
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW DOES THE OPTIMIZER IMPLICITLY BIAS
THE MODEL MERGING LOSS LANDSCAPE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging methods combine models with different capabilities into a single
one while maintaining the same inference cost. Two popular approaches are lin-
ear interpolation, which linearly interpolates between model weights, and task
arithmetic, which combines task vectors obtained by the difference between fine-
tuned and base models. While useful in practice, what properties make merging
effective are poorly understood. This paper explores how the optimization pro-
cess affects the loss landscape geometry and its impact on merging success. We
show that a single quantity – the effective noise scale – unifies the impact of opti-
mizer and data choices on model merging. Across architectures and datasets, the
effectiveness of merging success is a non-monotonic function of effective noise,
with a distinct optimum. Decomposing this quantity, we find that larger learning
rates, stronger weight decay, smaller batch sizes, and data augmentation all inde-
pendently modulate the effective noise scale, exhibiting the same qualitative trend.
Unlike prior work that connects optimizer noise to the flatness or generalization of
individual minima, we show that it also affects the global loss landscape, predict-
ing when independently trained solutions can be merged. Our findings broaden
the understanding of how optimization shapes the loss landscape geometry and its
downstream consequences for model merging, suggesting the possibility of fur-
ther manipulating the training dynamics to improve mergeability.

1 INTRODUCTION

Model merging methods rely on mode connectivity to successfully combine independent solutions,
whose outcome depends on the loss landscape geometry in between. Merging has thus been ap-
plied to either improve the generalization performance of a single solution or to combine models
with different, but similar, capabilities. Importantly, the final merged model also retains the same
computational efficiency as a single model. Given the practical advantages, merging methods have
been applied to improve state-of-the-art architectures (Yadav et al., 2024). In practice, to improve
the performance using model merging, model soup (Wortsman et al., 2022) methods require training
and averaging several models from a large hyperparameter grid. Analogously, for merging models
with different capabilities, task arithmetic (Ilharco et al., 2023) methods also need multiple models
to be trained, merged, and evaluated to choose the best candidates for merging.

Early works for parameter merging two solutions in deep learning can be traced back to mode con-
nectivity, which showed that independent solutions can be connected by a path of low-loss models.
Specifically, Draxler et al. (2018); Garipov et al. (2018) demonstrated that different minima can
be connected by a path of solutions with similar loss. Frankle et al. (2020) introduced a stricter
condition named linear mode connectivity, where two modes can be connected by a linear path of
solutions with similar loss only if they share a common initial optimization trajectory. This condi-
tion suggests that optimizer properties play an essential role in understanding the properties of the
loss landscape between independently trained solutions.

In this work, we study the role of optimization dynamics on the outcome of model merging. First, we
present how different optimizer components (learning rate, weight decay, batch size, and data aug-
mentation) control the same underlying factor, the effective noise scale. Experiments demonstrate
how this noise controls the merging compatibility of different solutions. After that, we decom-
pose this quantity into individual components, showing that each one exhibits the same qualitative

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

trend. We find that starting the optimization with a larger learning rate (until stability) can consis-
tently identify single solutions that are more compatible for merging than a smaller learning rate. In
practice, the compatibility is quantified using performance gain, which measures the performance
difference between the merged and the single model. Since decaying the learning rate (large or
small) during the optimization can always lead to a converged solution, it is perhaps surprising that
simply starting with a larger learning rate can change the merging outcomes. However, beyond
classical research showing direct advantage of large learning rates on generalization (Keskar et al.,
2016), recent works presented different implicit biases of training with a larger learning rate, such
as a sparser activation (Andriushchenko et al., 2023b), a different sequence of pattern learning (Li
et al., 2019), and a flatter solution (Andriushchenko et al., 2023a). Our results extend these benefits,
showing that a larger learning rate unlocks effective model merging, beyond single-task perfor-
mance. Practically, given two models with similar performance, the one trained with a higher noise
scale is more compatible for merging. This claim is supported by our comprehensive experimental
study across different architectures (MLP, Resnet, Densenet, Transformer, and GPT), tasks (SVHN,
CIFAR, TinyImagenet, WILDS, and TinyStories), and modalities such as transfer learning.

Similarly to the learning rate, we find that weight decay has a comparable effect: larger weight decay
also enables more effective merging, beyond improvements in the single model performance. We
explain this phenomenon through the effective learning rate (Van Laarhoven, 2017; Hoffer et al.,
2018), which attributes the main role of weight decay to prevent the gradual decay of learning rate,
and thus stochastic noise, to zero during the training. Additional components, such as batch size
and data augmentation, also contribute to adding noise to the optimization process. A smaller batch
size creates noisier gradient estimates since each gradient update is computed from fewer samples,
leading to more variation in the optimization path (Keskar et al., 2016; Jastrzebski et al., 2017). And
data augmentation adds extra randomness to the minibatches (Hanin & Sun, 2021).

Lastly, we study the effect of the learning rate in task arithmetic merging, which defines a differ-
ent subspace of solutions than linear interpolation. We find that the loss landscape geometry of
task arithmetic significantly changes depending on the initialization. Given an initialization with a
pretrained weight (e.g. CLIP), a larger learning rate identifies solutions with greater merging com-
patibility (Figure 7). Moreover, the landscape is also flatter compared to a smaller learning rate.
When merging solutions trained on two different downstream tasks using different learning rates,
we find that similar configurations are more compatible to merge (Figure 8).

2 PRELIMINARIES

Linear interpolation merging (Frankle et al., 2020). Linear mode connectivity refers to a phe-
nomenon where two minima with similar performance can be connected by a linear path in the
parameter space without significant performance degradation along that path. Formally, given two
neural networks with parameters θA and θB , we can define a linear interpolated model θli as:

θli = (1− α)θA + αθB (1)

where α ∈ [0, 1] is the interpolation coefficient. A pair of models exhibits linear mode connectivity
if the loss function L(θα) remains relatively low for all values of α along this linear path. Model
merging relies on mode connectivity, but instead, it aims to find solutions with lower loss values.

Task arithmetic merging (Ilharco et al., 2023). Given a base model θbase, a finetuned model θt on
task t, the task vector is defined as τt = θt − θbase. This vector τt encodes all the properties of the
task t. Interestingly, task arithmetic enables operations such as addition and scaling of different task
vectors, creating a merged model θta as:

θta = θbase +
∑
i

αiτti (2)

where αi ∈ R is the coefficient that controls the influence of each task vector. For simplicity, α
is usually the same for all the vectors. In order to succeed, both linear mode connectivity and task
arithmetic assume that the loss landscape around the finetuned models θt is near-convex.

Effective noise scale. Stochastic optimization injects gradient noise ξ into the optimization dynam-
ics. Writing the minibatch gradient as gt = ∇L(θt) + ξt where E[ξt] = 0 and Cov[ξt] ≈ Σ(θt)/B,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the stochastic update (with momentum µ and decoupled weight decay λ) can be viewed as a dis-
cretized stochastic differential equation whose “temperature” scales with learning rate and inversely
with batch size (Mandt et al., 2017; Smith et al., 2018; McCandlish et al., 2018). This can be sum-
marized by the effective noise scale:

Seff(η,B, µ;A) ∝ η

B(1− µ)
tr ΣA(θt), S̃ =

η

B(1− µ)
, (3)

where η is the learning rate, B the batch size, and ΣA the gradient-noise covariance, which increases
with stronger data augmentation A and data diversity. We report the results using the normalized
proxy S̃ and show how it controls the effectiveness of mergeability.

3 THE OPTIMIZER’S IMPLICIT BIAS ON LINEAR INTERPOLATION

This section presents our key experimental findings for linear interpolation merging. We begin
by presenting the effective noise scale as the unifying implicit bias controlling the effectiveness of
merging. Then, we show that each optimizer component affects model mergeability via noise.

3.1 EFFECTIVE NOISE SCALE AS A UNIFYING FACTOR

1e-2 5e-2 1e-1 2e-1
Learning rate 

1.0

0.5

0.0

0.5

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

bs16
bs32
bs64
bs128
bs256

(a) Learning rate

24 25 26 27 28

Batch size B

1.0

0.5

0.0

0.5

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02

(b) Batch size

10 3 10 2 10 1

Effective noise 

1.0

0.5

0.0

0.5

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

Sw
ee

t s
po

tlr2e-01
lr1e-01
lr5e-02
lr1e-02

(c) Effective noise

Figure 1: Effective noise scale controls the effectiveness of merging. The y-axis reports the test
accuracy gain of merged models. On the x-axis, when plotting (a) batch sizes against learning rates
or (b) vice versa, there is no clear trend. When reparameterized in terms of (c) effective noise scale,
the curves are aligned, highlighting the interaction between different components for merging.

