

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW DOES THE OPTIMIZER IMPLICITLY BIAS THE MODEL MERGING LOSS LANDSCAPE?

Anonymous authors

Paper under double-blind review

ABSTRACT

Model merging methods combine models with different capabilities into a single one while maintaining the same inference cost. Two popular approaches are *linear interpolation*, which linearly interpolates between model weights, and *task arithmetic*, which combines task vectors obtained by the difference between finetuned and base models. While useful in practice, what properties make merging effective are poorly understood. This paper explores how the optimization process affects the loss landscape geometry and its impact on merging success. We show that a single quantity – the *effective noise scale* – unifies the impact of optimizer and data choices on model merging. Across architectures and datasets, the effectiveness of merging success is a non-monotonic function of effective noise, with a distinct optimum. Decomposing this quantity, we find that larger learning rates, stronger weight decay, smaller batch sizes, and data augmentation all independently modulate the effective noise scale, exhibiting the same qualitative trend. Unlike prior work that connects optimizer noise to the flatness or generalization of *individual* minima, we show that it also affects the *global* loss landscape, predicting when independently trained solutions can be merged. Our findings broaden the understanding of how optimization shapes the loss landscape geometry and its downstream consequences for model merging, suggesting the possibility of further manipulating the training dynamics to improve mergeability.

1 INTRODUCTION

Model merging methods rely on mode connectivity to successfully combine independent solutions, whose outcome depends on the loss landscape geometry in between. Merging has thus been applied to either improve the generalization performance of a single solution or to combine models with different, but similar, capabilities. Importantly, the final merged model also retains the same computational efficiency as a single model. Given the practical advantages, merging methods have been applied to improve state-of-the-art architectures (Yadav et al., 2024). In practice, to improve the performance using model merging, *model soup* (Wortsman et al., 2022) methods require training and averaging several models from a large hyperparameter grid. Analogously, for merging models with different capabilities, *task arithmetic* (Ilharco et al., 2023) methods also need multiple models to be trained, merged, and evaluated to choose the best candidates for merging.

Early works for parameter merging two solutions in deep learning can be traced back to *mode connectivity*, which showed that independent solutions can be connected by a path of low-loss models. Specifically, Draxler et al. (2018); Garipov et al. (2018) demonstrated that different minima can be connected by a path of solutions with similar loss. Frankle et al. (2020) introduced a stricter condition named *linear mode connectivity*, where two modes can be connected by a linear path of solutions with similar loss only if they share a common initial optimization trajectory. This condition suggests that optimizer properties play an essential role in understanding the properties of the loss landscape between independently trained solutions.

In this work, we study the role of optimization dynamics on the outcome of model merging. First, we present how different optimizer components (learning rate, weight decay, batch size, and data augmentation) control the same underlying factor, the *effective noise scale*. Experiments demonstrate how this noise controls the merging compatibility of different solutions. After that, we decompose this quantity into individual components, showing that each one exhibits the same qualitative

trend. We find that starting the optimization with a larger learning rate (until stability) can consistently identify single solutions that are more compatible for merging than a smaller learning rate. In practice, the compatibility is quantified using performance gain, which measures the performance difference between the merged and the single model. Since decaying the learning rate (large or small) during the optimization can always lead to a converged solution, it is perhaps surprising that simply starting with a larger learning rate can change the merging outcomes. However, beyond classical research showing direct advantage of large learning rates on generalization (Keskar et al., 2016), recent works presented different implicit biases of training with a larger learning rate, such as a sparser activation (Andriushchenko et al., 2023b), a different sequence of pattern learning (Li et al., 2019), and a flatter solution (Andriushchenko et al., 2023a). Our results extend these benefits, showing that a larger learning rate unlocks effective model merging, beyond single-task performance. Practically, given two models with similar performance, the one trained with a higher noise scale is more compatible for merging. This claim is supported by our comprehensive experimental study across different architectures (MLP, Resnet, Densenet, Transformer, and GPT), tasks (SVHN, CIFAR, TinyImagenet, WILDS, and TinyStories), and modalities such as transfer learning.

Similarly to the learning rate, we find that weight decay has a comparable effect: larger weight decay also enables more effective merging, beyond improvements in the single model performance. We explain this phenomenon through the *effective learning rate* (Van Laarhoven, 2017; Hoffer et al., 2018), which attributes the main role of weight decay to prevent the gradual decay of learning rate, and thus stochastic noise, to zero during the training. Additional components, such as batch size and data augmentation, also contribute to adding noise to the optimization process. A smaller batch size creates noisier gradient estimates since each gradient update is computed from fewer samples, leading to more variation in the optimization path (Keskar et al., 2016; Jastrzebski et al., 2017). And data augmentation adds extra randomness to the minibatches (Hanin & Sun, 2021).

