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Abstract

Conversational assistants are becoming more
and more popular, including in healthcare,
partly because of the availability and capabili-
ties of Large Language Models. There is a need
for controlled, probing evaluations with real
stakeholders which can highlight advantages
and disadvantages of more traditional architec-
tures and those based on generative Al. We
present a within-group user study to compare
two versions of a conversational assistant that
allows heart failure patients to ask about salt
content in food. One version of the system was
developed in-house with a neurosymbolic ar-
chitecture, and one is based on ChatGPT. The
evaluation shows that the in-house system is
more accurate, completes more tasks and is less
verbose than the one based on ChatGPT; on the
other hand, the one based on ChatGPT makes
fewer speech errors and requires fewer clarifi-
cations to complete the task. Patients show no
preference for one over the other.

1 Introduction

Conversational assistants in the healthcare domain
are as old as Natural Language Processing (NLP),
since in 1966 ELIZA was already playing the role
of a psychiatrist (Weizenbaum, 1966). They have
proliferated in more recent years with the availabil-
ity of datasets and machine learning approaches,
even before the rise of Large Language Models
(LLMs). The comprehensive survey in (Valizadeh
and Parde, 2022) provides an in-depth analysis of
these diverse healthcare-oriented dialogue systems,
examining them from a computational perspective
and highlighting their varied end-users.
Traditional task-oriented dialog systems are typ-
ically assessed using metrics such as Slot Filling
F1-Score and Intent Recognition Accuracy for Nat-
ural Language Understanding (NLU), as well as
Slot Accuracy and Joint Goal Accuracy for Dialog
State Tracking (DST) (Budzianowski et al., 2018).

However, task performance is only one aspect of di-
alogue system evaluation, as already demonstrated
by Paradise (Walker et al., 1998), a framework that
links user satisfaction to task success and interac-
tion costs.

Evaluation of dialogue systems based on LLMs
raises additional concerns: LLMs do not operate
within rigid task boundaries, making it difficult
to apply standard task-oriented evaluation metrics.
Furthermore, LLMs often lack transparency regard-
ing their data sources and may fail to reliably follow
user prompts, raising significant concerns in high-
stakes domains where accuracy and accountability
are critical (Chowdhury et al., 2023). These limita-
tions are especially critical in practical, real-world
applications when facilitating medical conversa-
tions. In such cases, defining and assessing what
constitutes "good" performance becomes far more
complex and nuanced (Moor et al., 2023).

As a result, human evaluation remains the gold
standard for assessing medical dialog systems
(Chowdhury et al., 2023). Human evaluators
can provide insights into subjective qualities such
as coherence, informativeness, and user satisfac-
tion—factors that are difficult to capture with au-
tomated metrics alone. We present a user study
in which we compare one traditional task-oriented
dialog system (ToDS) in healthcare with one based
on LLMs.

The study focuses on African American patients
with heart failure, aiming to assist them in manag-
ing their salt intake by providing information about
the salt content in various foods. Heart failure pa-
tients must meticulously monitor and reduce their
salt intake: African American individuals are more
prone to heart failure (Nayak et al., 2020), have a
higher sensitivity to salt, and face challenges like
lack of access to healthy foods . Furthermore, in
(Gupta et al., 2020), the authors show that African
American patients with heart failure often discuss
salt and food during heart failure educational ses-



sions, indicating a significant interest and need for
information in this area. By providing a tool that
facilitates easy access to information about salt
content in foods, we aim to empower patients to
make healthier dietary choices, thereby addressing
a critical aspect of managing heart failure.

The study compares two dialog systems—an in-
house Neuro-Symbolic System (HFFood-NS) with
a ChatGPT-based system (HFFood-GPT)—using a
within-subject design. We conduct intrinsic (task
performance) and extrinsic analyses (Sparck Jones
and Galliers, 1995) using pre- and post-interaction
surveys, to evaluate the 2 systems with African-
American patients while hospitalized. By assessing
how real patients, rather than typical study partic-
ipants like Mechanical Turk workers or students,
discuss food and prefer to receive information, we
establish relevance and value of the intervention
with real stakeholders.

2 Related Work

ToDS. Task-oriented Dialog Systems (ToDS.)
typically follow a pipeline approach with four
main components: natural language understand-
ing (NLU) (Chen et al., 2016), dialog state track-
ing (DST) (Zhong et al., 2018), dialog manager
(Su et al., 2016), and natural language generation
(NLG) (Chen et al., 2019). The NLU module in-
terprets user input and represents the dialog state
as slots (e.g., location, price range) to be filled dur-
ing the conversation. DST monitors unfilled slots
to inform the dialog manager, which decides the
next action. This action is then passed to the NLG
module to generate the system’s response.

Early systems (Young et al., 2013) used carefully
designed action spaces to manage dialog states
which were later replaced by neural networks (Lei
et al., 2018; Peng et al., 2021). While the pipeline
approach integrates domain-specific knowledge
and slot-filling methods, it often requires additional
human labeling.

Dialog Systems in Healthcare. ToDS have seen
a significant rise in the healthcare sector (Valizadeh
and Parde, 2022). These systems are developed
for a wide array of diseases, including patient edu-
cation (Cai et al., 2023; Gupta et al., 2020), heart
failure (Moulik, 2019; Gupta et al., 2020), mental
disorders (Ali et al., 2020), public anxiety (Wang
et al., 2020), cancer (Belfin et al., 2019) etc. Their
applications extend to several areas, including dis-
ease diagnosis (Wei et al., 2018) and health coach-

ing (Zhou et al., 2022), among others.