As introduced in Section 2, the effective noise scale S̃ captures the joint interaction of learning rate,
batch size, momentum, and augmentation of the stochasticity in SGD. Rather than treating these
hyperparameters as independent, we study how S̃ offers a unifying view on the compatibility of
single models under linear interpolation merging. We use Resnet18 on CIFAR100 and sweep across
different learning rates and batch sizes. The weight decay is fixed at 5e-4, and the random flip and
crop augmentation are used. To evaluate the effectiveness of merging, we define performance gain
as g(θmerge,θsingle) = f(θmerge) − f(θsingle) given an evaluation function f : Θ × D → R.
Appendix A.1 describes the training and merging setup.

The results in Figure 1 illustrate how S̃ affects the model mergeability. When we vary the learning
rate or batch size independently, there is no clear trend across both dimensions at the same time.
For example, when increasing the learning rate for a fixed batch size to B = 16, the accuracy gains
monotonically decrease, whereas the opposite holds for a batch size of B = 128. However, once we
represent the x-axis in terms of the normalized effective noise S̃, capturing both learning rate and
batch size together, the different curves become aligned. Importantly, this curve is non-monotonic:
mergeability improves as S̃ increases from small values, reaches a “sweet spot”, and then degrades
again once the noise grows too large.

In contrast to prior work that mainly links effective noise to properties of single solutions (Chaud-
hari et al., 2016; Mandt et al., 2017; Jastrzebski et al., 2017), our results show that it also governs
its surrounding solutions. Specifically, S̃ not only biases SGD toward particular regions of the loss

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

landscape, but also controls the compatibility of solutions found in different runs under linear inter-
polation merging. In the following sections, we ablate each optimizer component and analyze how
it contributes to the merging effectiveness.

3.2 LARGE LEARNING RATE PRODUCES MORE COMPATIBLE SOLUTIONS

1e-03 5e-03 1e-02 3e-02
Learning rate ⟶

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

 g
ai

n 
(%

)

1e-03 1e-02 5e-02 1e-01 2e-01
Learning rate ⟶

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

1e-03 1e-02 3e-02 5e-02
Learning rate ⟶

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)
83 84 85 86 87

Accuracy single (%)

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr3e-02
lr1e-02
lr5e-03
lr1e-03

(a) SVHN / MLP

60 65 70 75
Accuracy single (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(b) CIFAR100 / Resnet18

50 55 60 65
Accuracy single (%)

0.0

0.5

1.0

1.5

2.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr5e-02
lr3e-02
lr1e-02
lr1e-03

(c) TinyImageNet / Densenet121

Figure 2: Larger learning rate leads to more effective merging. (top) The test accuracy gain of all
the models. (bottom) Each point represents the performance of a single model θA on the x-axis and
its additional performance gain after merging on the y-axis. The opacity indicates the number of
training epochs. For each setup, we observe that a larger learning rates have a higher accuracy gain,
even when there is a smaller learning rate with equivalent single model accuracy. Note, however,
solutions found using a “too large” learning rate fail to merge (details in Appendix B.6).

We present empirical results for deep neural networks on vision tasks trained from scratch. The ar-
chitectures used are a simple MLP, Resnet18, Densenet121 trained on SVHN, CIFAR10, CIFAR100,
and TinyImageNet datasets. The weight decay is fixed at 5e-4, and the random flip and crop aug-
mentation are used across the setups. Appendix A.1 describes the training and merging setup.

The results in Figure 2 shows the key finding of our work. Using linear interpolation with a fixed
α = 0.5, we merge two solutions with the same learning rates at each checkpoint. We observe
that the solutions identified with a larger learning rate are consistently more compatible to merge
than those of a smaller learning rate. For example, in CIFAR100, the solutions found using an
lr = 0.2 report +1.2% of the median gain compared to a +0.2% gain of lr = 0.01, despite having
a similar performance for the single model of ≈ 75% (x-axis). The same phenomenon is observed
across different datasets (SVHN, CIFAR, and TinyImagenet) and architectures (MLP, Resnet, and
Densenet). Furthermore, we also ensure that all the solutions are well-converged by asserting that
the training loss is near-zero (details in Appendix B.5). As argued by Pascanu et al. (2025), it is
important to understand how the implicit bias of the optimizer alters the final solutions and how
to leverage this bias to find better solutions. Furthermore, recent works found different implicit
biases of training with a larger learning rate, such as a sparser activation (Andriushchenko et al.,
2023b; Sadrtdinov et al., 2024), a different order for feature learning order (Li et al., 2019), and a
flatter solution (Andriushchenko et al., 2023a). Our results demonstrate an additional benefit: larger
learning rate has an implicit bias on the loss landscape, identifying more compatible solutions for
model merging. Note, however, Appendix Figure 14 shows that a too large learning rate leads to
instabilities or failures in model merging.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 WEIGHT DECAY AND EFFECTIVE LEARNING RATE

0 1e-5 1e-4 5e-4 1e-3
Weight decay ⟶

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 g
ai

n 
(%

)

0 1e-5 1e-4 5e-4 1e-3
Weight decay ⟶

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

0 5e-5 1e-4 5e-4
Weight decay ⟶

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

82 84 86
Accuracy single (%)

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

(a) SVHN / MLP

68 70 72 74 76
Accuracy single (%)

0.0

0.5

1.0

1.5
Ac

cu
ra

cy
 g

ai
n 

(%
)

wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

(b) CIFAR100 / Resnet18

50 55 60 65
Accuracy single (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

wd5e-4
wd1e-4
wd5e-5
wd0

(c) TinyImagenet / Densenet121

Figure 3: Weight decay has a similar effect as the learning rate. For CIFAR100 and TinyImagenet,
we use scale-invariant networks (w/ normalization layers) and observe that a larger weight decay
can not only improve the accuracy of the single model, but also the accuracy gain via the effective
learning rate (Van Laarhoven, 2017). For MLP trained on SVHN, there is no trend as the architec-
ture is not scale-invariant.

The traditional understanding of the role of weight decay regularization is that it reduces overfitting
by proportionally decaying the weights towards zero, favouring less “complex” models. In practice,
this is achieved by adding a penalty term λ||θ||22 to the objective L(θ). However, modern neu-
ral network architectures ubiquitously use normalization layers (Ioffe & Szegedy, 2015; Ba et al.,
2016) and are therefore weight scale-invariant. The output is invariant to the scale of the weights as
f(x, αθ) = f(x,θ). Then, what is the new role of weight decay regularization in scale-invariant
networks? Van Laarhoven (2017); Hoffer et al. (2018) answer this question by demonstrating that
weight decay controls the effective learning rate during training. In practice, without any weight
constraints, scale-invariant networks will decay the learning rate over time, hindering the learning
process.

We hypothesize that weight decay has a similar effect to the learning rate in model merging. That
is, solutions found with a larger weight decay are easier to merge than those found with a smaller
or no weight decay. Note that this should hold only for scale-invariant networks. We use the same
experimental setup as in Section 3.2, except that we now sweep across different weight decay values
instead of learning rates.

The results in Figure 3 confirm our hypothesis about the implicit bias of weight decay. Larger weight
decay increases the effective learning rate for scale-invariant networks during training, affecting also
the model mergeability. For example, in TinyImagenet, the solutions found using a wd = 0.0005
report +1.2% of the median gain compared to a +0.5% of other wd values. Furthermore, interest-
ingly, for the architecture MLP trained on SVHN, larger weight decay does not differ from smaller
ones in terms of mergeability. This validates the fact that weight decay affects model merging only
for scale-invariant architectures. Our results extend how the weight decay affects the loss landscape
of an individual minima (Van Laarhoven, 2017) to its connection with other minima. Similar to
the learning rate, Appendix Figure 15 shows that excessive weight decay leads to failure in model
performance and model merging.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 BATCH SIZE, MOMENTUM, AND DATA AUGMENTATION

256 128 64 32 16
Batch size ⟶

0.0

0.5

1.0

1.5
Ac

cu
ra

cy
 g

ai
n 

(%
)

0.0 0.6 0.85 0.9 0.95 0.97
Momentum ⟶

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

1e-02 1e-01 1e-02 1e-01
Learning rate with/without aug.