Lastly, we study the effect of the learning rate in task arithmetic merging, which defines a different subspace of solutions than linear interpolation. We find that the loss landscape geometry of task arithmetic significantly changes depending on the initialization. Given an initialization with a pretrained weight (e.g. CLIP), a larger learning rate identifies solutions with greater merging compatibility (Figure 7). Moreover, the landscape is also flatter compared to a smaller learning rate. When merging solutions trained on two different downstream tasks using different learning rates, we find that similar configurations are more compatible to merge (Figure 8).

2 PRELIMINARIES

Linear interpolation merging (Frankle et al., 2020). Linear mode connectivity refers to a phenomenon where two minima with similar performance can be connected by a linear path in the parameter space without significant performance degradation along that path. Formally, given two neural networks with parameters θ_A and θ_B , we can define a linear interpolated model θ_{li} as:

$$\theta_{li} = (1 - \alpha)\theta_A + \alpha\theta_B \quad (1)$$

where $\alpha \in [0, 1]$ is the interpolation coefficient. A pair of models exhibits linear mode connectivity if the loss function $\mathcal{L}(\theta_\alpha)$ remains relatively low for all values of α along this linear path. Model merging relies on mode connectivity, but instead, it aims to find solutions with lower loss values.

Task arithmetic merging (Ilharco et al., 2023). Given a base model θ_{base} , a finetuned model θ_t on task t , the task vector is defined as $\tau_t = \theta_t - \theta_{base}$. This vector τ_t encodes all the properties of the task t . Interestingly, task arithmetic enables operations such as addition and scaling of different task vectors, creating a merged model θ_{ta} as:

$$\theta_{ta} = \theta_{base} + \sum_i \alpha_i \tau_{t_i} \quad (2)$$

where $\alpha_i \in \mathbb{R}$ is the coefficient that controls the influence of each task vector. For simplicity, α is usually the same for all the vectors. In order to succeed, both linear mode connectivity and task arithmetic assume that the loss landscape around the finetuned models θ_t is near-convex.

Effective noise scale. Stochastic optimization injects gradient noise ξ into the optimization dynamics. Writing the minibatch gradient as $g_t = \nabla \mathcal{L}(\theta_t) + \xi_t$ where $\mathbb{E}[\xi_t] = 0$ and $\text{Cov}[\xi_t] \approx \Sigma(\theta_t)/B$,

108 the stochastic update (with momentum μ and decoupled weight decay λ) can be viewed as a dis-
 109 cretized stochastic differential equation whose “temperature” scales with learning rate and inversely
 110 with batch size (Mandt et al., 2017; Smith et al., 2018; McCandlish et al., 2018). This can be sum-
 111 marized by the *effective noise scale*:

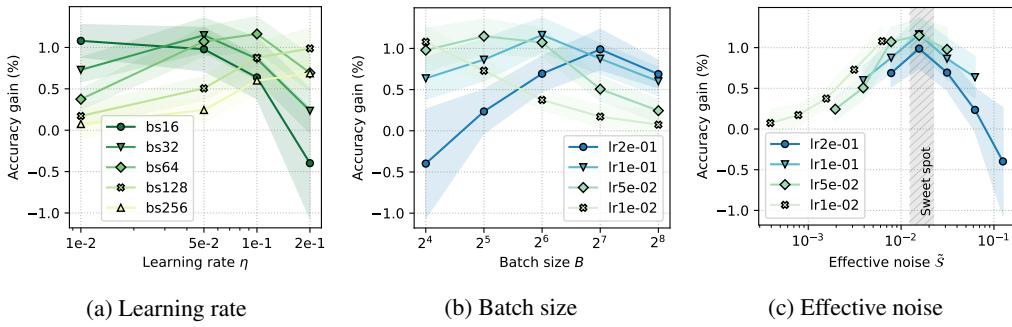
$$113 \quad \mathcal{S}_{\text{eff}}(\eta, B, \mu; \mathcal{A}) \propto \frac{\eta}{B(1-\mu)} \text{tr} \Sigma_{\mathcal{A}}(\theta_t), \quad \tilde{\mathcal{S}} = \frac{\eta}{B(1-\mu)}, \quad (3)$$

115 where η is the learning rate, B the batch size, and $\Sigma_{\mathcal{A}}$ the gradient-noise covariance, which increases
 116 with stronger data augmentation \mathcal{A} and data diversity. We report the results using the normalized
 117 proxy $\tilde{\mathcal{S}}$ and show how it controls the effectiveness of mergeability.

119 3 THE OPTIMIZER’S IMPLICIT BIAS ON LINEAR INTERPOLATION

122 This section presents our key experimental findings for linear interpolation merging. We begin
 123 by presenting the *effective noise scale* as the unifying implicit bias controlling the effectiveness of
 124 merging. Then, we show that each optimizer component affects model mergeability via noise.

