset, under α = 0.5
settings, FedPGVC attains a minimum improvement of 0.07% over FedBN and a maximum of 1.87% over
FedProx. With α = 1.0, it achieves a minimum improvement of 0.18% over FedBN and a maximum of 0.98%
over FedPVR. On the CIFAR-100 dataset with α = 0.5, FedPGVC shows a minimum improvement of 0.17%
compared to FedBN and a maximum of 4.7% compared to FedPVR. Under α = 1.0, it achieves a minimum
improvement of 0.08% over FedBN and a maximum of 8.17% over FedPVR. While our method consistently
outperforms baseline approaches across all datasets, the performance gain on MNIST is less pronounced.
This can be attributed to the fact that MNIST is a relatively simple and well-studied dataset with low
intraclass variability and minimal noise. As a result, most modern federated learning algorithms already
achieve near-optimal accuracy on MNIST, leaving little room for further improvement. The narrow margin
of improvement suggests that MNIST has reached a saturation point, making even slight gains difficult.
Additionally, the dataset’s uniformity and simplicity reduce the impact of data heterogeneity, the primary
challenge our method is designed to address. The stronger performance gains on more complex datasets like
CIFAR-100, which exhibit higher intraclass variability and are more susceptible to the challenges of data
heterogeneity, further highlight the strengths of our approach.
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Table 3: Number of communication rounds required (speedup compared to FedAvg) to achieve specific top-1
accuracy levels (99% for MNIST, 88% for FMNIST and 24% for CIFAR100). FedPGVC outperforms other
methods by requiring fewer rounds to achieve comparable accuracy. ’*’ denotes the algorithm failed to
achieve given test accuracy.

MNIST FMNIST CIFAR100
α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0
Number of rounds Number of rounds Number of rounds

FedAvg 100 (1.0x) 100 (1.0x) 20 (1.0x) 20 (1.0x) 30 (1.0x) 30 (1.0x)
FedProx 77 (1.2x) 74 (1.3x) * 28 (0.7x) 43 (0.69x) *
FedNova 100 (1.0x) * * 34 (0.5x) * *
FedBN 50 (2.0x) 28 (3.5x) 26 (0.7x) 24 (0.8x) * 33 (0.90x)
SCAFFOLD * * * 25 (0.8x) 30 (1.0x) 30 (1.0x)
FedPVR * * * 22 (0.9x) * *
Proposed 23 (4.3x) 27 (3.7x) 18 (1.1x) 15 (1.3x) 27 (1.1x) 20 (1.5x)

4.3 Convergence Analysis

Figures 3, 4, and 5 depict the learning efficiency of FedPGVC in comparison to baseline methods on the
MNIST, FMNIST, and CIFAR100 datasets, respectively. FedPGVC consistently demonstrates faster learn-
ing and higher accuracy across various settings. On the MNIST dataset, FedPGVC achieves near 99%
accuracy within the first 23-27 rounds (Fig. 3), outperforming baselines that require more rounds for similar
performance. For FMNIST, FedPGVC reaches close to 88% accuracy in 15-18 rounds (Fig. 4), again faster
than the baselines. The advantage is even more pronounced on the CIFAR-100 dataset, where FedPGVC not
only converges faster but also achieves higher final accuracy (Fig. 5), significantly outperforming the base-
lines. Overall, FedPGVC requires fewer rounds across all experiments (refer to Table 3), achieving a speedup
of 1.1 to 4.3 times compared to baselines. This efficiency is attributed to the variance reduction technique
in FedPGVC, which promotes rapid convergence and mitigates the negative impact of data heterogeneity
among clients.

