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Abstract

Diffusion-based generative models have demonstrated exceptional performance, yet
their iterative sampling procedures remain computationally expensive. A prominent
strategy to mitigate this cost is distillation, with offline distillation offering particular
advantages in terms of efficiency, modularity, and flexibility. In this work, we
identify two key observations that motivate a principled distillation framework: (1)
while diffusion models have been viewed through the lens of dynamical systems
theory, powerful and underexplored tools can be further leveraged; and (2) diffusion
models inherently impose structured, semantically coherent trajectories in latent
space. Building on these observations, we introduce the Koopman Distillation
Model (KDM), a novel offline distillation approach grounded in Koopman theory -
a classical framework for representing nonlinear dynamics linearly in a transformed
space. KDM encodes noisy inputs into an embedded space where a learned linear
operator propagates them forward, followed by a decoder that reconstructs clean
samples. This enables single-step generation while preserving semantic fidelity.
We provide theoretical justification for our approach: (1) under mild assumptions,
the learned diffusion dynamics admit a finite-dimensional Koopman representation;
and (2) proximity in the Koopman latent space correlates with semantic similarity
in the generated outputs, allowing for effective trajectory alignment. KDM achieves
highly competitive performance across standard offline distillation benchmarks.

1 Introduction

Diffusion-based generative models [72], including score-based and flow-matching variants [30, 47],
have become ubiquitous across a wide range of domains—from images and videos to audio and time
series [18, 31, 41, 16, 59, 21, 26]. These models now surpass approaches such as GANs and VAEs in
terms of sample quality, while also exhibiting greater training stability. Despite these advantages, one
of their key limitations remains the high computational cost associated with sampling [63, 68, 51].
Generating a single high-fidelity sample typically requires executing a lengthy iterative process,
progressively refining random noise through dozens or even hundreds of model evaluations [30].

A widely adopted strategy to address this involves minimizing the number of inference steps [73], for
example by leveraging improved numerical solvers or designing more expressive noise schedules,
enabling high-quality generation with significantly fewer denoising iterations. Another increasingly
popular alternative is distillation [68], where a student model learns to emulate the behavior of a
teacher model. Distillation approaches vary in supervision and setup: in online distillation, the student
directly learns from the teacher’s predictions during training, with the teacher providing trajectory
information across time steps. In contrast, offline distillation relies on precomputed noise–image pairs
or teacher-generated samples only, where the student learns without any further access to the teacher
model, including its weights, evaluations, or internal states.
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Figure 1: A Gaussian sample (bottom left) evolves into a clean image (bottom right) via nonlinear
dynamics ΦT . Leveraging the Koopman framework, learned encoders Eφ and Eϕ transform noise
and image into an embedding space where the evolution becomes linear under Cµ (top).

Offline methods inherently offer key advantages over online tools. Training on precomputed, teacher-
generated noise–image pairs avoids multi-stage training and repeated teacher queries, reducing both
neural function evaluations and memory footprint [24]. It also enables pre-filtering or anonymization
of potentially privacy violations [22]. Consequently, once the dataset is produced, the teacher can
be discarded, shrinking the attack surface and supporting secure collaboration (e.g., outsourcing
training without exposing proprietary information) [12, 32, 61]. Beyond privacy and efficiency, offline
distillation is model-agnostic and architecture-general (as evidenced in our experiments), and it scales
flexibly with parameter budgets. On the limitation side, offline setups require upfront generation
and storage costs for the precomputed corpus and, lacking teacher access beyond the noise–image
pairs, may constrain model expressivity and adaptability. By contrast, online methods may warm-start
from teacher weights or query the teacher for stepwise supervision. Despite these trade-offs, offline
distillation remains a practical, private, and sustainable approach to generative-model distillation.
The two paradigms can be considered complementary, and the optimal choice depends on factors
such as privacy requirements, computational cost, and deployment constraints.

Towards developing a distillation method, we identify two key observations that guide our approach: (1)
While denoising-based methods leverage dynamical systems perspectives for both general generative
modeling [76, 47] and distillation [89, 13], a wide range of powerful tools from dynamical systems
theory remain underexplored; (2) Trained diffusion models impose a structured organization on the
latent space, coherently mapping noisy inputs toward clean data. Specifically, our empirical analysis
suggests that semantically related images tend to originate from nearby points in the noise space.

Building on these observations, we propose leveraging a dynamical systems approach that has not yet
been explored in the context of distillation: Koopman operator theory. This theory is a classical yet
recently revitalized approach for representing nonlinear systems with linear dynamics in an embedded
space [42, 67]. The core idea is that by mapping the system into a suitable embedding space, its
evolution becomes linear. Thus, learning the diffusion process then reduces to jointly learning these
embeddings and the linear operator. While Koopman operators are typically infinite-dimensional, we
prove that an exact finite-dimensional representation exists under mild assumptions [33]. Moreover,
prior work suggests that the Koopman operator preserves the structure inherent to certain dynamical
systems [28, 9]. This motivates the use of Koopman theory to harness the observed coherent semantic
structure in diffusion dynamics, offering a principled foundation for accurate teacher model distillation.
To this end, we formally connect the observed structure in diffusion models to the Koopman framework
by proving that this structure is preserved within the learned dynamical representation.

In practice, we propose KDM (Koopman Distillation Model), a framework for modeling diffusion
processes through linear evolution in a learned embedding space. Given a noisy input, an encoder
maps it into an embedding space where a learned Koopman operator evolves it forward, and a
decoder reconstructs the clean sample. A schematic illustration of our framework is presented in
Fig. 1. The training objective encourages semantic preservation (via reconstruction loss), accurate
latent linear dynamics (via Koopman consistency), and fidelity in output space (via prediction
and adversarial losses). This design naturally yields fast, single-step generation, while preserving
structural coherence distillation. We evaluate our method on the offline distillation benchmark, while
adding two higher-resolution datasets, and achieve highly competitive results in both unconditional
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and conditional generation. These results demonstrate the effectiveness of our Koopman-based
formulation in bridging the performance gap with online methods, offering a fast and high-fidelity
offline diffusion model distillation. Our key contributions are:
1. Observing diffusion dynamics. We identify, analyze and formalize two key observations: (i) tools

from dynamical systems theory, specifically Koopman operator theory, remain underexplored in
diffusion modeling and distillation; (ii) training induces coherent semantic organization in noise
space. These insights motivate a structure-promoting dynamics-aware approach to distillation.

2. A principled and practical Koopman-based distillation framework. We develop a theoretical
foundation proving the existence of finite-dimensional Koopman representations and semantic
structure preservation under mild assumptions and introduce a simple, scalable encoder–linear-
dynamics–decoder architecture that preserves the teacher generation dynamics semantic structure.

3. Highly competitive results. We conduct a comprehensive unconditional and conditional evaluation
showing that our method outperforms prior offline distillation approaches, achieving FID
improvement, while enabling efficient, single-step generation.

2 Related Work

Generative Modeling. Deep generative models have made significant progress in recent years,
with diffusion models emerging as a leading framework for high-quality image, audio, and molecular
generation. Building on principles from nonequilibrium thermodynamics and score matching [72, 76],
these models define a forward process that gradually corrupts data with noise and learn to reverse it
via a neural network-based denoising process. Variants like DDPMs [30] and score-based generative
models [76] have shown competitive performance across a wide range of benchmarks, often surpassing
VAEs and GANs [40, 27] in sample fidelity and diversity.

