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Abstract

Conversational assistants are becoming more001
and more popular, including in healthcare,002
partly because of the availability and capabili-003
ties of Large Language Models. There is a need004
for controlled, probing evaluations with real005
stakeholders which can highlight advantages006
and disadvantages of more traditional architec-007
tures and those based on generative AI. We008
present a within-group user study to compare009
two versions of a conversational assistant that010
allows heart failure patients to ask about salt011
content in food. One version of the system was012
developed in-house with a neurosymbolic ar-013
chitecture, and one is based on ChatGPT. The014
evaluation shows that the in-house system is015
more accurate, completes more tasks and is less016
verbose than the one based on ChatGPT; on the017
other hand, the one based on ChatGPT makes018
fewer speech errors and requires fewer clarifi-019
cations to complete the task. Patients show no020
preference for one over the other.021

1 Introduction022

Conversational assistants in the healthcare domain023

are as old as Natural Language Processing (NLP),024

since in 1966 ELIZA was already playing the role025

of a psychiatrist (Weizenbaum, 1966). They have026

proliferated in more recent years with the availabil-027

ity of datasets and machine learning approaches,028

even before the rise of Large Language Models029

(LLMs). The comprehensive survey in (Valizadeh030

and Parde, 2022) provides an in-depth analysis of031

these diverse healthcare-oriented dialogue systems,032

examining them from a computational perspective033

and highlighting their varied end-users.034

Traditional task-oriented dialog systems are typ-035

ically assessed using metrics such as Slot Filling036

F1-Score and Intent Recognition Accuracy for Nat-037

ural Language Understanding (NLU), as well as038

Slot Accuracy and Joint Goal Accuracy for Dialog039

State Tracking (DST) (Budzianowski et al., 2018).040

However, task performance is only one aspect of di- 041

alogue system evaluation, as already demonstrated 042

by Paradise (Walker et al., 1998), a framework that 043

links user satisfaction to task success and interac- 044

tion costs. 045

Evaluation of dialogue systems based on LLMs 046

raises additional concerns: LLMs do not operate 047

within rigid task boundaries, making it difficult 048

to apply standard task-oriented evaluation metrics. 049

Furthermore, LLMs often lack transparency regard- 050

ing their data sources and may fail to reliably follow 051

user prompts, raising significant concerns in high- 052

stakes domains where accuracy and accountability 053

are critical (Chowdhury et al., 2023). These limita- 054

tions are especially critical in practical, real-world 055

applications when facilitating medical conversa- 056

tions. In such cases, defining and assessing what 057

constitutes "good" performance becomes far more 058

complex and nuanced (Moor et al., 2023). 059

As a result, human evaluation remains the gold 060

standard for assessing medical dialog systems 061

(Chowdhury et al., 2023). Human evaluators 062

can provide insights into subjective qualities such 063

as coherence, informativeness, and user satisfac- 064

tion—factors that are difficult to capture with au- 065

tomated metrics alone. We present a user study 066

in which we compare one traditional task-oriented 067

dialog system (ToDS) in healthcare with one based 068

on LLMs. 069

The study focuses on African American patients 070

with heart failure, aiming to assist them in manag- 071

ing their salt intake by providing information about 072

the salt content in various foods. Heart failure pa- 073

tients must meticulously monitor and reduce their 074

salt intake: African American individuals are more 075

prone to heart failure (Nayak et al., 2020), have a 076

higher sensitivity to salt, and face challenges like 077

lack of access to healthy foods . Furthermore, in 078

(Gupta et al., 2020), the authors show that African 079

American patients with heart failure often discuss 080

salt and food during heart failure educational ses- 081
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sions, indicating a significant interest and need for082