126 3.1 EFFECTIVE NOISE SCALE AS A UNIFYING FACTOR



139 Figure 1: Effective noise scale controls the effectiveness of merging. The y-axis reports the test
 140 accuracy gain of merged models. On the x-axis, when plotting (a) batch sizes against learning rates
 141 or (b) vice versa, there is no clear trend. When reparameterized in terms of (c) effective noise scale,
 142 the curves are aligned, highlighting the interaction between different components for merging.

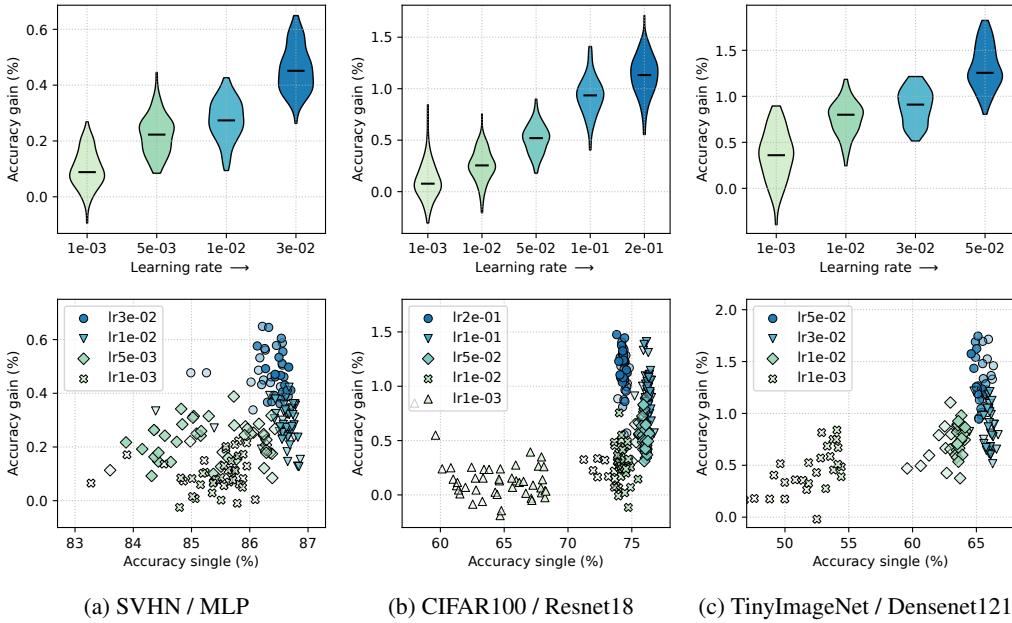
144 As introduced in Section 2, the effective noise scale $\tilde{\mathcal{S}}$ captures the joint interaction of learning rate,
 145 batch size, momentum, and augmentation of the stochasticity in SGD. Rather than treating these
 146 hyperparameters as independent, we study how $\tilde{\mathcal{S}}$ offers a unifying view on the compatibility of
 147 single models under linear interpolation merging. We use Resnet18 on CIFAR100 and sweep across
 148 different learning rates and batch sizes. The weight decay is fixed at 5e-4, and the random flip and
 149 crop augmentation are used. To evaluate the effectiveness of merging, we define performance gain
 150 as $g(\theta_{\text{merge}}, \theta_{\text{single}}) = f(\theta_{\text{merge}}) - f(\theta_{\text{single}})$ given an evaluation function $f : \Theta \times \mathcal{D} \rightarrow \mathbb{R}$.
 151 Appendix A.1 describes the training and merging setup.

152 The results in Figure 1 illustrate how $\tilde{\mathcal{S}}$ affects the model mergeability. When we vary the learning
 153 rate or batch size independently, there is no clear trend across both dimensions at the same time.
 154 For example, when increasing the learning rate for a fixed batch size to $B = 16$, the accuracy gains
 155 monotonically decrease, whereas the opposite holds for a batch size of $B = 128$. However, once we
 156 represent the x-axis in terms of the normalized effective noise $\tilde{\mathcal{S}}$, capturing both learning rate and
 157 batch size together, the different curves become aligned. Importantly, this curve is *non-monotonic*:
 158 mergeability improves as $\tilde{\mathcal{S}}$ increases from small values, reaches a “sweet spot”, and then degrades
 159 again once the noise grows too large.