-2.0

-1.0

0.0

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

68 70 72 74 76
Accuracy single (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

bs16
bs32
bs64
bs128
bs256

(a) Batch size

70 72 74 76
Accuracy single (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

mom0.97
mom0.95
mom0.9
mom0.85
mom0.6
mom0.0

(b) Momentum

60 65 70 75
Accuracy single (%)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr1e-01 w/ aug.
lr1e-02 w/ aug.
lr1e-01 w/o aug.
lr1e-02 w/o aug.

(c) Augmentation

Figure 4: Batch size and data augmentation control the noise during the optimization dynamics.
(left) A smaller batch size has more noise and improves the merging effectiveness. (middle) A larger
momentum leads to more noise and improves the merging effectiveness. (right) Data augmentation
improves performance and retains merging properties.

We now consider two additional components that affect the effective noise scale: batch size, mo-
mentum, and data augmentation. The experimental setup uses CIFAR100 with Resnet18. For batch
size, we use the same setup as in Section 3.2, except that we sweep across different batch sizes and
fix the training steps to 200k steps instead of using epochs. Similarly, we sweep across different
momentum values. For data augmentation, we simply turn off the augmentation during the training
phase. Additional results are provided for the scheduler choice in Appendix F.1 and for alternative
datasets in Appendix B.1 Appendix B.2.

Batch size. The stochastic gradient of a minibatch ĝ is unbiased but its variance scales as V ar(ĝ) ∝
σ2/B, where σ2 is the per-sample variance and B the batch size. Prior work has emphasized that
this inverse scaling underlies the implicit regularization of SGD: smaller batch sizes inject more
gradient noise, often leading to flatter solutions and better generalization (Jastrzebski et al., 2017;
Smith & Le, 2018; Keskar et al., 2016). Our results in Figure 4 (left) extend this observation to
model merging. We find that solutions obtained with smaller batch sizes are more compatible under
linear interpolation: the smallest setup with B = 16 achieves a median accuracy gain of +1%,
while a larger setup with B = 256 yields almost no benefit. Thus, in addition to generalization,
batch-size–induced noise also improves the mergeability of independently trained models.

Momentum. Gradient descent uses momentum to introduce a temporal smoothing which accumu-
lates an exponentially weighted moving average of past gradients. While momentum is traditionally
understood as an acceleration mechanism that helps escape shallow local minima and traverse flat
regions more efficiently (Polyak, 1964; Sutskever et al., 2013), it also alters the effective noise char-
acteristics of SGD. Figure 4 (middle) show that models trained with a larger momentum values
(β = 0.9) exhibit consistently better mergeability than those trained with a lower or no momentum,
achieving median accuracy gains of up to +1.0% compared to +0.2% gains for low damped trajec-
tories. This demonstrate that smoothing gradient noise throughout training leads to solutions that
are more diverse but compatible at the same time.

Data augmentation. Data augmentation can likewise be viewed as injecting stochasticity into the
optimization process: by applying random transformations to the data, the effective gradient co-
variance ΣA changes, introducing additional variance beyond minibatch sampling. Previous work

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

has argued that augmentation acts as a form of implicit regularization and invariance enforce-
ment (Hernández-Garcı́a & König, 2018; Yun et al., 2019), with recent perspectives interpreting
augmentation as an additional source of optimization noise (Hanin & Sun, 2021). Our results
in Figure 4 (right) show that augmentation not only improves single-model accuracy but also re-
tains mergeability. Interestingly, even without augmentation, a sufficiently large learning rate can
yield positive merging gains, though this effect is not universal (Figure 10). Overall, augmentation-
induced noise complements the minibatch noise and learning-rate noise, shaping solutions that are
both stronger individually and more compatible when merged.

3.5 WHAT ABOUT LANGUAGE MODELING?

5e-5 1e-4 5e-4 1e-3
Learning rate ⟶

−0.0025

−0.0020

−0.0015

−0.0010

−0.0005

0.0000

Lo
ss

 g
ai

n

0 1e-4 1e-3 1e-2 1e-1
Weight decay ⟶

−0.004

−0.003

−0.002

−0.001

Lo
ss

 g
ai

n

Figure 5: Larger learning rate and weight decay enable
more effective merging in language modeling. (left)
A larger learning rate has a better loss gain. (right)
Adding a larger weight decay offers further merging
gains. Appendix B.4 shows the scatter plots.

Now we consider a language modeling
task using the TinyStories dataset (Eldan
& Li, 2023). We train a small GPT Trans-
former model with two layers using the
AdamW optimizer with a constant learn-
ing rate for 200k steps and save a check-
point every 2k steps, following the setup
at Appendix A.1. Two endpoint models
are trained for an additional 20k steps us-
ing a decayed learning rate scheduler. We
use the loss performance gain to quantify
the merging process. The lower the loss
gain, the easier the merging process.

0.0 1.0 2.0 3.0
Accuracy gain ID

0.0

0.8

1.5

2.2

3.0

3.8

Ac
cu

ra
cy

 g
ai

n 
OO

D

66 68 70
Accuracy of merged model ID

58

59

60

61

62

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 O
OD

lr1e-04
lr5e-05
lr3e-05

lr1e-05
lr5e-06

lr3e-06
lr1e-06

Figure 6: Mergeability in transfer learn-
ing for ID and OOD data. (top)
Accuracy gain linearly correlates with
learning rate. (bottom) However, a
larger learning rate leads to a subopti-
mal merged model, despite having the
largest accuracy gain.

The results in Figure 5 extend our previous findings to
the language domain. For the learning rate experimental
setup, we fix wd = 0. Figure 12 (left) shows that a larger
learning rate, such as lr = 0.001, requires fewer steps to
reach a loss value of 2.20 compared to lr = 0.0001. Not
only that, Figure 5 shows that a larger learning rate also
has the implicit bias of simplifying the merging process,
as measured by a lower loss gain. This behaviour is simi-
lar to the results from vision in Section 3.2. When weight
decay regularization is added to the equation, there are
further merging benefits. We fix the lr = 0.001 and
sweep across weight decay. Figure 5 on the right shows
that a larger weight decay leads to a better loss gain than
smaller ones. Specifically, the largest weight decay, such
as wd = 0.1, has the best loss gain, but also has a slower
convergence (x-axis). The second largest weight decay of
wd = 0.01 has a similar convergence speed as the smaller
one, in addition to better loss gain. Lastly, smaller values
have similar results as training without weight decay.

3.6 WHAT ABOUT TRANSFER LEARNING?

In the previous sections, we analyzed settings where mod-
els were trained on one single task. Now we consider
transfer learning setup, where the pretraining and finetun-
ing tasks differ. We finetune only the vision encoder of
the ImageNet pretrained model CLIP ViT-B/16 (Radford
et al., 2021) on the WILDS-FMoW (Koh et al., 2021)
dataset using the AdamW optimizer with cosine sched-
uler. Since varying the learning rate changes the speed
of convergence, we carefully tune the number of training
epochs for each setup and ensure proper convergence (details in Appendix A.2). We train three seeds
for each setup and merge each different pair, obtaining three different merged models per learning
rate. Additional results comparing optimizers choice in transfer learning are in Appendix F.2.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The results on the top of the Figure 6 shows that a larger learning rate identifies solutions that are
easier to merge. Specifically, the smallest values lie in a flatter loss landscape region where the
performance gain is 4× smaller than the largest learning rate when merged. The Pearson correlation
coefficient is r = 0.981, indicating an almost perfect linear correlation between accuracy gain and
learning rate. Note, however, that one should not blindly use the largest learning rate. Figure 6 on
the bottom shows that the merged models with the best performance are the one with a moderate
learning rate, as also observed by (Wortsman et al., 2022). The largest learning rate setup has the
largest accuracy gain, but the worst-performing single model. Appendix B.3 presents similar results
using different datasets and a pretrained model.