information in this area. By providing a tool that083

facilitates easy access to information about salt084

content in foods, we aim to empower patients to085

make healthier dietary choices, thereby addressing086

a critical aspect of managing heart failure.087

The study compares two dialog systems—an in-088

house Neuro-Symbolic System (HFFood-NS) with089

a ChatGPT-based system (HFFood-GPT)—using a090

within-subject design. We conduct intrinsic (task091

performance) and extrinsic analyses (Sparck Jones092

and Galliers, 1995) using pre- and post-interaction093

surveys, to evaluate the 2 systems with African-094

American patients while hospitalized. By assessing095

how real patients, rather than typical study partic-096

ipants like Mechanical Turk workers or students,097

discuss food and prefer to receive information, we098

establish relevance and value of the intervention099

with real stakeholders.100

2 Related Work101

ToDS. Task-oriented Dialog Systems (ToDS.)102

typically follow a pipeline approach with four103

main components: natural language understand-104

ing (NLU) (Chen et al., 2016), dialog state track-105

ing (DST) (Zhong et al., 2018), dialog manager106

(Su et al., 2016), and natural language generation107

(NLG) (Chen et al., 2019). The NLU module in-108

terprets user input and represents the dialog state109

as slots (e.g., location, price range) to be filled dur-110

ing the conversation. DST monitors unfilled slots111

to inform the dialog manager, which decides the112

next action. This action is then passed to the NLG113

module to generate the system’s response.114

Early systems (Young et al., 2013) used carefully115

designed action spaces to manage dialog states116

which were later replaced by neural networks (Lei117

et al., 2018; Peng et al., 2021). While the pipeline118

approach integrates domain-specific knowledge119

and slot-filling methods, it often requires additional120

human labeling.121

Dialog Systems in Healthcare. ToDS have seen122

a significant rise in the healthcare sector (Valizadeh123

and Parde, 2022). These systems are developed124

for a wide array of diseases, including patient edu-125

cation (Cai et al., 2023; Gupta et al., 2020), heart126

failure (Moulik, 2019; Gupta et al., 2020), mental127

disorders (Ali et al., 2020), public anxiety (Wang128

et al., 2020), cancer (Belfin et al., 2019) etc. Their129

applications extend to several areas, including dis-130

ease diagnosis (Wei et al., 2018) and health coach-131

ing (Zhou et al., 2022), among others. 132

Patient Centeredness. (Gupta et al., 2020; 133

Salunke et al., 2023) highlight the development of 134

a dialogue agent tailored to the self-care needs of 135

heart failure patients, leveraging insights from edu- 136

cational sessions. (Kearns et al., 2020) investigates 137

the use of the Wizard of Oz (WOZ) technique to 138

create a persona-based health counseling dialogue 139

dataset. Recent advancements have also incorpo- 140

rated Large Language Models (LLMs) to address 141

patient inquiries (Chowdhury et al., 2023), with a 142

strong emphasis on safety. To overcome the lim- 143

itations in medical knowledge inherent to LLMs, 144

(Li et al., 2023) focuses on enhancing and fine- 145

tuning the LLaMa model using a dataset of approx- 146

imately 100,000 patient-doctor dialogues. (Knoll 147

et al., 2022) used a user-centered approach to itera- 148

tively improve their medical note generation model 149

with user feedback conducted via semi-structured 150

interviews. User studies are useful for collecting 151

real-world evaluations in domains lacking specific 152

use-case data (Walker et al., 1998; Riveiro and 153

Thill, 2021). 154

3 Two dialogue system architectures 155

3.1 HFFood-NS 156

The first system, HFFood-NS, is a neuro-symbolic 157

conversational system adapted from (Reference 158

Withheld). As there is no conversational dataset 159

related to food salt content, we created a template- 160

based conversational dataset. We utilized the 161

USFDC (U.S. Food Data Central) (USFDC, 2022) 162

dataset, which provided detailed food descriptions 163

along with their nutrient values. We annotated the 164

dataset based on food slots of food, cook, type, 165

foodweight, and metric. Full details of creating 166

the dataset can be found in (Reference Withheld). 167

Initially, we trained an end-to-end dialog system, 168

but for the user study, we only used its DST part. 169

3.1.1 End-to-End dialog system 170

We used the end-to-end dialog system PPTOD 171

(Plug-and-Play Task-Oriented Dialogue System) 172

(Su et al., 2022) to train the dialog system. PPTOD, 173

a T5-based model, excels in in-context learning by 174

employing customized prompts for specific tasks. 175

Our experiments revealed that fine-tuning a trans- 176

former model to predict salt content alone is in- 177

sufficient (see Table 8). This is due to two key 178

reasons. First, large pre-trained language models 179

(PLMs) like GPT-3 and T5 (Brown et al., 2020; 180
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Figure 1: HFChat-NS with Interaction: As the value
in DB was available for 100 gms, while the user asked
about 2 pounds, it fetched the appropriate value and
calculated the value for 2 pounds.