Patient Centeredness. (Gupta et al., 2020;
Salunke et al., 2023) highlight the development of
a dialogue agent tailored to the self-care needs of
heart failure patients, leveraging insights from edu-
cational sessions. (Kearns et al., 2020) investigates
the use of the Wizard of Oz (WOZ) technique to
create a persona-based health counseling dialogue
dataset. Recent advancements have also incorpo-
rated Large Language Models (LLMs) to address
patient inquiries (Chowdhury et al., 2023), with a
strong emphasis on safety. To overcome the lim-
itations in medical knowledge inherent to LL.Ms,
(Li et al., 2023) focuses on enhancing and fine-
tuning the LLaMa model using a dataset of approx-
imately 100,000 patient-doctor dialogues. (Knoll
et al., 2022) used a user-centered approach to itera-
tively improve their medical note generation model
with user feedback conducted via semi-structured
interviews. User studies are useful for collecting
real-world evaluations in domains lacking specific
use-case data (Walker et al., 1998; Riveiro and
Thill, 2021).

3 Two dialogue system architectures

3.1 HFFood-NS

The first system, HFFood-NS, is a neuro-symbolic
conversational system adapted from (Reference
Withheld). As there is no conversational dataset
related to food salt content, we created a template-
based conversational dataset. We utilized the
USFDC (U.S. Food Data Central) (USFDC, 2022)
dataset, which provided detailed food descriptions
along with their nutrient values. We annotated the
dataset based on food slots of food, cook, type,
foodweight, and metric. Full details of creating
the dataset can be found in (Reference Withheld).
Initially, we trained an end-to-end dialog system,
but for the user study, we only used its DST part.

3.1.1 End-to-End dialog system

We used the end-to-end dialog system PPTOD
(Plug-and-Play Task-Oriented Dialogue System)
(Su et al., 2022) to train the dialog system. PPTOD,
a TS5-based model, excels in in-context learning by
employing customized prompts for specific tasks.
Our experiments revealed that fine-tuning a trans-
former model to predict salt content alone is in-
sufficient (see Table 8). This is due to two key
reasons. First, large pre-trained language models
(PLMs) like GPT-3 and T5 (Brown et al., 2020;



Translate dialog to belief state:

[usr] Fresh green collard greens.

[sys] how much green collard greens are you having ?

[usr] 'Mm-hmm. 2 pound.

[sys] what type of green collard greens are you having ?
[usr] FRESH

I[sys] You can expect to have approximately one hundred and
sixty-three miligrams (8%) of salt in that green collard
greens. It is around one pinch of salt. Thats a good choice.
But can have better alternate options

|

| |

|

[food] {food:collard greens, nutrient: salt, foodweight:2,
metric: pound, type: fresh, value: 10, saltmetric: mg}

L

lNe uro Symbolic Rules

| {value: 103, saltmetric: mg} ]

Figure 1: HFChat-NS with Interaction: As the value
in DB was available for 100 gms, while the user asked
about 2 pounds, it fetched the appropriate value and
calculated the value for 2 pounds.

Raffel et al., 2020) occasionally make calculation
errors, particularly as mathematical operations in
equations grow more complex (Wei et al., 2022).
Second, salt is a multi-valued slot, and its value
changes over slight changes in food preparation
method or quantity.

To address these challenges, we integrated the
PPTOD model with neuro-symbolic rules. These
rules enable the retrieval of accurate salt values
from a database and perform mathematical calcu-
lations for specific food weights, allowing the sys-
tem to handle non-standard food quantities effec-
tively. This integration significantly enhances sys-
tem performance, achieving a 20% improvement
in joint goal accuracy across different dataset sizes
(as shown in Table 7). These results demonstrate
that combining pre-trained language models with
neuro-symbolic rules achieves better accuracy.

3.2 Final Model- HFFood-NS

For the user-study version of HFFood-NS, several
measures were implemented to modify the system
to deploy in a patient-centric application. First,
only the Dialogue State Tracking (DST) module of
NS-PPTOD was used for simplicity and reliability.
Secondly, if a slot remains unfilled, the system
attempts to query the user about it up to two times.
Third, the system responses were template-based
responses which were created to train the model
(Section 3.1.1). Fourth, since the USFDC dataset

contains detailed information and users often give
less precise food descriptions, the system selects
the first food item that meets all minimum required
keywords to account for the multi-valued nature of
food items when providing salt values.

Finally, we carefully design the final sys-
tem response to effectively represent salt val-
ues. We represent salt values using two formal
units—milligrams (mg) and percentage (%)—com-
monly found on food labels, and we include an
informal measure - pinches/dashes. We also com-
pared the salt value to the recommended daily in-
take of 2000mg. We structure the final response
to be motivational by categorizing salt content into
four ranges (<5%, <20%, <50%, <100%, and oth-
ers) and crafting a motivational message. Figure 1
shows an example of a user-study interaction and
the application of the neuro-symbolic rule.

3.3 HFFood-GPT

We used assistant GPT to create HFFood-GPT as it
was easier to integrate with the UI. Since our goal
was to educate patients without providing medical
advice, we prompted it (the prompt is provided
in Appendix B) to not give health advice or sug-
gest consulting a professional for dietary guidance.
We named the system Sodium Scout and prompted
to analyze the salt contents in foods. It advises
that foods exceeding 20% of this intake are not
recommended, while those below 5% are favor-
able choices. We enabled the code interpreter and
retrieval features to enable data access. This al-
lowed the assistant to retrieve information from the
USFDC dataset, which was also used to create the
HFFood-NS dataset. We instructed it not to men-
tion the dataset with patients or search the web for
information.