4 THE OPTIMIZER’S IMPLICIT BIAS ON TASK ARITHMETIC

In the previous section, we have seen how the optimizer implicitly biases the loss landscape of linear
interpolation merging. We now consider task arithmetic interpolation, which defines a different
subspace of solutions. This section studies how the principal optimizer choice, the learning rate,
affects the loss landscape of task arithmetic merging.

4.1 LOSS LANDSCAPE OF TASK ARITHMETIC

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr1e-3
lr5e-4
lr3e-4
lr1e-4
lr5e-5
lr1e-5
lr5e-6

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

95

96

97

98

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 (%
) lr1e-3

lr5e-4
lr3e-4
lr1e-4
lr5e-5
lr1e-5
lr5e-6

(a) w/ Pretrained weight

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0
Ac

cu
ra

cy
 g

ai
n 

(%
)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

88

90

92

94

96

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 (%
) lr2e-01

lr1e-01
lr5e-02
lr1e-02
lr1e-03

(b) w/o Pretrained weight

Figure 7: Task arithmetic loss landscape drastically changes depending on the initialization model.
(a) With a pretrained initialization on ImageNet, larger learning rate solutions have higher gain and
are more robust to task arithmetic interpolation. (b) Without a pretrained weight, a larger learning
rate solution lies in a sharper minima (i.e. more sensitive to α changes).

So far, we have only considered merging using linear interpolation (see Equation (1)). Task arith-
metic interpolates two models along a different subspace compared to linear interpolation, identify-
ing functionally different solutions. We apply task arithmetic interpolation to two settings:

(a) Models w/ pretraining weight from Section 3.6 (i.e. pretraining dataset is different from
the finetuning dataset). Task arithmetic is applied to a base model and two task vectors.
The base model θbase is the pretrained model CLIP ViT-B/16, and the task vectors are the
finetuned models with different random seeds.

(b) Models w/o pretraining weight from Section 3.2 (i.e. pretraining shares the same dataset
as finetuning). For task arithmetic, we treat each checkpoint θi as the base model θbase,
and the task vectors are obtained from the endpoint models τA = θA − θbase and τB =
θB − θbase.

For each learning rate setup, we traverse the subspace defined by the task arithmetic interpolation
by changing the coefficient α. This measures the performance change as a function of α, which can
also be seen as a measure of landscape flatness. For simplicity, we use the same α for the two task
vectors when applying task arithmetic.

The results in Figure 7 show the robustness of each learning rate to task arithmetic interpolation for
CIFAR10. There is a clear dichotomy between the two settings. In setting (a), a larger learning rate
identifies merged solutions that are more robust to α-interpolation, corresponding to a flatter land-
scape (Andriushchenko et al., 2023a). However, in setting (b), the opposite is true. This highlights
that a larger learning rate has to be used together with a suitable initialization to achieve a smoother
and flatter landscape (Wortsman et al., 2022). Furthermore, as in linear interpolation merging, a

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

“too large” learning rate becomes unstable. Appendix C.3 presents further experimental results for
different datasets.

4.2 LOSS LANDSCAPE OF MERGING DIFFERENT TASKS

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

60

65

70

75

80

85
No

rm
al

ize
d 

ac
cu

ra
cy

lr1e-4
lr3e-5
lr1e-5
lr3e-6
lr1e-6

Learning rate for t1 ⟶

Le
ar

ni
ng

 ra
te

 fo
r t

2 
⟶

62.7 62.6 63.2 67.8 82.5

70.5 71.3 75.3 85.9 78.0

77.2 78.8 84.3 86.9 71.7

79.9 81.8 85.6 82.1 69.7

79.3 81.3 83.7 80.0 69.3

Task arithmetic α= 0.5

60

70

80

90

No
rm

al
ize

d 
ac

cu
ra

cy

Figure 8: Task arithmetic merging of models trained on two different tasks. (left) The merged models
are finetuned using the same learning rate. Larger learning rate solutions have better performance
and are more robust to task arithmetic interpolation, unless it is too large. (right) The models are
merged using different learning rates. Merging pairs of similar, relatively large learning rates yields
the best performance. Results are averaged over three seeds.

We now consider task arithmetic merging of two models sharing the same initialization θbase fine-
tuned on two different, but similar, tasks t. As in Section 3.6, we finetune one CLIP ViT-B/16 on
task t1 WILDS-FMoW and another on task t2 RESISC45 (Cheng et al., 2017). Then, task arithmetic
merging is applied to merge the two models. To quantify the merging success, we use the averaged
normalized accuracy, which measures the average ratio of the merged model performance over each
single model performance (details in Appendix A.3).

The results in Figure 8 show how the learning rate affects the mergeability of two models trained on
two different tasks. In the Figure 8 on the left, as a proxy of the task arithmetic loss landscape, we
merge and study the robustness of models finetuned using the same hyperparameters when interpo-
lating α. We observe that the larger learning rate solutions perform better compared to the smaller
ones (except for lr = 0.0001, which is the limit for stability). Moreover, larger values are also more
robust to changes of α, representing flatter minima connecting the two different tasks. On the right
of Figure 8, we merge models finetuned with different hyperparameters. The merged models with
the best performance are those merged with similar and moderately large learning rates (near the
antidiagonal). Merging models with a larger learning rate can result in better performance, but at the
cost of losing flexibility for merging with other configurations. In particular, the largest learning rate
lr = 0.0001 is the most unstable to merge with different learning rate models. Ilharco et al. (2023)
also observed performance degradation when merging models trained with too large learning rates.
Appendix C.4 reports additional results with further α values.

Lastly, additional experiments with TIES merging in Appendix H demonstrate that TIES can better
counteract the large noise, yielding a +2% improvement compared to task arithmetic at lr=3e-5
(88% vs 85.9%). Overall, TIES merging follows a similar qualitative trend as task arithmetic, with
a small performance gain across noise levels.

5 RELATED WORKS

Model merging. Early works on merging independently trained solutions on the same task can be
found on mode connectivity (Garipov et al., 2018; Draxler et al., 2018). Linear mode connectivity
has a stricter condition such that connecting paths are linear (Frankle et al., 2020; Neyshabur et al.,
2020). When this is not possible, re-basin methods can be used to reparametrize the solution and
restore the linear connectivity (Entezari et al., 2022; Ainsworth et al., 2023; Theus et al., 2025). Built
upon these results, model merging methods have been developed to increase the performance on a

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

single task (Wortsman et al., 2022) or to combine models trained on different tasks into one (Matena
& Raffel, 2022; Ilharco et al., 2023). Yadav et al. (2025) provides a comprehensive survey of the
latest merging methods.

Optimization dynamics. Standard optimization theory (Garrigos & Gower, 2023) shows that both
batch sizes and learning rates drastically affect stability and convergence properties of SGD. In par-
ticular, through an analysis of SGD’s stationary distribution on simple quadratic potentials (Jastrzeb-
ski et al., 2017), it is possible to evince that, for single model training, the loss statistics at conver-
gence only depend on the ratio between batch size and learning rates – as also validated empirically
by Smith et al. (2020). In turn, either high learning rates or low batch sizes are known to favor flat
minima (Keskar et al., 2016). While for more sophisticated optimizers, correlations between batch
size, learning rates, and generalization might be more complex (Zhang et al., 2019; Malladi et al.,
2022), other factors might more severely affect simple relations, such as non-Gaussianity (Simsekli
et al., 2019) of gradient noise and non-convexity (Xie et al., 2021).

6 CONCLUSION

We study how optimizer choices implicitly shape the model-merging loss landscape and highlight
the effective noise scale as a unifying factor. Learning rate, weight decay, batch size, and data aug-
mentation all modulate this noise, which in turn determines whether independently trained solutions
are compatible for merging. The relationship is non-monotonic – too little noise yields incompatible
solutions, too much destabilizes training, but an intermediate “sweet spot” enables effective merg-
ing. In practice, model mergeability appears to be primarily determined by effective noise levels,
suggesting that hyperparameter search can be simplified by focusing on this single dimension rather
than exploring all hyperparameters independently.

Our findings extend prior work connecting optimization trajectory noise to flatness and generaliza-
tion of individual models, showing that noise also shapes the compatibility of independent solutions.
However, many open questions remain. For example, how can we systematically tune effective noise
levels, architectural designs, and pretraining strategies to produce models that are not only strong
individually but also inherently mergeable with other solutions? To summarize our contributions in
one sentence: tune the noise to tune mergeability.