Accelerating Diffusion Sampling. Diffusion models generate high-quality samples but are slow due
to iterative sampling. One approach improves integration using higher-order solvers and expressive
noise schedules [73, 49], achieving high-quality results in significantly fewer steps. Another class of
approaches seeks to distill a student model from a pre-trained teacher, reducing the sampling process to
a single or few steps. Online distillation techniques [50, 68] supervise the student directly with teacher
predictions during training, but require continuous access to the full teacher model, resulting in high
memory and compute overhead. Recent methods demonstrate high-quality one-step generation across
CIFAR-10, ImageNet, and text-to-image benchmarks [86, 93], using objectives based on distribution
matching [86], score identity [93], adversarial training [69, 71], and consistency models [75, 38]
among others [13, 52, 62, 94, 6]. Offline distillation methods [24] rely on teacher-generated noise-data
pairs and decouple student training from the teacher. Aside from the concurrent work [82], current
distillation methods largely unexplored Koopman-based perspectives and their relation to the teacher’s
underlying dynamics.

Koopman-Based Modeling. Koopman operator theory provides a powerful framework for modeling
nonlinear dynamical systems via linear operators acting on observable functions [42, 67]. This
view has been applied to tasks such as deep learning of dynamical systems [79, 53, 84, 65, 58, 60],
sequential disentanglement [7, 5], and control [29]. A related strand of work focuses on identifying
coherent sets—regions of the state space that evolve coherently over time—using Koopman-based
embeddings [56, 23]. While these works exploit the Koopman structure for interpretability or stability,
our work focuses on using Koopman-based modeling for distilling diffusion models. In this context, we
demonstrate that the learned embedding space in diffusion models encodes semantically meaningful
structure, and we leverage this to design a principled offline distillation framework.

3 Mathematical Background

Deterministic Diffusion Sampling. We consider deterministic sampling in diffusion models, as
introduced in the EDM framework [35]. A pre-trained diffusion model defines a time-indexed
denoising vector field fθ : Rn × [0, T ] → Rn, which maps a noisy latent state xt ∈ Rn at time
t ∈ [0, T ] toward the data manifold (at time 0). Sampling is performed by solving the reverse-time
ordinary differential equation (ODE),

dxt
d t

= fθ(xt, t) , xT ∼ N (0, σ2
T I) , (1)
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integrated backward from a Gaussian sample xT at time T to a clean sample x0 at time t = 0. The
function fθ is typically trained to approximate the score function∇xt log pt(xt) or a reparameterization
thereof, such as the probability flow [76]. These deterministic formulations enable sampling via
high-order ODE solvers and provide a tractable setting for distillation and trajectory analysis [35].

Koopman Operator Theory. Let Φt : Rn → Rn define a (possibly time-dependent) dynamical
system mapping states forward in time, i.e., xt = Φt(x0). The Koopman operator Kt [42] is a linear
operator that acts on scalar-valued observables g : Rn → C via composition,

Ktg := g ◦ Φt , (2)

mapping each observable to its pullback along the dynamics. While the original system Φt may be
nonlinear, Kt is linear on the space of observables L2(Cn) (with respect to a suitable measure) [20].
In classical Koopman theory, this operator is infinite-dimensional. However, if there exists a finite-
dimensional subspace O = span{g1, . . . , gd} ⊂ L2(Cn) that is invariant under Kt for all t ∈ [0, T ],
then the dynamics of Φt can be exactly represented in this lifted space via a family of linear operators
Ct ∈ Rd×d, t ∈ [0, T ], such that for all g ∈ O, Ktg = Ctg. This allows modeling nonlinear
dynamics through linear evolution in a learned observable space, a principle that underpins our
Koopman-based distillation framework.

4 Koopman Distillation of Diffusion Models

We propose KDM, a principled offline distillation framework for diffusion models based on Koopman
operator theory. The key idea is to model the dynamics of the generative process, specifically the
transformation from a noisy sample xT to its clean counterpart x0, as a single-step linear evolution in
a learned embedding space. This approach enables fast and structure-preserving generation in a single
forward pass, without requiring access to the full diffusion trajectory or teacher model at training time.

Dynamical System Perspective on Diffusion Models. We build upon two key observations
regarding diffusion models. First, diffusion can be understood as a dynamical system, where the
evolution of a noisy data point xt is governed by a time-dependent velocity field, see Eq. (1). This
continuous-time formulation admits an integrated flow map Φt such that xt = Φt(x0), where Φt
evolves the initial condition x0 forward in time. This formulation makes it natural to propose adopting
a Koopman operator perspective, a novel approach in the context of distillation, which enables the
lifting of nonlinear dynamics into a linear evolution in function space under suitable choices of
observables, see Eq. (2).

The second observation considers the structure of the trained diffusion dynamics. Score-based
diffusion models learn the score ∇xt

log pt(xt) of noise-corrupted data at multiple noise levels and
then reverse that specific corruption process using Langevin dynamics [76] or learned reverse kernels
[30] to transform Gaussian noise into images. This framework has been unified through the lens
of stochastic differential equations (SDEs) by [76]. Flow matching models [47] learn a continuous
velocity field that transports a simple reference distribution directly into the data distribution, where
sampling is typically performed by integrating the learned ordinary differential equation (ODE). In
what follows, we study the structure of the dynamical mapping arising from diffusion-based learning.

We pose the following question: Is there semantic structure in the generative process of diffusion
models? In general, prior to training, there is no assurance of semantic structure between the noise
and data distributions (see Fig. 2, left). However, after training, we observe the emergence of a
coherent and semantically meaningful mapping from the Gaussian noise distribution to the data
distribution (see Fig. 2, right). Specifically, by utilizing a simple 2D checkerboard toy dataset, we
train an EDM [35] model and generate 50,000 samples, recording both the initial noise vectors and
their corresponding generated outputs on the checkerboard. We then color-code each sample by
its target checker cell and assign the same color to its originating noise vector. This visualization
reveals that samples originating from the same semantic region in data space tend to cluster together
in noise space, indicating structured and coherent dynamics. Notably, we observe a similar pattern
in both flow matching model and our KDM. This emergence of coherent structure, together with
prior evidence that the Koopman operator preserves structure in certain dynamical systems [28, 9],
highlights the relevance of Koopman theory to diffusion dynamics. Indeed, our theoretical analysis
(Sec. 5) establishes a formal link between this observed structure and Koopman theory, motivating its
adoption as a principled framework for modeling these dynamics.

4



t = T t = 0 t = T t = 0
un

tra
in

ed
trained

Figure 2: Untrained noise distributions are semantically unstructured (left). Training EDM on the
data reveals the emergence of coherent clusters in noise space, i.e., at time T (right).

Koopman-based Distillation. Our Koopman distillation framework is designed by the following
principle: given pairs of noisy and clean data (xT , x0), where x0 = Φ−1

T (xT ) for some unknown
nonlinear map Φ−1

t , we seek to model this transformation using a finite-dimensional linear operator in
an embedding space, following Koopman theory. To achieve this, we introduce observable functions
{g1, g2, ..., gd}, parameterized as encoder networks Eϕ, Eφ for x0, xT , respectively, that map states
from the original data space into a latent observable space. In this space, we assume the dynamics
can be modeled linearly by a finite-dimensional Koopman operator linear layer, Cη. Finally, a
corresponding decoder network Dψ maps the evolved observables back to the data space. The overall
modeling objective becomes:

x0 ≈ Dψ(Cη Eφ(xT )) . (3)
This formulation distills the potentially complex, nonlinear generative process into a simple one-step
linear map in the embedded observables space, while maintaining fidelity to the original dynamics.

Koopman’s Loss Functions. In what follows, d(·, ·) denotes a suitable distance function, such as
mean squared error (MSE) or a perceptual loss (e.g., LPIPS [88]). To effectively learn the components
Eϕ,Dψ , and Cη , we define a composite loss comprising three terms (see similar objectives in [53, 4]):

LKoopman = Lrec + Llat + Lpred . (4)

The first term, the reconstruction loss Lrec, ensures that the encoder-decoder pair (Eϕ, Dψ) can
faithfully reconstruct x0:

Lrec = d
(
x0, Dψ(Eϕ(x0)

)
. (5)

This term regularizes the embedding by encouraging Eϕ to preserve sufficient semantic information
about the data, while not encoding any dynamic features. The second term, the latent dynamics loss
Llat, enforces consistency of the linear evolution in the observable space:

Llat = d
(
Eϕ(x0), CηEφ(xT )

)
, (6)

whereCη is the Koopman operator in latent space. This term ensures that applyingCη to the embedded
noisy state Eφ(xT ) approximates the embedded clean state Eϕ(x0). Cη is either implemented with
a regular learning linear layer or by a new approach we develop that factorizes the matrix, which
enables eigenspectrum control (KDM-F). We describe the decomposition and its merits in App. C.