4.4 Effect of Partial Gradient Variance Control (PGVC)

We integrated the proposed PGVC with standard FL approaches, and the results are presented in Table 4.
The table shows that most approaches incorporating PGVC on the client side improved overall accuracy
across datasets. FedAvg with PGVC achieves a 0.18% improvement on the FMNIST dataset and a 1.04%
improvement on CIFAR100. Similarly, FedPGVC enhances accuracy with FedProx and FedNova. However,
FedBN with PGVC results in lower accuracy than FedBN alone, likely due to conflicting effects on training
dynamics and model regularization. These findings demonstrate that the proposed PGVC approach can
be effectively integrated with existing FL algorithms. For a comprehensive view of model convergence, we
have presented the learning curves in Fig. 10 and Fig. 11 of the Appendix. In terms of computational
efficiency, our proposed FedPGVC method requires 18 minutes for CIFAR100 training, compared to 12
minutes for standard FedAvg. Similarly, on FMNIST, training time increases from 15 to 21 minutes. While
this represents a modest increase in computational cost, we argue that the significant accuracy gains justify
this trade-off, especially in scenarios where model performance is paramount.

4.5 Applying PGVC on the Different Layers of the Model

Given that the proposed approach partially applies the gradient variance control technique in the last layers
of the neural network, we investigated the effects of incorporating variance reduction in different layers. We
conducted experiments on the CIFAR100 dataset with α = 0.5, as shown in Fig. 6. The results indicate that
initiating variance reduction in the final layers of the model facilitates faster convergence and achieves the
highest top-1 accuracy. Activating variance control in layers closer to the classifier shows minimal impact on
performance while employing the technique in the initial layers results in significant performance degradation.
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Figure 6: Performance of applying partial gradient variance control on different layers of the CNN model on
the CIFAR100 dataset with α = 0.5.

Preserving diversity in the middle and early layers enables the learning of rich feature representations while
promoting uniformity in the classifier layers, which helps make less biased decisions. This balance is crucial
for leveraging the collective knowledge of distributed models while mitigating the adverse effects of excessive
variance. We have conducted the same experiment on the FMNIST dataset with α = 0.5, and the results
are presented in Section 6 of the Appendix.

4.6 Ablation study

We conducted two ablation studies. First, we assessed the scalability of our proposed method by varying
the number of clients participating in the federated learning process. Second, we applied our method to IID
data to compare its performance against the baselines.

4.6.1 Scalibility

To demonstrate the scalability of the proposed FedPGVC in practical settings, we conducted experiments
on the FMNIST dataset (α = 0.5) with varying numbers of clients: 10, 20, and 50. Figure 7 depicts the
performance of the proposed model with the baselines. Notably, when the number of clients increases,
the accuracy drop of FedPGVC is considerably low compared to the baselines. This observation highlights
the robustness and scalability of our approach, as it can effectively harness a larger pool of clients while
maintaining high accuracy.

4.6.2 Results on IID data

To assess the efficacy of the proposed FedPGVC method on IID datasets, we created an IID partition of the
FMNIST dataset by setting α = 100 and compared its performance against other baselines. The results,
shown in Fig. 8, indicate that FedPGVC performs similarly to the baseline methods in the IID setting. This
finding highlights that FedPGVC is not only effective for non-IID data partitions but also performs well in
IID data settings.
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Figure 7: Performance of test accuracy with varying
numbers of clients for all baseline models and the pro-
posed approach.

Table 4: The effect of applying the proposed
method to existing popular baselines on the FM-
NIST and CIFAR100 dataset with α = 0.5.

Method FMNIST CIFAR100
FedAvg 88.65 24.25
FedAvg + PGVC 88.83 (0.18 ↑) 25.29 (1.04 ↑)
FedProx 86.96 24.89
FedProx + PGVC 88.07 (1.11 ↑) 24.58 (0.31 ↓)
FedBN 88.86 25.12
FedBN + PGVC 88.11 (0.75 ↓) 23.86 (1.26 ↓)
FedNova 87.52 22.29
FedNova + PGVC 87.87 (0.35 ↑) 24.82 (2.53 ↑)

Figure 8: Performance of the proposed model compared to the baselines in FMNIST IID data settings with
α = 100.

