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Abstract

Oversubscription planning (OSP) is a planning formalism
that can deal with planning scenarios where not all goals can
be achieved. If the global optimization goal is not fixed, an
iterative process in which users refine their preferences based
on the sample plans is suitable. To help the users, the plan-
ning systems should be able to provide answers to questions
such as “Why is goal g not satisfied by the sample plan?”

In this paper, we focus on explaining the behavior of a given
black-box policy under the aforementioned planning sce-
nario. That is, we assume that sample plans are provided by
a state-dependent deterministic policy ¢ (in our case a neu-
ral network policy), and we try to automatically answer the
question “Why is the goal g not satisfied by ¢?”” by providing
information how much the policy ¢ would need to diverge
from its decision in order to satisfy the goal g. Moreover, we
also provide information in which state and how the policy
should diverge. To this end, we extended action policies based
on action schema networks to support OSP tasks, and design
an algorithm that is able to provide the desired explanations.
We evaluate the performance of the proposed algorithm and
provide a case study with sample explanations.

1 Introduction

Action policies represented by (deep) neural networks
(NN) are receiving increasing attention in recent years (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Toyer et al. 2018; Garg, Bajpai et al. 2019; Stahlberg, Bonet,
and Geffner 2022a,b). Those approaches target a planning
setting where the objective is to reach a state which sat-
isfies all goals while optimizing the number of actions
needed. However, in real-life settings, we often have Over-
subscription planning (OSP), this means not all goals can
be achieved because of, for example, strict resource or tim-
ing constraints. Moreover, a global optimization objective is
often not fully specified. As pointed out by Smith (2012),
preferences for individual goals are not all given or fixed
from the beginning. Thus an iterative process where users
can refine their preferences based on the given sample plans
is more suitable. In this setup, explanations elucidating the
conflicts between the goals are beneficial to refine prefer-
ences and find better trade-offs.
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Eifler et al. (2020a) introduced a framework that provides
such explanations based on minimal unsolvable goal sub-
sets (MUGS). They answer contrastive questions like “Why
is goal g; not satisfied in plan 7?” with “Because then you
have to forgo goal g;?”. This provides the user with the in-
formation that g; and g; can not both be satisfied because of
some resource or timing constraints.

Now, if the plan 7 is generated by a successive application
of an action policy ¢, then a new reason why g; and g; are
not satisfied arises. It may not be possible, if the policy is
strictly followed, to reach a state where both goals are satis-
fied. Thus the new question is “How much do we need to di-
verge from ¢ in order to satisfy both g; and ¢;?7” Answering
such questions clearly depends on how we decide to quantify
divergence. Moreover, we want to minimize the divergence
metric, because we consider diverging from the policy ¢ un-
favorable. This is based on the assumption that the policy
is tested (Eniser et al. 2022; Eisenhut et al. 2023) or even
verified (Vinzent and Hoffmann 2022; Vinzent, Sharma, and
Hoffmann 2023), and by diverging from ¢ you can not nec-
essarily guarantee all properties.

We propose two distinct divergence metrics. The first met-
ric counts the number of steps in which we need to diverge
from the policy decision in order to satisfy the goals, i.e.,
we count how many times do we need to take a different ac-
tion than the policy. The second metric takes a more local
view. In each state, it considers a subset of applicable ac-
tions most preferable by the policy (assuming the policy is
internally ranking the applicable actions somehow).

Explanations are then based on the MUGS induces by
plans less than a certain threshold distance from the policy.
Those capture the goal trade-offs we need to make unless we
are willing to diverge more.

So far, there is no approach for training action policies tar-
geting OSP. Thus, as another contribution, we focus on ac-
tion schema networks (ASNet) (Toyer et al. 2018, 2020) pre-
viously used for probabilistic and deterministic action poli-
cies generalizing over domains, and extend them for the OSP
setting.

Eifler et al. (2020b) introduced an algorithm based on an
exhaustive state space search to compute all MUGS for a
given planning task. We extend this approach to compute
all MUGS within a given radius. Thereby local and global
distinct divergence metrics are handled as path-independent



and path dependent pruning function respectively.