Finally, the prediction loss Lpred evaluates the full end-to-end prediction after encoding, applying the
Koopman operator, and decoding:

Lpred = d
(
x0, Dψ(CηEφ(xT ))

)
, (7)

encouraging the system to accurately predict x0 from xT in a single forward pass through the Koopman
pipeline. Together, these terms provide complementary supervision signals.

Adversarial Loss. Adversarial frameworks are widely employed in distillation methods [70, 38, 77,
78]. For example, [38] leverages an adversarial loss to enhance the fidelity of one-step generation.
Motivated by these approaches, we introduce an auxiliary adversarial loss to further refine the
distillation process. Specifically, we introduce a discriminator network Dγ , parameterized by γ, and
define the adversarial loss as:

Ladv(ϕ, ψ, γ) = Ex0∼pdata [logDγ(x0)] + ExT∼pdata [log(1−Dγ(x̂0))] , (8)
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where x̂0 = Dψ(CηEφ(xT )) is the Koopman-predicted sample. Thus, the final training objective is:

L = LKoopman + λadvLadv , (9)

where λadv balances the adversarial component. In practice, throughout our experiments, we choose
λadv = 0.01. Importantly, we utilized a simple Dγ with four convolutional layers. By enhancing
the perceptual quality of the predictions without altering the fundamental Koopman modeling,
this adversarial augmentation strengthens the overall generation performance while preserving the
structured distillation at the heart of our method [8]. We present losses and more ablation studies in
App. D.1. Additionally, A pseudo-code of our KDM is provided in App. E.1.

Control Modeling for Conditional Dynamics. A crucial aspect of generative modeling with
denoising models is the ability to condition generation on auxiliary signals or labels [18]. Koopman
theory provides a natural framework to incorporate such conditioning through control signals that
influence the Koopman operator [3, 11]. Formally, let c denote the control signal or conditioning
variable (e.g., a class label) that we want the generative process to be conditioned on. Our goal is to
model the conditional dynamics Φ(xT , c). In the Koopman framework, we extend the observable and
evolution operators to incorporate c, and formulate the generation as:

Dψ

(
CηEϕ(xT , c) + Cµ(c), c

)
≈ Φ(xT , c),

where Cµ(c) is a control-dependent modulation term (e.g., a linear transformation of c). This
formulation enables our model to adapt its generative trajectory based on the conditioning signal,
seamlessly integrating the conditioning mechanism into the Koopman dynamics. We apply this
control modeling in our conditional generation experiments.

5 Theoretical Properties of KDM
We now state the first key theoretical result, establishing the existence of an exact finite-dimensional
Koopman representation under mild conditions. Specifically, for an analytic dynamical system, it is
possible to approximate its nonlinear evolution to arbitrary accuracy by a finite-dimensional linear
operator acting on lifted coordinates. In particular, a small number of polynomial observables can
capture the system’s dynamics with controllable approximation error. This result is significant because
it means we can faithfully replicate the complex behavior of the teacher model using a simpler, linear
system in a transformed space. In practical terms, it ensures our student can learn to follow the
teacher’s dynamics with high accuracy.
Theorem 5.1 (Finite Koopman Operator for Analytic Dynamics). Let Φ : Rn → Rn be an analytic
map, and let xT ∼ N (0, In). Then, for any ϵ > 0, there exists a linear operator C ∈ Rd×d such that

E
[
∥ξ(Φ(xT ))− Cξ(xT )∥2

]
≤ ϵ , (10)

where ξ : Rn → Rd denotes the observable lifting map. Moreover, the required dimension d grows
at most polynomially with 1/ϵ, and the mapping Φ can be approximated arbitrarily well using
multivariate polynomials up to degree d.

The proof builds on the analytic formulation of Φ, allowing a convergent multivariate Taylor
expansion [81], and on exact finite-dimensional Koopman operators for polynomial dynamics [33],
see App. A.

Our second theoretical result concerns the structure induced by the reverse diffusion dynamics,
under a set of assumptions established by Thm. 5.1. Under these conditions, the theorem states
that proximity in the Koopman coordinate representation at the initial noise time implies semantic
similarity between the corresponding samples at data time. In practice, the theorem says that if two
inputs start out close together in the transformed space, the images they generate will be semantically
similar. This provides a theoretical foundation for the structure-preserving behavior of our model, as
observed empirically in Sec. 6.1.
Theorem 5.2 (Semantic Proximity via Koopman-Invariant Coordinates). Let Φt : Rn → Rn
be the reverse diffusion flow of a trained model (from time T to 0), and let O ⊂ L2(Rn) be a
finite-dimensional subspace such that:

1. KtO ⊂ O for all t ∈ [0, T ],

2. ∃Ct : Rd → Rd such that Ktξ = ξ ◦ Φt = Ctξ for all ξ ∈ O,
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Figure 3: Visualization of vicinity comparison across different noise levels σ. Left: EDM [35]. Right:
our method. Each image corresponds to a small perturbation around the original noise sample.

3. ΦT is locally Lipschitz.

For any x1T , x2T ∈ Rn, define xj0 := ΦT (x
j
T ) for j = 1, 2, and let ξ : Rn → Rd be the vector-valued

observable ξ(x) := (ξ1(x), . . . , ξd(x)) ∈ O. Then:

∥x10 − x20∥ ≤ L · ∥ΦT (x1T )− ΦT (x
2
T )∥ ≤ L · ∥CT ∥ · ∥ξ(x1T )− ξ(x2T )∥.

The proof builds on the observation that diffusion model dynamics tend to preserve semantic similarity
between inputs and outputs. By leveraging the Koopman operator’s spectral properties, we construct
a finite-dimensional space of functions that remains stable under the model’s evolution. Within this
space, the Koopman coordinates ξ provide a locally bi-Lipschitz representation, while the reverse
diffusion map ΦT is Lipschitz continuous. Together, these properties ensure that semantically similar
inputs remain close throughout the diffusion process. Note that the theorem holds also for ξ := id,
i.e., the identity map [54, 19]. The full proof is given in App. B.

Importantly, we observe in practice an average spectral norm of the Koopman operator CT of
0.88± 0.18, indicating a reasonably tight bound and supporting the practical utility of our theory.
Moreover, our framework enables explicit control over this norm via eigenvalue penalties on the
Koopman operator. As detailed in App. C, we factorizeCT to permit direct constraints on its spectrum
(e.g., radius or banding), providing a principled regularizer on ∥CT ∥.

6 Experiments

We begin by further investigating the emergent dynamics structure that map noise to images, and
its presence in KDM (Sec. 6.1). We then extensively assess our method on the offline distillation
benchmark (Sec. 6.2), including analyses of computational complexity, data and parameter scaling, and
denoiser-agnostic utility. Additionally, an ablation study of the loss functions and adversarial losses
stability is provided in App. D.1. Our code is in https://github.com/azencot-group/KDM.

Setup and evaluation. We follow the protocol of GET [24] for generating noisy-clean pairs and
for evaluation, using the CIFAR-10 [43], FFHQ 64×64 [37], and AFHQv2 64×64 [15] datasets.
Our training setup matches that of PD [68] and GET [24]. For evaluation, we report image quality
using Fréchet Inception Distance (FID) and Inception Score (IS), computed over 50k samples. Both
encoders Eφ and Eϕ, as well as the decoder Dψ, are implemented as compact UNets with reduced
output channels to ensure a similar parameter size to the other single-step methods. The discriminator
consists of four simple Conv2D layers. Full implementation details are provided in App. E.3.

