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Abstract

Deep learning has become a popular tool across var-
ious fields and is increasingly being integrated into real-
world applications such as autonomous driving cars and
surveillance cameras. One area of active research is recog-
nizing human actions, including identifying unsafe or ab-
normal behaviors. Temporal information is crucial for ac-
tion recognition tasks. Global context, as well as the tar-
get person, are also important for judging human behav-
iors. However, larger networks that can capture all of these
features face difficulties operating in real-time. To address
these issues, we propose A*: Atrous Spatial Temporal Ac-
tion Recognition for Real Time Applications. A* includes
Sfour modules aimed at improving action detection networks.
First, we introduce a Low-Level Feature Aggregation mod-
ule. Second, we propose the Atrous Spatio-Temporal Pyra-
mid Pooling module. Third, we suggest to fuse all extracted
image and video features in an Image-Video Feature Fusion
module. Finally, we integrate the Proxy Anchor Loss for ac-
tion features into the loss function. We evaluate A* on three
common action detection benchmarks, and achieve state-
of-the-art performance on JHMDB and UCF101-24, while
staying competitive on AVA. Furthermore, we demonstrate
that A* can achieve real-time inference speeds of 33 FPS,
making it suitable for real-world applications.

1. Introduction

Deep learning has undergone a significant transforma-
tion in recent years with the shift towards handling video
data that more closely simulates real-world scenarios, in
contrast to its previous focus on image-based problems
[6,7]. With the proliferation of surveillance cameras, there
is an increasing need for analyzing human behavior. For ex-
ample, detecting unsafe behavior such as falling and faint-
ing can be life changing in elderly homes. Recognizing
theft and other illegal acts can improve safety and reduce
losses if detected on time. Additionally, the increasing inter-
est in autonomous vehicles has raised the need for recogniz-
ing human behaviors to help predict future actions of pedes-
trians and drivers. These applications require real-time and
instantaneous action recognition. Therefore, there is a crit-

ical need for network architectures that can accurately and
promptly detect real-world actions.

The early works on action-related tasks proposed a two-
stream approach [19,41] that combines human joint predic-
tion and optical flow estimation. Although this approach is
computationally advantageous, it cannot capture long-range
motion interactions, leading to suboptimal results. By con-
sidering how humans recognize actions, we observe that
both spatial and temporal, local and global context plays
a significant role in distinguishing actions. To address these
limitations, 3D convolutions [21,49,51] are designed to cap-
ture not only spatial information but also temporal changes
in motion. Recent networks [ 13,50] have proposed to lever-
age 3D convolutions and have demonstrated significant per-
formance improvements in detecting actions. However, the
use of convolutions restricts the networks to consider infor-
mation at a single scale, and multi-scale spatial and tempo-
ral cues are essential to better describe actions. Moreover,
these networks are usually computationally more expen-
sive and cannot be used for real-time applications. Current
works [25] focus on further improving action detection re-
sults while aiming for real-time inference. However, faster
networks still tend to confuse similar actions such as sitting
and standing. To address these limitations, we propose A*:
Atrous Spatial Temporal Action Recognition for Real Time
Applications. A* focuses on improving action recognition
in real-world scenarios, where predictions need to be made
in real-time and without knowledge of future frames. To
achieve this, A*’s network is designed to include space and
time information at different scales.

A* is an end-to-end network that simultaneously local-
izes humans and predicts their actions. For the person de-
tection task, we use the fast YOLO-based [2, 38] frame-
work, and for the action recognition task, we use a com-
mon 3D convolution-based network. Within this baseline
architecture, A* introduces four aspects aimed at boost-
ing performance. First, it considers the surrounding global
context by aggregating low-level features in a low-level
feature aggregation (LLFA) module. Second, it proposes
Atrous Spatio-Temporal Pyramid Pooling (ASTPP) to con-
sider multi-range temporal information. Third, it suggests
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to extract frame-specific features and combine all features
in an Image-Video Feature Fusion (IVFF) module. Finally,
it uses Proxy Anchor Loss (PAL) [23] for action features
to distinguish between similar behaviors. A* operates in
real-time at 33 Frames Per Second (FPS) on a RTX 3090
GPU, achieving state-of-the-art (SOTA) performance in the
real-time setting on the JHMDB [20], UCF101-24 [43] and
Atomic Visual Actions (AVA) v2.1 [15] datasets. In sum-
mary, our contributions include the following:
* We propose four additions that are necessary to ob-
tain richer features for the action detection task: LLFA,
ASTPP, IVFF and action-PAL.