A preliminary performance analysis is performed for AS-
Net policies and the distance metric based on the number of
deviating actions. Sample explanations are illustrated with a
case study of 3 different resource constraint domains

2 Background

We consider a variant of the oversubscription planning
(OSP) (Smith 2004; Domshlak and Mirkis 2015) with
binary-domain variables (Béckstrom and Nebel 1995;
Helmert 2009). An OSP task is a tuple 7 = (F, A, ¢, 1,
Ghard GOt ) where F is a set of facts, A is a set of actions,
and ¢ : A — R{ is an action cost function. A state s C F
is a set of facts, and S denotes the set of all states. I C F'is
the initial state, G?Y C F and G C F denote hard and
soft goal, respectively, and it holds that GP*d N G*°ft = ().
b € R{ is the cost bound.

Each action a € A has a precondition pre, C F, an
add list add, C F and a delete list del, C F such that
add, N del, = 0 and pre, N add, = (. An action a is ap-
plicable in a state s if pre, C s. The set of all applicable
actions in s is denoted by A(s). Applying a to s, denoted as
s[a], results in the state sfa] = (s U add,) \ del,. A se-
quence of actions m = (ay,...,a,) is applicable in a state
so if there are states si,..., S, such that a; is applicable
in s;_1 and s; = s;_1[a;] for 1 < ¢ < n. The result-
ing state of this application is so[r] = s,. The sequence
(80,81, - - -, Sn) of the aforementioned states is called inter-
mediate state sequence of 7. The cost of the sequence of
actions  is defined as c(m) = 37\, c(a;), and the length
of 7 is denoted as || = n. Moreover, given i € {1,...,n},
w[i] = a; denotes the i-th action of the action sequence .
Giveni,j,s.t. 1 <1i < j <m,7l[i,j] = {(a;...a;) denotes
the specified sub-sequence of actions.

A sequence of actions 7 = (aq,...,a,) is called plan
if ¢(7) < band GM4 C [[r], i.e., the costs of plans in
OSP tasks are upper-bounded by b and they must reach hard
goals Given the plan m, G™(7r) = {g | g € G* g €

J]} denotes the soft goals satisfied by 7, and G () =
G\ G"™¢(7) denotes the soft goals not satisfied by . II
denotes the set of all plans.

Following Eifler et al. (2020a), we do not define a plan
utility over G*°"', Instead, we focus on the analysis of the
conflicts between different goals from G*°'. Given a task 7
and a set of plans IT' C TI, the conflicts between soft goals
within the plans II’ are represented by the minimal unsolv-
able goal subsets (MUGS). A set of soft goals C' C G*°!t
is called a MUGS if there is no plan 7 € II’ such that
C € I[r], but for all C" C C there exists such a w € II'.
The set of all MUGS within the set of plans II’ is denoted
by MUGS(IT').

We consider deterministic state-dependent policies. A
policy ¢: S — A U {0} is a function mapping states to
applicable actions or null (9) if there is no applicable action,
i.e., for every state s € S and policy ¢ it holds that ¢(s) = )
if A(s) = 0 and ¢(s) € A(s) otherwise. Given a policy ¢
and a state s, the execution of ¢ in s, denoted by o®(s), is
a sequence of actions o®(s) = (ay,...,a,) applicable in s

(with its intermediate state sequence (So, . . ., S)) such that

(i) for every i € {1,...,n} it holds that a; = ¢(s;—1),

and

(i) foreveryi € {0,...,n— 1} it holds that if s; is a goal
state, then s,, is also a goal state and |G*°" N s;] <
|G* N s,,|, and

(iii) foreveryi,j € {0,...,
Si 7’5 Sj.

n — 1} s.t. ¢ # j it holds that

In other words, the execution of ¢ in s is the action sequence
resulting from iteratively applying the policy ¢ starting in
the state s in such a way that the execution terminates either
when there is no applicable action, or when the first goal
state maximazing the number of soft goals is reached, or
when the policy loops, i.e., it reaches some state for the sec-
ond time. Clearly, 0 (s) is finite and unique for every s and
¢. We also, w.l.o.g., consider executions of policies limited
to a certain number of actions.

3 Action Policy Explanations

In practice, a global optimization function for user prefer-
ences is often not available. Therefore, an iterative planning
approach where users refine their objectives based on exam-
ple plans is more suitable (Smith 2012).

