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Abstract

Transformers are widely used as generic backbones in computer vision, de-
spite initially introduced for natural language processing. Recently, the
Long Short-Term Memory (LSTM) has been extended to a scalable and
performant architecture – the xLSTM – which overcomes long-standing
LSTM limitations via exponential gating and parallelizable matrix mem-
ory structure. In this paper, we introduce Vision-LSTM (ViL), an adaption
of the xLSTM building blocks to computer vision. ViL comprises a stack
of xLSTM blocks where odd blocks process the sequence of patch tokens
from top to bottom while even blocks go from bottom to top.

ViL achieves strong performances on classification, transfer learning and
segmentation tasks as well as a beneficial pre-training cost-to-performance
trade-off. Experiments show that ViL holds promise to be further deployed
as new generic backbone for computer vision architectures.
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Figure 1: The efficient and scalable design of Vision-LSTM shows strong performances, uses
less FLOPS than Transformer/Mamba counterparts and scales linear to higher resolutions.
Performance is averaged over ImageNet accuracy, ADE20K mIoU and VTAB-1K accuracy.

1 Introduction

Language modeling architectures — such as Transformers (Vaswani et al., 2017; Achiam
et al., 2023; Team et al., 2023) or more recently State Space Models (Gu et al., 2021; Gupta
et al., 2022) such as Mamba (Gu & Dao, 2023) — are commonly adapted to the domain of
computer vision to make use of their powerful modeling capabilities. However, in natural
language processing, an input sentence is typically encoded into tokens that represent words
or common subwords (Bostrom & Durrett, 2020) via a discrete vocabulary. To encode images
into a set of tokens, Vision Transformer (Dosovitskiy et al., 2021) (ViT) proposed to group
an input image into non-overlapping patches (of e.g. 16x16 pixel), linearly project them into
a sequence of so-called patch tokens and add positional information to these tokens. This
sequence can then be processed by language modeling architectures.
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Figure 2: Schematic overview of Vision-LSTM (ViL). Following ViT (Dosovitskiy et al.,
2021), an input image is split into patches and linearly projected. Then, a learnable vector
is added per position to the patches, producing a sequence of patch tokens. This sequence
is then processed by alternating mLSTM blocks where even blocks flip the sequence before
and after the mLSTM layer. For classification, ViL uses the concatenation of the first and
the last patch as input to a linear classification head. ViL is an isotropic architecture, i.e.,
all blocks have the same input and output dimension and no downsampling layers are used
except the initial patch embedding. Projection layers process each patch individually and
the mLSTM exchanges information between patches.

The Extended Long Short-Term Memory (xLSTM) family (Beck et al., 2024) was recently
introduced as a new architecture for language modeling. It demonstrates the resurgence of
LSTM in the LLM era, performing favorably against the likes of Transformers and State
Space Models (SSMs). Analogous to existing vision versions of Transformers or State Space
Models, e.g., ViT (Dosovitskiy et al., 2021) or Vision Mamba (Zhu et al., 2024), which
have produced great results in various computer vision tasks (Singh et al., 2023; Kirillov
et al., 2023; Oquab et al., 2023; Peebles & Xie, 2023; Alkin et al., 2024b), we introduce
Vision LSTM (ViL) – a generic computer vision backbone that uses xLSTM blocks as its
core components. To adjust xLSTM (an autoregressive model) to computer vision (an
often non-autoregressive domain), we employ a stack of alternating mLSTM blocks (Beck
et al., 2024) where odd blocks process patches row-wise from top left to bottom right and
even blocks go from bottom right to top left. This simple alternating design allows ViL
to efficiently process non-sequential inputs, such as images, without introducing additional
computations.

Similar to vision adaptions of SSMs (Liu et al., 2024; Zhu et al., 2024; Wang et al., 2024),
ViL can exhibit linear computational and memory complexity w.r.t. sequence length which
makes it appealing for tasks that benefit from high-resolution images such as medical imag-
ing (Chen et al., 2021; Hatamizadeh et al., 2022; Valanarasu et al., 2021; Xu et al., 2024),
segmentation (Kirillov et al., 2023; Cheng et al., 2022), or physics simulations (Bi et al.,
2023; Nguyen et al., 2023; Bodnar et al., 2024; Alkin et al., 2024a). In contrast, ViT’s com-
putational complexity scales quadratically due to the self-attention mechanism, rendering
them costly to apply to high-resolution tasks.

Our contributions summarize as follows:

• We introduce Vision-LSTM (ViL), an adaption of the mLSTM to computer vision
tasks that can serve as a generic vision backbone with linear complexity.

• We show modeling capacity and generalization in the common vision benchmark of
pre-training models on ImageNet-1K, followed by fine-tuning on transfer classifica-
tion and semantic segmentation tasks.

• We ablate various architectural design choices to evaluate their impact on perfor-
mance and provide insights into the model design.

• We discuss potential future directions and current limitations that, once addressed,
will improve ViL even further.
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2 Method

Vision-LSTM (ViL) introduces xLSTM (Beck et al., 2024) to computer vision, similar to
other vision adaptions of sequence modeling architectures, e.g., Vision Transformers (Doso-
vitskiy et al., 2021), Vision Mamba (Zhu et al., 2024), or Vision RWKV (Duan et al., 2024).

2.1 Preliminaries

In the notation of sequence modeling, we consider a series of input vectors xt ∈ RD. This
series is created by reshaping an image X̃ ∈ RHI×WI×Cin into a sequence of flattened 2D
patches X̄ ∈ RT×(HP ·WP ·Cin) and then projected to X ∈ RT×D via a shared linear projec-
tion. D is the hidden dimension, (HI ,WI) is the image resolution, Cin is the number of
image channels, T is the number of patches and (HP ,WP ) is the patch size. After creating a
sequence of patches, ViL iteratively refines the features of the patch sequence by processing
it with a stack of mLSTM blocks where the sequence is flipped within every second block.