* We propose a single-stage network architecture based
on YOLO and demonstrate a processing speed of 33
FPS, making it suitable for real-time applications.

* We achieve outstanding performance on the J-HMDB-
21, UCF101-24 and AVA v2.1 datasets against other
real-time action recognition methods.

2. Related works

Video Understanding The main purpose of backbone net-
works is to extract domain-specific features. The correct
choice of backbone network, whether it is ResNet [ 18], Ef-
ficientNet [47], ViT [8], or Swin Transformer [32], plays
an important role in enhancing image-based downstream
tasks such as object detection and semantic segmentation.
For video understanding tasks, the choice of backbone is
equally as important. Various methods propose to ex-
pand the above-mentioned networks to 3D, to simultane-
ously account for the spatial (2D) and temporal (1D) di-
mensions. The Inflated-3D convolution (I3D) network [3] is
constructed by extending the 2D pre-trained weights of the
Inception network [46] to 3D. A 3D version of the widely
used ResNet model can easily be constructed by swapping
the 2D convolution for 3D convolution. The R(2+1)D [52]
network, is designed to consider the computational cost
of 3D convolution. It speeds up the original 3D convolu-
tion computations by processing convolutions for the spa-
tial axis first, and then for the temporal axis. The Slow-
Fast [13] network tries to learn the task of optical flow by
considering semantic information in a slow path (low frame
rate) and by capturing frame-to-frame motion in a fast path
(high frame rate). The X3D [12] authors propose a family
of networks that expand a 2D classifier in various dimen-
sions based on video data factors (video data length, sam-
pling rate, etc.) and model-related factors (channel, number
of layers, etc.). Given its success in image understanding
tasks, several approaches using the Transformer architec-
ture for video understanding [, 10, 33] and video action
classification [27,59] are being introduced.

Action Detection Networks Previous action detection
works can be classified into multi-stage or single-stage ap-
proaches. Multi-stage methods first detect bounding boxes,

then perform the action recognition task. Single-stage ac-
tion detection methods classify actions and regress bound-
ing boxes simultaneously in an end-to-end manner. The
multi-stage methods can be further subdivided into two cat-
egories.

For the first set of networks (detector-based networks)
[10,11,13,48], a Faster-RCNN [39] network trained on the
COCO [30] dataset is typically used to predict bounding
boxes. Then, features are extracted for each target person
using 3D RolAlign [17]. Finally, action classification is per-
formed on each feature. The second set of multi-stage net-
works (two-stage action detection networks) [12, 14,35,56]
first extracts rough bounding boxes through a Region Pro-
posal Network (RPN). The subsequent process is simi-
lar to the detector-based methods described above. How-
ever, bounding box regression and action classification are
learned together. Detector-based methods show higher per-
formance because bounding box regression and action clas-
sification are performed separately, making it easier com-
pared to learning both simultaneously. However, because
the detector and classification network are separated, there
is latency during inference time. Moreover, global context
information can be lost due to the use of the 3D RolAlign
features. This is because the RolAligned features are ex-
tracted from the predicted bounding box areas. Thus, the
features consider only the area within the target bounding
box, and not the global context.

The single-stage methods [5,25,31,57,60] are based on
the YOLO framework [2, 38], which is effective for both
training and inference. Unlike the 2D YOLO network, these
approaches use video data. They perform action detection
on a target frame (keyframe) by constructing a light 2D con-
volution path that extracts the keyframe’s features, and a
3D convolution path that captures the video’s entire context.
Compared to the multi-stage methods, the YOLO-based ap-
proach can operate at speeds that are considered real-time.

Our work aims to operate in real-world applications,
where not only accuracy but also speed are of utmost impor-
tance. Therefore, we adopt the single-stage YOLO-based
action detection network, YOWO [25], as our baseline. We
address three shortcomings of the YOWO network. Firstly,
we improve the low-level feature aggregation. Secondly, we
propose the ASTPP module to obtain multi-range temporal
information and spatial long-range information. Thirdly, we
modify the loss function and include the PAL [23] for action
features to distinguish between similar actions effectively.
As a result, our network achieves SOTA performance while
operating in real time.