4.7 Conclusion

This research introduces FedPGVC, an innovative FL-based approach to address the challenges posed by
heterogeneous data distributions among clients. By integrating a gradient penalty term into the partial
variance control strategy, FedPGVC effectively mitigates the adverse effects of data heterogeneity in federated
learning environments. Extensive experiments on diverse datasets reveal FedPGVC’s advantage over state-
of-the-art baseline methods. Moreover, FedPGVC exhibits faster convergence rates and excellent scalability,
consistently delivering performance benefits as the number of clients increases, thus positioning it as a
promising solution for large-scale, real-world FL-based computer vision applications.
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Appendix

5 Convergence Proof

We perform an analysis of the convergence rate for the proposed FedPGVC, considering both convex and
non-convex scenarios. To enable a theoretical proof, we introduce the following notations and assumptions:
we consider N clients, each linked to a local objective function fi(x), where i = 1, . . . , N . We impose the
following assumptions on the objective functions:

Assumption 1: Lipschitz smoothness: |∇fi(x)−∇fi(y)| ≤ L|x−y| for all x, y and some constant L > 0.

Assumption 2: Bounded gradients: E|∇fi(x; ξi)|2 ≤ G2 for all x and some constant G > 0, where ξi

denotes the random variable representing the data samples used to compute stochastic gradients on client i.

14

http://dx.doi.org/10.1109/TCYB.2023.3247365
https://arxiv.org/abs/2407.05800
https://arxiv.org/abs/2407.05800
https://arxiv.org/abs/2111.07494
https://arxiv.org/abs/2111.07494


Under review as submission to TMLR

Assumption 3: Non-convexity: We have first considered the non-convex setting, which is more general
and applicable to deep neural networks. Additionally, we assume a measure of data heterogeneity across
clients ζ̂2 such that:

1
N

N∑
i=1

E|∇fi(x)|2 ≤ ζ̂2, ∀x (22)

The proof of the above three assumptions can be found in Karimireddy et al. (2020).

5.0.1 Proof of Convergence in non-convex setting:

For the non-convex setting, we can derive the following descent lemma. Let us denote the global model
parameters at the beginning of round r as x(r), and the local model parameters on client i after k local
updates as y

(r,k)
i . The modified SGD update rule for the local model on client i is given in Eq. 23.

y
(r,k+1)
i = y

(r,k)
i − ηl

(
g

(r,k)
i + ρ

(r,k)
i ⊙ e

)
(23)

where g
(r,k)
i = ∇fi(y(r,k)

i ; ξ
(r,k)
i ) is the stochastic gradient on client i, ρ

(r,k)
i = E[g(r,k)

i ⊙ (g(r,k)
i −e⊙x(r))] is a

vector denoting the gradient penalty term, e is the masking vector specifying which layers to apply modified
SGD on, and ⊙ denotes element-wise multiplication. The update rule for the global model after aggregating
the client models is given in Eq. 24.

x(r+1) = 1
N

N∑
i=1

y
(r,K)
i (24)

where K is the number of local updates performed by each client.

We will now derive a descent lemma that relates the expected decrease in the objective function after one
round of client updates and global model aggregation. Let F (x) = 1

N

∑N
i=1 fi(x) be the average of the client

objective functions. Using the Lipschitz smoothness assumption and the update rules, we can show:

E[F (x(r+1))] ≤ E

[
F

(
1
N

N∑
i=1

y
(r,K)
i

)]
+ L

2N

N∑
i=1

E
∣∣∣y(r,K)

i − x(r)
∣∣∣2

≤ 1
N

N∑
i=1

E
[
fi

(
y

(r,K)
i

)]
+ L

2N

N∑
i=1

E
∣∣∣y(r,K)

i − x(r)
∣∣∣2

= 1
N

N∑
i=1

E
[
fi

(
y

(r,0)
i

)]
+ 1

N

N∑
i=1

K−1∑
k=0

E
[
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(
y

(r,k+1)
i

)
− fi

(
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(r,k)
i

)]
+ L

2N

N∑
i=1

E
∣∣∣y(r,K)

i − x(r)
∣∣∣2

(25)