In this paper, we follow the framework implementing
such an iterative process for OSP tasks proposed by Eifler
et al. (2020a): Given an OSP task 7 with hard goals G"*¢
and soft goals Gt each iteration is conducted as follows.
First, the user selects a subset G C G of soft goals that
is enforced. Then, the system finds a plan 7 for 7 such that
(at least) G is satisfied, i.e., G C G"(r). At this point,
users can ask questions of the form “Why is ) not satisfied
in 77”7, where Q C G™¢(7) can be any set of soft goals not
satisfied by 7. The answer provided by the system is then
of the form “Because then you have to forgo A(Q)”, where
A(Q) is the set of all possible minimal subsets of soft goals
satisfied by 7 that cannot be satisfied anymore by plans satis-
fying Q). These questions and answers help users find better
trade-offs between soft goals that are conflicting with each
other as shown by a user study (Eifler et al. 2022).

Here, we extend this framework to plans provided by a
given deterministic policy ¢. That is, we assume we are
given not only an OSP task 7 with soft goals G*°"', but also
a deterministic policy ¢ for 7 that can solve 7, i.e., we as-
sume (1) is a plan. Since the policy is deterministic and
therefore able to produce only a single plan, users cannot
enforce any soft goals. However, they can still ask questions
of a similar form as before: “Why is ) not satisfied by the
policy #?”, where Q C G™(5?(I)) can be any subset of
soft goals not satisfied by the policy’s execution. Now, we
cannot answer this question in the same way as before, be-
cause users cannot enforce any soft goals or choose a differ-
ent plan. We can, however, provide users with information
on how much would the policy need to change in order to
reach the soft goals (). Such an answer, obviously, depends
on how we decide to measure the amount of change.

We propose to deal with this problem by defining a policy
distance function that maps each plan to a numerical value



expressing its distance from the given deterministic policy,
i.e., it quantifies how much the given plan diverges from the
policy. With such a distance function at hand, users can ask
questions of the form “Is it possible to satisfy () within the
radius k of the policy ¢?”, where Q C G™(5?(I)) is as
before, and k € RT is a threshold on the policy distance
function, i.e. the question is asking whether there exists a
plan such that its distance from the policy ¢ is at most k. We
can answer this question by either “No, it is not possible”,
or “Yes, but you have to forego A(Q, k)” where A(Q, k) is,
similarly to before, a set of all minimal subsets of soft goals
satisfied by the policy but not satisfied by plans within the
radius k satisfying ). We could even provide information in
which states it is necessary to diverge from the policy and
how, but we will touch on this question only partially here.

Moreover, we think this approach establishes a solid ba-
sis for different sets of questions and answers that we plan
to investigate in the future. For example, instead of select-
ing a specific radius k, users could simply ask what is the
minimum radius to achieve ). Or we could use more policy
distance functions at once and users could ask for different
radii for each distance function. Also note that, for this set-
ting, it would make sense to train a policy that can take both
a state and a set of target soft goals instead of just a state.
Such policy would be able to adapt its decisions based on
the set of soft goals that ought to be satisfied. This would
allow users to enforce soft goals as was done in the frame-
work of Eifler et al. (2020a). It would also make sense from
the application point of view, but it would require a differ-
ent type of explanations as we would need to reason more
carefully about what a divergence in this setting means—we
would not have a single state-dependent deterministic policy
anymore.

In the following, we formally introduce the general frame-
work for our approach, and then we instantiate it with
two different policy distance functions providing reasonable
ways to quantify divergence from a policy.

3.1 General Framework for Policy Divergence
Explanations

Our explanation framework requires measuring the distance
between a plan and a policy in order to be able to quantify
how much the plan diverges from the policy. So, we start by
the definition of a policy distance function as any function
mapping plans to non-negative numbers such that it returns
zero for the plan resulting from the execution of the given
deterministic policy. The policy distance function then nat-
urally induces a set of plans whose distance from the policy
is within the given threshold value which we call radius.

Definition 1 (Policy Distance Function). Given an OSP task
T with the initial state I and plans 11, and a policy ¢ for T
such that o®(I) € 1l is a plan, a function § : 11 — R
mapping plans to non-negative numbers is called a policy
distance function for ¢ if 5(c®(I)) = 0.