Limitations. No new theoretical guarantees are developed, and no truly large-scale experiments are
conducted due to our limited computational resources. We studied the standard merging methods,
that form the foundation of state-of-the-art approaches. Our goal was to use a set of simple, diverse,
but realistic experimental setups to understand the role of optimization in model merging.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models mod-
ulo permutation symmetries. In International Conference on Learning Representations, 2023.

Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
marion. A modern look at the relationship between sharpness and generalization. In International
Conference on Machine Learning, 2023a.

Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion.
Sgd with large step sizes learns sparse features. In International Conference on Machine Learn-
ing, 2023b.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Pratik Chaudhari, Anna Choromańska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Tour Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: biasing gradi-
ent descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2016.

Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
mark and state of the art. Proceedings of the IEEE, 2017.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International Conference on Machine Learning, 2018.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation in-
variance in linear mode connectivity of neural networks. In International Conference on Learning
Representations, 2022.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
2020.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Information
Processing Systems, 2018.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. In Advances
in Neural Information Processing Systems, 2024.

Boris Hanin and Yi Sun. How data augmentation affects optimization for linear regression. In
Advances in Neural Information Processing Systems, 2021.

Alex Hernández-Garcı́a and Peter König. Data augmentation instead of explicit regularization. arXiv
preprint arXiv:1806.03852, 2018.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks. In Advances in Neural Information Processing Systems,
2018.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. In First Conference on Language Modeling, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In International Conference on Learning
Representations, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
2021.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. In Advances in Neural Information Processing Systems,
2019.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 2022.

Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, 2017.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances
in Neural Information Processing Systems, 2022.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? In Advances in Neural Information Processing Systems, 2020.

Razvan Pascanu, Clare Lyle, Ionut-Vlad Modoranu, Naima Elosegui Borras, Dan Alistarh, Petar
Velickovic, Sarath Chandar, Soham De, and James Martens. Optimizers qualitatively alter solu-
tions and we should leverage this. arXiv preprint arXiv:2507.12224, 2025.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 1964.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Ildus Sadrtdinov, Maxim Kodryan, Eduard Pokonechny, Ekaterina Lobacheva, and Dmitry P Vetrov.
Where do large learning rates lead us? In Advances in Neural Information Processing Systems,
2024.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
noise in deep neural networks. In International Conference on Machine Learning, 2019.

Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
gradient descent. In International Conference on Machine Learning, 2020.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations, 2018.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. In International Conference on Learning Representations, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In International Conference on Machine Learning, 2013.

Alexander Theus, Alessandro Cabodi, Sotiris Anagnostidis, Antonio Orvieto, Sidak Pal Singh, and
Valentina Boeva. Generalized linear mode connectivity for transformers. In Advances in Neural
Information Processing Systems, 2025.

Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, and Simon Kornblith. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, 2022.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. In International Conference on
Learning Representations, 2021.

Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
and Tsendsuren Munkhdalai. What matters for model merging at scale? arXiv preprint
arXiv:2410.03617, 2024.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen,
Mohit Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging: Recy-
cling and routing among specialized experts for collaborative learning. Transactions on Machine
Learning Research, 2025.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Interna-
tional Conference on Computer Vision, 2019.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Computer Vision and Pattern Recognition, 2022.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DETAILED EXPERIMENT SETTING

A.1 TRAINING AND MERGING SETUP

For Section 3.2, Section 3.3, Section 3.4, and Section 3.5, we use the following training setup.

We use the warmup-stable-decay (WSD) scheduler (Zhai et al., 2022; Hu et al., 2024). We use
the square root decay as in Hägele et al. (2024). Given a single configuration (e.g. lr = 0.1),
we use a constant learning rate to train a model for Tstable epochs, saving a checkpoint θi every i
epochs. For each θi, we use a decay learning rate scheduler and continue the training for Tdecay

epochs, obtaining two final endpoint models θi,A and θi,B . Finally, the merged model is a linear
interpolation (Equation (1)) between θi,A and θi,B with α = 0.5.

We provide an example. For the CIFAR100 task, we train a model using a constant learning rate for
Tstable = 2000 epochs and save a checkpoint θi every i = 20 epochs. Then, for each checkpoint,
we use a decay scheduler and create two endpoint models θi,A and θi,B . This means that at the end,
there will be Tstable/i = 2000/20 = 100 different merged models.

Note that, to account for the different magnitudes of settings (e.g. lr = 0.1 vs lr = 0.01), we use
a Tstable of one order of magnitude larger than the standard setting to ensure convergence of single
models. We use Tstable = 2000 for CIFAR10, CIFAR100, and SVHN and Tstable = 1500 for
TinyImagenet. We use Tdecay = 30 for CIFAR10 and CIFAR100, and Tdecay = 20 for SVHN and
TinyImagenet.

A.2 TRANSFER LEARNING EXPERIMENTAL SETUP

For Section 3.6 and Appendix B.3, we use the following training setup.

For CLIP ViT-B/16 finetuned on WILDS-FMoW, we discard the language model. We use the
AdamW optimizer with a warmup-cosine learning rate scheduler. Since varying the learning rate
changes the speed of convergence, we carefully tune the number of training epochs for each setup
to ensure convergence (e.g. training loss = 0). The following hyperparams (epochs, lr) are used for
each setup (20, 1e-4), (20, 5e-5), (20, 3e-5), (20, 1e-5), (30, 5e-6), (40, 3e-6), and (100, 1e-6).

For CLIP ViT-B/16 finetuned on RESISC45, we follow the above configuration. The following
hyperparams are used (20, 1e-4), (20, 3e-5), (20, 1e-5), (20, 3e-6), and (20, 1e-6).

For ViT-S/16 pretrained on IN1k and finetuned on WILDS-FMoW, we use the AdamW optimizer
with a warmup-cosine learning rate scheduler. The following hyperparams are used (20, 1e-3), (20,
3e-4), (20, 1e-4), (40, 3e-5), and (100, 1e-5).

For ConvNext-T pretrained on IN1k and finetuned on CIFAR10, we use the AdamW optimizer with
a warmup-cosine learning rate scheduler. The following hyperparams are used (20, 1e-3), (20, 5e-4),
(20, 3e-4), (40, 1e-4), (40, 5e-5), (80, 1e-5), and (80, 5e-6).

Note that, for each setup, we have grid searched and used the largest learning rate possible. This
means that an even larger learning rate fails to converge.

A.3 DETAILS ON METRICS

Normalized accuracy compares the relative performance metric of the multi-task model to that of
single finetuned models:

accuracynorm =
1

T

T∑
i=1

accuracy(θM )

accuracy(θi)

where T is the total number of tasks, θM represents the multi-task model and θi is the single fine-
tuned model for the task ti. This metric compares the baseline performance against each task.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ADDITIONAL RESULTS FOR LINEAR INTERPOLATION MERGING

B.1 DATASET: CIFAR10

1e-03 1e-02 5e-02 1e-01 2e-01
Learning rate ⟶

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
 g

ai
n 

(%
)

88 90 92 94
Accuracy single (%)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

0 1e-5 1e-4 5e-4 1e-3
Weight decay ⟶

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 g
ai

n 
(%

)

91 92 93 94 95
Accuracy single (%)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 g
ai

n 
(%

)

wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

256 128 64 32 16
Batch size ⟶

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 g
ai

n 
(%

)

92 93 94 95
Accuracy single (%)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 g
ai

n 
(%

)

bs16
bs32
bs64
bs128
bs256

Figure 9: Larger learning rate / larger weight decay / smaller batch size all lead to a larger perfor-
mance gain in CIFAR10 dataset.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 DATA AUGMENTATION: SVHN, CIFAR10, TINYIMAGENET

1e-03 1e-02 1e-03 1e-02
Learning rate with/without aug.

-0.1

0.0

0.1

0.2

0.3

0.4
Ac

cu
ra

cy
 g

ai
n 

(%
)

1e-02 1e-01 1e-02 1e-01
Learning rate with/without aug.

-2.0

-1.0

0.0

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

5e-03 5e-02 5e-03 5e-02
Learning rate with/without aug.

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

80 82 84 86
Accuracy single (%)

-0.1

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr1e-02 w/ aug.
lr1e-03 w/ aug.
lr1e-02 w/o aug.
lr1e-03 w/o aug.