To compare HFFood-GPT with our in-house sys-
tem, HFFood-NS, we prompted GPT-4 (OpenAl
et al., 2024) to function as similarly as possible to
HFFood-NS. We prompted Sodium Scout to ask
clarification questions about food type, cooking
method, and portion size, limiting the questions
to one question at a time. Additionally, to address
GPT-4’s tendency to produce lengthy responses, we
prompted it to keep the responses under 40 words.

4 User Study

SetUp We recruited 23 African American (AA)
patients, aged between 18 and 89 years, who could
speak English and had a history of heart failure. All



participants were compensated for their time. The
study was conducted while they were hospitalized,
in their hospital bedroom.

A total of 20 participants (13 Males and 7 fe-
males, ages 18-89 - y = 58.75, 0 = 14.32) com-
pleted the study which took around 6 months.
Proper IRB guidelines were followed. If the partic-
ipants met the inclusion criteria and were willing to
participate in the study, they were provided with an
informed-consent document and pre-survey ques-
tions. Each participant interacted with the two ver-
sions of the dialog agent (DA) one after the other
in a randomized manner to reduce recall bias.

To help the participants think of questions, we
prompted the participants to think about foods they
ate for breakfast, lunch, or dinner. Participants
then asked questions about the same food items
to both dialog systems. This was done to ensure
that the participants did not run out of questions
for the second interaction and to make it easier to
compare the 2 DAs. However, the interactions were
not identical because each system asked different
clarification questions, which led the conversations
in different directions.

In this study, all interactions with the systems
were conducted orally - the dialog systems were
speech-based. This included obtaining oral con-
sent and administering both the pre-and post-survey
questions verbally. The decision to use oral com-
munication was made to accommodate participants
who might be unwell, or be connected to medical
equipment, ensuring a more accessible and com-
fortable experience.

Conducting a user study with hospitalized pa-
tients comes with unique challenges and consid-
erations. For instance, Patient 15’s partner, who
was the primary caretaker responsible for managing
food, was also present for the session and together
asked questions. Patient 17, despite being visu-
ally impaired, had no difficulty participating in the
study as the system was speech-based. One patient
had a tracheostomy tube, and another was pregnant,
highlighting the diversity of participants. Addition-
ally, three patients initially faced some challenges
in understanding the systems due to their pain but
eventually became comfortable in using it.

UI For the experimenters, we designed a Ul to
control the interactions. The UI was minimalistic
and designed for ease of use, featuring two radio
buttons to select the system and a button to indicate
whether the system was recording or listening. For
the UI, we utilized Gradio (Abid et al., 2019), a

framework provided by Hugging Face, as it offers
a simple and effective solution.

The UI was not "always listening” and could
only listen or speak one at a time. It was done
to prioritize patients’ health and accommodate the
presence of nurses and doctors during interactions.
We named the two systems Lion and Shark so that
the participants could easily recall the names of the
systems being used. The two names were chosen
as they represent a well-known, powerful animal.

We utilized OpenAl technologies for both Text-
to-Speech (TTS) and Speech-to-Text (STT) func-
tionalities in the study. For Speech-to-Text, we
employed Whisper-1 (Radford et al., 2023), and
for Text-to-Speech, we used TTS-1. We recorded
audio and collected transcripts for error analysis.
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Figure 2: Comparison of user preferences categorized
by health literacy and digital health literacy levels, with
numbers in brackets indicating the number of users.



4.1 Survey Questions

4.1.1 PreSurvey Questionnaire

We assessed participants’ health literacy and digital
literacy using self-reported measures to better un-
derstand their abilities to access and process health
information. The PreSurvey Questionnaire can be
assessed in Appendix C.

Health Literacy was measured using the
BRIEF Health Literacy Screening Tool (Al-
abama Department of Public Health, n.d.). This
tool consists of 6 questions that evaluate individ-
uals’ ability to "obtain, process, and understand
basic health information and services needed to
make appropriate decisions about their health."

Digital Literacy was measured using the
eHealth Literacy Scale (etHEALS) (Norman and
Skinner, 2006). This tool consists of 8 questions
that assess participants’ perceived ability to find,
evaluate, and apply electronic health information
to address health-related issues.

4.1.2 PostSurvey Questionnaire

After users interacted with both systems, we asked
them to evaluate their experience through a ques-
tionnaire. The Post-Survey Questionnaire is avail-
able in Appendix D.

We asked users about the following aspects of
the two systems: how easy it was to understand
the answers, the usefulness of the questions, and
how easy the questions were to understand. We
also asked which system they preferred, the most
challenging aspect of using them, their likelihood
of using the system in the future, whether the sys-
tem was helpful, and if they had any additional
feedback.

5 Evaluation

5.1 Intrinsic Evaluation

We used the USFDC dataset as a baseline to eval-
uate the accuracy of the two systems. We treated
HFFood-GPT as a task-oriented dialogue system
by categorizing the provided values into defined
slots (Food, Cook, Type, FoodWeight, and metric)
similar to HFFood-NS.

Table 1 summarizes the analysis of task com-
pletion and accuracy for both systems. Task com-
pletion is defined as the system providing a value,
whether correct or incorrect, while accuracy refers
to the system providing the correct salt value.
Speech errors were excluded from the accuracy
calculation. For task completion, we considered

HFFood-NS | HFFood-GPT

Avg No of turns 3.6 3
Avg Processing Time 6.7 11.4
Avg Words of the System 14.5 54.5
Avg Retries 2 1.7

Avg WER 483 41
Task Completion 84% 62%
Accuracy 37% 24%

Table 1: Intrinsic Evaluation: Comparing 2 systems

cases where the model provided a salt value (either
as a specific number or a range) rather than cate-
gorical descriptors as observed in HFFood-GPT.