160 In contrast to prior work that mainly links effective noise to properties of single solutions (Chaud-
 161 hari et al., 2016; Mandt et al., 2017; Jastrzebski et al., 2017), our results show that it also governs
 162 its surrounding solutions. Specifically, $\tilde{\mathcal{S}}$ not only biases SGD toward particular regions of the loss

162 landscape, but also controls the compatibility of solutions found in different runs under linear interpolation merging. In the following sections, we ablate each optimizer component and analyze how
 163 it contributes to the merging effectiveness.
 164

166 3.2 LARGE LEARNING RATE PRODUCES MORE COMPATIBLE SOLUTIONS



190 Figure 2: Larger learning rate leads to more effective merging. (top) The test accuracy gain of all
 191 the models. (bottom) Each point represents the performance of a single model θ_A on the x -axis and its additional performance gain after merging on the y -axis. The opacity indicates the number of
 192 training epochs. For each setup, we observe that a larger learning rates have a higher accuracy gain,
 193 even when there is a smaller learning rate with equivalent single model accuracy. Note, however,
 194 solutions found using a “too large” learning rate fail to merge (details in Appendix B.6).
 195

197 We present empirical results for deep neural networks on vision tasks trained from scratch. The
 198 architectures used are a simple MLP, Resnet18, Densenet121 trained on SVHN, CIFAR10, CIFAR100,
 199 and TinyImageNet datasets. The weight decay is fixed at 5e-4, and the random flip and crop aug-
 200 mentation are used across the setups. Appendix A.1 describes the training and merging setup.

201 The results in Figure 2 shows the key finding of our work. Using linear interpolation with a fixed
 202 $\alpha = 0.5$, we merge two solutions with the same learning rates at each checkpoint. We observe
 203 that the solutions identified with a larger learning rate are consistently more compatible to merge
 204 than those of a smaller learning rate. For example, in CIFAR100, the solutions found using an
 205 $lr = 0.2$ report $+1.2\%$ of the median gain compared to a $+0.2\%$ gain of $lr = 0.01$, despite having
 206 a similar performance for the single model of $\approx 75\%$ (x-axis). The same phenomenon is observed
 207 across different datasets (SVHN, CIFAR, and TinyImagenet) and architectures (MLP, Resnet, and
 208 Densenet). Furthermore, we also ensure that all the solutions are well-converged by asserting that
 209 the training loss is near-zero (details in Appendix B.5). As argued by Pascanu et al. (2025), it is
 210 important to understand how the implicit bias of the optimizer alters the final solutions and how
 211 to leverage this bias to find better solutions. Furthermore, recent works found different implicit
 212 biases of training with a larger learning rate, such as a sparser activation (Andriushchenko et al.,
 213 2023b; Sadrtdinov et al., 2024), a different order for feature learning order (Li et al., 2019), and a
 214 flatter solution (Andriushchenko et al., 2023a). Our results demonstrate an additional benefit: larger
 215 learning rate has an implicit bias on the loss landscape, identifying more compatible solutions for
 instabilities or failures in model merging. Note, however, Appendix Figure 14 shows that a too large learning rate leads to

216 3.3 WEIGHT DECAY AND EFFECTIVE LEARNING RATE
217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