3. Methods

This Section dives deeper into our proposed approach to
action detection, A*, illustrated in Figure 1. Our method
tackles four main aspects that should be considered when
detecting actions. Firstly, understanding the surrounding
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Figure 1. The Overall Network Architecture of A*. A video clip is fed into a 3D backbone to extract low-level and high-level video
features. The features are passed through the ASTPP module to gather multi-range spatial and temporal contexts. All features are then
fused and used to regress bounding-box coordinates and to classify actions. Best viewed in color.
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Figure 2. Confusion Matrix Between Predicted and Ground-Truth Actions for the JHMDB-21 Dataset. Predictions from YOWO are shown
in matrix A, and predictions from A* are shown in matrix B. The confusion score between wrong predictions and ground-truth actions
is illustrated: the higher the score, the higher the confusion. Confusion scores of correct predictions are ignored (white diagonal in the

figures) for visualization purposes. Best viewed in color.

global context is an important factor in understanding hu-
man behavior. For example, the surfing action can more
easily be detected if one recognizes that the surrounding
environment is the sea. Therefore, we propose to use high-
level along with low-level features to capture the global
surrounding context of the image. This is done through
our LLFA module detailed in Subsection 3.1 and shown in
green in Figure 1. Secondly, unlike image tasks, summariz-
ing temporal information is crucial for video-understanding

problems. Therefore, we propose an ASTPP module that
can consider multi-range temporal information explained in
Subsection 3.2 and illustrated in blue in Figure 1. Thirdly,
when detecting actions at a specific time-instance, tempo-
ral and spatial noise from other time-instances might hinder
the prediction. Therefore, we propose to extract keyframe-
specific features in the LLFA and fuse all our features in an
IVFF module, described in Subsection 3.3 and shown in

in Figure 1. Finally, human behaviors can have very
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similar features that models have difficulty differentiating.
For example, sitting and standing have the same behavior if
the temporal axis is reversed. Therefore, we propose to use
the action-PAL to better discriminate between action fea-
tures (shown as a sub-box in Figure 1).

Our method is designed as a single-stage network for
real-time inference. It is based on the YOLO framework
[2,38], using the YOLO training methods, but applied to
video tasks. Our model takes K video frames of size
H x W x C as input z (x has size (C x K x H x W)").
The input frames are fed into a 3D video backbone net-
work to extract video features (VF). VFs at different lev-
els are fed into the LLFA module. Within the LLFA, VFs
pass through our ASTPP module. Then, the outputs from
the LLFA module go through the IVFF module, outputting
features that now include all the necessary spatio-temporal
signals for action detection. Finally, the fused features are
concatenated and used for the final network predictions: ac-
tion classification and bounding box regression. During the
training phase, additional features from the LLFA module
are used to compute the action PAL.

3.1. Low-level Feature Aggregation

To correctly detect actions, important aspects to consider
are the surrounding global context, the human-object in-
teractions, and the human-human interactions. However,
as the convolution layers get deeper, only the high-level
features remain. This results in losing information about
the surroundings (global context). Among former meth-
ods, HRNet [53] combines low-level and high-level fea-
tures to preserve the semantic information of the spatial
axis. With a similar motivation, we adopt a feature aggre-
gation approach illustrated in green in Figure 1. The in-
puts to our low-level feature aggregation module are VFs
extracted from different stages our 3D video backbone net-
work. We extract both the usual high-level features from
our backbone’s fourth (last) stage and low-level features
from our backbone’s second stage. Empirically, this fea-
ture combination yielded the best results (refer to ablation
Table 5). The low-level features, V F'2, have dimensions:
(Cyre X T x H x W). The high-level features, V F'4, have
dimensions: (Cy gy x T x H x W). T refers to the dimen-
sion of the temporal axis, which is 8 in our case. Then, V' F'2
and V F'4 go through the ASTPP module explained in Sub-
section 3.2 to obtain spatially and temporally rich low-level
and high-level features for the entire video sequence. Con-
currently, features from V' F2 and V F'4 corresponding to
the target frame are extracted, by drawing out features only
at the temporal dimension corresponding to this keyframe.
Assuming temporal consistency along the temporal axis,
this is done by slicing the tensor at the center of the tem-

'We purposely omit the batch-size dimension throughout the paper to
ease readability.

poral axis?. Therefore if T = 8, we extract the feature lo-
cated at t = 4,t € [1,T]. This allows to focus the action
detection predictions on the desired keyframe, and further
motivation behind this is detailed in Subsection 3.3. These

image-specific features, ImageV Fi,i = 2,4 with size
(O HXW, i = 2,4), are concatenated with the outputs

from the ASTPP module, VideoV Fi,i = 2,4. To do so,
these ASTPP outputs are first averaged about the temporal
axis to match the size of the image-specific features. Then,
the concatenation is done along the channel dimension and
the final output has size ((CY.Fi+CVEi ) x H x W) where

i i img video
CYil = Oyl = Cvpii = 2,4. Finally, the LLFA
module outputs descriptive high-level features whilst also
conserving low-level features, both of which are crucial for

accurate action classification and bounding-box regression.
3.2. Atrous Spatio-Temporal Pyramid Pooling