Given a number k € RT, a policy ¢ for T such that
o?(I) € 11, and a policy distance function & for ¢, I1(5, k)
denotes the plans within the radius k defined as 11(6, k) =
{mell|§(r) <k}

Note that our policy distance function is related to the
distance functions used in the context of diverse planning
(e.g., Boddy et al. 2005; Goldman and Kuter 2015; Katz and
Sohrabi 2020). Diverse planning requires measuring the dis-
tance between two plans and the goal is usually to produce
a set of plans whose pairwise distance is maximal (possibly
within some other constraints). The difference here is that
we compute the distance from a plan to the fixed policy. In-
vestigation of whether the distance metrics used in diverse
planning can be adopted (and how) to our setting remains
for future research.

Now, we can define explanations based on analyzing plans
diverging from the given policy. We focus on questions of
the form “Is it possible to satisfy () within the radius k of
the policy ¢?” and answers of the form either “No, it is not
possible.” or “Yes, but you have to forego A(Q, k)” where
A(Q, k) concisely lists which soft goals reached by the pol-
icy cannot be reached together with Q.

Definition 2 (Policy Divergence Explanation). Let T denote
an OSP task with plans 11, let ¢ denote a policy for T such
that o (I) € 11, and let § denote a policy distance function
for ¢. Given a question (Q, k) where Q C G™%(a?(I))
and k € R*, the answer is defined as A(Q, k) = minc {C'\
Q | C € MUGS(II(8, k)),C C QU G™(c?(I))} where
minc S denotes the inclusion-wise minimal set of elements
from S such that for every s € S there exists s' € minc S
such that s’ C s.

Next, we instantiate the policy distance function with two
specific distance functions. The first one focuses on the local
behavior of the policy and the second one on global behav-
ior.

3.2 Confidence Distance Function

Although we assume a deterministic state-dependent policy
¢, here we also assume that the policy is internally assigning
a numerical confidence value to each action in every state,
and we have access to these confidence values. Formally, we
assume we have a confidence function ¢* : S x A — [0, 1]
mapping each state and action to a value between zero and
one, and for every state s € S'itholdsthat ) _, ¢*(s,a) =
2aca(s) P*(s,a) = 1, ie., it returns zero for every inap-
plicable action and the sum of confidence over applicable
actions is always one in any given state. Moreover, we also
assume the confidence function ¢* relates to the policy ¢ so
that the policy ¢ deterministically selects the action with the
highest confidence, i.e., ¢(s) = argmax,¢ 4(5) ¢* (s, a) for
every s € S (ties can be broken in any way, but determinis-
tically).

Now we can define the confidence distance function as
the maximum difference between the policy’s confidence in
the action selected by the policy (i.e., the highest confidence
value) and the policy’s confidence in the action actually used
in the given plan.

Definition 3 (Confidence Distance Function). Given an
OSP task T and a policy ¢ for T with the confidence function
¢*, the confidence distance function ¢ for ¢ is defined as

dc(m) = selnax. }{¢*(8i—1, P(si-1)) — ¢"(si—1,0i)}

FRREE



for every plan m = {(ay, . .., ay) with its intermediate state

sequence (8o, 81, .. -, Sn)-

Clearly, the confidence distance function for ¢ is a policy
distance function for ¢ because its value for the plan induced
by the policy is zero. It is easy to see that meaningful radii
for the confidence distance function lie between zero and
one. Since we want to use this distance function in expla-
nations, it is important for us that the radius value has an
intuitive interpretation that users can understand and utilize.
The radius k for the confidence distance function expresses
that the system is allowed to consider only the plans contain-
ing actions that differ by at most & in terms of the policy’s
confidence in the action chosen by the policy.

In Figure 1 an example of the reachable states within
II(6¢,0.1) is given. The policy provides a plan that satis-
fies go and gs. If the user asks: “Can g; be satisfied with a
radius of 0.1?” the answer would be: “”’Yes, but you have to
give up gs to satisfy g;.” Here the policy is relatively con-
fident except for the alternative leading to {gi, g2}. If the
user would be willing to diverge further, there would open a
possibility to forgo g to satisfy g;.