Raffel et al., 2020) occasionally make calculation181

errors, particularly as mathematical operations in182

equations grow more complex (Wei et al., 2022).183

Second, salt is a multi-valued slot, and its value184

changes over slight changes in food preparation185

method or quantity.186

To address these challenges, we integrated the187

PPTOD model with neuro-symbolic rules. These188

rules enable the retrieval of accurate salt values189

from a database and perform mathematical calcu-190

lations for specific food weights, allowing the sys-191

tem to handle non-standard food quantities effec-192

tively. This integration significantly enhances sys-193

tem performance, achieving a 20% improvement194

in joint goal accuracy across different dataset sizes195

(as shown in Table 7). These results demonstrate196

that combining pre-trained language models with197

neuro-symbolic rules achieves better accuracy.198

3.2 Final Model- HFFood-NS199

For the user-study version of HFFood-NS, several200

measures were implemented to modify the system201

to deploy in a patient-centric application. First,202

only the Dialogue State Tracking (DST) module of203

NS-PPTOD was used for simplicity and reliability.204

Secondly, if a slot remains unfilled, the system205

attempts to query the user about it up to two times.206

Third, the system responses were template-based207

responses which were created to train the model208

(Section 3.1.1). Fourth, since the USFDC dataset209

contains detailed information and users often give 210

less precise food descriptions, the system selects 211

the first food item that meets all minimum required 212

keywords to account for the multi-valued nature of 213

food items when providing salt values. 214

Finally, we carefully design the final sys- 215

tem response to effectively represent salt val- 216

ues. We represent salt values using two formal 217

units—milligrams (mg) and percentage (%)—com- 218

monly found on food labels, and we include an 219

informal measure - pinches/dashes. We also com- 220

pared the salt value to the recommended daily in- 221

take of 2000mg. We structure the final response 222

to be motivational by categorizing salt content into 223

four ranges (<5%, <20%, <50%, <100%, and oth- 224

ers) and crafting a motivational message. Figure 1 225

shows an example of a user-study interaction and 226

the application of the neuro-symbolic rule. 227

3.3 HFFood-GPT 228

We used assistant GPT to create HFFood-GPT as it 229

was easier to integrate with the UI. Since our goal 230

was to educate patients without providing medical 231

advice, we prompted it (the prompt is provided 232

in Appendix B) to not give health advice or sug- 233

gest consulting a professional for dietary guidance. 234

We named the system Sodium Scout and prompted 235

to analyze the salt contents in foods. It advises 236

that foods exceeding 20% of this intake are not 237

recommended, while those below 5% are favor- 238

able choices. We enabled the code interpreter and 239

retrieval features to enable data access. This al- 240

lowed the assistant to retrieve information from the 241

USFDC dataset, which was also used to create the 242

HFFood-NS dataset. We instructed it not to men- 243

tion the dataset with patients or search the web for 244

information. 245

To compare HFFood-GPT with our in-house sys- 246

tem, HFFood-NS, we prompted GPT-4 (OpenAI 247

et al., 2024) to function as similarly as possible to 248

HFFood-NS. We prompted Sodium Scout to ask 249

clarification questions about food type, cooking 250

method, and portion size, limiting the questions 251

to one question at a time. Additionally, to address 252

GPT-4’s tendency to produce lengthy responses, we 253

prompted it to keep the responses under 40 words. 254

4 User Study 255

SetUp We recruited 23 African American (AA) 256

patients, aged between 18 and 89 years, who could 257

speak English and had a history of heart failure. All 258
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participants were compensated for their time. The259