Evaluating HFFood-GPT proved particularly
challenging due to its black-box nature. To
maintain consistency, we evaluated it similarly to
HFFood-NS by comparing the provided salt value
to the first food item in the USFDC database that
satisfied all minimum slot values. However, it re-
mains unknown which data HFFood-GPT actually
accesses or the process it follows to calculate its
final answers.

Although HFFood-GPT demonstrated lower task
completion accuracy compared to HFFood-NS, it
achieved higher slot accuracy. Table 2 and Table
3 present the slot accuracy analysis for HFFood-
NS and HFFood-GPT, respectively. We classified
the incorrect slots into Speech Errors and Partial
Speech Errors (P-SE), which likely occurred due to
the noisy hospital environment, patients’ accents,
or the overall conditions in a hospital setting.

Although we used the same Text-to-Speech
and Speech-to-Text systems for both the systems,
HFFood-NS recorded a higher word error rate
(WER) (Morris et al., 2004) than HFFood-GPT
(Table 1). HFFood-GPT’s incorrect slot errors re-
sulted exclusively from Speech Errors and Partial
Speech Errors.

Correct | Incorrect | Speech Error | P-SE
Food 86 6 4 1
Cook 39 21 11 2
Type 44 31 17 2
Foodweight 29 56 18 0
Metric 27 60 20 0

Table 2: HFFood-NS Slot Accuracy Analysis: incorrect
includes Speech Error and Partial Speech Error (P-SE)

Correct | Incorrect Speech Error P-SE
Food 94 7 3 4
Cook 46 5 5 0
Type 58 15 9 6
FoodWeight 59 5 5 0
Metric 59 5 5 0

Table 3: HFFood-GPT Slot Accuracy Analysis: incor-
rect includes Speech Error and Partial Speech Error

(P-SE)
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Figure 3: Post-survey: extrinsic evaluation of the two
systems on the usefulness and understanding of answers
and questions.

5.2 Extrinsic Evaluation: User Perceptions

Figure 3 shows how participants rated the two sys-
tems in the post-survey questionnaire, focusing on
Understanding Answers, Understanding Questions,
and Useful Questions. We can see that more than
50% of the people find all the aspects useful.

Out of 20 patients, 11 preferred HFFood-NS,
while 9 favored HFFood-GPT. Since this is a
within-group study, there is a potential for recall
bias; however, we did not observe any evidence of
it. In 10 cases where HFFood-NS was tried first, 7
users favored it, while in 10 cases where HFFood-
GPT was tried first, 6 users favored it. But, the
preference for the first system was not statistically
significant, as indicated by a Pearson correlation (r
=0.3,p=0.19).

A comparison of preferences based on health
and digital health literacy, as assessed through the
pre-survey questionnaire, is presented in Figure 2.
The numbers are too small to draw any definite
conclusions.

When we asked the users about the reasons for
their preferences, those who favored HFFood-NS
highlighted its precise and to-the-point answers,
faster flow, , and concise responses. On the other
hand, users who preferred HFFood-GPT appreci-
ated the ease of understanding its questions, clear
and detailed explanations, and better-formulated
questions.

While some users found no issues with either
system and felt they understood them well, others
reported challenges. These included the systems
being repetitive, difficulty understanding the ques-
tions, and uncertainty about how to phrase their
own questions.

1
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Figure 4: Post Survey Analysis: How users perceived
the conversational system

Would patients use the DA in their daily life?
Table 4 highlights that all users found the system
helpful, with most indicating they would recom-
mend it to others. The majority found both systems
useful. However, data is only available for 19 pa-
tients, as the post-survey questions for patient P5
were interrupted due to a scheduled procedure.

Qualitative measures of salt content. In the
post-survey, 55% of users (11 participants) pre-
ferred receiving information about salt content in
informal terms, such as pinches or dashes. Only
20% (4 participants) preferred formal units like
milligrams or grams, while the rest chose percent-
ages or daily values. In the pre-survey, participants
reported measuring salt informally by sprinkling,
using pinches, or judging by eye. These informal
methods differ from the formal values, such as mil-
ligrams or percentage of daily value, that appear
on food labels.

6 Discussion: comparison between the
two systems

To understand why one system was preferred over
the other, we applied a mixed modeling approach,
treating both the system and participants as random
effects. In this analysis, we incorporated partici-
pant and system features. For participant features,
we considered the Health and Digital Literacy Cate-
gories as well as the First System used. For system
features, we analyzed metrics such as word error
rate, number of turns, number of words, average
response time, number of retries, task completion
rate, and accuracy. This approach aimed to identify
the key factors influencing user preference between
the two systems but, unfortunately, did not find any
significant factors.

Table 4 summarises the 2 systems, highlighting



the pros and cons by comparing performance, De-
sign and Usability, reliability, and flexibility.

HFFood-NS | HFFood-GPT

Task completion
Accuracy
Slot Accuracy
Less Speech Error
Less Processing Time
More Constrained
Error Analysis
Reliable
Predictable
Handling Complex query
Gave Options
Fluent
Concise
Create easily with less time

IR RV I NN LRV R VRN
A N R R SR N O

Table 4: Pros and Cons of HFFood-NS and HFFood-
GPT comparing on performance, Design and Usability,
reliability and flexibility.

6.1 HFFood-NS

One significant advantage of employing a neuro-
symbolic system combined with a traditional ToDS,
rather than directly prompting a LLM, lies in the
ability to conduct more thorough and precise error
analysis. This capability is crucial, particularly in
patient-centric systems. By utilizing this approach,
we were able to accurately pinpoint the areas where
our system fell short.