O/ o/

{91, 92} {91,953} {9293} {93, 94}

Figure 1: Example action probability radius; G*° =
{91,92,93,94}; top: Initial state; bottom: goal states;
MUGS(M) = {{g91,92,93},{91,94}, {92, 94}}; red: ac-
tion selected by the policy ¢; number at actions: con-
fidence assigned by ¢*; bright red: my; blue: states
reachable within II(0¢,0.1); MUGS(II(6¢,0.1)) =

{91, 93} {91, 94}, {92, 94}}

Diverging based on the confidence of the policy makes
sense if a lack of confidence is reasonable with respect to
the task. For example in tasks with a lot of symmetries i.e.
tasks with many ways to achieve a goal. Furthermore, in
OSP tasks there are states in which one commits to a cer-
tain set of soft goals depending on the action. If all achiev-
able subsets have the same utility, it makes sense that this is
reflected in the confidence of the policy. However, depend-
ing on the strategy and the training data, the policy may not
include these decision points. Instead, the policy commits to
solving the task in a particular way for a particular set of soft

goals. In this case, it makes more sense to consider not the
confidence, but the absolute number of applied actions not
following the policy.

3.3 Diverging Actions Distance Function

For measuring the overall distance between a plan and the
policy from the “global” perspective, we propose to simply
count the number of actions that differ from what the policy
would choose.

Definition 4 (Diverging Actions Distance Function). Given
an OSP task T and a policy ¢ for T, the diverging actions
distance function 64 for ¢ is defined as

ou(m) = Z [p(si-1) = a]
i€{l,...,n}
for every plan m = (ay, ..., ay,) with its intermediate state
sequence (sq,S1,...,5n), where [p(s) = a] denotes the

characteristic function of equality predicate, i.e., [¢(s) = a]
is 1if ¢(s) = a and it is O otherwise.

Reasonable values of radius k for the diverging actions
distance are natural numbers. Setting & to zero only consid-
ers the single plan returned by the policy. Any k higher than
zero expresses that the system is allowed to consider plans
that differ in at most & actions from the policy.

An example for the reachable states within II(dy, 1) is
given in Figure 2. The policy again provides a plan that sat-
isfies go and g3, but if the user asks: “Can g; be satisfied with
aradius of 17” the answer is, “Yes, but you have to give up g
to satisfy ¢1”. This time the alternative to satisfy {g1, g3} is
within the radius, although the policy is less confident about
this path. However, you only have to diverge once while for
reaching {g1, g2} you have to diverge twice.

Diverging without considering the policy’s confidence
can be considered dangerous, because one might choose
very bad actions intentionally assigned very low confidence.
Also, because the training data is based on states sampled
from the policies ranking, following actions with low confi-
dence, can lead to parts of the state space not well covered
during training.

3.4 MUGS Computation for a given Radius

To compute MUGS(I1(4,k)) we adapt the algorithm to
compute MUGS(II) introduced by (Eifler et al. 2020b).
They perform an exhaustive state space exploration while
keeping track of the maximal solvable goal subsets (MSGS)
reachable. Those are then used to compute the MUGS. To
only explore the states reachable within radius & for a given
distance function § we use J as a pruning function.

Thereby we differentiate between local and global dis-
tance functions. For a local distance function, like do, it
is possible to decide whether applying action a state s ex-
ceeds the thresholds just based on a and s. Thus it can be
implemented as a state-dependent pruning function. For a
global distance function, like d, you also need the infor-
mation how s was reached, hence the implementation is a
path-dependent pruning function.

To decrease the search space size Eifler at al. (2020b)
use an underapproximation of the reachable soft goals to
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Figure 2: Example diverging action radius; G*f =
{91,92,93,94}; top: initial state; bottom: goal states;
MUGS(H) = {{91792793}7{91794}7{92794}}; red:
action selected by the policy ¢; number at actions:
confidence assigned by ¢*; bright red: my; blue: states
reachable within II(0x,1); MUGS(II(0x,1)) =
Ho1, 92}, {91, 94}, {92, 94} }

prune states from which no superset of any set of the current
MSGS is reachable. This approach is also applicable here
and can be used alongside the pruning based on the policy
distance function.