6.1 Observations of Emergent Latent Structure

Real-world data dynamics: local structure analysis. Extending the 2D toy experiment from
Sec. 4, we now explore the high-dimensional FFHQ 64×64 dataset. Since dimensionality reduction
can obscure fine-grained patterns, we instead analyze the local neighborhood of a single latent sample
xT ∼ N (0, In). We generate perturbed versions x̂T = xT + ε · σ with ε ∼ N (0, In), and normalize
each x̂T using its own mean and standard deviation. This setup tests whether semantic structure
emerges locally around xT . We vary σ ∈ {0, 0.05, . . . , 0.60} and visualize the outputs in Fig. 3
(left). For all σ < 0.3, the images remain semantically aligned with the original image (when σ = 0),
indicating local smoothness and manifold adherence. As σ grows, semantics diverge but retain global
coherence even at σ = 0.60. The same experiment on KDM (Fig. 3, right) reveals similar behavior,
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Figure 4: Sampled images using 79 NFEs with EDM [35] (left), and using 1 NFE with KDM (right).

affirming that KDM preserves the local semantic structure of the original EDM. Our results show that
both models organize latent space into meaningful neighborhoods, even in high-dimensional settings.

Visual analysis of dynamics distillation. Beyond preserving local structure, KDM also approxi-
mately reproduces the noise-to-image mapping of EDM. When starting from the same noise vector
xT ∼ N (0, In), sampled using seeds not seen during training, both EDM (with 79 NFEs) and
KDM (with a single NFE) generate perceptually similar outputs (see Fig. 4). This suggests that
KDM generalizes well beyond its training data and effectively distills the mapping from noise to
data. We observe this consistency across multiple datasets and include further qualitative results in
App. D.3. To quantify this, we generate 50k samples using both methods and compare outputs using
LPIPS and MSE. KDM achieves scores of 0.13 (LPIPS) and 0.009 (MSE), in contrast to 0.48 and
0.57 when comparing randomly permuted images, demonstrating the similarity between the models’
generation. To complement quantitative metrics, we conduct a human study where participants choose
the more realistic image collage between our model and EDM (Fig. 4; details in App. E.4). Evaluators
showed no clear preference: 55% of 300 choices favored our model, highlighting its strong fidelity.

Outliers and their relation to the dynamics structure. We analyze a recurring failure mode in
both the teacher and distilled models: the generation of outlier samples that fall outside the designated
checkerboard regions. These out-of-distribution points often appear in the final outputs and reflect
a limitation in capturing the intended data distribution. To investigate their origin, we trace these
outliers back through the generation process and identify two primary sources: (1) the tails of the
Gaussian prior and (2) regions near decision boundaries between adjacent checkerboard cells. Fig. 5C
shows this behavior for the distilled model (black crosses denote outliers); additional comparisons
with the teacher are provided in App. E.7. These findings suggest that the model’s dynamics are more
error-prone in high-uncertainty regions, offering potential directions for improvement. Integrating
more robust sampling techniques or leveraging self-supervised signals may help mitigate such failures.
This insight could also inform future efforts in uncertainty estimation.

6.2 One-step Generation Results

Unconditional and conditional generation with CIFAR-10. We evaluate on the standard offline
distillation benchmark of [24], which distills a pre-trained EDM on CIFAR-10. Whereas the EDM
teacher samples with 35 function evaluations (NFEs), our student attains comparable quality with a
single NFE. We also adapt two recent SOTA baselines, IMM [91] and RF-2++ [45], to the same strictly
offline setting, where only teacher-generated data are available and the original model weights (and
online queries) are not accessible (the RF-2++ variant corresponds to its “w/o pre-train” configuration).
All methods are evaluated under identical protocols. Tab. 1 reports unconditional generation results,
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Figure 5: A) Model size vs FID. B) Data Size vs FID. C) Outlier analysis
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Table 1: Generative performance on uncondi-
tional CIFAR-10.

Models (↓) / Metrics (→) NFE ↓ FID ↓ IS ↑
Diffusion Models

DDPM [30] 1000 3.17 9.46
Score SDE [73] 2000 2.2 9.89
EDM [37] 35 2.04 9.84

Continuous Flows

Flow Matching (Diffusion) [46] 183 8.06 -
Flow Matching (OT) [80] 50 4.94 -
2-rf++ [45] 1 3.07 -

GANs

StyleGAN-XL [36] 1 1.85 -

Diffusion Distillation

PD [68] 1 9.12 -
DFNO [90] 1 4.12 -
iCD-EDM (LPIPS) [74] 1 2.83 9.54
CTM (LPIPS) [74] 1 1.98 -
ECM [25] 1 4.54 -

Offline Distillation
GET [24] 1 6.91 9.16
2-rf++ w/o pre-train [45] 1 6.32 9.01
IMM [91] 1 4.81 9.16
KDM (EDM) 1 4.65 9.21
KDM (FM) 1 5.91 8.86
KDM-F (EDM) 1 4.68 9.08

Table 2: Generative performance on class-
conditional CIFAR-10.

Models (↓) / Metrics (→) NFE ↓ FID ↓ IS ↑
GANs

BigGAN [10] 1 14.73 9.22
StyleGAN2-ADA [36] 1 2.42 10.14

Diffusion Distillation

Guided Dist. (w = 0.3) [55] 1 7.34 8.90
ECM [25] 1 3.81 -

Offline Distillation
GET [24] 1 6.25 9.40
KDM (EDM) 1 3.56 9.54
KDM-F (EDM) 1 3.24 9.68

Table 3: Generative performance on un-
conditional generation on FFHQ 64×64 and
AFHQv2 64×64. *Indicates our reproduction.

Models (↓) / Metrics (→) NFE ↓ FID ↓ IS ↑
FFHQ 64×64

EDM* 79 2.47 3.37
KDM (EDM) 1 6.54 3.12

AFHQv2 64×64

EDM* 79 2.02 9.04
KDM (EDM) 1 4.85 8.25

where our method achieves highly competitive performance, surpassing the previous offline baseline
in both FID and IS. In particular, we observe ≈ 25% reduction in FID over GET. Tab. 2 shows
results for class-conditional generation, where our model yields ≈ 40% improvement in FID and
superior IS compared to GET. Although offline distillation offers advantages in efficiency, privacy,
and flexible deployment [22, 24], a performance gap with online methods remains. This may partly
be because online approaches leverage the full generation trajectory, whereas, in the offline pairwise
setup, methods only observe two endpoints or just the generated data, placing them at a natural
disadvantage. Our results demonstrate a substantial step toward closing this gap.

Furthermore, unlike prior methods that rely on architectural assumptions [25, 45], our approach is
denoiser-agnostic and successfully distills both EDM and flow matching (FM) models (see Tab. 1),
demonstrating broad applicability. Finally, we implemented a factorized KDM (KDM-F). Since every
matrix Cη is diagonalizable up to an arbitrarily small perturbation of the entries [2], we can write:
Cη = PΛP−1 where P ∈ Cd×d is an invertible matrix and Λ = diag(λ1, . . . , λd) ∈ Cd×d. While
enabling efficient implementation of spectral penalties on Λ (see complexity analysis below), this
approach preserves strong performance and accuracy.

Unconditional generation with FFHQ and AFHQv2. To assess the scalability of KDM to higher-
resolution data, we evaluate our method on FFHQ and AFHQv2, distilling each into a single-step
generator and assessing performance both quantitatively (Tab. 3) and qualitatively (App. D.3). Our
method yields FID scores approximately 2.5× higher than EDM, similar to the degradation observed
on CIFAR-10. Due to the high computational cost, we omit GET results: training a single model
takes 5–7 weeks on an A6000 GPU, which is technically infeasible in our computational resources.
We also exclude ImageNet, as large-scale training with EDM [35] is computationally infeasible for us.