study was conducted while they were hospitalized,260

in their hospital bedroom.261

A total of 20 participants (13 Males and 7 fe-262

males, ages 18-89 - µ = 58.75, σ = 14.32) com-263

pleted the study which took around 6 months.264

Proper IRB guidelines were followed. If the partic-265

ipants met the inclusion criteria and were willing to266

participate in the study, they were provided with an267

informed-consent document and pre-survey ques-268

tions. Each participant interacted with the two ver-269

sions of the dialog agent (DA) one after the other270

in a randomized manner to reduce recall bias.271

To help the participants think of questions, we272

prompted the participants to think about foods they273

ate for breakfast, lunch, or dinner. Participants274

then asked questions about the same food items275

to both dialog systems. This was done to ensure276

that the participants did not run out of questions277

for the second interaction and to make it easier to278

compare the 2 DAs. However, the interactions were279

not identical because each system asked different280

clarification questions, which led the conversations281

in different directions.282

In this study, all interactions with the systems283

were conducted orally - the dialog systems were284

speech-based. This included obtaining oral con-285

sent and administering both the pre-and post-survey286

questions verbally. The decision to use oral com-287

munication was made to accommodate participants288

who might be unwell, or be connected to medical289

equipment, ensuring a more accessible and com-290

fortable experience.291

Conducting a user study with hospitalized pa-292

tients comes with unique challenges and consid-293

erations. For instance, Patient 15’s partner, who294

was the primary caretaker responsible for managing295

food, was also present for the session and together296

asked questions. Patient 17, despite being visu-297

ally impaired, had no difficulty participating in the298

study as the system was speech-based. One patient299

had a tracheostomy tube, and another was pregnant,300

highlighting the diversity of participants. Addition-301

ally, three patients initially faced some challenges302

in understanding the systems due to their pain but303

eventually became comfortable in using it.304

UI For the experimenters, we designed a UI to305

control the interactions. The UI was minimalistic306

and designed for ease of use, featuring two radio307

buttons to select the system and a button to indicate308

whether the system was recording or listening. For309

the UI, we utilized Gradio (Abid et al., 2019), a310

framework provided by Hugging Face, as it offers 311

a simple and effective solution. 312

The UI was not "always listening" and could 313

only listen or speak one at a time. It was done 314

to prioritize patients’ health and accommodate the 315

presence of nurses and doctors during interactions. 316

We named the two systems Lion and Shark so that 317

the participants could easily recall the names of the 318

systems being used. The two names were chosen 319

as they represent a well-known, powerful animal. 320

We utilized OpenAI technologies for both Text- 321

to-Speech (TTS) and Speech-to-Text (STT) func- 322

tionalities in the study. For Speech-to-Text, we 323

employed Whisper-1 (Radford et al., 2023), and 324

for Text-to-Speech, we used TTS-1. We recorded 325

audio and collected transcripts for error analysis. 326

(a) Health Literacy Vs Preference

(b) Digital Health Literacy Vs Preference

Figure 2: Comparison of user preferences categorized
by health literacy and digital health literacy levels, with
numbers in brackets indicating the number of users.
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4.1 Survey Questions327