4 Action Policies for OSP

To the best of our knowledge, there is no published work
on training action policies for OSP. So, in order to be able
to evaluate our explanation framework, we decided to train
new action policies for OSP using Action Schema Networks
(ASNets) (Toyer et al. 2018, 2020). ASNets policies can
generalize over a domain by training on a subset of relatively
small tasks from the domain that can be solved quickly by
some reference solver. This solver, called trainer, is repeat-
edly called on different states during the training process and
the ASNets policy is trained by imitating the trainer. The de-
tails of the internal structure of ASNets or the training pro-
cedure are not important here (we refer interested readers
to the works of Toyer et al. (2018, 2020)), because the only
part that we changed in order to obtain some workable pol-
icy for our evaluation was that we used an OSP solver as a
trainer. Other than that we used the simplest configuration of
ASNets for deterministic policies (trained without a heuris-
tic function) referred to as “ASNets (no h.)” by Toyer et al.
(2020).

As the trainer, we used an optimal OSP planner (Eifler
et al. 2020b) which, for each state, finds a plan maximizing
the number of satisfied soft goals. We trained the policy on
three OSP domains with resource constraints: NoMystery,
TPP (Nakhost, Hoffmann, and Miiller 2012) and a version
of Blocksworld with two hands and limited resources for
using them. To measure the quality of the resulting policy

¢, we limit the policy execution to thousand steps, and, for
each task, we select the goal state s, reached by the policy
execution such that the number satisfied soft goals in s is
maximal among all reached goal states.

For each domain, Blocksworld, NoMystery, and TPP, we
obtained a policy that was able to reach a goal state with the
maximum possible number of satisfied soft goals in 30%,
10%, and 30% of tasks, respectively. Moreover, the policy
satisfied almost 80% of the maximum possible number of
satisfiable soft goals over all tasks in Blocksworld, 67% in
NoMystery, and 56% in TPP. We think that such quality of
OSP action policies is sufficient to conduct an experimental
evaluation of our explanation framework.

5 Evaluation of Action Policy Explanations

We implemented the MUGS computation for both distance
functions in Fast Downward (Helmert 2006) using a re-
implementation of ASNet in C as a library to evaluate the
policies. We are using the same benchmark set as for the
policy evaluation containing the domains: Blocksworld, No-
Mystery, and TPP. with no hard goals and 6 — 9, 4 — 9 and
4 — 6 soft goals respectively. The experiments are run on
a cluster of Intel Xeon CPU E5-2660 with 2.20GHz with a
memory limit of 4GB and a timeout of 30min.

Since ASNets provide very confident policies, where
choosing a reasonable radius & was not possible, the pre-
liminary results are limited to the diverging actions distance
function. The radius is scaled from £ = O up to k¥ = 10
diverging actions.

In Figure 3 the fraction of instances where the MUGS
could be be computed is depicted.

0.9
0.8 -
0.7

explored

> 0.6 -

% fully

0.5

0.4
0.3 B

radius (#diverging actions)

M Blocksworld B NoMystery B TPP

Figure 3: x-axis: radius % i.e maximal number of diverging
actions; y-axis: fraction of instances where the MUGS could
be computed; dashed pruning based on an underapproxima-
tion of reachable soft goals, solid without pruning.

For NoMystery and TPP using pruning based on an
underapproximation of reachable soft goals increased the
fraction of terminating instances on average by 20%, for
Blocksworld only by 10%. While for small distances, up to
3, it is feasible to explore all states within the radius, for
larger distances the policy evaluation is the bottleneck. For



a radius larger than 3 on average more than 90% of the run
time is used for the policy evaluation.

The number of states contained in each radius for the in-
stances commonly solved for all radius sizes is depicted in
Figure 4. In the beginning, the number of states increases ex-
ponentially. After radius size 4-6 depending on the domain
the increase levels off. However, for Blocksworld and No-
mystery, the search space size for k = oo is far from being
reached. This shows that for the policy a considerable part
of the search space is unpromising and can only be reached
by considerable deviations.