Scalability in parameters and data. Offline distillation inherently supports architectural indepen-
dence from the teacher model, allowing flexible scaling of the student to meet diverse deployment
needs [24, 25]. To assess this, we evaluate our method against GET across three model sizes—20M,
38M, and 84M parameters (Fig. 5A). Our method consistently outperforms GET in FID scores at all
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scales, with especially notable gains at higher capacities (e.g., 4.89 vs. 7.19 at 84M), demonstrating
its effectiveness for both lightweight and high-capacity settings. In parallel, we investigate how
performance scales with training data size, a key factor in offline distillation. Following GET [24], we
train on 250K, 500K, and 1M samples and report FID scores on unconditional CIFAR-10 in Fig. 5B.
Results show that more data yields better generation quality. For instance, increasing the dataset from
250K to 1M samples results in a ≈ 33% FID reduction, showing the importance of data scale. While
our method remains data-efficient, additional data can enhance performance.

Complexity analysis. Offline distillation can offer advantages over online methods, both memory-
wise and time-wise (see App. E.5). KDM further improves over GET. As shown in Tab. 4, it matches
GET in parameter count but achieves a 4× speedup per training iteration and over 8× faster sampling.
Notably, KDM-F (App. C) maintains this efficiency even with spectral regularization. Specifically,
we evaluate KDM and KDM-F with an additional eigen-loss (EL) term, observing that KDM-F + EL
requires training time comparable to KDM (without EL), whereas KDM + EL incurs a longer training
duration. These results underscore the practical scalability of our approach.

7 Discussion

Table 4: Parameters in millions, time in seconds.
RTX 4090 GPU used with batch size 128.

Metric GET KDM KDM + EL KDM-F + EL
Params (M) 62 62 62 65
Train (s) 3.60 0.91 4.82 0.97
Sampling (s) 937 114 114 116

In this work, we present two key observations.
First, we reinterpret the distillation process
through the lens of dynamical systems theory.
Second, we uncover the semantical structure in
the mapping from latent space to data space in
trained diffusion dynamics. Motivated by these
insights, we propose a Koopman-based frame-
work for distilling diffusion models, bridging
operator theory and generative modeling. We theoretically establish the existence of a Koopman
operator that captures the underlying generative process, and demonstrate, both theoretically and
empirically, that our method preserves its structure. This perspective also offers insights into potential
failure modes. Beyond its conceptual contributions, our approach is practical and efficient, achieving
highly competitive single-step offline distillation. We further analyze its robustness and scalability.
We hope this work lays the foundation for future directions, including leveraging richer training
signals and extending distillation techniques to advanced text-to-image generative models. See App. F
for further discussion.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Contributions are clearly state at the end of the intro
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We dedicate an discussion in the appendix for improvements and limitations
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide in the appendix full proofs
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide technical details in the appendix and code in the supplementary
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: Yes, in the supplementary material we provide code and link to anonymous
drive with the data
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The code provided reconstructs the exact experimental setting
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All results are reported by the standard protocol for generative models evaluation
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We provide complexity analysis and hardware information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See codebase
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main

contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 5.1

For the reader’s convenience, we restate the theorem.
Theorem (Finite Koopman Approximation for Analytic Dynamics). Let Φ : Rn → Rn be an analytic
map, and let xT ∼ N (0, In). Then, for any ϵ > 0, there exists a linear operator C ∈ Rd×d such that

E
[
∥ξ(Φ(xT ))− Cξ(xT )∥2

]
≤ ϵ ,

where ξ : Rn → Rd denotes the observable lifting map. Moreover, the required dimension d grows
at most polynomially with 1/ϵ, and the mapping Φ can be approximated arbitrarily well using
multivariate polynomials up to degree d.

Proof. Since Φ : Rn → Rn is analytic, for every δ > 0 and every compact set K ⊂ Rn, there exists
a multivariate polynomial map p : Rn → Rn such that

sup
x∈K
∥Φ(x)− p(x)∥ ≤ δ ,

which follows from the theory of approximation by Taylor polynomials for analytic functions [81].

Let xT ∼ N (0, In). Since xT has exponentially decaying tails [83], for any η > 0 there exists R > 0
such that

P(xT /∈ BR) ≤ η,
where BR = {x ∈ Rn : ∥x∥ ≤ R}. Restricting attention to BR, we consider the polynomial
approximation p of Φ with error at most δ.

Now, following the result of Iacob et al. [33], for the polynomial map p, there exists a finite-dimensional
lifting map ξ : Rn → Rd consisting of monomials up to some degree, and a linear operatorC ∈ Rd×d,
such that

ξ(p(x)) = Cξ(x)

for all x ∈ Rn. In particular, on BR,
∥ξ(Φ(x))− Cξ(x)∥ ≤ ∥ξ(Φ(x))− ξ(p(x))∥,

since ξ(p(x)) = Cξ(x) exactly.

Since ξ is a smooth (polynomial) map, there exists a Lipschitz constant L > 0 depending on the
derivatives of ξ over BR, such that

∥ξ(Φ(x))− ξ(p(x))∥ ≤ L∥Φ(x)− p(x)∥ ≤ Lδ
for all x ∈ BR.

Thus, for xT ∈ BR,
∥ξ(Φ(xT ))− Cξ(xT )∥ ≤ Lδ.

Outside BR, the trivial bound
∥ξ(Φ(xT ))− Cξ(xT )∥ ≤ 2M

holds for some finite constant M > 0, due to the polynomial growth of ξ and the Gaussian decay of
xT .

Hence, the expected Koopman error satisfies
E
[
∥ξ(Φ(xT ))− Cξ(xT )∥2

]
≤ (1− η)L2δ2 + η(2M)2.

Given any ϵ > 0, we can choose η sufficiently small so that η(2M)2 ≤ ϵ/2, and then δ sufficiently
small so that (1− η)L2δ2 ≤ ϵ/2.

Notably, the degree of the polynomial map p needed, and hence the number of monomials d in ξ,
grows at most polynomially with 1/δ and thus with 1/ϵ, concluding the proof.

We further note that the function Φ implemented by DhariwalUNet [35] is analytic. Specifically,
each module composing the network—including convolutions, SiLU activations, residual connections,
attention mechanisms, and group normalization with ϵ > 0—is an analytic function. Since
compositions of analytic functions remain analytic, it follows that the entire forward pass Φ is analytic
on Rn.
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B Proof of Theorem 5.2

We restate the theorem for the readers’ convenience.
Theorem (Semantic Proximity via Koopman-Invariant Coordinates). Let Φt : Rn → Rn be the
reverse diffusion flow of a trained model (from timeT to 0), and letO ⊂ L2(Rn) be a finite-dimensional
subspace such that:

1. KtO ⊂ O for all t ∈ [0, T ],

2. ∃Ct : Rd → Rd such that Ktξ = ξ ◦ Φt = Ctξ for all ξ ∈ O,
3. ΦT is locally Lipschitz.

For any x1T , x2T ∈ Rn, define xj0 := ΦT (x
j
T ) for j = 1, 2, and let ξ : Rn → Rd be the vector-valued

observable ξ(x) := (ξ1(x), . . . , ξd(x)) ∈ O. Then:

∥x10 − x20∥ ≤ L · ∥ΦT (x1T )− ΦT (x
2
T )∥ ≤ L · ∥CT ∥ · ∥ξ(x1T )− ξ(x2T )∥.

Proof. Let Φt : Rn → Rn denote the reverse diffusion dynamics. Based on the proof of Thm. 5.1,
there exists a linear operator Ct : Rd → Rd satisfying

Ktξ = ξ ◦ Φt = Ctξ ,

for every ξ ∈ O and t ∈ [0, T ].