Considering multi-range temporal features and long-
range spatial information is very important in action recog-
nition/detection tasks. 2D and 3D convolution operations
inherently capture some local spatial and temporal cues.
A known way to further increase the network’s receptive
field is to use dilated (atrous) convolutions. In [4], the au-
thors introduce the Atrous Spatial Pyramid Pooling (ASPP)
scheme to capture objects and contextual information at
multiple spatial scales. The ASPP is computed by employ-
ing multiple parallel convolution filters with different dila-
tion rates. In our work, we extend the ASPP to additionally
capture temporal information and propose the ASTPP mod-
ule, shown in blue in Figure 1.

For a simple 1D signal z(a), the 1D dilated convolution
D(a) with a filter w can be written as follows [4, 62]:

M
D(a) = zla + 7% m] * wy,. (1)

m=1

Where M represents the kernel length, and 7 indicates the
input’s sampling stride (i.e. the dilation size of the convo-
lutions). Note that a rate » = 1 results in the standard 1D
convolution formulation. To capture both the spatial and
temporal information of video data, we extend the 1D di-
lated convolution from Equation 1 to a 3D dilated convolu-
tion formulation. For a 3D input z(a, b, ¢), we express the
3D dilated convolution D(a, b, ¢) as follows:

D(a,b,c) =

M,N,O @)

Z x[a—i—ra *m,b—l—rb*n,c—FTc*O] * Wm.n,o

m,n,o

Where the kernel w is now of size (M, N, O), and the rates
Tas T, and 7. represent the dilation strides along all three

2This is the case when past and future frames are used during training.
If only past frames are used, as in the real-time setting, the tensor will be
sliced at the last index of the temporal axis.
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dimensions respectively. In practice, we use cuboid ker-
nels such that M = N = O. Moreover, for a given pyra-
mid level j in our ASTPP, we utilize equal dilation rates
such that rJ = r{ = rJ = rJ. The 3D dilated convolu-
tion from Equation 2 is the building block of our ASTPP
module. In our ASTPP, the convolution operations are per-
formed on the VF;,¢ = 2,4 with four different dilation
rates (r' = 1,72 = 3,73 = 6, r* = 9), and the channels af-
ter each convolution decrease from C;,, = Cy p;, i = 2,4 to
Cout = Cip /4. In contrast, the kernel size remains the same
for all convolutions. Finally, all four 3D convolution out-
puts are concatenated along the channel dimension and fed
into a last 1 x 1 x 1 convolution layer to better aggregate the
atrous convolution feature maps. The output of our ASTPP
(VideoV Fiyi = 2,4) is of size (CVF x T x H x W)
where CVF" = Cyp;,i = 2,4, which is the same as

video

the input size to the module. Our ASTPP differs from the
ASPP [4] in two ways. Firstly, our ASTPP employs 3D
instead of 2D convolutions, to simultaneously capture the
surrounding context and facilitate long-range interactions.
Secondly, there is no Global Average Pooling (GAP) path.
Empirically, the addition of the GAP results in a decrease
in performance (refer to ablation Table 6 (column 3)). This
is because the information for classification and regression
is lost in the upsampling process occurring after the GAP-
Convolution stage. With our ASTPP, we can extract richer
features compared to the conventional convolution layer by
considering spatial and temporal features with long-range
and multi-range interactions.

3.3. Image-Video Feature Fusion

The input video data for action detection tasks often in-
cludes unintended frames such as scene transitions. This
induces noise when classifying the keyframe’s action due
to information unrelated to this keyframe. Moreover, the
position of people changes in successive frames of the input
video, introducing a large amount of noise in the bound-
ing box regression task. As action recognition is performed
on the keyframe, this extra noise causes a decrease in ac-
curacy. Some works [25, 60] suggest to feed the keyframe
into a 2D backbone and the video sequence into a 3D back-
bone, later aggregating the features maps. Instead, in our
work we propose to extract the keyframe information di-
rectly from the VFs by the slicing process explained in Sub-
section 3.1. Adding this keyframe-specific feature helps to
focus the action classification and bounding-box regression
on the target frame, and is empirically confirmed by our ab-
lation results in Table 6 (column 4). Feature fusion is not a
new concept. Our novelty comes from the features used as
inputs to our IVFF module: the ImageV Fi,i = 2,4 and
VideoV F'i,i = 2,4 from the LLFA module. The fusion of
these features is the scope of our IVFF module described in