Table 5 provides a detailed breakdown of the er-
ror analysis performed on HFFood-NS. This analy-
sis includes multiple overlapping categories, which
highlight the nuanced nature of errors encountered.
By systematically addressing these issues, we can
iteratively develop a more robust and reliable dia-
logue system.

HFFood-NS

Missed Slot 27
Wrong Food Identified 9
System Error 8
Internet 6

No Data Fetched 5
Wrong Math 5
Food Not in USFDC 4
Complex Query 3
Missed Slot not in USFDC 2
Wrong Food Fetched 1

Table 5: Through and precise error analysis HFFood-NS

Moreover, neuro-symbolic rules gave us the abil-
ity to add fail-safe to the system where when the
model was not able to infer the slot for food weight
and metric, it would assume 100g, thereby increas-
ing the task completion rate.

Moreover, having greater control over the sys-
tem provided significant advantages. Firstly, it en-
sured that the system remained aligned with its pri-
mary goal, which HFFood-GPT struggled to main-

tain consistently. For example, in one instance,
HFFood-GPT asked a clarification question about
the color of the bell pepper being used—a detail
that is considered irrelevant when determining the
salt amount. This level of control helped minimize
distractions and kept the system focused on deliv-
ering accurate and goal-oriented responses.

Secondly, ensuring consistency in responses by
providing values in milligrams (mg) made the sys-
tem more user-friendly and reliable. In contrast,
HFFood-GPT showed some inconsistency in its
responses, with 10% of values given in grams (g),
10% as categorical descriptors (e.g., low, high, sig-
nificant), 8% as ranges instead of precise values,
and 2% in teaspoons (tsp) and rest in mg. This in-
consistency could pose challenges for patients, who
may overlook that 1 gram is equivalent to 1000 mil-
ligrams due to varying levels of numerical literacy
(Dickson and Riegel, 2009). Maintaining consis-
tency in responses is a crucial step to improving
accessibility and ensuring users can easily interpret
the information provided.

6.2 HFFood-GPT

HFFood-GPT handled diverse user descriptions
effectively, interpreting non-standard inputs and
maintaining smooth conversations. Patients de-
scribed their food portions in various unconven-
tional ways. Many reported portion sizes in terms
of servings, such as "for 6 people" or "serving size
for 1," instead of using standard units like ounces,
grams, or pounds. Two patients used unique mea-
surements, such as "spoonfuls" and "forkfuls,"
while two of them relied on size comparisons, like
describing a hotdog as "the size of a cellphone"
or quantifying food weight as "3 inches of bacon".
HFFood-GPT demonstrated flexibility in handling
these inputs, whereas HFFood-NS struggled with
slot identification, as reflected in Table 2, where
most errors occurred in food weight and metric
slots.

When HFFood-GPT was unable to determine
the salt amount in a food item directly, it attempted
to gather the recipe and estimate the salt content
based on the salt levels of its ingredients. While
this approach was sometimes helpful, there were
instances where the system asked overly specific
questions, such as the exact weight or brand of each
ingredient, which could be burdensome for users.

In some cases, the brand names were so widely
recognized that the food was identified by the brand
itself, such as "Chick-fil-A" or "Hurricane Whop-



per." In these situations, HFFood-GPT successfully
deduced the food item without requiring additional
descriptive details, showcasing its ability to handle
commonly branded food references effectively.

However, due to the unpredictable nature of
HFFood-GPT, the system sometimes specifically
asked for food weight in grams or ounces. For
example, in the conversation shown in Table 6,
when asked about weight in grams, the user was
not aware of it. It was good that HFFood-GPT tried
to educate about it. Users may not always know
these exact measurements and are more likely to
provide quantities in terms they are comfortable
with.

Turn

Thank you for specifying the preparation method. Now,
could you please tell me the portion size of the grilled turkey
sausage in grams?

User 5 milligrams.

System It seems there might be a misunderstanding with the portion
size. Typically, food portion sizes are measured in grams (g)
and would be much larger than 5 milligrams (mg). Could you
please provide the portion size again in grams? For reference,
a common serving size for sausage might be around 50 to
150 grams.

User 100 milligrams

System It looks like we’re still not quite accurate on the portion
size. When we're talking about turkey sausage, the realistic
portion size is usually around 100 grams (g), not milligrams
(mg). One gram is equal to 1000 milligrams, so a portion
size of turkey sausage might be 100 grams (which is 100,000
milligrams), for instance. Could you clarify the portion size
in grams for the turkey sausage?

System

Table 6: Excerpt of a HFFood-GPT Conversation

There were 8% instances where HFFood-GPT
attempted to assume the slots instead of asking a
clarification question. While this approach some-
times aligned with user intent, the goal should be
to avoid making assumptions and instead provide
users with the choice. For example, in one case, the
user mentioned "chicken breast," and despite a po-
tential speech error, the system correctly identified
it because chicken breast is the most common way
to consume chicken. However, if the user had been
asking about "chicken tenders," this assumption
would have resulted in an incorrect response.

When building HFFood-GPT, we set specific
rules to constrain its behavior. We limited re-
sponses to 40 words, but as shown in Table 1, the
system averaged 54.5 words per response. We also
instructed it to ask only one question per turn, but it
violated this rule in about 7% of its turns by asking
multiple questions at once.

We had prompted HFFood-GPT to only refer to
the database provided and not refer it to the users.
However, in 38.5% of system utterances, HFFood-
GPT referenced the DB and said that the food item

was not in the referenced DB and asked for more
clarification. This could be one of the many reasons
users did not prefer HFFood-GPT, as it could be off-
putting. When we asked users how they would like
to improve the system, their primary suggestions
were to expand the knowledge base, include more
ingredients, and add a broader range of food items
to make the system more comprehensive and user-
friendly.