(a) SVHN / MLP

86 88 90 92 94
Accuracy single (%)

-2.0

-1.0

0.0

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr1e-01 w/ aug.
lr1e-02 w/ aug.
lr1e-01 w/o aug.
lr1e-02 w/o aug.

(b) CIFAR10 / Resnet18

45 50 55 60 65
Accuracy single (%)

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr5e-02 w/ aug.
lr5e-03 w/ aug.
lr5e-02 w/o aug.
lr5e-03 w/o aug.

(c) TinyImagenet / Densenet121

Figure 10: Accuracy gain and data augmentation. The merging fails w/o augmentation. However, a
larger learning rate remains easier to merge than a smaller one.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 TRANSFER LEARNING: VIT, CONVNEXT-T

0.0 0.5 1.0 1.5 2.0
Accuracy gain ID

0.0

0.5

1.0

1.5

2.0

2.5
Ac

cu
ra

cy
 g

ai
n 

OO
D

58 59 60 61 62
Accuracy of merged model ID

50

51

52

53

54

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 O
OD lr3e-04

lr1e-04
lr3e-05
lr3e-05
lr1e-05
lr1e-05

Figure 11: Larger learning rate enables easier merging under transfer learning for both ID and OOD
datasets. The pretrained architecture is ViT trained on IN1k and finetuned on FMoW. The evaluation
is done on the test set ID and OOD splits.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 LANGUAGE MODELING

2.10 2.20 2.30 2.40
Loss single

−0.0025

−0.0020

−0.0015

−0.0010
Lo

ss
 g

ai
n

lr1e-03
lr5e-04
lr1e-04
lr5e-05

2.15 2.17 2.20 2.23 2.25
Loss single

−0.0040

−0.0035

−0.0030

−0.0025

−0.0020

−0.0015

Lo
ss

 g
ai

n

wd1e-01
wd1e-02
wd1e-03
wd1e-04
wd0

Figure 12: Larger learning rate and weight decay enable more effective merging in language mod-
eling. (left) Different setups at loss single of ≈ 2.20 clearly differ in loss gain. (right) Similar
phenomenon when tuning weight decay.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 TRAINING LOSS OF DECAYED MODELS

0 500 1000 1500 2000
Epoch

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 lo
ss

lr3e-02
lr1e-02
lr5e-03
lr1e-03

(a) SVHN

0 500 1000 1500 2000
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 lo
ss

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(b) CIFAR10

0 500 1000 1500 2000
Epoch

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 lo
ss

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(c) CIFAR100

0 500 1000 1500
Epoch

0

1

2

3

Tr
ai

ni
ng

 lo
ss

lr5e-02
lr3e-02
lr1e-02
lr1e-03

(d) TinyImagenet

Figure 13: Training loss of decayed models from Section 3.2. For deep networks trained on CIFAR
and TinyImageNet, we ensure that different setups reach near 0 training loss. For the simple MLP
trained on SVHN, convergence to 0 training loss is slow. However, the largest learning rate lr = 0.03
has the highest accuracy model despite a larger loss.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.6 MERGING FAILS DUE TO HIGH EFFECTIVE NOISE

88 90 92 94
Accuracy single

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
 g

ai
n

lr5e-01
lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(a) CIFAR10 / Resnet18

60 65 70 75
Accuracy single

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n

lr5e-01
lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(b) CIFAR100 / Resnet18

50 55 60 65
Accuracy single (%)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr1e-01
lr5e-02
lr3e-02
lr1e-02
lr1e-03

(c) TinyImagenet / Densenet121

Figure 14: Too large learning rate causes instability/failure in merging.

80 85 90 95
Accuracy single

−6

−4

−2

0

Ac
cu

ra
cy

 g
ai

n

wd5e-3
wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

(a) CIFAR10 / Resnet18

50 60 70
Accuracy single

−2

−1

0

1

Ac
cu

ra
cy

 g
ai

n

wd5e-3
wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

(b) CIFAR100 / Resnet18

50 55 60 65
Accuracy single

−10

−8

−6

−4

−2

0

2

Ac
cu

ra
cy

 g
ai

n

wd1e-3
wd5e-4
wd1e-4
wd5e-5
wd0

(c) TinyImagenet / Densenet121

Figure 15: Too large weight decay causes instability/failure in merging.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C ADDITIONAL RESULTS FOR TASK ARITHMETIC

C.1 LEARNING RATE, WEIGHT DECAY

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0
Ac

cu
ra

cy
 g

ai
n 

(%
)

lr3e-02
lr1e-02
lr5e-03
lr1e-03

(a) SVHN

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(b) CIFAR10

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

1

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(c) CIFAR100

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

1
Ac

cu
ra

cy
 g

ai
n 

(%
)

lr5e-02
lr3e-02
lr1e-02
lr1e-03

(d) TinyImagenet

Figure 16: Task arithmetic interpolation robustness of models w/o Pretrained weight from the Sec-
tion 3.2. In the absence of a pretrained weight, the largest learning rate is the least robust to task
arithmetic interpolation.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

Ac
cu

ra
cy

 g
ai

n
wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

(a) SVHN

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

Ac
cu

ra
cy

 g
ai

n

wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

(b) CIFAR10

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

1

Ac
cu

ra
cy

 g
ai

n

wd1e-3
wd5e-4
wd1e-4
wd1e-5
wd0

(c) CIFAR100

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0

1

Ac
cu

ra
cy

 g
ai

n

wd5e-4
wd1e-4
wd5e-5
wd0

(d) TinyImagenet

Figure 17: Task arithmetic interpolation robustness of models w/o Pretrained weight from the Sec-
tion 3.3. In the absence of a pretrained weight, the largest weight decay is the least robust to task
arithmetic interpolation.

C.2 LANGUAGE MODELING

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

0.00

0.02

0.04

0.06

0.08

Lo
ss

 g
ai

n

lr1e-3
lr5e-4
lr1e-4
lr5e-5

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

 g
ai

n

wd1e-1
wd1e-2
wd1e-3
wd1e-4
wd0

Figure 18: Task arithmetic loss gain in language modeling for a small GPT on the TinyStories dataset
trained for 200k steps. In the absence of a pretrained weight, the largest learning rate/weight decay
is the least robust to task arithmetic interpolation.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.3 TRANSFER LEARNING: FMOW, RESISC45

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

50

55

60

65

70

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 (%
) lr5e-5

lr3e-5
lr1e-5
lr5e-6
lr3e-6
lr1e-6

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−50

−40

−30

−20

−10

0

Ac
cu

ra
cy

 g
ai

n

lr1e-4
lr3e-5
lr1e-5
lr3e-6
lr1e-6

Figure 19: Task arithmetic robustness and gain for CLIP ViT-B/16 finetuned on FMoW.

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

35

40

45

50

55

60

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 (%
) lr1e-3

lr3e-4
lr1e-4
lr3e-5
lr1e-5

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−40

−30

−20

−10

0
Ac

cu
ra

cy
 g

ai
n

lr1e-3
lr3e-4
lr1e-4
lr3e-5
lr1e-5

Figure 20: Task arithmetic robustness and gain for ViT-S/16 pretrained on IN1k finetuned on FMoW.