in Figure 1.
The input to the IVFF is a set of 2D feature maps (tem-

poral axis is averaged in the LLFA module), thus 2D convo-
lutions are now used instead. Our IVFF is mainly composed
of a typical self-attention block [54], which aims to embed
information about the frame-to-predict into the full video
sequence. Moreover, the self-attention block helps empha-
size and fuse the global context from the video features and
the local information from the image features, crucial for
action recognition. Our IVFF outputs C},.q feature maps
of size (H x W), where Cheqq is smaller than the input
channel size to reduce computational cost.

3.4. Loss function

In real-world situations, various types of human behav-
iors can look the same action when viewed in reverse time
order and models often confuse them. Figure 2 A shows
the correlation matrix between ground-truth (GT) actions
(vertical axis) and actions predicted by the baseline network
YOWO [25] (horizontal axis). We notice that several action
pairs having a temporal ambiguity are erroneously predicted
by YOWO. For example, standing (17) is predicted as sit-
ting (16), and running (12) is confused with walking (20).
To solve this problem, we adapt the PAL [23] from metric-
learning and use it for action detection as an additional loss
to better discriminate between temporally ambiguous ac-
tions. This allows the model to learn different features even
for similar actions. The formulation for the action-PAL is
as follows:

1 —ols(xT —
Lpal(X)ZW |1 Do et

pEPT JJEX;
(3)
1
4+ — Z 1+ Z ea(s(fl”p)+5
P
7] peP T€EX,

Where § and « are positive numbers representing a margin
and a scaling factor respectively. s(.,.) refers to the cosine
similarity. P is the set of all proxies and P is the subset of
positive proxies in a given batch. For each proxy p € P, we
partition the batch’s action embedding vectors X into two
subsets: X;r contains the positive action embeddings asso-
ciated with p, while X; consists of the remaining vectors
inX (e, X, =X — X}j).

Other than the action-PAL, our approach builds upon
YOLO’s [2,38] typical loss functions to train our network.
Specifically, for the confidence score (L,y;) we utilize the
Binary Cross Entropy loss (BCE), for classification (L)
we employ the Focal loss [29], and for bounding box re-
gression (Ly,,) we adopt the GloU [40] loss. In the case of
the AVA dataset [15], requiring multi-label classification,
we replace the Focal loss with a BCE Loss for each class.
Each loss term is weighted by a corresponding coefficient A
and the total loss is calculated as follows:

L= )\objLobj + Aclchls + )\bowLbow + )\paleal (4)
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4. Experiments

To verify the effectiveness of the proposed A*, we per-
form experiments on four benchmarks, detailed in Subsec-
tion 4.1. Then we explain our experimental setup in Sub-
section 4.2. Finally, we report our results and ablations in
Subsections 4.3 and 4.4.

4.1. Datasets

J-HMDB-21 is a subset of the HMDB-51 [26] dataset, spe-
cific for action recognition. It consists of 21 action classes,
each having up to 55 video clips, for a total of 31,838 an-
notated frames (320 x 240). Each video clip is trimmed to
capture a single action. To ensure comparability with other
methods, we present the frame mean average precision
(mAP) results for split-1 of the dataset. The frame mAP is
evaluated at an Intersection over Union (IoU) threshold of
0.5, which is consistent with the evaluation protocol used
by other methods.

UCF101-24 is a subset of the UCF101 [43] dataset, specifi-
cally designed for spatio-temporal action detection. It com-
prises 24 action classes, mainly related to sports activities,
and consists of 3,207 untrimmed videos, each annotated
with human bounding boxes at the frame level. We adopt
the same testing protocol as for the J-HMDB-21 dataset.

AVA [15] is a realistic and multi-class dataset consisting of
80 action classes and a total of 430 videos. The videos are
split into 235 for training, 64 for validation, and 131 for test-
ing. The 1.62M annotations are assigned at 1 FPS and for
each annotation. As in previous work [15], we evaluate our
performance on 60 classes and use at least 25 elements for
validation. The AVA benchmark uses frame-level Average
Precision (Frame-AP) for evaluation, with an IoU threshold
of 0.5. We benchmark on AVA v2.1 and v2.2.