The key innovations of the mLSTM (Beck et al., 2024) are the enhanced storage capacity
compared to the classical LSTM (Hochreiter & Schmidhuber, 1997) by using a matrix mem-
ory cell C ∈ Rd×d instead of a scalar memory cell c ∈ R and introducing exponential gates
(instead of sigmoid gates) to the input and forget gates, where d is the hidden dimension
within the mLSTM block (typically d = 2D).

Intuitively, the mLSTM is a more expressive and faster version of the classical LSTM that
can be efficiently parallelized on modern hardware. In ViL, the mLSTM is used to process
dependencies between patches, similar to how the attention exchanges information between
patches in a ViT. The mLSTM is embedded into a gated MLP architecture, as shown on
the right of Figure 2, where the weight matrices of the MLP process each patch individually
and the mLSTM exchanges information between patches. For completeness, we outline the
forward pass of the mLSTM in the following paragraphs.

The mLSTM (Beck et al., 2024) is a recurrent neural network, which maps a state
(ht−1,Ct−1,nt−1) to a successor state (ht,Ct,nt) given input xt−1. Thereby, ht ∈ Rd

denotes the hidden state, Ct ∈ Rd×d is the cell state and nt ∈ Rd corresponds to a normal-
izer state. The full forward pass of the mLSTM is as follows (Beck et al., 2024):

Ct = ft Ct−1 + it vt k
⊤
t cell state (1)

nt = ft nt−1 + it kt normalizer state (2)

ht = ot ⊙ h̃t h̃t = Ctqt / max
{
|n⊤

t qt|, 1
}

hidden state (3)

qt = Wq xt + bq query input (4)

kt =
1√
d
Wk xt + bk key input (5)

vt = Wv xt + bv value input (6)

it = exp
(̃
it
)

ĩt = w⊤
i xt + bi input gate (7)

ft = exp
(
f̃t
)

f̃t = w⊤
f xt + bf forget gate (8)

ot = σ
(
f̃ot

)
õt = Wo xt + bo output gate (9)

As exponential activation functions can lead to large activations, the input and forget gates
are stabilized with an additional state mt:

mt = max
(

log(ft) + mt−1, log(ft)
)

stabilizer state (10)

i′t = exp
(

log(it) −mt

)
= exp

(
ĩ−mt

)
stabilized input gate (11)

f ′
t = exp

(
log(ft) + mt−1 −mt

)
stabilized forget gate (12)
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As the mLSTM has no memory mixing, i.e, interactions between hidden states from one
timestep to the next, it can be fully parallelized for fast computation on modern hardware.
For a detailed discussion and theory of the cell state update, further details to the mLSTM
we refer to the original work (Beck et al., 2024).

2.2 Vision-LSTM (ViL)

Vision-LSTM (ViL) is a generic backbone for computer vision tasks, which is residually built
from mLSTM blocks, as visualized in Figure 2. Following ViT (Dosovitskiy et al., 2021),
ViL first splits an image into non-overlapping patches via a shared linear projection, then
adds learnable positional embeddings to each patch token. At the core of ViL are alternating
mLSTM blocks, which are fully parallelizable and equipped with a matrix memory combined
with a covariance update rule. Odd mLSTM blocks process patch tokens from top left to
bottom right while even blocks go from bottom right to top left.

Formally, the forward pass of a pair of ViL blocks is:

Y ′ = X + Blockθ(X) (13)

Y = Y ′ + Flip(Blockϕ(Flip(Y ′))) (14)

Where “Flip” reverses the sequence and “Blockθ” and “Blockϕ” corresponds to mLSTM
blocks with parameters θ and ϕ (shown in Figure 2, right).

A key motivation of ViL is that the autoregressive mLSTM can operate in a recurrent,
parallel or chunkwise mode, each with distinct FLOPS and runtime characteristics. Given a
sequence length T and hidden dimension d, the complexity of the recurrent mode is O(Td2)
and needs to be processed sequentially, whereas the parallel mode has complexity O(T 2d)
and is fully parallelizable. The chunkwise mode combines the advantages of the other
modes by introducing a chunksize S where the parallel mode is used within chunks and
the recurrent mode between chunks. This allows high parallelization, minimal operations
and linear scaling with T . Complexity wise, the chunkwise mode has O(T

SS
2d + T

S d
2) or

O(TSd + T
S d

2) where T
S corresponds to the number of chunks.

3 Experiments
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Figure 3: Performance overview of ImageNet-1K pre-trained models in relation to pre-
training compute. ViL shows strong performances across classification (ImageNet-1K), se-
mantic segmentation (ADE20K) and transfer classification (VTAB-1K) tasks.

We pre-train models on ImageNet-1K (Deng et al., 2009), which contains 1.3M training
images and 50K validation images where each image belongs to one of 1000 classes. ViL
models are trained for 800 epochs (tiny) or 400 epochs (small, base) on 192x192 resolution
with a learning rate of 1e-3 using a cosine decay schedule. Afterwards, the model is fine-tuned
on 224x224 resolution for 20 epochs using a learning rate of 1e-5. Detailed hyperparameters
can be found in Appendix Table 10.

We then transfer the pre-trained models to serveral benchmark tasks: ImageNet-1K clas-
sification on the validation set, ADE20K (Zhou et al., 2019) semantic segmentation and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: ImageNet-1K pre-training accuracy. All models use a patch size of 16x16 with
224x224 resolution at most. Models with “+” in their “Epochs” column pre-train on lower
resolution followed by fine-tuning on 224x224 resolution for some epochs. ViL performs
favorably against an isotropic convolutional architecture (ConvNeXt) and vision adaptions
of transformers (DeiT series), RWKV (VRWKV) and Mamba (Vim, Mamba®). Appendix
Table 9 confirms these results on OOD and robustness evaluations of these classifiers.