4.1.1 PreSurvey Questionnaire328

We assessed participants’ health literacy and digital329

literacy using self-reported measures to better un-330

derstand their abilities to access and process health331

information. The PreSurvey Questionnaire can be332

assessed in Appendix C.333

Health Literacy was measured using the334

BRIEF Health Literacy Screening Tool (Al-335

abama Department of Public Health, n.d.). This336

tool consists of 6 questions that evaluate individ-337

uals’ ability to "obtain, process, and understand338

basic health information and services needed to339

make appropriate decisions about their health."340

Digital Literacy was measured using the341

eHealth Literacy Scale (eHEALS) (Norman and342

Skinner, 2006). This tool consists of 8 questions343

that assess participants’ perceived ability to find,344

evaluate, and apply electronic health information345

to address health-related issues.346

4.1.2 PostSurvey Questionnaire347

After users interacted with both systems, we asked348

them to evaluate their experience through a ques-349

tionnaire. The Post-Survey Questionnaire is avail-350

able in Appendix D.351

We asked users about the following aspects of352

the two systems: how easy it was to understand353

the answers, the usefulness of the questions, and354

how easy the questions were to understand. We355

also asked which system they preferred, the most356

challenging aspect of using them, their likelihood357

of using the system in the future, whether the sys-358

tem was helpful, and if they had any additional359

feedback.360

5 Evaluation361

5.1 Intrinsic Evaluation362

We used the USFDC dataset as a baseline to eval-363

uate the accuracy of the two systems. We treated364

HFFood-GPT as a task-oriented dialogue system365

by categorizing the provided values into defined366

slots (Food, Cook, Type, FoodWeight, and metric)367

similar to HFFood-NS.368

Table 1 summarizes the analysis of task com-369

pletion and accuracy for both systems. Task com-370

pletion is defined as the system providing a value,371

whether correct or incorrect, while accuracy refers372

to the system providing the correct salt value.373

Speech errors were excluded from the accuracy374

calculation. For task completion, we considered375

HFFood-NS HFFood-GPT
Avg No of turns 3.6 3

Avg Processing Time 6.7 11.4
Avg Words of the System 14.5 54.5

Avg Retries 2 1.7
Avg WER .483 .41

Task Completion 84% 62%
Accuracy 37% 24%

Table 1: Intrinsic Evaluation: Comparing 2 systems

cases where the model provided a salt value (either 376

as a specific number or a range) rather than cate- 377

gorical descriptors as observed in HFFood-GPT. 378

Evaluating HFFood-GPT proved particularly 379

challenging due to its black-box nature. To 380

maintain consistency, we evaluated it similarly to 381

HFFood-NS by comparing the provided salt value 382

to the first food item in the USFDC database that 383

satisfied all minimum slot values. However, it re- 384

mains unknown which data HFFood-GPT actually 385

accesses or the process it follows to calculate its 386

final answers. 387

Although HFFood-GPT demonstrated lower task 388

completion accuracy compared to HFFood-NS, it 389

achieved higher slot accuracy. Table 2 and Table 390

3 present the slot accuracy analysis for HFFood- 391

NS and HFFood-GPT, respectively. We classified 392

the incorrect slots into Speech Errors and Partial 393

Speech Errors (P-SE), which likely occurred due to 394

the noisy hospital environment, patients’ accents, 395

or the overall conditions in a hospital setting. 396

Although we used the same Text-to-Speech 397

and Speech-to-Text systems for both the systems, 398

HFFood-NS recorded a higher word error rate 399

(WER) (Morris et al., 2004) than HFFood-GPT 400

(Table 1). HFFood-GPT’s incorrect slot errors re- 401

sulted exclusively from Speech Errors and Partial 402

Speech Errors. 403

Correct Incorrect Speech Error P-SE
Food 86 6 4 1
Cook 39 21 11 2
Type 44 31 17 2

Foodweight 29 56 18 0
Metric 27 60 20 0

Table 2: HFFood-NS Slot Accuracy Analysis: incorrect
includes Speech Error and Partial Speech Error (P-SE)

Correct Incorrect Speech Error P-SE
Food 94 7 3 4
Cook 46 5 5 0
Type 58 15 9 6

FoodWeight 59 5 5 0
Metric 59 5 5 0

Table 3: HFFood-GPT Slot Accuracy Analysis: incor-
rect includes Speech Error and Partial Speech Error
(P-SE)
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Figure 3: Post-survey: extrinsic evaluation of the two
systems on the usefulness and understanding of answers
and questions.

5.2 Extrinsic Evaluation: User Perceptions404

Figure 3 shows how participants rated the two sys-405

tems in the post-survey questionnaire, focusing on406

Understanding Answers, Understanding Questions,407

and Useful Questions. We can see that more than408

50% of the people find all the aspects useful.409

Out of 20 patients, 11 preferred HFFood-NS,410

while 9 favored HFFood-GPT. Since this is a411

within-group study, there is a potential for recall412

bias; however, we did not observe any evidence of413

it. In 10 cases where HFFood-NS was tried first, 7414

users favored it, while in 10 cases where HFFood-415

GPT was tried first, 6 users favored it. But, the416

preference for the first system was not statistically417

significant, as indicated by a Pearson correlation (r418

= 0.3, p = 0.19).419

A comparison of preferences based on health420

and digital health literacy, as assessed through the421

pre-survey questionnaire, is presented in Figure 2.422

The numbers are too small to draw any definite423

conclusions.424

When we asked the users about the reasons for425

their preferences, those who favored HFFood-NS426

highlighted its precise and to-the-point answers,427

faster flow, , and concise responses. On the other428

hand, users who preferred HFFood-GPT appreci-429

ated the ease of understanding its questions, clear430

and detailed explanations, and better-formulated431

questions.432

While some users found no issues with either433

system and felt they understood them well, others434

reported challenges. These included the systems435

being repetitive, difficulty understanding the ques-436

tions, and uncertainty about how to phrase their437

own questions.438

Figure 4: Post Survey Analysis: How users perceived
the conversational system

Would patients use the DA in their daily life? 439

Table 4 highlights that all users found the system 440

helpful, with most indicating they would recom- 441

mend it to others. The majority found both systems 442

useful. However, data is only available for 19 pa- 443

tients, as the post-survey questions for patient P5 444

were interrupted due to a scheduled procedure. 445

Qualitative measures of salt content. In the 446

post-survey, 55% of users (11 participants) pre- 447

ferred receiving information about salt content in 448

informal terms, such as pinches or dashes. Only 449

20% (4 participants) preferred formal units like 450

milligrams or grams, while the rest chose percent- 451

ages or daily values. In the pre-survey, participants 452

reported measuring salt informally by sprinkling, 453

using pinches, or judging by eye. These informal 454

methods differ from the formal values, such as mil- 455

ligrams or percentage of daily value, that appear 456

on food labels. 457

6 Discussion: comparison between the 458

two systems 459

To understand why one system was preferred over 460

the other, we applied a mixed modeling approach, 461

treating both the system and participants as random 462

effects. In this analysis, we incorporated partici- 463

pant and system features. For participant features, 464

we considered the Health and Digital Literacy Cate- 465

gories as well as the First System used. For system 466

features, we analyzed metrics such as word error 467

rate, number of turns, number of words, average 468

response time, number of retries, task completion 469

rate, and accuracy. This approach aimed to identify 470

the key factors influencing user preference between 471

the two systems but, unfortunately, did not find any 472

significant factors. 473

Table 4 summarises the 2 systems, highlighting 474
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the pros and cons by comparing performance, De-475