4.2. Training and Testing

During the training stage, we create small clips of 32
frames in two ways: only past and current frames for the
real-time setting (RTS) and frames on either side of the
keyframe for the offline setting (OS). Each frame under-
goes various augmentations (random horizontal flip, ran-
dom crop, distortion) and is resized to 2242 for the RTS
and to 2562 for the OS. We use the AdamW [34] optimizer
and a multi-step learning rate decay scheduler. SlowFast-
R50 [13] is employed as the backbone network for JHMDB
and UCF101-24, while SlowFast-R101 [13] is used for the
AVA experiments. We start from SlowFast checkpoints [9]
pretrained on the Kinetics dataset [22]. For the JHMDB
and UCF101-24 datasets, we train our network for 5 epochs
with a learning rate (Ir) warm-up, an initial Ir of 1e — 4 and
a 0.5 decay at every epoch. For AVA v2.1 and v2.2, we per-
form a 0.5 decay the 3rd, 4th, 5th, and 6th epoch, using an
initial Ir of 1e — 4. During the testing stage, the video clips
are created as for training, depending on the RTS or OS. No
additional augmentation techniques are employed.

Table 1. Comparison of our Model’s Performance Against Pre-
vious Methods on the JHMDB and the UCF101-24 datasets.
Underlined values are the best of each category of methods. Bold
values are best overall results. f: number of frames. *: models use
additional flow information as input. : our re-implementation

Model Input Backbone JHMDB  UCF101-24
Multi-Stage Offline Methods

TacNet [42] 16f - 65.5 72.1
MOC [28] 1f - 70.8 78.0
PCSC* [44] - - 74.8 79.2
HISAN® [37] 15f - 76.7 73.7
ACRN [45] 20f - 77.9 -
HIT [11] 32f SFR50 83.8 84.8
End-to-End Offline Methods

AVA® [15] 10f - 73.3 78.8
WOO [5] 8fx8 - 80.5 -
TubeR [64] - CSN-152 82.3 83.2
STMixer [57] 32fx2  SFRI101-NL 86.7 83.7
A* (Ours OS) 32f SFR50 90.4 89.2
End-to-End Real-Time Methods

YOWO [25]% 16f X3DM 67.9 -
YOWO [25] 16f RNext101 74.4 80.4
YOWO [25]F 32f SFR50 78.2

A* (Ours RTS) 16f X3DM 71.4 83.21
A* (Ours RTS) 16f ResNext101 75.9 83.82
A* (Ours RTS) 32f SFR50 81.5 85.62

4.3. Comparison to Previous Works

Our quantitative results are shown in Table 1 for the J-
HMDB-21 and UCF101-24 datasets, and in Table 2 for the
AVA dataset. In our analysis, we categorize methods into
real-time methods that care about inference speed and use
only past frames for prediction, and offline methods (multi-
stage and end-to-end) that use large backbones and use fu-
ture frames for prediction.

Real-time methods: Our primary focus is to perform ac-
tion recognition in real-world setting, so we compare A*
(ours with RTS) to YOWO [25], the main method tack-
ling the RTS. For JHMDB experiments, we train A* and
YOWO with multiple small and large backbones. A* con-
sistently outperforms YOWO by large margins: from +1.5
frame-mAP to +3.5 frame-mAP depending on the back-
bone. Meanwhile, both A* and YOWO with SFR50 back-
bone achieve real-time inference speeds on an RTX 3090
GPU, respectively 33 and 57 FPS. A more comprehensive
speed analysis in provided in the Appendix. Similarly, on
UFC101-24, our A* surpasses YOWO by 3.4 frame-mAP
with the ResNext101 backbone. On AVA v2.1, a similar
trend is observed, with A* surpassing YOWO by 3.3 frame-
AP. A*’s inference speed decreases to 20 FPS (on RTX
3090) due the larger backbone used for AVA, but remains in
the real-time realm. Our results confirm A* as the method-
of-choice for real-world applications where instantaneous
predictions are needed, such as in autonomous driving.

Offline methods: Most previous works perform action
recognition in an OS, as intuitively using future frames
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Table 2. Comparison of our Model’s Performance Against Previous Methods on the AVA v2.1 and v2.2 datasets. Underlined values
are the best of each category of methods. Bold values are best overall results. Abbreviations are the following. f: nb. frames, R-I3D:

ResNet-I3D, RNext101: ResNext-101 [

], I3D: Inflated 3D Convolutions [3], S3D(+G): Separable 3D Convolutions (with gating) [

I,

Tx: Transformer [36], GCN: Graph Convolutional Network [24], SFR: SlowFast [13], NL: Non-Local [54], K: Kinetics [22]. *: methods
randomly scale the short side of images within a range during training, and the reported number is the minimum value of the range.