Model Epochs #Params FLOPS IN-1K
DeiT-T (Touvron et al., 2021a) 300 6M 1.3G 72.2
DeiT-II-T (Touvron et al., 2022a) 400 6M 1.3G 73.5
DeiT-III-T (reimpl.) 800+20 6M 1.3G 76.2
VRWKV-T (Duan et al., 2024) 300 6M 1.2G 75.1
Vim-T (Zhu et al., 2024) 300 7M 1.5G 76.1

Mamba®-T (Wang et al., 2024) 280+20 9M 1.6G 77.4
ViL-T 800+20 6M 1.3G 78.3
DeiT-S (Touvron et al., 2021a) 300 22M 4.6G 79.8
DeiT-II-S (Touvron et al., 2022a) 400 22M 4.6G 80.7
DeiT-III-S (Touvron et al., 2022b) 800+20 22M 4.6G 81.4
ConvNeXt-S (iso.) (Liu et al., 2022) 300 22M 4.3G 79.7
VRWKV-S (Duan et al., 2024) 300 24M 4.6G 80.1
Vim-S (Zhu et al., 2024) 300 26M 5.3G 80.5

Mamba®-S (Wang et al., 2024) 280+20 28M 5.5G 81.1
ViL-S 400+20 23M 4.7G 81.5
DeiT-B (Touvron et al., 2021a) 300 86M 17.6G 81.8
DeiT-II-B (Touvron et al., 2022a) 400 86M 17.6G 82.7
DeiT-III-B (Touvron et al., 2022b) 800+20 86M 17.6G 83.7
ConvNeXt-B (iso.) (Liu et al., 2022) 300 87M 16.9G 82.0
VRWKV-B (Duan et al., 2024) 300 94M 18.2G 82.0

Mamba®-B (Wang et al., 2024) 280+20 99M 20.6G 82.9
ViL-B 400+5 89M 17.9G 82.4

VTAB-1K (Zhai et al., 2019) classification. These benchmarks evaluate global image under-
standing (ImageNet-1K), semantic local and global understanding (ADE20K) and few-shot
generalization to a diverse set of 19 VTAB-1K classification datasets, which include natu-
ral images, specialized imagery (medical and satellite) and structured tasks (camera angle
prediction, depth estimation, object counting, . . . ).

Figure 3 shows an overview of performance metrics in relation to total pre-training compute
where ViL performs favorably against heavily optimized transformer protocols (DeiT, DeiT-
III) and Vision Mamba (Vim). Detailed results are presented in the following sections.

As ViTs are well established in the vision community, they underwent multiple optimization
cycles over the years (Dosovitskiy et al., 2021; Touvron et al., 2021a; 2022a; 2021b; 2022b).
Therefore, a vast part of the hyperparameter space for pre-training ViTs has been explored.
Since this work is the first to apply xLSTM to computer vision, considerably less effort has
been put into hyperparameter tuning and architecture optimization, suggesting that future
work could improve ViL even further.

3.1 ImageNet-1K Classification

Table 1 relates parameter counts and FLOPS to validation accuracy after pre-training on
ImageNet-1K. ViL outperforms heavily optimized ViT protocols and other backbones on
the tiny and small scale. While ViL does not outperform all other models on the base scale,
evaluations on downstream tasks (as shown later in Table 2 and Table 3) show that ViL-B
still learns strong features, particularly for semantic segmentation and structured tasks.

3.2 ADE20K Semantic Segmentation

Table 2 shows results for transferring ImageNet-1K pre-trained models to ADE20K (Zhou
et al., 2019) semantic segmentation using UperNet (Xiao et al., 2018). Also here, ViL shows
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strong performances across the board, even outperforming DeiT-III-B despite the lower
ImageNet-1K accuracy of ViL-B. The high resolution of the ADE20K segmentation task
(512x512) results in a total of 1024 patch tokens where the quadratic complexity of self-
attention is significantly more expensive than the linear complexity of the mLSTM, resulting
in much fewer FLOPS for ViL. Additionally, the efficient alternating block design results in
lower FLOPS than Mamba-based vision models (which also have linear complexity).

Table 2: Semantic segmentation results on ADE20K (Zhou et al., 2019) using UperNet (Xiao
et al., 2018). We report mean intersection over union (mIoU) and pixelwise accuracy (ACC)
for single- and multi-scale evaluation. Models are trained for 160K updates with a batchsize
of 16 on 512x512 resolution. We use a feature pyramid consisting of rescaled feature maps
after the 4th, 6th, 8th and final block. Detailed hyperparameters are listed in Appendix
Table 12. FLOPS are calculated only from the backbone at 512x512 resolution as all models
use the same segmentation head.