GPT performed well by offering users options,
such as saying, "That sounds delicious! Could you
tell me if you’re using fresh or dried spaghetti?"
which happened in around 30% of system turns.
This showed that HFFood-GPT had knowledge
about different foods. However, in some cases,
even after the option was chosen, HFFood-GPT
responded that it lacked the information in the pro-
vided database. This behavior frustrated users be-
cause GPT relied on its own knowledge instead of
the dataset, compromising the system’s consistency
and reliability.

7 Conclusion and Future Work

We conducted a user study with 20 African-
American Heart Failure hospitalized patients. Us-
ing a within-subject design, we compared two di-
alogue systems: an in-house NeuroSymbolic Sys-
tem (HFFood-NS) and a ChatGPT-based system
(HFFood-GPT). The evaluation utilized both in-
trinsic and extrinsic measures, and while neither
system emerged as a clear winner, the study high-
lighted key differences between the two.

The evaluation revealed that HFFood-NS is more
accurate, completes more tasks, and provides con-
cise responses compared to HFFood-GPT. On the
other hand, HFFood-GPT makes fewer speech er-
rors, requires fewer clarifications to complete tasks,
and handles complex queries more effectively.

The widespread use of large language models
(LLMs), like ChatGPT, often lacks scrutiny, rais-
ing concerns in healthcare settings. Greater control
is needed, as relying solely on prompting is not
enough. Neuro-symbolic methods, which offer
greater transparency, reliability, and explainabil-
ity, should be further explored and integrated into
future systems.

Moving forward, we aim to develop hybrid con-
versational systems that combine the strengths of
both systems.



8 Limitations and Ethics Statement

While we believe user studies/ human evaluation
are the best methods to assess medical dialogue
systems, they have limitations. Our study recruited
only 20 patients, which is a relatively small sample
size, and it is difficult to get significant results.

To build the two systems, we relied on the USDA
Food Composition Database (USFDC). While this
database is a standard reference, it is neither fully
exhaustive nor completely accurate. For instance,
some foods, such as items from local restaurant
chains or specific snack brands, are absent from the
USFDC database. Additionally, in conversations
about fried foods, users often referred to air fryer
cooking methods, which were not accounted for in
the database.

References

Abubakar Abid, Ali Abdalla, Ali Rahman, and James
Zou. 2019. Gradio: Hassle-free sharing and test-
ing of ml models in the wild. arXiv preprint
arXiv:1906.02569.

Alabama Department of Public Health. n.d. Brief:
Health literacy screening tool. Accessed: 2025-02-
14.

Mohammad Rafayet Ali, Seyedeh Zahra Razavi, Raina
Langevin, Abdullah Al Mamun, Benjamin Kane,
Reza Rawassizadeh, Lenhart K Schubert, and Ehsan
Hoque. 2020. A virtual conversational agent for teens
with autism spectrum disorder: Experimental results
and design lessons. In Proceedings of the 20th ACM
international conference on intelligent virtual agents,
pages 1-8.

RV Belfin, AJ Shobana, Megha Manilal, Ashly Ann
Mathew, and Blessy Babu. 2019. A graph based chat-
bot for cancer patients. In 2019 5th international

conference on advanced computing & communica-
tion systems (ICACCS), pages 717-721. IEEE.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iiigo Casanueva, Stefan Ultes, Osman Ra-

madan, and Milica Gasié. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026, Brussels,
Belgium. Association for Computational Linguistics.

Pengshan Cai, Zonghai Yao, Fei Liu, Dakuo Wang,
Meghan Reilly, Huixue Zhou, Lingxi Li, Yi Cao,
Alok Kapoor, Adarsha Bajracharya, Dan Berlowitz,
and Hong Yu. 2023. PaniniQA: Enhancing Patient
Education Through Interactive Question Answering.
Transactions of the Association for Computational
Linguistics, 11:1518-1536.

Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan,
and William Yang Wang. 2019. Semantically con-
ditioned dialog response generation via hierarchical
disentangled self-attention. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy. Association for
Computational Linguistics.

Yun-Nung (Vivian) Chen, Dilek Z. Hakkani-Tiir,
Gokhan Tiir, Jianfeng Gao, and Li Deng. 2016. End-
to-end memory networks with knowledge carryover
for multi-turn spoken language understanding. In
Interspeech.

Mohita Chowdhury, Ernest Lim, Aisling Higham, Rory
McKinnon, Nikoletta Ventoura, Yajie He, and Nick
De Pennington. 2023. Can large language models
safely address patient questions following cataract
surgery? In Proceedings of the 5th Clinical Natu-
ral Language Processing Workshop, pages 131-137,
Toronto, Canada. Association for Computational Lin-
guistics.

Victoria Vaughan Dickson and Barbara Riegel. 2009.
Are we teaching what patients need to know? build-
ing skills in heart failure self-care. Heart & Lung,
38(3):253-261.

Itika Gupta, Barbara Di Eugenio, Devika Salunke, An-
drew Boyd, Paula Allen-Meares, Carolyn Dickens,
and Olga Garcia. 2020. Heart failure education of
African American and Hispanic/Latino patients: Data
collection and analysis. In Proceedings of the First
Workshop on Natural Language Processing for Medi-
cal Conversations, pages 41-46, Online. Association
for Computational Linguistics.

William R. Kearns, Neha Kaura, Myra Divina, Cuong
Vo, Dong Si, Teresa Ward, and Weichao Yuwen. 2020.
A wizard-of-oz interface and persona-based method-
ology for collecting health counseling dialog. In
Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI EA ’20,
page 1-9, New York, NY, USA. Association for Com-
puting Machinery.