1065 é
5 sl A G
R B
g10f L %I L= ITI TI
o e
101%%% ]

o 1 2 3 4 5 6 7 8 9 10

radius (#diverging actions)

’I Blocksworld B NoMystery W TPP

Figure 4: x-axis: threshold k& i.e maximal number of di-
verging actions; y-axis: number of states reachable within
I1(6, k); horizontal lines: average number of states for k =
0.

The number and average size of MUGS depending on the
radius are depicted in Figure 5. For Blocksworld the number
of MUGS and their size increases up to radius 3 and then the
number decreases again. This nicely shows that with a larger
radius, more trade-off options involving more soft goals are
available. For even larger radii more soft goals are reach-
able decreasing the number of MUGS again. For NoMystery
there is a similar picture with a less prominent decrease in
the number of MUGS. For TPP the number of MUGS only
increases. This is because the MUGS are linked to which
buying order of goods are possible. There is an example in
the case study in the next section which illustrates this be-
havior.

5.1 Case Study

In the following, we take a closer look at one example from
each domain.

Blocksworld In Blocksworld one has to move blocks from
an initial to a goal configuration. Here we are using a ver-
sion with two hands where each action costs 1 energy unit.
Each hand starts with 6 units of energy. The initial and goal
configuration are given in Figure 6. The policy first puts all
blocks on the table. Then it decides to pick up block 5 to
satisfy the soft goal on(5,3). Within a distance of size 1
there are two alternative soft goals on(3,2) and on(0,5)
reachable, depending on which block is picked up next.

#MUGS

radius (#diverging actions)

x % x x x ~

x x X x —

avg MUGS size
w
T

0 1 2 3 4 5 6

radius (#diverging actions)

’I Blocksworld W NoMystery B TPP

Figure 5: x-axis: threshold & i.e maximal number of diverg-
ing actions; y-axis: top number and bottom average size of
MUGS.

This leads to : MUGS(I1(d4,1)) = {{on(0,5),0n(3,2)},
{on(0,5),0n(5,3)}, {on(3,2),0n(5,3)}}. So the answer
to the question “Can I also stack block 0 onto block 5?” is
“Within a distance of 1 from the policy you have to forgo
on(5, 3) if you want on(0,5).”

(0]
’J_‘ N Y alternative 1
@5
f o BRI o Nl
— St
initial N, policy soft goals
sl:((g
e [0]
nlaljols
alternative 2

Figure 6: Blocksworld example: Policy execution and possi-
ble diverging actions.

NoMystery In NoMystery you have to deliver packages
by transporting them with trucks between locations. Here
we have two trucks each with 6 units of fuel. The road map
is given in Figure 7. The policy provides the plan given in
Figure 8 on the left, delivering packages P, and Ps.

Now if the user asks “Can I deliver package P, if I
diverge once from the policy?” Unfortunately, the answer



T, P

Figure 7: Road map of NoMystery example: initial locations
of packages and trucks in red; goal location in green; num-
bers at edges represent the fuel consumption.

lOCld(Pl,Tl,Ll)
dTiU@(Tl, Ll, LQ, 6 — 4)
drive(Ty, Lo, Ly, 4 — 1)
lOCld(Pg,To,Lg,)
dT’iU@(Tg, Lg, Lg, 6 — 4)
)
)

d?’il,‘(i(Tg. Lg, L5, 6 — 2)
load(Py, Ty, Ls)
lO(ld(Pg, To, Lg,)
dTiU@(To, L5, Lo, 2 — O)
load(Pl, Tl, Ll)
'lLTllO(l(l(P2, :[b, L())
drive(Tl, Ly, Ly,6 — 3)
lOQd(PQ, Tl, Lo)
unload(Py,T1, Lo)
drive(Tl, Lo, L1,2 — O)
unload(Py,T1, L1)

unload(Ps, Ty, L)
drive(Ty, Lo, L1,4 — 2
dTiUe(To, Ll, LQ, 2—0
unload(Py, Ty, Lo)

Figure 8: NoMystery Example plans: left: plan provided by
the policy; right: plan with 3 diverging actions (red) to de-
liver P, instead of Ps.

is “No”. You have to diverge at least 3 times to allow
for P» to be delivered. Then you have to forgo P;, based
on MUGS(II(64,1)) = {{at(Po,Ls),at(Ps,L1)},
{at(Po, L4), at(P37 Lg)}, {at(Pg, Ll), at(P37 Lg)}} The
corresponding plan is depicted in Figure 8 on the right.
To deliver P, the trucks have to work together. This does
not seem to be represented by the policy, hence the large
distance.