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

93

94

95

96

97

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 (%
) lr1e-4

lr3e-5
lr1e-5
lr3e-6
lr1e-6

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−20

−15

−10

−5

0

Ac
cu

ra
cy

 g
ai

n

lr1e-4
lr3e-5
lr1e-5
lr3e-6
lr1e-6

Figure 21: Task arithmetic robustness and gain for CLIP ViT-B/16 finetuned on RESISC45.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.4 MERGING DIFFERENT TASKS

Le
ar

ni
ng

 ra
te

 fo
r t

2 
⟶

65.5 65.6 66.6 70.8 76.8

68.5 68.9 70.8 75.2 75.8

66.1 66.5 68.7 72.8 70.4

63.0 63.6 65.6 69.9 67.5

61.3 61.8 64.0 68.5 66.8

Task arithmetic α= 0.2
63.7 63.7 64.4 69.4 82.3

71.4 72.2 75.4 84.4 79.1

76.0 77.2 81.5 85.0 72.7

76.1 77.8 81.2 81.3 69.9

75.1 76.4 79.2 79.3 69.3

Task arithmetic α= 0.4
62.7 62.6 63.2 67.8 82.5

70.5 71.3 75.3 85.9 78.0

77.2 78.8 84.3 86.9 71.7

79.9 81.8 85.6 82.1 69.7

79.3 81.3 83.7 80.0 69.3

Task arithmetic α= 0.5

Learning rate for t1 ⟶

Le
ar

ni
ng

 ra
te

 fo
r t

2 
⟶

61.8 61.7 62.1 66.1 81.7

69.2 70.2 74.4 86.3 76.4

77.1 79.4 85.7 87.0 70.5

81.6 84.0 87.6 81.3 68.5

81.9 83.7 86.0 79.1 68.2

Task arithmetic α= 0.6

Learning rate for t1 ⟶

60.1 60.0 60.1 62.7 76.7

66.7 67.4 71.3 84.1 70.9

74.8 77.5 85.0 83.2 67.1

75.4 80.4 86.0 76.8 65.7

73.0 80.8 83.9 74.7 65.5

Task arithmetic α= 0.8

Learning rate for t1 ⟶

58.5 58.4 58.1 59.2 66.6

63.7 64.4 67.0 78.3 64.2

69.9 72.9 80.6 76.5 61.9

51.7 63.9 77.0 70.9 61.5

40.0 61.7 75.7 69.5 61.4

Task arithmetic α= 1.0
50

60

70

80

90

No
rm

al
ize

d 
ac

cu
ra

cy

50

60

70

80

90

No
rm

al
ize

d 
ac

cu
ra

cy

Figure 22: Task arithmetic merging of two different tasks across α values. Similar setups (antidiago-
nal) consistently have better merged models. Note that for α = 0.2 smallest learning rate models do
not merge well. Same for α = 1.0, indicating a sharper minima defined by task arithmetic subspace,
similar as Section 4.1.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS ON LOSS LANDSCAPE

D.1 TRANSITION PHASE: HILLS, FLATLAND, AND VALLEYS

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.48

0.49

0.50

0.51

0.52
Te

st
 lo

ss
Epochs

5
10
15
20
40
80
100
120

(a) SVHN

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.19

0.20

0.21

0.22

0.23

Te
st

 lo
ss

Epochs
5
10
20
40
60
80
100
120

(b) CIFAR10

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.92

0.95

0.98

1.01

Te
st

 lo
ss

Epochs
5
10
20
40
60
80
100
120

(c) CIFAR100

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

1.70

1.80

1.90

2.00

Te
st

 lo
ss

Epochs
2
4
8
15
20
40
60
80
100

(d) TinyImagenet

Figure 23: The loss geometry of the linear interpolation between two endpoints changes from a
hill → valley, based on the timing of the bifurcation. Given a training budget T , the legend
indicates the bifurcation start epoch Ta, which means the training continues for Tb = T −Ta epochs
with θA and θB . The transition phase (dashed line) marks the phase change from a hill into a valley.

0 20 40 60 80
Epoch

0.5

1.5

2.5

3.5

Lo
ss

c10
c100
tiny
svhn

test
train
transition

Figure 24: Identifying the transition phase from hill to valley.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D.2 FLATNESS

0 500 1000 1500 2000
Epochs

0

100

200

300

400

500

600
Sh

ar
pn

es
s

top8 largest λ
lr0.1
lr0.01

(a) CIFAR10

0 500 1000 1500 2000
Epochs

0

100

200

300

400

500

600

Sh
ar

pn
es

s

top8 largest λ
lr0.1
lr0.01

(b) CIFAR100

Figure 25: The flatness measured using the top-8 eigenvalues of the hessian. The larger learning
rate solutions lie inside a sharper minima.

D.3 LANDSCAPE VS. EFFECTIVE NOISE

(a) Low noise. (b) Optimal noise (“sweet spot“).

Base model
Finetuned models

(c) High noise.

Figure 26: 2D loss slices in the plane spanned by the base model and two fine-tuned models under
varying effective noise scales. Low and high noise both yield broad, flat corridors between the
fine-tuned solutions, whereas an intermediate (optimal) noise level introduces performance gains
(“valleys”) between them. Model: ResNet18; dataset: CIFAR100.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E LLM RESEARCH ASSISTANCE

We use LLM to assist this research project in the following tasks: manuscript polishing and retrieval
of related work. For both tasks, we make mild use of LLM for the manuscript writing phase. In
particular, polishing has been used only to improve the flow of the sentences, while the retrieval of
contents has been used to find a few related works.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F ADDITIONAL RESULTS FOR TRAINING DYNAMICS

F.1 SCHEDULER

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.18

0.20

0.22

0.24

Te
st

 lo
ss

Initial phase
wsd
cosine

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.19

0.20

0.21

0.22

Middle phase

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.19

0.20

0.21

Final phase

5 40Epochs 60 100Epochs 110 140Epochs

(a) CIFAR10

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.93

0.96

0.99

1.02

1.05

Te
st

 lo
ss

Initial phase
wsd
cosine

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.92

0.94

0.96

0.98
Middle phase

θA 0.2 0.4 0.6 0.8 θB
α Interpolation

0.92

0.94

0.96

0.98

1.00
Final phase

5 40Epochs 60 100Epochs 110 140Epochs

(b) CIFAR100

Figure 27: Comparison between WSD and cosine scheduler.

We use the same setup described in Appendix A, varying only the scheduler for the whole training
duration. The same training budget (epochs) is used. Figure 27 shows that WSD scheduler enables
easier merging, especially when bifurcating in the final phase where the learning rate of cosine is
already small.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F.2 OPTMIZER

0.0 0.2 0.4 0.6
Accuracy gain ID

0.0

0.5

1.0

1.5
Ac

cu
ra

cy
 g

ai
n 

OO
D

97.25 97.50 97.75 98.00 98.25 98.50
Accuracy of merged model ID

93.5

94.0

94.5

95.0

95.5

96.0

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 O
OD lr1e-03

lr5e-04
lr3e-04
lr1e-04
lr5e-05
lr1e-05
lr5e-06

(a) AdamW

-0.2 -0.1 0.0 0.1
Accuracy gain ID

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

 g
ai

n 
OO

D

97.4 97.5 97.6 97.7 97.8 97.9
Accuracy of merged model ID

93.8

94.0

94.2

94.4

94.6

94.8

95.0

Ac
cu

ra
cy

 o
f m

er
ge

d 
m

od
el

 O
OD lr1e-02

lr5e-03
lr1e-03
lr5e-04
lr1e-04
lr5e-05

(b) SGD

Figure 28: Optimizer comparison under transfer learning. Using AdamW, larger learning rate en-
ables easier merging for both ID and OOD datasets, while for SGD, benefits are only for ID dataset.
The pretrained architecture is ConvNext-T trained on IN1k and finetuned on CIFAR10. The test set
ID is CIFAR10 and test set OOD is CIFAR10.1 (Recht et al., 2018).

We compare the optimizer effect on merging effectiveness between AdamW to SGD. Note that in
this experiment, SGD with small lr required 20× more steps compared to AdamW for convergence.
Figure 28 shows that SGD have larger performance gain with larger lr for ID dataset, but not for
OOD dataset. Moreover, SGD trained models have a lower final perfomance compared to AdamW
models (95% vs 96%).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G ADDITIONAL RESULTS UNDER NETWORK SYMMETRIES

−0.6 −0.4 −0.2 0.0
Accuracy gain w/ perm. invariance (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr1e-01
lr1e-02
lr1e-03

Figure 29: Accuracy gain after permutation invariance for CIFAR100.

We validate the following hypothesis: the minima identified with a larger effective noise makes re-
basing methods more effective. We train two sets of models with independent initialization using the
same setup as in Section 3.2. Note that, to enable successful merging, these independent models θ
must be first rebased θr before merging θrm. The weight-based matching is used. Then, we measure
the permutation invariant gaininv = acc(θrm) − acc(θ). A larger gaininv value corresponds to a
more successful rebasing.

Figure 29 shows a clear correlation between the standard merging gain obtained in the shared ini-
tialization and branching setup (y-axis) against the merging gaininv between independent initialized
models (x-axis). In particular, a larger lr (or effective noise) helps to identify “flatter” basins that
also enables more effective rebasin.