Tom Knoll, Francesco Moramarco, Alex Papadopou-
los Korfiatis, Rachel Young, Claudia Ruffini, Mark
Perera, Christian Perstl, Ehud Reiter, Anya Belz, and
Aleksandar Savkov. 2022. User-driven research of


https://www.alabamapublichealth.gov/alphtn/assets/101323mod1briefinfosheet.pdf
https://www.alabamapublichealth.gov/alphtn/assets/101323mod1briefinfosheet.pdf
https://www.alabamapublichealth.gov/alphtn/assets/101323mod1briefinfosheet.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1162/tacl_a_00616
https://doi.org/10.1162/tacl_a_00616
https://doi.org/10.1162/tacl_a_00616
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.1145/3334480.3382902
https://doi.org/10.1145/3334480.3382902
https://doi.org/10.1145/3334480.3382902
https://doi.org/10.18653/v1/2022.naacl-main.29
https://doi.org/10.18653/v1/2022.naacl-main.29

medical note generation software. In Proceedings of
the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 385-394, Seattle,
United States. Association for Computational Lin-
guistics.

Wengiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren,
Xiangnan He, and Dawei Yin. 2018. Sequicity: Sim-
plifying task-oriented dialogue systems with single
sequence-to-sequence architectures. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Melbourne, Australia. Association for Computational
Linguistics.

Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve
Jiang, and You Zhang. 2023. Chatdoctor: A medical
chat model fine-tuned on a large language model
meta-ai (llama) using medical domain knowledge.
Preprint, arXiv:2303.14070.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein
Abad, Harlan M Krumholz, Jure Leskovec, Eric J
Topol, and Pranav Rajpurkar. 2023. Foundation mod-
els for generalist medical artificial intelligence. Na-
ture, 616(7956):259-265.

Andrew Cameron Morris, Viktoria Maier, and Phil D
Green. 2004. From wer and ril to mer and wil: im-
proved evaluation measures for connected speech
recognition. In Interspeech, pages 2765-2768.

Sanjoy Moulik. 2019. DIL-A Conversational Agent for
Heart Failure Patients. Ph.D. thesis, The Claremont
Graduate University.

A Nayak, AJ Hicks, and AA Morris. 2020. Under-
standing the complexity of heart failure risk and treat-
ment in black patients. Circulation: Heart Failure,
13(8):e007264.

Cameron D. Norman and Harvey A. Skinner. 2006.
eHEALS: The eHealth Literacy Scale. Journal of
Medical Internet Research, 8:€27.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,

10

Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
F.ukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-


https://doi.org/10.18653/v1/2022.naacl-main.29
https://arxiv.org/abs/2303.14070
https://arxiv.org/abs/2303.14070
https://arxiv.org/abs/2303.14070
https://arxiv.org/abs/2303.14070
https://arxiv.org/abs/2303.14070
https://doi.org/10.2196/jmir.8.4.e27

ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan-
deh, Lars Liden, and Jianfeng Gao. 2021. Soloist:
Building task bots at scale with transfer learning and
machine teaching. Transactions of the Association
for Computational Linguistics, 9.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak super-
vision. In Proceedings of the 40th International Con-
ference on Machine Learning, ICML’23. JMLR.org.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Maria Riveiro and Serge Thill. 2021. “that’s (not) the
output i expected!” on the role of end user expecta-
tions in creating explanations of ai systems. Artificial
Intelligence, 298:103507.

Devika Salunke, Carolyn Dickens, Olga Garcia-Bedoya,
Paula Allen-Meares, Barbara Di Eugenio, and An-
drew Dallas Boyd. 2023. Learnings from pilot test-
ing hfchat, an interactive dialogue agent that can
assist black/african american and hispanic/latino pa-
tients with heart failure. Journal of Cardiac Failure,
29(4):563.

Karen Sparck Jones and Julia R Galliers. 1995. Evaluat-
ing natural language processing systems: An analysis
and review. Springer Science & Business Media.

Pei-Hao Su, Milica Gasié, Nikola MrkSié, Lina M.
Rojas-Barahona, Stefan Ultes, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2016. On-line
active reward learning for policy optimisation in spo-
ken dialogue systems. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Berlin, Ger-
many. Association for Computational Linguistics.

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta,
Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task
pre-training for plug-and-play task-oriented dialogue
system. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4661-4676, Dublin,
Ireland. Association for Computational Linguistics.

USFDC. 2022. Us food data central.

Mina Valizadeh and Natalie Parde. 2022. The AI doctor
is in: A survey of task-oriented dialogue systems for
healthcare applications. In Proceedings of the 60th
Annual Meeting of the Association for Computational

11

Linguistics (Volume 1: Long Papers), pages 6638—
6660, Dublin, Ireland. Association for Computational
Linguistics.

Marilyn A Walker, Diane J Litman, Candace A Kamm,
and Alicia Abella. 1998. Evaluating spoken dialogue
agents with paradise: Two case studies. Computer
Speech & Language, 12(4):317-347.

Jinping Wang, Hyun Yang, Ruosi Shao, Saeed Abdul-
lah, and S. Shyam Sundar. 2020. Alexa as coach:
Leveraging smart speakers to build social agents that
reduce public speaking anxiety. In Proceedings of
the 2020 CHI Conference on Human Factors in Com-
puting Systems, CHI °20, page 1-13, New York, NY,
USA. Association for Computing Machinery.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Zhongyu Wei, Qianlong Liu, Baolin Peng, Huaixiao
Tou, Ting Chen, Xuanjing Huang, Kam-fai Wong,
and Xiangying Dai. 2018. Task-oriented dialogue
system for automatic diagnosis. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 201-207, Melbourne, Australia. Association
for Computational Linguistics.