Single-scale Multi-scale

Model #Params FLOPS mIoU ACC mIoU ACC
DeiT-T 10M 10.4G 38.1 78.2 40.3 79.9
DeiT-III-T 10M 10.4G 39.8 79.2 42.2 80.7
Vim-T 13M 7.7G 41.0 - - -
ViL-T 11M 6.6G 41.2 80.2 43.1 81.3
DeiT-S 41M 31.7G 43.1 80.7 45.2 81.8
DeiT-III-S 41M 31.7G 45.2 81.5 46.3 82.3
Vim-S 46M 27.3G 44.9 - - -

Mamba®-S 56M 27.6G 45.3 - - -
ViL-S 42M 24.4G 46.3 82.0 47.9 82.9
DeiT-B 113M 107.0G 45.8 82.1 47.0 82.9
DeiT-III-B 113M 107.0G 47.5 82.6 49.0 83.3

Mamba®-B 132M 102.8G 47.7 - - -
ViL-B 115M 93.6G 48.6 82.8 49.6 83.3

3.3 VTAB-1K Transfer Classification

Table 3: Transfer classification accuracies on the VTAB-1K (Zhai et al., 2019) benchmark
using ImageNet-1K pre-trained models. VTAB-1K consists of 19 datasets split into 7 natu-
ral, 4 specialized and 8 structured datasets. We show averages per category and the average
accuracy over all 19 datasets (Appendix Table 8 lists all individual accuracies). ViL shows
strong generalization performance, outperforming heavily optimized ViT protocols and Vim
on the full VTAB-1K benchmark. ViL performs exceptionally well on the structured cate-
gory. We tune the learning rate for each model and dataset on the validation set and report
the average testset accuracy over 5 seeds. Appendix Table 11 lists further hyperparameters.

Model #Params FLOPS Natural Specialized Structured Average
DeiT-T 6M 1.3G 69.2 82.0 53.3 65.2
DeiT-III-T 6M 1.3G 71.9 82.6 55.2 67.1
Vim-T 7M 1.5G 68.0 80.7 47.1 61.9
ViL-T 6M 1.3G 73.6 83.4 56.1 68.3
DeiT-S 22M 4.6G 73.3 83.8 53.2 67.1
DeiT-III-S 22M 4.6G 75.0 83.2 52.3 67.2
Vim-S 26M 5.3G 69.6 81.7 49.4 63.6
ViL-S 23M 4.7G 75.3 84.3 58.3 70.0
DeiT-B 86M 17.6G 76.5 85.2 55.7 69.6
DeiT-III-B 86M 17.6G 77.6 84.8 56.6 70.3
ViL-B 89M 17.9G 76.6 84.7 59.1 70.9

Table 3 shows transfer classification results for ImageNet-1K pre-trained models on the
VTAB-1K (Zhai et al., 2019) benchmark. VTAB-1K consists of 19 datasets split into 7
natural datasets (such as CIFAR100 (Krizhevsky, 2009) or Caltech101 (Fei-Fei et al., 2006)),
4 specialized datasets (medical imaging (Veeling et al., 2018; Kaggle & EyePacs, 2015) and
remote sensing (Helber et al., 2019; Cheng et al., 2017)) and 8 structured datasets (with
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tasks such as object counting (Johnson et al., 2017) or binned depth estimation (Geiger et al.,
2013)). We follow common practices and tune the learning rate per model and dataset on
the validation set followed by training with the best learning rate on the union of train
and validation set. The performance metric is the average testset accuracy over 5 seeds.
ViL shows strong transfer classification performance outperforming all other models on the
average over all 19 datasets. ViL performs particularly well on the structured datasets where
ViL-B outperforms DeiT-III-B despite ViL-B having lower ImageNet-1K accuracy.

4 Ablation Studies

We ablate various design choices of ViL by training ViL-T models for 100 epochs on
ImageNet-1K in 224x224 resolution, other hyperparameters follow the ones from Section 3
(see also Appendix B.3). We then report the validation accuracy on ImageNet-1K and fine-
tune the model on ADE20K to ensure that design choices are not overfitted to classification.
We also use a reduced segmentation pipeline where we use a linear segmentation head and
train for 40K updates using a batch size of 16 (other hyperparameters follow Appendix 12).

4.1 Architectural Design

We consider various architecture design choices in Table 4.

Table 4: Architecture design ablation studies. Default settings

(a) Traversal Directions

Directions IN1K ADE20K
Uni-dir. 72.2 28.6
Bi-dir. 73.7 31.7
Quad-dir. 73.8 33.1
Oct-dir. 73.5 32.4

(b) QK Convolution

Convolution IN1K ADE20K
None 72.3 29.2
Causal-Conv1D 72.8 27.8
Conv1D 72.8 28.4
Conv2D 73.7 31.7

(c) Positional Embedding

Pos. Embed. IN1K ADE20K
✗ 73.7 31.0
✓ 73.7 31.7

(d) Concurrency

Concurrency IN1K ADE20K
Sequential 73.7 31.7
Parallel 73.0 30.6

Figure 4: Uni-directional , bi-directional , quad-directional and oct-directional traversal

paths. Squares represent individual patch tokens. Traversal starts at the circle and goes in
direction of the arrow, if no further patches are in a row/column, the traversal continues in
the next row/column as indicated by the dashed line.

(a) Traversal Directions Traversing the sequence in at least two directions greatly im-
proves performance due to the non-causal 2D structure of images. Adding column-wise

7
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traversal directions (Quad-dir.) could even further improve semantic segmentation perfor-
mance. Additionally using 4 instead of 2 starting positions (Oct-dir.) shows no benefit.
Note that all variants have the same amount of FLOPS due to sequential application of
different directions. Directions are visualized in 4.

We use “Bi-dir.” for our final models due to current technical limitations which would
slow down training on more than 2 directions. This limitation comes from the current
lack of optimized hardware implementations of the mLSTM (e.g., CUDA kernels) where we
instead rely on torch.compile, a generic speed optimization method from PyTorch (Paszke
et al., 2019), to optimize computations. Our implementation of quad- and oct-directional
traversals is not compatible with torch.compile, which results in approximately double
the runtime. We therefore train all models from Section 3 with “Bi-dir.” only. Note that
this is only a technical limitation, not a methodical one and the ablation study suggest that
future ViL models could be even better using a quad-directional design.