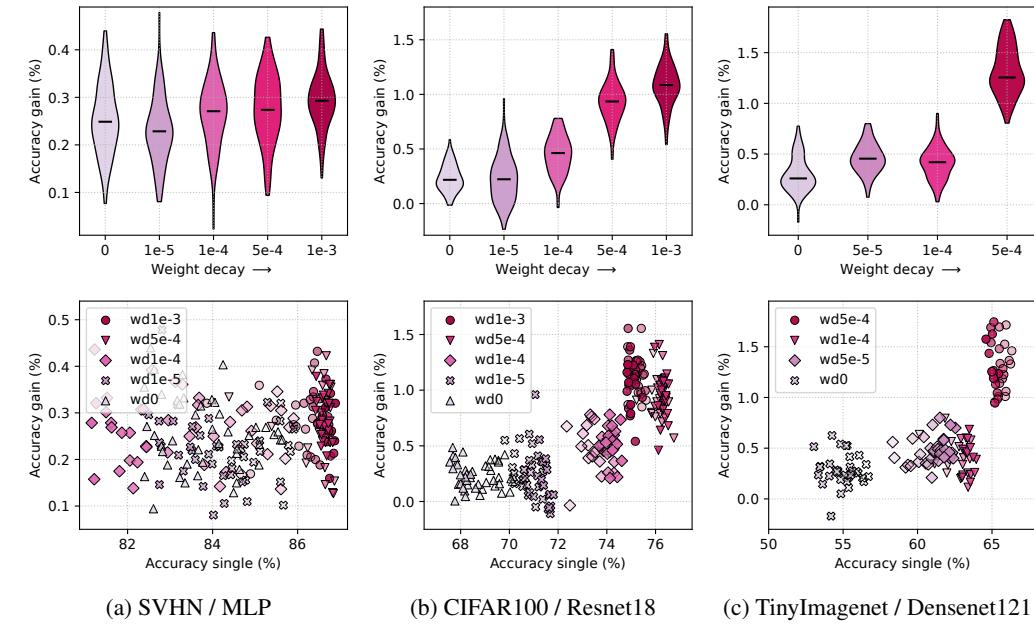
235

236

237

238

239

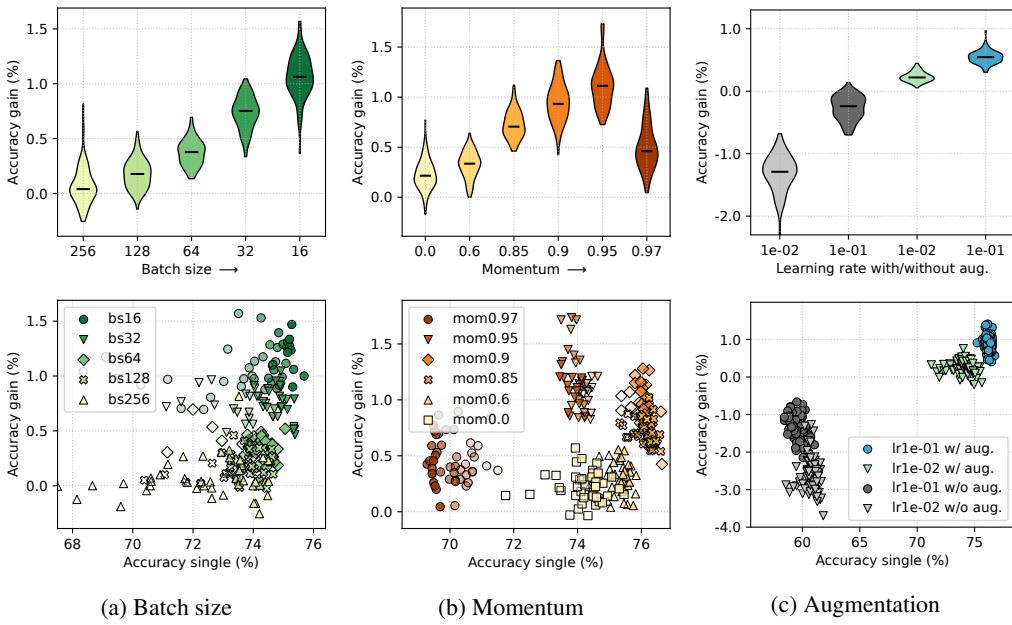


240 Figure 3: Weight decay has a similar effect as the learning rate. For CIFAR100 and TinyImagenet,
241 we use scale-invariant networks (w/ normalization layers) and observe that a larger weight decay
242 can not only improve the accuracy of the single model, but also the accuracy gain via the *effective*
243 *learning rate* (Van Laarhoven, 2017). For MLP trained on SVHN, there is no trend as the architec-
244 ture is not scale-invariant.

245
246 The traditional understanding of the role of weight decay regularization is that it reduces overfitting
247 by proportionally decaying the weights towards zero, favouring less “complex” models. In practice,
248 this is achieved by adding a penalty term $\lambda \|\theta\|_2^2$ to the objective $\mathcal{L}(\theta)$. However, modern neu-
249 ral network architectures ubiquitously use normalization layers (Ioffe & Szegedy, 2015; Ba et al.,
250 2016) and are therefore weight scale-invariant. The output is invariant to the scale of the weights as
251 $f(x, \alpha\theta) = f(x, \theta)$. Then, what is the new role of weight decay regularization in scale-invariant
252 networks? Van Laarhoven (2017); Hoffer et al. (2018) answer this question by demonstrating that
253 weight decay controls the *effective learning rate* during training. In practice, without any weight
254 constraints, scale-invariant networks will decay the learning rate over time, hindering the learning
255 process.

256 We hypothesize that weight decay has a similar effect to the learning rate in model merging. That
257 is, solutions found with a larger weight decay are easier to merge than those found with a smaller
258 or no weight decay. Note that this should hold only for scale-invariant networks. We use the same
259 experimental setup as in Section 3.2, except that we now sweep across different weight decay values
260 instead of learning rates.

261 The results in Figure 3 confirm our hypothesis about the implicit bias of weight decay. Larger weight
262 decay increases the *effective learning rate* for scale-invariant networks during training, affecting also
263 the model mergeability. For example, in TinyImagenet, the solutions found using a $wd = 0.0005$
264 report $+1.2\%$ of the median gain compared to a $+0.5\%$ of other wd values. Furthermore, interestingly,
265 for the architecture MLP trained on SVHN, larger weight decay does not differ from smaller
266 ones in terms of mergeability. This validates the fact that weight decay affects model merging only
267 for scale-invariant architectures. Our results extend how the weight decay affects the loss landscape
268 of an individual minima (Van Laarhoven, 2017) to its connection with other minima. Similar to
269 the learning rate, Appendix Figure 15 shows that excessive weight decay leads to failure in model
performance and model merging.