Define the vector-valued map for the basis {ξj} of O

ξ(x) := (ξ1(x), . . . , ξd(x)) ∈ Rd.

Since the ξj are smooth and capture independent semantic directions, ξ is locally bi-Lipschitz near
typical xT . That is, there exist constants C1, C2 > 0 such that

C1∥ξ(x1T )− ξ(x2T )∥ ≤ ∥x1T − x2T ∥ ≤ C2∥ξ(x1T )− ξ(x2T )∥.

Because ΦT is locally Lipschitz, there exists L > 0 such that

∥ΦT (x1T )− ΦT (x
2
T )∥ ≤ L∥x1T − x2T ∥.

Substituting the bi-Lipschitz inequality yields

∥ΦT (x1T )− ΦT (x
2
T )∥ ≤ LC2∥ξ(x1T )− ξ(x2T )∥.

Moreover, by Koopman linearity,

ξ(ΦT (x
j
T )) = CT ξ(x

j
T ), j = 1, 2,

and therefore
ξ(ΦT (x

1
T ))− ξ(ΦT (x2T )) = CT (ξ(x

1
T )− ξ(x2T )).

Thus, proximity in ξ(xT ) coordinates implies proximity of final samples x10 and x20 under ΦT .
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C Factorized Koopman Matrix for Fast Eigenspecturm penalty

To enable control over eigenvalues of the Koopman operator, we describe an efficient implementation
of our Koopman-based Distillation Method (KDM), which we term KDM-F, alleviating the need for
computation of the eigendecomposition during training. Since every matrixC := Cη is diagonalizable
up to an arbitrarily small perturbation of the entries [2], we can write:

C = PΛP−1

where P ∈ Cd×d is an invertible matrix and Λ = diag(λ1, . . . , λd) ∈ Cd×d. This way enables
efficient implementation of spectral penalties on Λ, without the need to compute it on the fly during
training.

To represent this decomposition within a real-valued neural network framework, we learn the real
and imaginary components of the Koopman eigenvectors separately. Specifically, two orthonormal
matrices, Pre and Pim, represent the real and imaginary parts of the eigenvectors. These are
combined into a real-valued block matrix using the standard transformation for complex-to-real matrix
representation:

P =

[
Pre −Pim
Pim Pre

]
∈ R2d×2d .

Rather than explicitly computing the inverse P−1, we parameterize a separate learnable matrix Pinv
with the same structure, constructed analogously from two unconstrained real matrices. This improves
flexibility and avoids numerical instability associated with matrix inversion.

The eigenvalues of the Koopman operator are encoded using polar coordinates. Specifically, the
modulus and phase of each eigenvalue are parameterized as

λj = e− exp(νj) · eiθj = e− exp(νj) (cos(θj) + i sin(θj)) ,

where νj and θj are learnable parameters. Let λre = (real(λj)), λim = (imag(λj)) ∈ Rd be the
aggregated vector of real and imaginary parts of the eigenvalues, respectively. We assemble these
values into a real-valued block-diagonal matrix:

Λ =

[
diag(λre) −diag(λim)
diag(λim) diag(λre)

]
∈ R2d×2d .

At inference time, the latent state vector z ∈ Rd is first augmented to R2d by concatenating a zero
vector: z̃ = [z; 0]. The evolution under the Koopman operator is then computed as

znext = PinvΛP z̃ .

Finally, we discard the imaginary part and retain only the first d entries to return a real-valued output
of the same dimensionality as the input.

This formulation enables us to simulate rich, expressive dynamics through a fully linear evolution in
the lifted Koopman space, while maintaining computational tractability and interpretability. Moreover,
this decomposition is particularly amenable to distillation: the structure of the transformation ensures
that semantic and temporal coherence is preserved during student training, as the model explicitly
disentangles dynamics into magnitude and phase components.
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D Additional Experiments and Analysis

D.1 Ablation Studies

Loss Ablation Study. We conduct an ablation study to evaluate the contribution of each loss
component. As shown in Tab. 5, using onlyLpred or any pairwise combination of the Koopman-related
losses still enables the model to learn, as indicated by moderate FID and IS scores. However,
incorporating all three losses together, including LKoopman, creates a synergistic effect—reducing the
FID from around 10 to 7.83 and achieving a higher IS than any partial combination. Finally, we
highlight the importance of incorporating an adversarial setup, which further improves both FID and
IS scores by enhancing perceptual quality.

Note, integrating adversarial losses into alternative distillation methods for diffusion models is often
non-trivial and presents significant challenges. Many existing approaches lack the architectural
flexibility or training stability required to effectively incorporate such objectives, unlike our proposed
KDM. Notably, we extended GET with adversarial training, which improved its FID from 6.91 to
6.13. However, KDM still achieves a superior FID of 4.68, demonstrating its effectiveness beyond
prior methods.

Table 5: Koopman losses ablation; bold is best and underscore is second-best.

Llat Lpred Lrec Llat + Lpred Lrec + Lpred Lrec + Llat LKoopman L GET + Adv
FID 487 11.2 457 9.53 10.7 11.16 7.83 4.97 6.13
IS 1.00 8.23 1.00 8.82 8.26 8.68 8.83 9.22 8.98

Ablation on Loss Weighting and λadv Sensitivity We investigate the effect of different weightings
for the components of the Koopman loss, namely Lrec, Llat, and Lpred, as well as the influence of
the adversarial weight λadv. The results indicate that the model is robust to moderate changes in
these loss weights, with FID scores remaining within a narrow range (4.94–5.03). For the adversarial
term, we varied λadv ∈ {0.5, 1.0, 0.25} and observed that λadv = 1.0 achieved the best trade-off
between fidelity and stability, yielding an FID of 4.57 compared to 4.98 for λadv = 0.5 and 4.67 for
the default λadv = 0.25 setting used in the main paper. These findings suggest that KDM remains
stable under different loss scalings and that its performance is not overly sensitive to the choice of
λadv, demonstrating strong robustness to training hyperparameters.

Empirical Investigation of Koopman Matrix Size. We evaluate the impact of varying the size
of the Koopman matrix. As shown in Tab. 6, smaller matrices tend to generalize better than larger
ones. This result is somewhat counterintuitive, as the scaling experiments in Sec. 6.2 demonstrate
a clear trend where increasing the number of parameters typically improves performance. We
hypothesize that smaller matrices generalize more effectively, and we leave a deeper understanding of
this phenomenon—through the lens of dynamical systems theory and empirical analysis—for future
research.

Table 6: FID scores across matrix sizes on the CIFAR-10 unconditional task; bold is best.

Size 1024 4096 9216
FID 5.08 7.24 9.41

D.2 Training Stability and Adversarial Loss Convergence

To evaluate the training stability of KDM, we compare the generator and discriminator loss dynamics
of KDM and GET across uniformly sampled training steps. Despite the inclusion of an adversarial
component in KDM, both losses exhibit stable and convergent behavior throughout training, indicating
that the adversarial term does not introduce significant instability in practice. Fig.6 illustrates the
generator and discriminator loss trajectories for both KDM and GET. We discard the 0% step due to
corrupted values in the raw logs. Overall, the results confirm that KDM maintains stable optimization
behavior comparable to GET, while benefiting from enhanced perceptual quality.
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Figure 6: Training loss convergence comparison between KDM and GET. Despite including an
adversarial loss, KDM maintains stable generator and discriminator convergence comparable to GET.

D.3 Additional Qualitative Results

We include additional qualitative results of our method, extending the evaluation presented in the
main text on more datasets and testing scenarios.

Additional Comparison of Student vs Teacher. In Figs. 7, 8, 9, and 10, we present generations
from our model alongside those of the original EDM model. Corresponding blocks indicate samples
generated from the same initial noise.