Frame-AP (0.5)

Model Input Input Size Backbone

v2.1 v2.2
Multi-Stage Offline Methods
ACRN [45] RGB (-), Flow (-) - S3D-G 17.4 -
SMAD [63] RGB (36f) 2562 13D, GCN 222 -
MeMVIT [55] RGB (16f x 4) 224# MViTv2-16 (K400) - 28.5
MeMVIT [55] RGB (32f x 3) 2244 MViTv2-24 (K600) - 31.5
HIT [11] RGB (32f) 256% SFR101 (K700) - 32.6
End-to-End Offline Methods
AVA Baseline [15]  RGB (40f), Flow (40) 320 x 400 13D 15.6 -
STEP [61] RGB (12f) 4002 13D 18.6 -
13D Baseline [3] RGB (64f) 2562 13D 20.78 -
R-I3D Baseline RGB (32f) 2562 R-13D 212 -
VTr [14] RGB (64f) 4002 I3D, Tx 24.9 -
WOO [5] RGB (8f x 8) 3204 SFR50 (K400) 25.2 25.4
WOO [5] RGB (8f x 8) 3204 SFR101 (K600) 28.0 28.3
STMixer [57] RGB (32f x 2) 256% SFRS50 (K400) 27.2 27.8
STMixer [57] RGB (32f x 2) 256% SFR101-NL (K600) 29.8 30.1
TubeR [64] RGB (32f x 2) 2884 SFR101 (K400+K700)  31.6 -
A* (Ours OS) RGB (32f x 2) 2562 SFR101-NL (K600) 27.7 27.7
End-to-End Real-Time Methods
YOWO [25] RGB (32f) 2242 RNext101 (K400) 18.3 19.1
A* (Ours RTS) RGB (32f) 2242 RNext101 (K400) 21.64 -
A* (Ours RTS) RGB (32f) 2242 SFR101 (K400) 235 -

will boost performance. Therefore, we also compare A*
(ours with OS) to these previous methods. On JHMDB
and UCF101-24, A* outperforms all past multi-stage and
end-to-end methods by large margins. Specifically, it beats
the SOTA method STMixer [57] by 3.7 frame-mAP on JH-
MDB and the SOTA method HIT [ 1] by +4.4 frame-mAP
on UCF101-24. On AVA, out of the previous methods,
the only comparable work that outperforms A* is STMixer
[57]. TubeR [64] and HIT [I1] use more powerful pre-
trained checkpoints, whilst WOO [5] and MeMViT [55]
use very different video-clip sampling rates, image resiz-
ing strategies and backbone (for MeMViT). We speculate
that this performance gap is partly due to the difference in
image resolution used by STMixer and A*. STMixer keeps
the image’s aspect ratio, but A* uses square images to easily
utilize anchors in the bounding-box regression task. There-
fore, the resolution of images in STMixer is always higher
than for A*. Image resolution does not seem to greatly
affect results on JHMDB and UCF101-24 that are single
person, single action datasets. However, AVA’s multi-label,
multi-person task requires to capture more fine-grained de-
tails that can be lost by using square images. Therefore, for
AVA, a close attention to image resolution is needed.

Qualitative results: Qualitatively, A* competes with the
SOTA as illustrated in Figure 3. It accurately predicts
bounding-box locations and the multiple action classes in
different crowded and low-lighting settings. Further quali-
tative results are reported in the Appendix.

Overall, our SOTA and competitive results on multiple
datasets exhibit the generalization capabilities of A* in mul-
tiple action recognition scenarios, and under RTS and OS.

4.4. Ablation Studies

Confusion Matrix Analysis Figure 2 illustrates the confu-
sion matrix between GT action labels and model predictions
on JHMDB. Sub-figure 2 A shows the confusion results
achieved with YOWO and Sub-figure 2 B shows the results
from our A* method. Confusion matrix 2 A illustrates that
the temporally ambiguous actions such as sitting and stand-
ing are highly confused (confusion value of 0.6). In con-
trast, A* is capable of better distinguishing between similar
actions, reducing the confusion value between sitting and
standing to 0.3. The closer the elements are to 0 (exclud-
ing diagonal elements), the higher the prediction accuracy.
We can then calculate a confusion score by summing all the
non-diagonal values. Consequently, YOWO yields a confu-
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' () A* B) STMixer
Figure 3. Qualitative results on the AVA v2.2 dataset comparing
A* (our OS) in column A, and STMixer in column B. ac-
tion predictions are correct predictions and red action predictions
are wrong predictions. Dashed-lines represent predicted bounding
boxes and full-lines are GT bounding boxes. Best viewed in color.

sion score of 6.0, whereas A* achieves a considerably lower
confusion score of 3.0. These results demonstrate the ben-
efits of integrating the action-PAL in our method to better
distinguish between similar actions.