270 3.4 BATCH SIZE, MOMENTUM, AND DATA AUGMENTATION
271

293 Figure 4: Batch size and data augmentation control the noise during the optimization dynamics.
294 (left) A smaller batch size has more noise and improves the merging effectiveness. (middle) A larger
295 momentum leads to more noise and improves the merging effectiveness. (right) Data augmentation
296 improves performance and retains merging properties.

297 We now consider two additional components that affect the effective noise scale: batch size, **mo-**
298 **mentum**, and data augmentation. The experimental setup uses CIFAR100 with Resnet18. For batch
299 size, we use the same setup as in Section 3.2, except that we sweep across different batch sizes and
300 fix the training steps to 200k steps instead of using epochs. **Similarly, we sweep across different**
301 **momentum values**. For data augmentation, we simply turn off the augmentation during the training
302 phase. **Additional results are provided for the scheduler choice in Appendix F.1 and for alternative**
303 **datasets in Appendix B.1 Appendix B.2.**

304 **Batch size.** The stochastic gradient of a minibatch \hat{g} is unbiased but its variance scales as $Var(\hat{g}) \propto$
305 σ^2/B , where σ^2 is the per-sample variance and B the batch size. Prior work has emphasized that
306 this inverse scaling underlies the implicit regularization of SGD: smaller batch sizes inject more
307 gradient noise, often leading to flatter solutions and better generalization (Jastrzebski et al., 2017;
308 Smith & Le, 2018; Keskar et al., 2016). Our results in Figure 4 (left) extend this observation to
309 model merging. We find that solutions obtained with smaller batch sizes are more compatible under
310 linear interpolation: the smallest setup with $B = 16$ achieves a median accuracy gain of +1%,
311 while a larger setup with $B = 256$ yields almost no benefit. Thus, in addition to generalization,
312 batch-size-induced noise also improves the mergeability of independently trained models.

313 **Momentum.** Gradient descent uses momentum to introduce a temporal smoothing which accumu-
314 lates an exponentially weighted average of past gradients. While momentum is traditionally
315 understood as an acceleration mechanism that helps escape shallow local minima and traverse flat
316 regions more efficiently (Polyak, 1964; Sutskever et al., 2013), it also alters the effective noise char-
317 acteristics of SGD. Figure 4 (middle) show that models trained with a larger momentum values
318 ($\beta = 0.9$) exhibit consistently better mergeability than those trained with a lower or no momentum,
319 achieving median accuracy gains of up to +1.0% compared to +0.2% gains for low damped trajec-
320 **trories. This demonstrate that smoothing gradient noise throughout training leads to solutions that**
321 **are more diverse but compatible at the same time.**

322 **Data augmentation.** Data augmentation can likewise be viewed as injecting stochasticity into the
323 optimization process: by applying random transformations to the data, the effective gradient co-
variance $\Sigma_{\mathcal{A}}$ changes, introducing additional variance beyond minibatch sampling. Previous work

324 has argued that augmentation acts as a form of implicit regularization and invariance enforcement
 325 (Hernández-García & König, 2018; Yun et al., 2019), with recent perspectives interpreting
 326 augmentation as an additional source of optimization noise (Hanin & Sun, 2021). Our results
 327 in Figure 4 (right) show that augmentation not only improves single-model accuracy but also re-
 328 tains mergeability. Interestingly, even without augmentation, a sufficiently large learning rate can
 329 yield positive merging gains, though this effect is not universal (Figure 10). Overall, augmentation-
 330 induced noise complements the minibatch noise and learning-rate noise, shaping solutions that are
 331 both stronger individually and more compatible when merged.

332 3.5 WHAT ABOUT LANGUAGE MODELING?

333 Now we consider a language modeling
 334 task using the TinyStories dataset (Eldan
 335 & Li, 2023). We train a small GPT Trans-
 336 former model with two layers using the
 337 AdamW optimizer with a constant learning
 338 rate for 200k steps and save a check-
 339 point every 2k steps, following the setup
 340 at Appendix A.1. Two endpoint models
 341 are trained for an additional 20k steps us-
 342 ing a decayed learning rate scheduler. We
 343 use the loss performance gain to quantify
 344 the merging process. The lower the loss
 345 gain, the easier the merging process.