(b) QK Convolution The mLSTM block design uses a causal 1D convolution to ag-
gregate local context to improve storage/retrieval to/from the cell state C. This is done
by applying a convolution layer to X before projecting it to Q with Wq and K with Wk

respectively. The convolution is shared for Q and K. The causal 1D structure of the con-
volution from the original mLSTM (Beck et al., 2024) is necessary due to the causal 1D
structure of language modeling. However, as images are neither causal nor 1D structures,
we replace the causal 1D convolution with a 2D convolution (with kernel size 3). This allows
the mLSTM to make better storage/retrieval decisions through the added local context.

(c) Positional Embedding ViTs require positional embedding to tell the model where
each patch is located in the image, suffering heavy performance losses if the position is
not required (Dosovitskiy et al., 2021; Chu et al., 2023). The mLSTM is an autoregressive
model, which makes it optional to add positional embeddings as it can recognize the position
of the current patch based on how many patches have been processed. However, the ablation
shows that it is nevertheless beneficial to provide this information explicitly as it improves
segmentation results without hurting classification performance.

(d) Sequential vs. Parallel Related architectures use a parallel design where a sequence
is processed from multiple directions in a single block (Zhu et al., 2024; Duan et al., 2024).
We investigate a similar design where we apply both directions in parallel instead of sequen-
tially. To keep parameters and FLOPS constant, we apply the directions akin to parallel
transformer blocks (Wang, 2021) while halving the depth.

Y = X + Blockθ(X) + Flip(Blockϕ(Flip(X))) (15)

4.2 Classification Design

In order to perform classification from a sequence of tokens, it is common to aggregate
information from the whole sequence, which is then used as input to a classification head.
The most common methods to do this aggregation are (i) adding a learnable [CLS] token
to the input sequence or (ii) averaging all patch tokens to produce an [AVG] token. In
ViTs, whether to use the [CLS] or [AVG] token is typically a hyperparameter, where both
variants achieve comparable performances. On the contrary, other sequence models models
often require specialized classification designs. For example, Vim (Zhu et al., 2024) requires
the [CLS] token to be in the middle of the sequence, suffering heavy performance losses if
other classification designs, e.g., an [AVG] token or two [CLS] tokens at start and end of
the sequence, are employed.

We explore different classification designs for ViL in Table 5. (a) We choose concatenating
the first and last patch as aggregation method due to its strong classification performance.
As our final models also perform well in semantic segmentation (see Table 2), we do not
retrain models with [AVG] aggregation even though the ablation suggests that this could
boost performance even further for segmentation tasks. (b) Adding learnable [CLS] tokens
show no benefit. Therefore, we do not use any [CLS] tokens for ViL.
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Table 5: Classification design. (a) ViL aggregates classification information well in the
first and the last patches (bilateral), leading to good classification performance if the first
and last patches are averaged or concatenated. Averaging all patches ([AVG]) or the 4
center patches (Center [AVG]) results in strong segmentation performances but lackluster
classification performances. (b) Adding learnable [CLS] tokens to the start and end of the
input sequence (Bilateral [CLS]) offers no benefit over simply using the first and the last
patch. Incorporating a [CLS] token in the middle of the sequence, akin to Vim (Zhu et al.,

2024), does not improve performance. Default settings

(a) Patch-based Aggregation

Aggregation IN1K ADE20K
Bilateral Mean 73.0 31.5
Bilateral Concat 73.7 31.7
[AVG] 72.6 32.8
Center [AVG] 72.4 32.1

(b) [CLS]-based Aggregation

Aggregation IN1K
Concat Bilateral Patches 73.7
Mid [CLS] 71.8
Bilateral [CLS] 73.5
Mid + Bilateral [CLS] 73.0

5 Limitations and Future Work

The biggest limitation of ViL is the current lack of an optimized hardware implementation
of the mLSTM, which results in longer runtimes than ViTs, which have multiple optimized
hardware implementations (Dao et al., 2022; Dao, 2023). This makes a runtime/throughput
analysis of models, a vital metric to judge practicability, difficult as the practical relevance
of inefficient implementations is quite low. As a proxy, we report FLOP counts, where ViL
is comparable to ViT on low-resolution tasks and far better than ViT on high-resolution
tasks due to its linear complexity. While FLOPS are far from an optimal proxy for run-
time/throughput, they suggest that ViL can be much faster than ViT on high-resolution
tasks once an optimized hardware implementation exists. Note that ViL is already faster
than Vim (see Appendix A.1) despite its optimized hardware implementation.

This limitation snowballs in multiple other directions. For example, scaling model size
further, tuning hyperparameters, training on larger datasets, exploring self-supervised pre-
training or investigating hierarchical architectures are all interesting avenues for future work
that are currently quite costly due to the lack of an optimized hardware implementation.

Please note that this is merely a technical limitation, not a methodical one as the mLSTM
is heavily parallelizable. However, implementing fast compute kernels in CUDA (NVIDIA
et al., 2020) or Triton (Tillet et al., 2019) is highly non-trivial as it requires expert hardware
architecture knowledge, advanced implementation skills and potentially multiple develop-
ment cycles to iron out numerical inaccuracies or instabilities.

However, the results of recent linear attention mechanisms show impressive FLOPS utiliza-
tion (e.g., Yang et al. (2024)). As the mLSTM can be parallelized with similar techniques
it is only a matter of time that the mLSTM achieves a similar FLOPS utilization, which
will make the mLSTM faster than transformers once an efficient hardware implementation
is available.