( B)0.80.60.40.2A
Interpolation coefficient ( )

0

1

2

3

4

5

Lo
ss

 b
ar

rie
r

(a) Vanilla averaging.

( B)0.80.60.40.2A
Interpolation coefficient ( )

0.0

0.5

1.0

1.5

2.0

Lo
ss

 b
ar

rie
r

(b) Weight matching.

( B)0.80.60.40.2A
Interpolation coefficient ( )

0.0

0.1

0.2

0.3

Lo
ss

 b
ar

rie
r

lr1e-4
lr2.5e-4
lr5e-4

(c) Learned matching.

1e-4 2.5e-4 5e-4
Learning rate

0

1

2

3

4

5

Lo
ss

 b
ar

rie
r

(d) Vanilla averaging.

1e-4 2.5e-4 5e-4
Learning rate

0.0

0.5

1.0

1.5

2.0

Lo
ss

 b
ar

rie
r

(e) Weight matching.

1e-4 2.5e-4 5e-4
Learning rate

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Lo
ss

 b
ar

rie
r

(f) Learned Matching.

Figure 30: Loss-barrier analysis for small GPT-2 models trained on WikiText-103 under the align-
ment methods of Theus et al. (2025). Panels (a)–(c) show the complete loss interpolation curves
for different learning rates, while the remaining panels highlight the peak (maximum) loss barrier
extracted from each trajectory. Lower loss barriers are better.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

In Figure 30, we evaluate the connectedness of small GPT-2 models trained from scratch on
WikiText-103 under varying learning rates. All models are 6-layer GPT-2–style decoders (block
size 512, dmodel = 512, nhead = 8, ninner = 2048), trained with the GPT-2 tokenizer using a batch
size of 32 for 10 epochs, weight decay 0.01, and a learning-rate warmup ratio of 0.05. To obtain
optimal neuron alignments, we apply the symmetry-aware merging methods of Theus et al. (2025).
We consider three settings: vanilla averaging (no alignment), weight matching (alignment via max-
imizing parameter similarity), and learned matching (alignment optimized directly for next-token
prediction on WikiText-103).

As in our experiments without symmetry alignment, higher learning rates tend to improve connectiv-
ity and reduce loss barriers. However, consistent with prior observations that text-based Transform-
ers trained from scratch do not exhibit linear mode connectivity, we see no cases where interpolation
reduces the loss.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

H ADDITIONAL RESULTS ON TIES MERGING

0.5 1.0 1.5
TIES merging α

50

60

70

80

90

No
rm

al
ize

d 
ac

cu
ra

cy

lr1e-4
lr3e-5
lr1e-5
lr3e-6
lr1e-6

Learning rate for t1 ⟶

Le
ar

ni
ng

 ra
te

 fo
r t

2 
⟶

61.1 61.1 61.8 67.4 81.3

69.3 70.4 76.0 88.0 69.9

77.3 80.8 85.8 79.5 64.6

78.0 78.8 79.4 71.8 62.8

73.5 73.5 73.5 67.6 61.0

TIES merging α= 1.0

60

70

80

90

No
rm

al
ize

d 
ac

cu
ra

cy

Figure 31: TIES merging of models trained on two different tasks (RESISC45, FMoW). TIES merg-
ing has better performance compared to task arithmetic in Figure 8. (left) The merged models are
finetuned using the same learning rate. Larger learning rate solutions have better performance and
are more robust to TIES interpolation, unless it is too large. (right) The models are merged using
different learning rates. Merging pairs of similar, relatively large learning rates yields the best per-
formance. Results are averaged over three seeds.

0.5 1.0 1.5
Task arithmetic α

60

65

70

75

80

85

No
rm

al
ize

d 
ac

cu
ra

cy

lr3e-5
lr1e-5
lr3e-6
lr1e-6

Figure 32: TIES merging of models trained on three different tasks (RESISC45, FMoW, CIFAR10).
Results are averaged over three seeds.

We study whether more advanced merging methods can reduce sensitivity to hyperparams as sug-
gested. First, we apply TIES directly to the existing setting in Section 4 with two tasks (RESISC45,
FMoW). We use TIES to keep 70% of the values and “mean” aggregation. Figure 31 shows that
TIES can yield slight improvement over TA (88.0% vs 85.9% normalized accuracy at lr=3e-5).
Therefore, TIES merging can partially counteract the high noise. Second, we extend the setting by
applying TIES to three tasks (RESISC45, FMoW, and CIFAR10) and measure its normalized accu-
racy across interpolation. Figure 32 shows that at small α < 0.5, a larger lr trained models have the
highest performance, while at a larger α > 0.5, larger lr becomes unstable. This suggests that TIES
can help, but not fully counteract the effects of noise.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

I ADDITIONAL RESULTS ON FEATURE SIMILARITY

95 96 97 98 99
Feature alignment (%)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(a) CIFAR10

90 92 94 96 98
Feature alignment (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(b) CIFAR100

Figure 33: Feature similarity correlates with accuracy gain.

We use the linear-CKA to measure the penultimate-layer features of the branched checkpoints, and
correlate it with the merge gain. We use a batch of 2048 samples from the test set.

Figure 33 shows that a higher lr (equivalent to higher noise) has larger merge gain and lower fea-
ture alignment (CKA). While a smaller lr has lower merge gain and higher alignment. Therefore,
merging can occur at different effective noise level, but in order to obtain merge gain, models need
complementary features.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

J ADDITIONAL RESULTS ON SWA

0.0 0.5 1.0 1.5
Accuracy gain w/ SWA (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(a) k = 3

0.0 0.5 1.0 1.5
Accuracy gain w/ SWA (%)

0.0

0.5

1.0

1.5

Ac
cu

ra
cy

 g
ai

n 
(%

)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(b) k = 10

73 74 75 76 77 78
Accuracy w/ SWA (%)

73

74

75

76

77

78

Ac
cu

ra
cy

 (%
)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(c) k = 3

73 74 75 76 77 78
Accuracy w/ SWA (%)

73

74

75

76

77

78

Ac
cu

ra
cy

 (%
)

lr2e-01
lr1e-01
lr5e-02
lr1e-02
lr1e-03

(d) k = 10

Figure 34: Accuracy gain when applying stochastic weight averaging (SWA).

Using the models trained in Section 3.2, we apply stochastic weight averaging (SWA) to the last
k checkpoints of the branched models, obtaining θswa

A and θswa
B , which are merged into θswa

m . We
define gainswa = acc(θswa

m )−0.5∗ (acc(θswa
A )+acc(θswa

B )) to measure the accuracy gain of SWA
models after merging.

Figure 34 (top) show that SWA endpoints can also benefit from merging the branched models θswa
A

and θswa
B . However, the merge gains are lower compared to the standard setting w/o SWA. This is

because SWA already incorporates the benefit of large lr (noise) to explore wider valleys by merging
the models along the same trajectory, while merging combine models from different trajectories. Fig-
ure 34 (bottom) shows that the final accuracy are comparable, and the methods are complementary.
These results support the conclusion that effective noise governs mergeability, including SWA.

34


	Introduction
	Preliminaries
	The optimizer's implicit bias on linear interpolation
	Effective noise scale as a unifying factor
	Large learning rate produces more compatible solutions
	Weight decay and effective learning rate
	Batch size, momentum, and data augmentation
	What about language modeling?
	What about transfer learning?

	The optimizer's implicit bias on task arithmetic
	Loss landscape of task arithmetic
	Loss landscape of merging different tasks

	Related works
	Conclusion
	Detailed experiment setting
	Training and merging setup
	Transfer learning experimental setup
	Details on metrics

	Additional results for linear interpolation merging
	Dataset: CIFAR10
	Data augmentation: SVHN, CIFAR10, TinyImagenet
	Transfer learning: ViT, ConvNext-T
	Language modeling
	Training loss of decayed models
	Merging fails due to high effective noise

	Additional results for task arithmetic
	Learning rate, weight decay
	Language modeling
	Transfer learning: FMoW, RESISC45
	Merging different tasks

	Additional results on loss landscape
	Transition phase: hills, flatland, and valleys
	Flatness
	Landscape vs. effective noise

	LLM research assistance
	Additional results for training dynamics
	Scheduler
	Optmizer

	Additional results under network symmetries
	Additional results on TIES merging
	Additional results on feature similarity
	Additional results on SWA