Module Contribution The aggregated impact of our mod-
ules is measured and reported in Table 3. All module addi-
tions show significant performance improvement. Each of
our four contributions leads to an increase in frame-mAP of
at least 2% points on JHMDB.

ASTPP Design We investigate the use of atrous convolu-
tions along various axes for our ASTPP design. Ablation
results in Table 4 demonstrate that considering multi-range
interactions along both spatial and temporal axes yields the
best performance. Moreover, we experiment whether using
the GAP from ASPP in our ASTPP is beneficial. Results
from Table 6 (column 3) suggest that omitting the GAP
from our ASTPP yields better performance. We suppose
that this is because information for classification and re-
gression is lost in the upsampling process needed after the
GAP. Finally, we investigate tuning the atrous convolution
dilation size. Our method uses dilation sizes of [1, 3, 6, 9].
Through the ablation results in Table 6 (column 2), we show
that with further hyperparameter tuning, we can achieve
even better action recognition results (+0.7 frame-mAP). In
fact, more suitable dilation sizes are [1, 3, 5, 7]. The reason
for this is that our temporal axis has dimension 8, so when
using dilations of [1, 3, 6, 9], we ineffectively consider the
temporal interactions due to excessive zero padding on the
temporal dimension at dilation sizes 6 and 9.

Low-level Feature Aggregation We experiment which
combination of features is best to aggregate in our LLFA
module. We extract features from different levels of our
backbone and report results in Table 5. Notably, using VF2
and VF4 features together produces optimal results. The re-
maining experiments show that using too many features can

Table 3. Comparison of module effects on J-HMDB-21.
RNext101: ResNext-101 [16], SFR: SlowFast [13]

Method Frame mAP (0.5)

baseline 74.4

+ LLFA (with IVFF) 76.38

+ Convert backbone (RNext101 to SFR50) 79.1

+ Future frames (offline setting) 85.67

+ ASTPP 87.85

+ Action-PAL 90.44

Table 4. Experiments on the 1able 5. Experiments on the
use of different convolutional choice of features for the LLFA

kernels for the ASTPP module Module on JHMDB.

on JHMDB. Block Number mAP (0.5)
Mothod mAP (0.3) k4 87.21
x VFI + VF4 86.8
Spatial Kernel 87.75
T | Kermel 73 VF3 + VF4 88.75
Be[:;lp"ra erne 0044 VF2 + VF4 90.44
° - VF2 + VF3 + VF4 87.25

Table 6. Experiments on the influence of ASTPP dilation size and
use of image features on J-HMDB-21.

kernel size  dilation size GAP  Image Feature | mAP (0.5)
3,3,3,3 1,3,6,9 X v 90.44
3,3,3,3 1,3,5,7 X v 91.18
3,3,3,3 1,3,6,9 v v 87.69
3,3,3,3 1,3,6,9 X X 88.39

introduce noise, whilst using features that are too low-level
can result in information loss.

Effect of Video Feature Slicing We investigate the bene-
fits of extracting frame-specific features directly from VFs
and thus the necessity for the IVFF module. Our ablation
results in Table 6 (column 4) show that using image features
and fusing them with the VFs greatly benefits our model’s
performance. This further supports our assumption about
the temporal consistency of the temporal axis in the VFs.

5. Conclusion

In this paper, we proposed A*, a single-stage action de-
tection network based on the YOLO framework that can
detect actions in real-time, making it suitable for real-world
applications. Our experiments show that A* achieves SOTA
performance on the JHMDB, UCF101-24, and AVA v2.1
datasets for the RTS.

Moreover, our OS results demonstrate the importance
of considering future frames when analyzing the current
frame. In human cognition, we often predict or infer fu-
ture frames based on the current one. Our future work will
focus on developing networks that can “remember” past ex-
periences and “infer” future frames from a given frame to
improve action detection performance in our RTS.

In conclusion, A* represents a significant step forward
in real-time action detection, and we believe that our pro-
posed approach could lead to further advances in video un-
derstanding research.
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