Additionally, we made a significant effort to make our architecture as efficient as possible,
using the tools that are currently available to us. Notably, our architecture is already much
faster (up to 70%) than Vim (Zhu et al., 2024) despite Vim using a custom CUDA kernel,
as shown in Appendix A.1. For reference, in language modeling, Mamba is roughly on-par
with transformers in terms of speed and 4x faster than than the xLSTM (as mentioned in
Beck et al. (2024)), again, due to the current lack of efficient hardware implementation of
the mLSTM. These considerations further underline the potential of our simple and efficient
design for vision applications.
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6 Related Work

Generic Vision Backbones. The inductive bias of CNNs (Fukushima, 1980; Le-
Cun et al., 1998) has demonstrated ground-breaking advancements in computer vi-
sion (Krizhevsky et al., 2012) in the early deep learning days. Features of CNNs have
been found to learn generic visual features that can be used for a variety of tasks (Donahue
et al., 2014). Subsequently, countless works improved various aspects such as architec-
tures (Szegedy et al., 2015; He et al., 2016; Huang et al., 2017; Tan & Le, 2019; Liu et al.,
2022) or pre-training strategy (Doersch et al., 2015; Noroozi & Favaro, 2016; Zhang et al.,
2016; Gidaris et al., 2018; Chen et al., 2020b; Grill et al., 2020).

Sequence Models in Vision. The introduction of transformers (Vaswani et al., 2017)
demonstrated exceptional scalability in language processing, which motivated the vision
community to explore transformers also in computer vision (Chen et al., 2020a; Cordonnier
et al., 2020) but was applied on pixels or small patches which inhibited large costs due to the
quadratic complexity of self-attention. This restriction was alleviated by the seminal work
Vision Transformers (ViTs) (Dosovitskiy et al., 2021) by using larger patches to aggregate
local information and reduce training costs. Similar to CNNs, lots of work improved on
the ViT architecture by refining training procedures (Touvron et al., 2021a;b; 2022b; Caron
et al., 2021; Bao et al., 2022; Xie et al., 2022; He et al., 2022). The recent advancement of
autoregressive models in language processing (Gu & Dao, 2023; Peng et al., 2023) has also
gathered interest in the vision community (Zhu et al., 2024; Duan et al., 2024) due to the
linear scaling property which allows applications to high-resolution tasks such as medical
imaging (Ma et al., 2024) or video understanding (Li et al., 2024).

7 Conclusion

Motivated by the success of xLSTM in language modeling, we introduced ViL, an adaption
of the xLSTM architecture to vision tasks. ViL processes a sequence of patch tokens in
alternating fashion. Odd blocks process image patches row-wise from top left to bottom right
and even blocks go row-wise from bottom right to top left. Our new architecture outperforms
SSM-based vision architectures, other autoregressive vision architectures and also optimized
ViT models on ImageNet-1K classification, VTAB-1K transfer classification and ADE20K
semantic segmentation. Remarkably, ViL is able to outperform ViT training pipelines,
which are the result of years of hyperparameter tuning and transformer improvements.

In the future, we see potential in applying ViL when high-resolution images are needed
for optimal performance, such as semantic segmentation or medical imaging. In these set-
tings, transformers suffer from high computational costs due to the quadratic complexity
of self-attention, where the linear complexity of ViL allows compute efficient processing of
long sequences. Additionally, improving pre-training schemes (e.g., via self-supervised learn-
ing), exploring better hyperparameter settings or investigating hierarchical architectures are
promising future directions that could improve ViL even further.
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Reproducibility

The supplemental material contains the full anonymized codebase used for all experiments
in this paper together with the exact hyperparameter configurations that were used for
each experiment. Additionally, we provide the hyperparameters for training and evaluation
together with additional implementation details for FLOP counting in Appendix Section B.

Ethics Statement

Our work proposes a novel architecture that shows improved FLOPS efficiency compared
to previous methods which could greatly reduce energy consumption and carbon emission
for future training of large-scale vision or multi-modal models.

We proposes a foundational change in the form of a novel vision architecture, which can be
used for a broad set of applications, inheriting their potential benefits, such as enhancing
diagnostic accuracy in healthcare, and challenges, such as the risk of improving generative
vision models to generate better deepfakes to propagate misinformation.
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Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prud-
nikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.
xlstm: Extended long short-term memory, 2024.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3d neural networks. Nature, 619(7970):
533–538, 2023.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter,
Patrick Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al.
Aurora: A foundation model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Kaj Bostrom and Greg Durrett. Byte pair encoding is suboptimal for language model
pretraining. arXiv preprint arXiv:2004.03720, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
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Hervé Jégou. Co-training 2l submodels for visual recognition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pp. 11701–11710. IEEE, 2023.

Jeya Maria Jose Valanarasu, Poojan Oza, Ilker Hacihaliloglu, and Vishal M. Patel. Medical
transformer: Gated axial-attention for medical image segmentation. In Marleen de Brui-
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Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger (eds.), Medical Im-
age Computing and Computer Assisted Intervention - MICCAI 2018 - 21st International
Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II, volume 11071
of Lecture Notes in Computer Science, pp. 210–218. Springer, 2018.

Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Lan-
guage Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax,
2021.

Feng Wang, Jiahao Wang, Sucheng Ren, Guoyizhe Wei, Jieru Mei, Wei Shao, Yuyin Zhou,
Alan Yuille, and Cihang Xie. Mamba-r: Vision mamba also needs registers. arXiv preprint
arXiv:2405.14858, 2024.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global
representations by penalizing local predictive power. In Advances in Neural Information
Processing Systems, pp. 10506–10518, 2019.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual
parsing for scene understanding. In Vittorio Ferrari, Martial Hebert, Cristian Sminchis-
escu, and Yair Weiss (eds.), Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part V, volume 11209 of Lecture
Notes in Computer Science, pp. 432–448. Springer, 2018.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai,
and Han Hu. Simmim: a simple framework for masked image modeling. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, pp. 9643–9653. IEEE, 2022.

Hanwen Xu, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann,
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A Extended Results

A.1 Runtime Comparison of ViL vs Vim

We compare the runtime to train ViL and Vim (Zhu et al., 2024) for 10 ImageNet-1K epochs
in Table 6. We follow the scaling procedure of ViTs, using 192 (T), 384 (S), 768 (B), 1024
(L) as hidden dimension where the (L)arge scale doubles the number of blocks.