346 The results in Figure 5 extend our previous findings to
 347 the language domain. For the learning rate experimental
 348 setup, we fix $wd = 0$. Figure 12 (left) shows that a larger
 349 learning rate, such as $lr = 0.001$, requires fewer steps to
 350 reach a loss value of 2.20 compared to $lr = 0.0001$. Not
 351 only that, Figure 5 shows that a larger learning rate also
 352 has the implicit bias of simplifying the merging process,
 353 as measured by a lower loss gain. This behaviour is simi-
 354 lar to the results from vision in Section 3.2. When weight
 355 decay regularization is added to the equation, there are
 356 further merging benefits. We fix the $lr = 0.001$ and
 357 sweep across weight decay. Figure 5 on the right shows
 358 that a larger weight decay leads to a better loss gain than
 359 smaller ones. Specifically, the largest weight decay, such
 360 as $wd = 0.1$, has the best loss gain, but also has a slower
 361 convergence (x-axis). The second largest weight decay of
 362 $wd = 0.01$ has a similar convergence speed as the smaller
 363 one, in addition to better loss gain. Lastly, smaller values
 364 have similar results as training without weight decay.

365 3.6 WHAT ABOUT TRANSFER LEARNING?

366 In the previous sections, we analyzed settings where
 367 models were trained on one single task. Now we consider
 368 transfer learning setup, where the pretraining and finetuning
 369 tasks differ. We finetune only the vision encoder of
 370 the ImageNet pretrained model CLIP ViT-B/16 (Radford
 371 et al., 2021) on the WILDS-FMoW (Koh et al., 2021)
 372 dataset using the AdamW optimizer with cosine sched-
 373 ule. Since varying the learning rate changes the speed
 374 of convergence, we carefully tune the number of training
 375 epochs for each setup and ensure proper convergence (details in Appendix A.2). We train three seeds
 376 for each setup and merge each different pair, obtaining three different merged models per learning
 377 rate. Additional results comparing optimizers choice in transfer learning are in Appendix F.2.

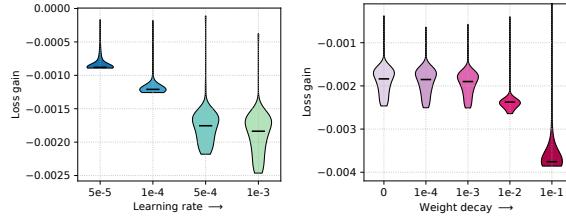


Figure 5: Larger learning rate and weight decay enable more effective merging in language modeling. (left) A larger learning rate has a better loss gain. (right) Adding a larger weight decay offers further merging gains. Appendix B.4 shows the scatter plots.

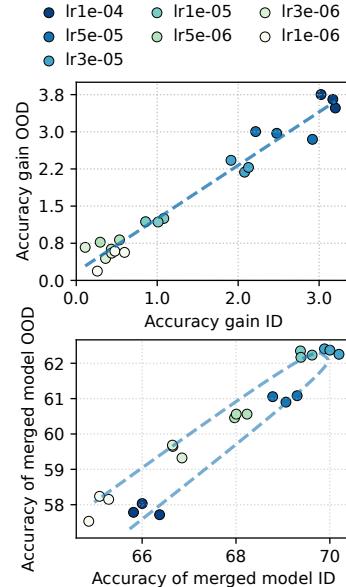


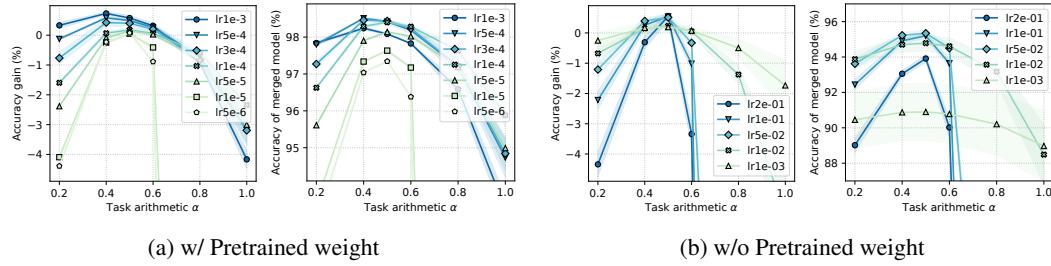
Figure 6: Mergeability in transfer learning for ID and OOD data. (top) Accuracy gain linearly correlates with learning rate. (bottom) However, a larger learning rate leads to a suboptimal merged model, despite having the largest accuracy gain.

378 The results on the top of the Figure 6 shows that a larger learning rate identifies solutions that are
 379 easier to merge. Specifically, the smallest values lie in a flatter loss landscape region where the
 380 performance gain is $4\times$ smaller than the largest learning rate when merged. The Pearson correlation
 381 coefficient is $r = 0.981$, indicating an almost perfect linear correlation between accuracy gain and
 382 learning rate. Note, however, that one should not blindly use the largest learning rate. Figure 6 on
 383 the bottom shows that the merged models with the best performance are the one with a moderate
 384 learning rate, as also observed by (Wortsman et al., 2022). The largest learning rate setup has the
 385 largest accuracy gain, but the worst-performing single model. Appendix B.3 presents similar results
 386 using different datasets and a pretrained model.