Using the Lipschitz smoothness assumption again and the update rules, we can further bound the second
term as:

E
[
fi

(
y

(r,k+1)
i

)
− fi

(
y

(r,k)
i

)]
≤ ⟨∇fi

(
y

(r,k)
i

)
,E
[
y

(r,k+1)
i − y

(r,k)
i

]
⟩+

L

2 E
∣∣∣y(r,k+1)

i − y
(r,k)
i

∣∣∣2
= −ηl⟨∇fi

(
y

(r,k)
i

)
, g

(r,k)
i + ρ

(r,k)
i ⊙ e⟩ +

Lη2
l

2 E
∣∣∣g(r,k)

i + ρ
(r,k)
i ⊙ e

∣∣∣2
(26)

Substituting the bound obtained from Eq. 26 back into the descent lemma obtained in Eq. 25 and rearranging
terms, we get Eq. 27.
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E[F (x(r+1))] ≤ 1
N

N∑
i=1

fi

(
x(r)

)
− ηl

N
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i=1
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i − x(r)
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(27)

To telescope the descent lemma obtained in Eq. 27 over multiple FL rounds, we will make use of the
inequality 28, where we used the bounded gradients assumption and the data heterogeneity measure.
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≤ KG2

2 + Kζ̂2

2

(28)

Similarly, we can bound the term involving the gradient penalty term ρ
(r,k)
i as:
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2 (29)

where ζ̂2
p is a measure of the heterogeneity of the gradients for the layers where modified SGD is applied,

which is defined in Eq. 30.

ζ̂p2 = 1
N

∑
i = 1NE

∣∣∣ρ(r,k)
i ⊙ e

∣∣∣2 (30)

Substituting bounds obtained from Eq. 29 and 30 and using Eq. 30 into the descent lemma obtained in
Eq. 27 and telescoping over R FL rounds, we get Eq. 31.

1
R

R−1∑
r=0

E[F (x(r))]− F ∗ ≤ 1
Rηl

(
Lη2
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2 + L
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i − x(r)
∣∣∣2

+ 1
2ηl
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KG2

N
+ Kζ̂2 + Kζ̂2

p

)
+ 1

R

(
F (x(0))− F ∗

) (31)

where F ∗ is the optimal value of the average objective function F (x).

To optimize the convergence rate bound, we need to choose the learning rates ηl and ηg (the global learning
rate, which we have not explicitly used yet but will be needed for the final convergence rate). We can set
ηg =

√
N and ηl = min

{
1

26KηgL , 1√
KL

}
to balance the terms in the bound. With these choices, and after

some algebraic simplifications, we obtain the following convergence rate bound for non-convex functions as
given in Eq. 32.

1
R

R−1∑
r=0

E[F (x(r))]− F ∗ = O
(

G
√

K√
NR

+ ζ̂
√

K√
R

+ ζ̂p

√
K√

NR
+ F (x(0))− F ∗

R

)
(32)

16



Under review as submission to TMLR

This bound shows that the convergence rate of our approach depends on the number of communication
rounds R, the number of local updates K, the gradient bound G, the overall data heterogeneity ζ̂, and
the heterogeneity of the gradients for the layers where modified SGD is applied, ζ̂e. In the favorable case
where ζ̂e is small (i.e. when the gradients for the layers where modified SGD is applied are more aligned
across clients), the convergence rate of our approach can be comparable to or better than existing methods
like FedAvg McMahan et al. (2017) or FedPVR Li et al. (2023), depending on the values of the other
problem-specific constants.