sign and Usability, reliability, and flexibility.476

HFFood-NS HFFood-GPT
Task completion ✓ ✗

Accuracy ✓ ✗
Slot Accuracy ✗ ✓

Less Speech Error ✗ ✓
Less Processing Time ✓ ✗

More Constrained ✓ ✗
Error Analysis ✓ ✗

Reliable ✓ ✗
Predictable ✓ ✗

Handling Complex query ✗ ✓
Gave Options ✗ ✓

Fluent ✗ ✓
Concise ✓ ✗

Create easily with less time ✗ ✓

Table 4: Pros and Cons of HFFood-NS and HFFood-
GPT comparing on performance, Design and Usability,
reliability and flexibility.

6.1 HFFood-NS477

One significant advantage of employing a neuro-478

symbolic system combined with a traditional ToDS,479

rather than directly prompting a LLM, lies in the480

ability to conduct more thorough and precise error481

analysis. This capability is crucial, particularly in482

patient-centric systems. By utilizing this approach,483

we were able to accurately pinpoint the areas where484

our system fell short.485

Table 5 provides a detailed breakdown of the er-486

ror analysis performed on HFFood-NS. This analy-487

sis includes multiple overlapping categories, which488

highlight the nuanced nature of errors encountered.489

By systematically addressing these issues, we can490

iteratively develop a more robust and reliable dia-491

logue system.492

HFFood-NS
Missed Slot 27

Wrong Food Identified 9
System Error 8

Internet 6
No Data Fetched 5

Wrong Math 5
Food Not in USFDC 4

Complex Query 3
Missed Slot not in USFDC 2

Wrong Food Fetched 1

Table 5: Through and precise error analysis HFFood-NS

Moreover, neuro-symbolic rules gave us the abil-493

ity to add fail-safe to the system where when the494

model was not able to infer the slot for food weight495

and metric, it would assume 100g, thereby increas-496

ing the task completion rate.497

Moreover, having greater control over the sys-498

tem provided significant advantages. Firstly, it en-499

sured that the system remained aligned with its pri-500

mary goal, which HFFood-GPT struggled to main-501

tain consistently. For example, in one instance, 502

HFFood-GPT asked a clarification question about 503

the color of the bell pepper being used—a detail 504

that is considered irrelevant when determining the 505

salt amount. This level of control helped minimize 506

distractions and kept the system focused on deliv- 507

ering accurate and goal-oriented responses. 508

Secondly, ensuring consistency in responses by 509

providing values in milligrams (mg) made the sys- 510

tem more user-friendly and reliable. In contrast, 511

HFFood-GPT showed some inconsistency in its 512

responses, with 10% of values given in grams (g), 513

10% as categorical descriptors (e.g., low, high, sig- 514

nificant), 8% as ranges instead of precise values, 515

and 2% in teaspoons (tsp) and rest in mg. This in- 516

consistency could pose challenges for patients, who 517

may overlook that 1 gram is equivalent to 1000 mil- 518

ligrams due to varying levels of numerical literacy 519

(Dickson and Riegel, 2009). Maintaining consis- 520

tency in responses is a crucial step to improving 521

accessibility and ensuring users can easily interpret 522

the information provided. 523

6.2 HFFood-GPT 524

HFFood-GPT handled diverse user descriptions 525

effectively, interpreting non-standard inputs and 526

maintaining smooth conversations. Patients de- 527

scribed their food portions in various unconven- 528

tional ways. Many reported portion sizes in terms 529

of servings, such as "for 6 people" or "serving size 530

for 1," instead of using standard units like ounces, 531

grams, or pounds. Two patients used unique mea- 532

surements, such as "spoonfuls" and "forkfuls," 533

while two of them relied on size comparisons, like 534

describing a hotdog as "the size of a cellphone" 535

or quantifying food weight as "3 inches of bacon". 536

HFFood-GPT demonstrated flexibility in handling 537

these inputs, whereas HFFood-NS struggled with 538

slot identification, as reflected in Table 2, where 539

most errors occurred in food weight and metric 540

slots. 541

When HFFood-GPT was unable to determine 542

the salt amount in a food item directly, it attempted 543

to gather the recipe and estimate the salt content 544

based on the salt levels of its ingredients. While 545

this approach was sometimes helpful, there were 546

instances where the system asked overly specific 547

questions, such as the exact weight or brand of each 548

ingredient, which could be burdensome for users. 549

In some cases, the brand names were so widely 550

recognized that the food was identified by the brand 551

itself, such as "Chick-fil-A" or "Hurricane Whop- 552
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per." In these situations, HFFood-GPT successfully553