Table 6: Runtime comparisons between Vim (Zhu et al., 2024) and ViL. ViL is up to
69% faster despite the current lack of a optimized hardware implementation. As mLSTM
(and ViL) can be parallelized analogous to FlashAttention (Dao et al., 2022; Dao, 2023) via
custom hardware optimizations, ViL will become even faster in the future. Runtimes denote
the training time for 10 ImageNet-1K epochs and are extrapolated from short benchmark
runs on a single A100-80GB-PCIe using float16 precision and 224x224 images.

Model Optimization (T)iny (S)mall (B)ase (L)arge
Vim (Zhu et al., 2024) custom CUDA kernel 7.3h 14.0h 28.2h 76.4h
ViL torch.compile 5.0h 8.7h 16.6h 45.1h
Speedup of ViL compared to Vim 45% 61% 69% 69%

A.2 Impact of Longer Training

We investigate the impact of training for a longer duration in Table 7.

Table 7: Performance comparison of tiny models trained for 400 and 800 epochs. ADE20K
mIoU uses single-scale evaluation. All settings follow the ones used in the main paper.

Model Epochs IN-1K ACC VTAB-1K ADE20K mIoU
DeiT-III-T 400 75.6 67.0 39.1
DeiT-III-T 800 76.2 67.1 39.8
ViL-T 400 77.2 67.8 40.9
ViL-T 800 78.3 68.3 41.2

A.3 VTAB-1K Individual Dataset Results

Table 8 presents accuracies for each individual dataset of the VTAB-1K benchmark.

Table 8: Results on all datasets of the VTAB-1K (Zhai et al., 2019) benchmark.
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A.4 Robustness and Domain Generalization

Table 9 presents robustness and OOD evaluations of ImageNet-1K pre-trained classifiers.

Table 9: Robustness and OOD evaluations on ImageNet-C(orruption) (Hendrycks
& Dietterich, 2019), ImageNet-A(dversarial) (Hendrycks et al., 2021b), ImageNet-
R(endition) (Hendrycks et al., 2021a) and ImageNet-Sketch (Wang et al., 2019).. For
ImageNet-C, we report the mean corruption error (Hendrycks & Dietterich, 2019) with
AlexNet (Krizhevsky et al., 2012) as baseline.

Model IN-C (↓) IN-A (↑) IN-R (↑) Sketch (↑) Validation (↑)
DeiT-T 69.7 7.6 32.7 19.9 72.2
DeiT-III-T 65.0 11.7 39.4 27.4 76.2
Vim-T 61.8 9.6 38.8 26.9 76.1
ViL-T 59.6 15.2 42.2 30.0 78.3
DeiT-S 54.4 19.6 41.9 29.1 79.8
DeiT-III-S 50.1 23.2 46.6 35.4 81.4
Vim-S 51.5 19.7 44.8 32.5 80.5
ViL-S 50.6 23.8 47.9 35.2 81.5
DeiT-B 48.6 27.9 44.6 32.0 81.8
DeiT-III-B 42.7 36.5 54.1 41.1 83.8
ViL-B 45.3 30.9 51.9 39.0 82.4

B Implementation Details

B.1 Hardware

We train models on servers with either 8xA100 or 4xA100 nodes.

We estimate the total number of A100 GPU-hours used for this project to be 38K hours.
This estimate includes initial exploration, method development, analysis and evaluations.

B.2 FLOPS Calculation

We use the fvcore1 library to count FLOPS and report FLOPS of the mLSTM chunkwise
form as described in Section 2.2. For the parallel parts, we report FLOPS for a complexity
of O

(
(S
2 + 1)Sd

)
because the upper triangular entries of the QK matrix do not need to

be calculated due to the causal structure. We justify this by the fact that FlashAttention-
2 (Dao, 2023) is approximately 1.7x faster with a causal mask than without. Therefore, an
optimized hardware implementation of the mLSTM could also omit the calculation of the
upper triangular part of QK.

As Vim (Zhu et al., 2024) does not report FLOPS and their model makes use of CUDA
kernels (which are not counted as FLOPS by fvcore), we replace all calls to CUDA kernels
with their reference PyTorch implementation and count the FLOPS with fvcore.

For the total pre-training compute in Figure 3, we consider an efficient implementation of
stochastic depth (Huang et al., 2016; Touvron et al., 2023) which omits the calculation
of a dropped block instead of masking it. Therefore, we change the implementation of
ViT (Dosovitskiy et al., 2021) to use our efficient stochastic depth implementation. Vim
does not use stochastic depth for training as they only train tiny and small models.

1https://github.com/facebookresearch/fvcore
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B.3 ViL Hyperparameters

Table 10 shows detailed hyperparameters used to train ViL models.

Table 10: Hyperparameters for training ViL on ImageNet-1K, inspired by DeiT-III (Touvron
et al., 2022b). We follow the best setting from DeiT-III (Touvron et al., 2022b) and pre-train
on 192 resolution followed by a short fine-tuning on 224 resolution (indicated by →).