Figure 7: Unconditional Generation of FFHQ. Sampled images using 79 NFEs with EDM [35] (left),
and using 1 NFE with KDM (right).
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Figure 8: Unconditional Generation of FFHQ. Sampled images using 79 NFEs with EDM [35] (left),
and using 1 NFE with KDM (right).

Figure 9: Unconditional Generation of CIFAR-10. Sampled images using 35 NFEs with EDM [35]
(left), and using 1 NFE with KDM (right).
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Figure 10: Conditional Generation of CIFAR-10. Sampled images using 35 NFEs with EDM [35]
(left), and using 1 NFE with KDM (right).
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Additional Local Structure Analysis. We extend the experiment from Sec. 6.1 to AFHQv2,
conditional CIFAR-10, and unconditional CIFAR-10 datasets, as shown in Fig. 11, Fig. 12, and
Fig. 13, respectively. The results reinforce the conclusions of the main experiment: both EDM and
our distilled model exhibit local semantic coherence, preserving features such as position, color,
identity, and more—even when traversing farther from the original point in noise space.

σ=0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 σ=0 0.05 0.1 0.2 0.3 0.4 0.5 0.6

Figure 11: Unconditional AFHQv2: Comparison of neighborhood exploration across different noise
levels σ. Left: EDM [35]. Right: our method. Each image corresponds to a small perturbation
around the original noise sample.
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Figure 12: Conditional CIFAR-10: Comparison of neighborhood exploration across different noise
levels σ. Left: EDM [35]. Right: our method. Each image corresponds to a small perturbation
around the original noise sample.

σ=0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 σ=0 0.05 0.1 0.2 0.3 0.4 0.5 0.6

Figure 13: Unconditional CIFAR-10: Comparison of neighborhood exploration across different noise
levels σ. Left: EDM [35]. Right: our method. Each image corresponds to a small perturbation
around the original noise sample.
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E Additional Details

E.1 Training and Sampling Procedures Psudo-codes

The training process of the model follows a Koopman-inspired backward mapping approach, augmented
with adversarial supervision. Given a clean-noisy pair (x0, xT ), the model learns a latent Koopman
operator that evolves the noisy encoding backward to approximate the clean encoding, while a decoder
reconstructs the input from the latent space. The model also supports class-conditional dynamics via
Koopman control.

Algorithm 1 Training Procedure
Require: Training pairs (x0, xT ), labels y (optional), model Eϕ, Eψ ,Cη , Dψ discriminator Dγ

1: for each training step do
2: Encode z0 ← Eϕ(x0, 0, y)
3: Encode zT ← Eφ(xT , T, y)
4: Add noise: z̃0 ← z0 + ϵ0, z̃T ← zT + ϵT , where ϵT , ϵ0 ∼ N (0, 0.4)

5: Push via Koopman: zpush
0 ← Cη(z̃T )

6: if conditional Koopman then
7: Add control: zpush

0 ← zpush
0 + Cµ(y)

8: end if
9: Decode: x̂0 ← Dψ(z̃0, 0, y)

10: Decode pushed: x̂push
0 ← Dψ(z

push
0 , 0, y)

11: Compute latent loss: Llat ← ∥z0 − zpush
0 ∥2

12: Compute reconstruction loss: Lrec ← d(x0, x̂0)

13: Compute full pass loss: Lpred ← d(x0, x̂
push
0 )

14: Compute model adversarial loss: LGadv ← CE(1, Dγ(x̂
push
0 ))

15: Compute discriminator loss: LDadv ← CE(1, Dγ(x0)) + CE(0, Dγ(x̂
push
0 ))

16: model Combine losses:

Ltotal ← Lrec + Lpred + Llat + wadv · LGadv

17: Update Eϕ, Eφ, Cη , Cµ, Dψ and Dγ via backpropagation
18: end for

d is a distance measure such as MSE or LPIPS. We utilize LPIPS. CE is cross-entropy loss. At
inference time, the model can sample clean images by reversing from random Gaussian noise xT ,
applying the Koopman operator in latent space, and decoding to the image space.

Algorithm 2 Sampling Procedure
Require: Koopman model: Eϕ, Cη , Cµ, Dψ , labels y (optional)
1: Sample noise xT ∼ N (0, σ2)
2: Encode: zT ← Eφ(xT , T, y)

3: Push: zpush
0 ← Cη(zT )

4: if conditional Koopman then
5: Add control: zpush

0 ← zpush
0 + Cµ(y)

6: end if
7: Decode: x̂0 ← Dψ(z

push
0 , 0, y)

8: return Clean sample x̂0

E.2 Datasets Collection

For the Checkerboard dataset, we sampled using 10 NFEs with EDM [35] or flow matching [46].
Following [24], we sampled CIFAR-10 with 35 NFEs from EDM. For FFHQ and AFHQv2, we
used 79 NFEs using EDM, as recommended.
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E.3 Method Implementation Details

We provide the full code implementation for the Checkerboard and CIFAR-10 (both conditional
and unconditional) datasets in the supplementary material. Due to memory constraints, the imple-
mentations for FFHQ and AFHQv2 will be released shortly. In this section, we briefly describe the
implementation details of each method, while we encourage the reader to refer to the codebase for
exact configurations. We train our models for 800k iterations with the Adam optimizer [39] at a fixed
learning rate of 3e-4. We do not use warm-up, weight decay, or any learning-rate schedule. All runs
are on a single NVIDIA A6000 GPU or RTX4090. Note that our method can fully support distributed
training.

Checkerboard. For this dataset, we build upon the implementation of [47]. Both x0 and xT are
encoded using the same denoising architecture as described in their work. The decoding of z0 is
performed using the inverse of this module. The Koopman operator is implemented as a simple linear
layer. Complete implementation details are available in the shared code.

CIFAR-10, FFHQ, and AFHQv2. We adopt the SongUNet architecture from [35] for encoding
x0 and xT , as well as for decoding z0. To reduce latent dimensionality, the output channels of the
network are set to 1, effectively reducing the latent space size by a factor of 3. The Koopman operator
is implemented either as a standard linear transformation or using our custom Fast Koopman module.
To maintain architectural fairness, we downscale all networks to match the total parameter count
of the original Karras network [35] and the GET distillation model [24]. The FFHQ and AFHQv2
configurations follow a similar encoder-decoder structure with one key difference: a linear projection
layer is appended to the end of the encoder and the beginning of the decoder to further control
the latent space dimensionality. All other aspects remain consistent across datasets. Note that the
discriminator is trained using a separate optimizer, akin to the Koopman module’s optimizer.

Hyperparameters and Training. We provide complete training scripts along with plug-and-play
configuration files in the supplementary material. An overview of the key hyperparameters used for
each dataset is summarized in Tab. 7. Overall, our method requires minimal hyperparameter tuning
and we did not perform any hyperparameter search.

• Unet Out Channels: Controls the number of output channels in SongUNet.

• Unet Model Channels: Determines the internal channel width, affecting the model’s
capacity.

• Noisy Latent Injection: A Gaussian noise term ϵ ∼ N (0, 1) added to latents (as described
in the pseudocode) to improve generalization and mitigate numerical instabilities.

• Adversarial Weight: Applied to the adversarial loss term in our generator loss; not used for
the discriminator loss directly.

• Linear Module: Indicates the presence of an additional linear layer for compressing the
latent space, applied at the output of the encoder and the input of the decoder.

Table 7: Model Hyperparameters Across Datasets
Configuration Checkerboard CIFAR-10 FFHQ AFHQv2
Batch Size 4096 128 64 64
Learning Rate (LR) 0.0003 0.0003 0.0003 0.0003
Iterations 800k 800k 800k 800k
Unet Out Channels 1 1 1 1
Unet Model Channels 64 64 32 32
Noisy Latent Injection 0.4 0.4 0.4 0.4
Adversarial Weight 0.01 0.01 0.01 0.01
Linear Module No No Yes Yes
Latent Dim Size 1024 1024 512 512
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Table 8: Human Evaluation of Image Realism. The reported ratio reflects the number of times
participants selected the model-generated collage as more realistic, out of a total of 300 evaluations.