5.0.2 Proof of Convergence in convex setting

For the convex setting, we make the following assumptions:

Assumption 1: Lipschitz Smoothness (as described above)

Assumption 2: Bounded Gradients (as described above)

Assumption 3: Convexity: The local objective functions fi(x) are convex for all i = 1, . . . , N . Using these
assumptions, we can derive a different descent lemma as in Eq. 33.
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(33)

Following similar steps as in the non-convex case, we can iteratively apply inequality 33 over multiple FL
rounds and use the convexity assumption to obtain inequality 34.

1
R
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r=0

E[F (x(r))]− F ∗ ≤ 1
Rηl
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i − x(r)|2+

1
2ηl
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KG2

N
+ Kζ̂2 + Kζ̂2

p

) (34)

Note that in the convex case, we don’t have the term (F (x(0)) − F ∗)/R since the objective function is
convex, and we can initialize the model at the optimal point. Optimizing the bound by setting ηg =

√
N and

ηl = min
{

1
26KηgL , 1√

KL

}
as before, we get the following convergence rate for convex functions as in Eq. 35.

1
R

R−1∑
r=0

E[F (x(r))]− F ∗ = O
(

G
√

K√
NR

+ ζ̂
√

K√
R

+ ζ̂p

√
K√

NR

)
(35)

This bound is similar to the non-convex case but without the (F (x(0)) − F ∗)/R term due to the convexity
assumption. The convergence rate depends on the number of communication rounds R, the number of local
updates K, the gradient bound G, the overall data heterogeneity ζ̂, and the heterogeneity of the gradients
for the layers where modified SGD is applied, ζ̂e.

The convergence rate of the proposed FedPGVC algorithm relies on factors such as data heterogeneity
among clients, the frequency of local updates, and the duration of communication rounds. In non-convex
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scenarios, initialization also plays a crucial role. When gradients align well for the last layers (indicating
small ζ̂e), FedPGVC shows potential for superior convergence rates compared to FedAvg. The convergence
rates demonstrate similar dependencies as FedAvg, with additional considerations for the heterogeneity of
last-layer gradients that are updated with modified SGD.

6 Applying PGVC on the different layers of the model

To evaluate the impact of incorporating gradient variance control in various neural network layers, we
conducted experiments on the FMNIST dataset with α = 0.5. As illustrated in Fig. 9, our findings reveal
that applying variance reduction in the final layers accelerates convergence and achieves the highest top-1
accuracy. Given that the proposed approach partially applies the gradient variance control technique in the
last layers of the neural network, we investigated the effects of incorporating variance reduction in different
layers. We conducted experiments on the FMNIST dataset with α = 0.5, as shown in Fig. 9. The results
indicate that initiating variance reduction in the final layers of the model facilitates faster convergence and
achieves the highest top-1 accuracy.

Figure 9: Performance of applying partial gradient variance control on different layers of the CNN model on
the FMNIST dataset with α = 0.5.

7 Limitation

While the proposed approach demonstrates significant improvements across various datasets, it is essential
to acknowledge certain limitations. Although the method effectively reduces gradient variability in the final
layers, the computation of the gradient penalty term may introduce additional processing overhead on the
client side. This increased computational cost could be a constraint for resource-limited devices, even though
the method is designed to minimize communication overhead. To address this challenge, future research could
focus on reducing the computational complexity of the gradient penalty term without sacrificing the method’s
effectiveness. Approaches like model pruning or quantization may be explored to make the method more
viable for devices with limited resources. Additionally, incorporating differential privacy techniques into the
FedPGVC framework could broaden its applicability in privacy-sensitive areas, such as healthcare or finance.
Investigating the interaction between differential privacy and the gradient penalty term, as well as its impact
on model performance, would be a valuable direction for future research.
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Figure 10: Learning curves illustrating the integration of the proposed PGVC technique with the existing
algorithms on the FMNIST dataset at α = 0.5.
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Figure 11: Learning curves illustrating the integration of the proposed PGVC technique with the existing
algorithms on the CIFAR100 dataset at α = 0.5.
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