deduced the food item without requiring additional554

descriptive details, showcasing its ability to handle555

commonly branded food references effectively.556

However, due to the unpredictable nature of557

HFFood-GPT, the system sometimes specifically558

asked for food weight in grams or ounces. For559

example, in the conversation shown in Table 6,560

when asked about weight in grams, the user was561

not aware of it. It was good that HFFood-GPT tried562

to educate about it. Users may not always know563

these exact measurements and are more likely to564

provide quantities in terms they are comfortable565

with.566

Turn
System Thank you for specifying the preparation method. Now,

could you please tell me the portion size of the grilled turkey
sausage in grams?

User 5 milligrams.
System It seems there might be a misunderstanding with the portion

size. Typically, food portion sizes are measured in grams (g)
and would be much larger than 5 milligrams (mg). Could you
please provide the portion size again in grams? For reference,
a common serving size for sausage might be around 50 to
150 grams.

User 100 milligrams
System It looks like we’re still not quite accurate on the portion

size. When we’re talking about turkey sausage, the realistic
portion size is usually around 100 grams (g), not milligrams
(mg). One gram is equal to 1000 milligrams, so a portion
size of turkey sausage might be 100 grams (which is 100,000
milligrams), for instance. Could you clarify the portion size
in grams for the turkey sausage?

Table 6: Excerpt of a HFFood-GPT Conversation

There were 8% instances where HFFood-GPT567

attempted to assume the slots instead of asking a568

clarification question. While this approach some-569

times aligned with user intent, the goal should be570

to avoid making assumptions and instead provide571

users with the choice. For example, in one case, the572

user mentioned "chicken breast," and despite a po-573

tential speech error, the system correctly identified574

it because chicken breast is the most common way575

to consume chicken. However, if the user had been576

asking about "chicken tenders," this assumption577

would have resulted in an incorrect response.578

When building HFFood-GPT, we set specific579

rules to constrain its behavior. We limited re-580

sponses to 40 words, but as shown in Table 1, the581

system averaged 54.5 words per response. We also582

instructed it to ask only one question per turn, but it583

violated this rule in about 7% of its turns by asking584

multiple questions at once.585

We had prompted HFFood-GPT to only refer to586

the database provided and not refer it to the users.587

However, in 38.5% of system utterances, HFFood-588

GPT referenced the DB and said that the food item589

was not in the referenced DB and asked for more 590

clarification. This could be one of the many reasons 591

users did not prefer HFFood-GPT, as it could be off- 592

putting. When we asked users how they would like 593

to improve the system, their primary suggestions 594

were to expand the knowledge base, include more 595

ingredients, and add a broader range of food items 596

to make the system more comprehensive and user- 597

friendly. 598

GPT performed well by offering users options, 599

such as saying, "That sounds delicious! Could you 600

tell me if you’re using fresh or dried spaghetti?" 601

which happened in around 30% of system turns. 602

This showed that HFFood-GPT had knowledge 603

about different foods. However, in some cases, 604

even after the option was chosen, HFFood-GPT 605

responded that it lacked the information in the pro- 606

vided database. This behavior frustrated users be- 607

cause GPT relied on its own knowledge instead of 608

the dataset, compromising the system’s consistency 609

and reliability. 610

7 Conclusion and Future Work 611

We conducted a user study with 20 African- 612

American Heart Failure hospitalized patients. Us- 613

ing a within-subject design, we compared two di- 614

alogue systems: an in-house NeuroSymbolic Sys- 615

tem (HFFood-NS) and a ChatGPT-based system 616

(HFFood-GPT). The evaluation utilized both in- 617

trinsic and extrinsic measures, and while neither 618

system emerged as a clear winner, the study high- 619

lighted key differences between the two. 620

The evaluation revealed that HFFood-NS is more 621

accurate, completes more tasks, and provides con- 622

cise responses compared to HFFood-GPT. On the 623

other hand, HFFood-GPT makes fewer speech er- 624

rors, requires fewer clarifications to complete tasks, 625

and handles complex queries more effectively. 626

The widespread use of large language models 627

(LLMs), like ChatGPT, often lacks scrutiny, rais- 628

ing concerns in healthcare settings. Greater control 629

is needed, as relying solely on prompting is not 630

enough. Neuro-symbolic methods, which offer 631

greater transparency, reliability, and explainabil- 632

ity, should be further explored and integrated into 633

future systems. 634

Moving forward, we aim to develop hybrid con- 635

versational systems that combine the strengths of 636

both systems. 637
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8 Limitations and Ethics Statement638