Parameter Value
Epochs 800 (T), 400 (S/B) → 20 (T, S), 5 (B)
Batch size 2048 → 1024
Model

Patch size 16x16
Latent dimension 192 (T), 384 (S), 768 (B)
Depth 24
Pooling Bilateral Concat

Stochastic depth
Peak rate 0 (T), 0.05 (S), 0.2 (B)
Layer-wise Decay ✗

Optimizer AdamW
Base Learning rate 1e-3 → 1e-5
Linear LR Scaling Divisor 1024
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999
Gradient Norm Clip 1.0

Precision mixed bfloat16
Backend torch.autocast

Learning rate schedule cosine decay
Warmup schedule linear
Warmup epochs 5 → 5 (T, S), 1 (B)
End LR 1e-6

Label smoothing ✗
Train Data Augmentation

RandomResizedCrop 192 → 224
Scale [0.08, 1.0]
Interpolation bicubic

RandomHorizontalFlip p = 0.5
3-Augment

Gaussian Blur σ [0.1, 2.0]
ColorJitter [0.3, 0.3, 0.3, 0.0]

Normalize ImageNet-1K statistics
Mixup α 0.8
Cutmix α 1.0

Test Data Augmentation
Resize 192 → 224

Interpolation bicubic
CenterCrop 192 → 224
Normalize ImageNet-1K statistics
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B.4 Fine-tuning on VTAB-1K

For fine-tuning models on VTAB-1K we provide the hyperparameters in Table 11. We search
for the best learning rate for each dataset by fine-tuning the model 25 times (5 learning rates
with 5 seeds each) on the 800 training samples and evaluating them on the 200 validation
samples. With the best learning rate, we then train each model 5 times on concatenation
of training and validation split, evaluate on the test split and report the average accuracy.

Table 11: Hyperparameters for fine-tuning on VTAB-1K. *For Vim and ViL we group two
consecutive blocks for the layer-wise lr decay similar to how ViT considers a pair of attention
and MLP block as a single “layer” for the decay.

Parameter Value
Epochs 50
Batch size 64
Seeds 5
Optimizer AdamW

Learning rate [1e-3, 7.5e-4, 5.0e-4, 2.5e-4, 1.0e-4]
Layer-wise lr deca 0.65*
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999

Learning rate schedule linear warmup → cosine decay
Warmup epochs 5

Precision mixed bfloat16
Backend torch.autocast

Data Augmentation
Resize
interpolation bicubic
size 224x224

Normalize ImageNet-1K statistics
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B.5 ADE20K Semantic Segmentation Fine-tuning

We fine-tune models on ADE20K (Zhou et al., 2019) using an UperNet (Xiao et al., 2018)
head. We follow common practices and fine-tune on 512x512 resolution, where we interpolate
the absolute positional embedding from 224x224 to 512x512. For ViTs, we add relative
position biases to the attention layers (initialized to 0) (He et al., 2022). Table 12 lists
detailed hyperparameters.

Table 12: Hyperparameters for fine-tuning on VTAB-1K. *For ViL we group two consecutive
blocks into one similar to how a ViT block consists of a pair of attention and MLP block.

Parameter Value
Updates 160K
Batch size 16
UperNet

Auxiliary
Weight 0.4
Input Block 8*
Dimension 192 (T), 384 (S, B)

Decoder
Weight 1.0
Input Blocks [4, 6, 8, 12]*
Dimension 192 (T), 384 (S, B)

Stochastic depth
Peak rate 0 (T), 0.05 (S), 0.1 (B)
Layer-wise Decay ✓

Optimizer AdamW
Learning rate 5e-4
Linear LR Scaling Divisor 16
Layer-wise lr decay 0.65*
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999

Learning rate schedule linear warmup → cosine decay
Warmup updates 1500

Precision mixed float16
Backend torch.autocast

Train Data Augmentation
RandomResize
interpolation bicubic

RandomCrop
size 512x512

RandomHorizontalFlip
ColorJitter 0.5
brightness 0.5
contrast 0.5
saturation 0.5
hue 0.25

Normalize ImageNet-1K statistics
Evaluation
Stride 341
Multi-scale
scale factors [0.75, 1.0, 1.25, 1.5, 1.75]
flip [True, False]
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B.6 DeiT-III Reimplementation Hyperparameters

Table 10 shows detailed hyperparameters used to train DeiT-III-T (reimpl.) from Table 1.
Our reimplementation easily outperforms older baselines like DeiT-II-T (+2.7% ImageNet-
1K accuracy) and is approximately even with the original on ADE20K (40.1 vs 39.8 on
mIoU single-scale, 41.8 vs 42.2 mIoU multi-scale).

Table 13: Hyperparameters for training our reimplementation of DeiT-III-T (Touvron et al.,
2022b) on ImageNet-1K. The most significant change is that we reduce the learning rate
from 3e-3 to 1e-3 as we found this to greatly improve performance. We make minor changes
to the protocol such as using AdamW or no gradient clipping as models were stable without
it. We follow the best setting from DeiT-III (Touvron et al., 2022b) and pre-train on 192
resolution followed by a short fine-tuning on 224 resolution (indicated by →).

Parameter Value
Epochs 800 → 20
Batch size 2048 → 1024
Model

Patch size 16x16
Latent dimension 192
Depth 12
Pooling [CLS]

Stochastic depth ✗
Layerscale 1e-4
Optimizer AdamW

Base Learning rate 1e-3 → 1e-5
Linear LR Scaling Divisor 1024
Weight decay 0.05
Momentum β1 = 0.9, β2 = 0.999
Gradient Norm Clip ✗

Precision mixed bfloat16
Backend torch.autocast

Learning rate schedule cosine decay
Warmup schedule linear
Warmup epochs 5
End LR 1e-6

Label smoothing ✗
Train Data Augmentation

RandomResizedCrop 192 → 224
Scale [0.08, 1.0]
Interpolation bicubic

RandomHorizontalFlip p = 0.5
3-Augment

Gaussian Blur σ [0.1, 2.0]
ColorJitter [0.3, 0.3, 0.3, 0.0]

Normalize ImageNet-1K statistics
Mixup α 0.8
Cutmix α 1.0

Test Data Augmentation
Resize 192 → 224

Interpolation bicubic
CenterCrop 192 → 224
Normalize ImageNet-1K statistics
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