Joseph Weizenbaum. 1966. Eliza—a computer pro-
gram for the study of natural language communi-
cation between man and machine. Commun. ACM,
9(1):36-45.

Steve Young, Milica Gasi¢, Blaise Thomson, and Ja-
son D. Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101.

Victor Zhong, Caiming Xiong, and Richard Socher.
2018. Global-locally self-attentive encoder for di-
alogue state tracking. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Melbourne,
Australia. Association for Computational Linguis-
tics.

Yue Zhou, Barbara Di Eugenio, Brian Ziebart, Lisa
Sharp, Bing Liu, Ben Gerber, Nikolaos Agadakos,
and Shweta Yadav. 2022. Towards enhancing
health coaching dialogue in low-resource settings.
In Proceedings of the 29th International Confer-
ence on Computational Linguistics, pages 694-706,
Gyeongju, Republic of Korea. International Commit-
tee on Computational Linguistics.

A NS-PPTOD Evaluation Results
B HFFood-GPT prompt

To develop HFFood-GPT, we used zero-shot
prompting on GPT-4.


https://arxiv.org/abs/2303.08774
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1016/j.cardfail.2022.10.043
https://doi.org/10.1016/j.cardfail.2022.10.043
https://doi.org/10.1016/j.cardfail.2022.10.043
https://doi.org/10.1016/j.cardfail.2022.10.043
https://doi.org/10.1016/j.cardfail.2022.10.043
https://doi.org/10.1016/j.cardfail.2022.10.043
https://doi.org/10.1016/j.cardfail.2022.10.043
https://doi.org/10.18653/v1/2022.acl-long.319
https://doi.org/10.18653/v1/2022.acl-long.319
https://doi.org/10.18653/v1/2022.acl-long.319
https://doi.org/10.18653/v1/2022.acl-long.319
https://doi.org/10.18653/v1/2022.acl-long.319
https://fdc.nal.usda.gov/
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.1145/3313831.3376561
https://doi.org/10.1145/3313831.3376561
https://doi.org/10.1145/3313831.3376561
https://doi.org/10.1145/3313831.3376561
https://doi.org/10.1145/3313831.3376561
https://doi.org/10.18653/v1/P18-2033
https://doi.org/10.18653/v1/P18-2033
https://doi.org/10.18653/v1/P18-2033
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/365153.365168
https://aclanthology.org/2022.coling-1.58
https://aclanthology.org/2022.coling-1.58
https://aclanthology.org/2022.coling-1.58

Train Size Epochs Joint Accuracy
PPTOD NS-PPTOD

100 6 55.56 73.08

300 4 51.92 72.8

500 6 58.75 83.2

1000 6 58.53 85.2

Table 7: Increase in Joint Accuracy when using NS-
PPTOD compared to PPTOD across different training
sizes

Train Epochs Inform Success  BLEU

Size
PPTOD 100 8 71.43 0 24.99
NS-PPTOD 100 - 88.90 77.80 22.50
PPTOD 300 7 75.00 5.00 34.30
NS-PPTOD 300 - 81.50 63.00 26.90
PPTOD 500 9 82.86 2.86 29.81
NS-PPTOD 500 - 74.50 58.10 28.90
PPTOD 1000 7 93.50 2.70 29.00
NS-PPTOD 1000 85.90 71.70 30.00

Table 8: Increase in performance when using NS-
PPTOD compared to PPTOD.

Sodium Scout greets users warmly and helps
analyze the salt content in various foods. It me-
thodically asks users about the food type, cooking
method, and portion size, one question at a time,
to accurately determine the salt content. Using
values from a provided JSON file, Sodium Scout
calculates the estimate salt content and compares
it to the recommended daily intake of 2000mg. It
advises that foods exceeding 20% of this intake
are not recommended, while those below 5% are
favorable choices. Sodium Scout refrains from
giving health advice and suggesting from con-
sulting a professional for dietary guidance. The
interface is friendly and straightforward. It focuses
on informing users about salt levels in their meals
with clarity, ensuring to ask only one question per
turn. Answers are kept under 40 words, and it only
searches the data provided in the JSON file. Users
do not know about the data file, so don’t discuss
it. Only focus on information related to food and
their salt amount. Do not look for information on
the web.

C Pre-Survey Questions
» eHealth Literacy Questions
* Brief Health Literacy Screening Questions

* Do you pay attention to salt in your food [Yes,
No, Maybe] How do you measure it?

D Post-Survey Questions

* 1. How easy was it to understand the answers
you received from [insert system name: Lion/
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Shark]? Please rate from 1 to 5, where 5 is
very easy to understand and 1 is very difficult
to understand.

Did you think [insert system name:
Lion/Shark] asked useful questions? (a.
Mostly Yes, b. Yes, c. Mostly No,d. No)

How easy was it to understand questions from
[insert system name Lion/Shark]? Please rate
from 1 to 5, where 5 is very easy to understand
and 1 is very difficult to understand.

How would you like to receive information
about the salt content in your food. Would you
prefer to see it as milligrams, as a percentage
of your daily value, or in some other way?
Please share your preference.

Which system, Lion or Shark, do you prefer?

In your own words, what was the hardest as-
pect of using the two systems?

How likely are you to use such a system?
(Rate 1 to 5 for each system: 1-Very unlikely
to use, 2: Unlikely to use, 3: Neutral, 4:
Likely to use, 5: Very likely to use) a. Why?
b. If the participant’s response is yes, i. How
often would you use it? ii. Would you recom-
mend it to others? (Yes/No)

Was the system helpful? a. How would you
improve the system? (If there is a preferred
one), b. How would you improve the systems?
(If there is **not** a preferred one)

Do you have any additional feedback or com-
ments?
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