While we believe user studies/ human evaluation639

are the best methods to assess medical dialogue640

systems, they have limitations. Our study recruited641

only 20 patients, which is a relatively small sample642

size, and it is difficult to get significant results.643

To build the two systems, we relied on the USDA644

Food Composition Database (USFDC). While this645

database is a standard reference, it is neither fully646

exhaustive nor completely accurate. For instance,647

some foods, such as items from local restaurant648

chains or specific snack brands, are absent from the649

USFDC database. Additionally, in conversations650

about fried foods, users often referred to air fryer651

cooking methods, which were not accounted for in652

the database.653
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Train Size Epochs Joint Accuracy
PPTOD NS-PPTOD

100 6 55.56 73.08
300 4 51.92 72.8
500 6 58.75 83.2
1000 6 58.53 85.2

Table 7: Increase in Joint Accuracy when using NS-
PPTOD compared to PPTOD across different training
sizes

Train
Size

Epochs Inform Success BLEU

PPTOD 100 8 71.43 0 24.99
NS-PPTOD 100 - 88.90 77.80 22.50
PPTOD 300 7 75.00 5.00 34.30
NS-PPTOD 300 - 81.50 63.00 26.90
PPTOD 500 9 82.86 2.86 29.81
NS-PPTOD 500 - 74.50 58.10 28.90
PPTOD 1000 7 93.50 2.70 29.00
NS-PPTOD 1000 - 85.90 71.70 30.00

Table 8: Increase in performance when using NS-
PPTOD compared to PPTOD.

Sodium Scout greets users warmly and helps978

analyze the salt content in various foods. It me-979

thodically asks users about the food type, cooking980

method, and portion size, one question at a time,981

to accurately determine the salt content. Using982

values from a provided JSON file, Sodium Scout983

calculates the estimate salt content and compares984

it to the recommended daily intake of 2000mg. It985

advises that foods exceeding 20% of this intake986

are not recommended, while those below 5% are987

favorable choices. Sodium Scout refrains from988

giving health advice and suggesting from con-989

sulting a professional for dietary guidance. The990

interface is friendly and straightforward. It focuses991

on informing users about salt levels in their meals992

with clarity, ensuring to ask only one question per993

turn. Answers are kept under 40 words, and it only994

searches the data provided in the JSON file. Users995

do not know about the data file, so don’t discuss996

it. Only focus on information related to food and997

their salt amount. Do not look for information on998

the web.999

C Pre-Survey Questions1000

• eHealth Literacy Questions1001

• Brief Health Literacy Screening Questions1002

• Do you pay attention to salt in your food [Yes,1003

No, Maybe] How do you measure it?1004

D Post-Survey Questions1005

• 1. How easy was it to understand the answers1006

you received from [insert system name: Lion/1007

Shark]? Please rate from 1 to 5, where 5 is 1008

very easy to understand and 1 is very difficult 1009

to understand. 1010

• Did you think [insert system name: 1011

Lion/Shark] asked useful questions? (a. 1012

Mostly Yes, b. Yes, c. Mostly No,d. No) 1013

• How easy was it to understand questions from 1014

[insert system name Lion/Shark]? Please rate 1015

from 1 to 5, where 5 is very easy to understand 1016

and 1 is very difficult to understand. 1017

• How would you like to receive information 1018

about the salt content in your food. Would you 1019

prefer to see it as milligrams, as a percentage 1020

of your daily value, or in some other way? 1021

Please share your preference. 1022

• Which system, Lion or Shark, do you prefer? 1023

• In your own words, what was the hardest as- 1024

pect of using the two systems? 1025

• How likely are you to use such a system? 1026

(Rate 1 to 5 for each system: 1-Very unlikely 1027

to use, 2: Unlikely to use, 3: Neutral, 4: 1028

Likely to use, 5: Very likely to use) a. Why? 1029

b. If the participant’s response is yes, i. How 1030

often would you use it? ii. Would you recom- 1031

mend it to others? (Yes/No) 1032

• Was the system helpful? a. How would you 1033

improve the system? (If there is a preferred 1034

one), b. How would you improve the systems? 1035

(If there is **not** a preferred one) 1036

• Do you have any additional feedback or com- 1037

ments? 1038
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