TPP In TPP you have to buy goods at a market and then
use trucks to transport the goods to the depot. Here we have
2 trucks and 4 goods and the map depicted in Figure 9. Buy-
ing goods and driving consumes the same resource, initially
at 6 for both trucks. The plan the policy provides, given in
Figure 10 on the left, delivers goods G; and G5 to the depot.

Gy:1

Gy : ¢
Gy

Gs:1

G
Gy :

Figure 9: Road map of TPP example: each market is labeled
with the available goods and their price; numbers at edges
represent the fuel consumption.

For a distance of 1, we get MUGS(II(dx,1)) =
{{stored(Gy), stored(Gs)}, {stored(G1), stored(Gs)},
{stored(G3), stored(Gs)}}. So the question “Why is the

buy(T07G37M276 —2
buy(Tl,Gg,M4,6 — 5
(
(

) buy(Ty, G, M4, 6 — 5)

)
TlaGl7M2a5 — 4)

)

)

buy(To, G2, My,6 — 3)
buy(To, Go, My,3 — 0)
drive(Ty, D, M3,5 — 4)
dm’ve(Tl, MQ, M(], 4 — 2)
load(Gg, Tl; Mo)
lOCLd(GO, Tl, Mo)
drive(Ty, My, D,2 — 0)
unload(G2, Ty, D)
unload(Go, T1, D)

buy Tl, G37 M1,4 — 3
buy(Th G27 J\l()7 3—0
drive(To, D, M2,2 — 1)
lO(ld(Gg, To, MQ)
load(Gh To, Mg)
drive(To, M2, D,1 — 0)
unload(Gs, Ty, D)
unload(G1, Ty, D)

Figure 10: TPP Example plans: left: plan provided by the
policy; right: plan with 1 diverging action (red) to store G
(and G) instead of G and G5.

good G2 not stored?” is answered with ‘“Because then
you have to forgo GG; and G3”. The plan for G, is given
in Figure 10 on the right. Here you only need to diverge
once, because after buying G2 the policy adds the only
other possible good GG and then delivers both to the depot,
without needing to diverge further.

6 Conclusion & Future Work

We presented explanations for the question “Why is the goal
g not met by policy ¢?” by pointing to the trade-offs that
must be made if one is not to deviate further than a certain
distance from ¢. We introduced two distance measures
based on a threshold on the confidence of the policy and the
number of diverging actions. Our preliminary results show
that the computation is feasible for small distances. The
case study shows that the resulting explanations can give
interesting insights into the policy’s behavior.

To further evaluate our explanations we want to address
different types of action policies next considering the frame-
work of (Stahlberg, Bonet, and Geffner 2022b). They pro-
vide policies where the confidence distance function is ap-
plicable.

Currently, the underapproximation of reachable soft goals
in the state space exploration is only based on the model.
It does not incorporate reachability within the policy. How-
ever, precisely such approximations can be obtained by link-
ing to policy verification (Vinzent and Hoffmann 2022), an-
alyzing the reachability of goal conditions. We will explore
policy abstractions accounting for the radius to be used as a
pruning function.

So far we are only computing the MUGS for one given
distance function 6 and threshold k. However, a natural
next question would be "How much do you have to diverge
from policy ¢ for a specific MUGS C' to disappear?”. To
answer this questions the minimal threshold k,,;, where
C ¢ MUGS(Ilj544,,,, ), needs to be computed. The trivial
approach is to iteratively increase k and to use the algorithm
introduced in Section 3.4 to compute the MUGS. This has
the overhead of generating the same search space multiple
times. Instead iteratively increasing one search space based



on increasing radius and tracking the MUGS until C' disap-
pears would be more efficient.

Once the MUGS for a given policy are identified and the
user’s preferences over the soft goals became clearer, re-
training of the policy might be necessary to reflect those
preferences. In this case, the data computed for the expla-
nations could be used to guide the retraining.

Finally, to determine how useful the introduced policy ex-
planations are, we plan to conduct a user study.
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