EDM (Teacher) KDM (Student)
Ratio 45% 55%

E.4 Human Evaluation Experiment

While the Fréchet Inception Distance (FID) is widely used to evaluate the quality of images generated
by generative models, recent studies have highlighted its limitations in aligning with human judgments
of image realism. For instance, Jayasumana et al. [34] demonstrate that FID can contradict human
evaluations, particularly in assessing perceptual quality and semantic alignment, due to its reliance
on Inception-v3 features and the assumption of Gaussian distributions. Similarly, Otani et al. [64]
emphasize that automatic metrics like FID often fail to capture the nuanced aspects of human
perception, underscoring the need for standardized human evaluation protocols. Furthermore,
Kynkäänniemi et al. [44] reveal that FID can be manipulated by aligning top-N class histograms
without genuinely improving image quality, indicating potential biases in the metric. These findings
suggest that while FID provides a useful quantitative signal, it may not fully encapsulate human
perceptions of image realism, highlighting the importance of incorporating human evaluations when
assessing generative models.

Therefore, in the main paper, we report the results of a human evaluation experiment designed to
compare our method against EDM. Specifically, we curated 10 image collages (6×6) of human faces
generated by the teacher model (EDM, 79 NFEs) and 10 collages generated by our student model (1
NFE), using samples from the FFHQ dataset. Each comparison slide presents one collage from each
model, displayed side-by-side as illustrated in Fig. 4, with the order randomized. We then asked 30
human raters to evaluate 10 such slides and choose, for each, which collage appeared more realistic.
If both appeared equally realistic, they were instructed to make a random choice. This process yielded
300 total decisions. We report in the main paper and in Tab. 8, the proportion of times each model
was preferred. Finally, we attach to the appendix both the slides that we sent to the practitioners
and the Excel that aggregates the results. The results indicate that decisions were made almost at
random, suggesting that participants had difficulty distinguishing between the student and teacher
generations. This implies that, despite existing FID gaps, human evaluators found it hard to perceive
meaningful differences. Participants reported that both collages included highly realistic images, as
well as images with noticeable artifacts that appeared unrealistic, in their judgment.

E.5 Cost and Efficiency of Offline Distillation

An important consideration in offline distillation is the total computational cost, which includes both
the training of the student model and the one-time cost of generating the teacher-produced noise–data
pairs. While this pair generation step incurs an initial overhead, it is performed only once and can be
reused across multiple student architectures or experiments, effectively amortizing its cost. Following
the analysis of [24], which explicitly incorporates the cost of data-pair generation into its complexity
assessment, the overall computational load of offline distillation remains favorable compared to online
approaches. This is primarily because online distillation requires repeated access to the full teacher
model throughout training, resulting in substantially higher neural function evaluations and memory
usage. In our experiments on the main paper, we observe that even when accounting for the data
generation step, our method achieves a markedly better trade-off between cost and performance than
prior offline frameworks such as GET. These results collectively support that, despite the initial
preprocessing overhead, offline distillation constitutes an efficient and scalable alternative for practical
deployment. To see the full analysis between online and offline approaches, please refer to [24].

E.6 Parameter Scaling

We report the full results of the scaling experiment shown in Sec . 6.2, including IS score from the
parameter scaling comparison in Tab. 9. The results demonstrate that our approach consistently
outperforms GET in terms of FID across all model sizes, except for IS in 20M, indicating superior
perceptual quality. Notably, the improvement is more pronounced as the model size increases, with
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our 84M model achieving an FID of 4.89 compared to 7.19 for GET. In terms of IS, our method
matches or surpasses GET, with particularly strong results at larger scales. These results underscore
the scalability and effectiveness of our approach.

Table 9: FID and IS scores for different model sizes, comparing our approach with GET.
20M 38M 84M

Ours GET Ours GET Ours GET

FID 10.2 10.72 5.04 8.00 4.89 7.19
IS 8.50 8.69 9.12 9.03 9.11 9.09

E.7 Extended Outlier Analysis

In Sec. 6.1, we present the results of our model’s component (left side) in the experiment shown in
Fig. 14. Outlier detection was performed using the DBSCAN algorithm with a distance threshold
of 0.15. Interestingly, our model exhibits a slightly increased number of outliers. We hypothesize
that this may be due to early stopping during training, as our primary objective was not to maximize
performance on this particular dataset, but rather to gain insight and intuition into the nature of the
learned dynamics. Finally, we observe that the outlier phenomenon is inherited from the teacher
model (right side), suggesting that it is a more general characteristic of the generative dynamics rather
than an artifact introduced by the distillation process.

Figure 14: Outlier analysis on generated checkerboard patterns. The two left images are our model
(student), and the two images on the right are from the flow matching model (teacher).

F Additional Discussion of Future Work and Current Limitations

In this study, we took a significant step toward leveraging dynamical systems theory for offline
distillation, demonstrating its strong potential in this domain. In this section, we outline several future
research directions that we believe are both promising and intellectually compelling.

Standalone Koopman Generative Model. Koopman theory enables modeling nonlinear dynamical
systems in a transformed space where they can be analyzed linearly. This raises an intriguing question:
Can the Koopman framework serve as a standalone generative model, capable of learning data
distributions from scratch? While the question remains open, exploring this direction could yield a
novel and theoretically grounded framework for generative modeling.

Utilization of Full Trajectory Information. Our current offline setup relies solely on noise-data
pairs extracted from pre-trained teacher models. However, the diffusion process inherently includes
intermediate steps that are discarded. We hypothesize that leveraging this full trajectory information
could enhance trajectory alignment and improve student performance. Moreover, Koopman theory
naturally accommodates multi-step signals, making this a promising direction for further investigation.
Additionally, the current framework does not support a quality-versus-sampling-steps trade-off, which
some online methods do enable. Future work incorporating the full diffusion trajectory could integrate
this flexibility into our approach.
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Incorporating Broader Koopman Theory Literature. The connection between Koopman theory
and diffusion model distillation opens the door to a rich body of theoretical and practical tools. On the
theoretical side, works on sample complexity and error bounds for Koopman operators [66, 14, 57]
may provide insights into convergence guarantees. Information-theoretic perspectives [48] could
offer new modeling constraints or regularization schemes. On the practical side, methods for
rare-event sampling [87] may improve long-tail generation capabilities. Finally, while the current
mathematical formulation supports discrete Koopman evaluation, the underlying theory naturally
extends to continuous settings as well. Exploring these directions could substantially extend and
generalize the impact of our framework.

Enhancing the Adversarial Setup. While adversarial components have been shown to be critical in
many distillation methods [85, 38], our current implementation uses a basic discriminator architecture
with standard loss functions and training schemes. We believe that integrating more advanced
adversarial paradigms could significantly boost performance, potentially closing the gap with
state-of-the-art online distillation methods.

Decision Boundary Insights. In our synthetic experiments, we identified a common cause underlying
failure modes or “outliers” in the generative dynamics. Further investigation is needed to determine
whether this phenomenon generalizes to more complex datasets. If it does, it could guide the
development of strategies such as uncertainty estimation, selective sampling to avoid generating
low-quality outputs, incorporating structural constraints into the latent space to prevent such failures,
or introducing auxiliary self-supervised objectives—such as contrastive learning—to enhance the
model’s ability to distinguish between semantically similar groups.

Toward Broader Applications. Due to limited computational resources, we were unable to extend
our offline distillation framework to more complex tasks, such as text-to-image generation, that require
large-scale compute infrastructures. It will be interesting to explore how our method can scale or
adapt to other domains and tasks. Additionally, because our method makes no assumptions about the
initial and terminal states of the underlying dynamical system, we believe it is applicable to a broader
class of generative models, including DDBMs [92], stochastic interpolants [1], and others [17].
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