388 4 THE OPTIMIZER’S IMPLICIT BIAS ON TASK ARITHMETIC

390 In the previous section, we have seen how the optimizer implicitly biases the loss landscape of linear
 391 interpolation merging. We now consider task arithmetic interpolation, which defines a different
 392 subspace of solutions. This section studies how the principal optimizer choice, the learning rate,
 393 affects the loss landscape of task arithmetic merging.

395 4.1 LOSS LANDSCAPE OF TASK ARITHMETIC



406 Figure 7: Task arithmetic loss landscape drastically changes depending on the initialization model.
 407 (a) With a pretrained initialization on ImageNet, larger learning rate solutions have higher gain and
 408 are more robust to task arithmetic interpolation. (b) Without a pretrained weight, a larger learning
 409 rate solution lies in a sharper minima (i.e. more sensitive to α changes).

411 So far, we have only considered merging using linear interpolation (see Equation (1)). Task arithmetic
 412 interpolates two models along a different subspace compared to linear interpolation, identifying
 413 functionally different solutions. We apply task arithmetic interpolation to two settings:

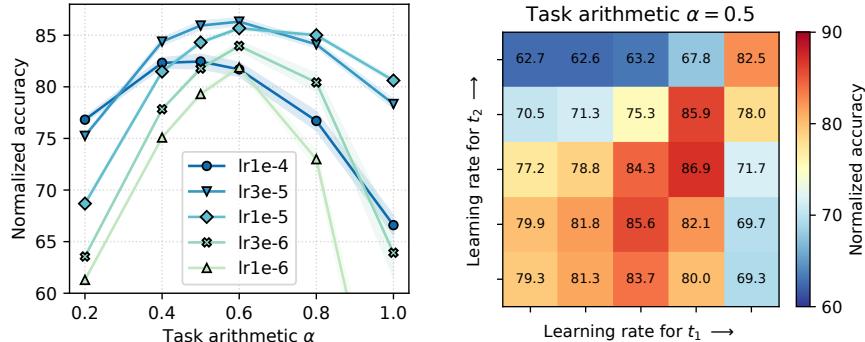
- 414 (a) Models w/ pretraining weight from Section 3.6 (i.e. pretraining dataset is different from
 415 the finetuning dataset). Task arithmetic is applied to a base model and two task vectors.
 416 The base model θ_{base} is the pretrained model CLIP ViT-B/16, and the task vectors are the
 417 finetuned models with different random seeds.
- 418 (b) Models w/o pretraining weight from Section 3.2 (i.e. pretraining shares the same dataset
 419 as finetuning). For task arithmetic, we treat each checkpoint θ_i as the base model θ_{base} ,
 420 and the task vectors are obtained from the endpoint models $\tau_A = \theta_A - \theta_{base}$ and $\tau_B =$
 421 $\theta_B - \theta_{base}$.

423 For each learning rate setup, we traverse the subspace defined by the task arithmetic interpolation
 424 by changing the coefficient α . This measures the performance change as a function of α , which can
 425 also be seen as a measure of landscape flatness. For simplicity, we use the same α for the two task
 426 vectors when applying task arithmetic.

427 The results in Figure 7 show the robustness of each learning rate to task arithmetic interpolation for
 428 CIFAR10. There is a clear dichotomy between the two settings. In setting (a), a larger learning rate
 429 identifies merged solutions that are more robust to α -interpolation, corresponding to a flatter land-
 430 scape (Andriushchenko et al., 2023a). However, in setting (b), the opposite is true. This highlights
 431 that a larger learning rate has to be used together with a suitable initialization to achieve a smoother
 432 and flatter landscape (Wortsman et al., 2022). Furthermore, as in linear interpolation merging, a

432 “too large” learning rate becomes unstable. Appendix C.3 presents further experimental results for
 433 different datasets.
 434

435 4.2 LOSS LANDSCAPE OF MERGING DIFFERENT TASKS 436



447 Figure 8: Task arithmetic merging of models trained on two different tasks. (left) The merged models
 448 are finetuned using the same learning rate. Larger learning rate solutions have better performance
 449 and are more robust to task arithmetic interpolation, unless it is too large. (right) The models are
 450 merged using different learning rates. Merging pairs of similar, relatively large learning rates yields
 451 the best performance. Results are averaged over three seeds.
 452

453 We now consider task arithmetic merging of two models sharing the same initialization θ_{base} fine-
 454 tuned on two different, but similar, tasks t . As in Section 3.6, we finetune one CLIP ViT-B/16 on
 455 task t_1 WILDS-FMoW and another on task t_2 RESISC45 (Cheng et al., 2017). Then, task arithmetic
 456 merging is applied to merge the two models. To quantify the merging success, we use the averaged
 457 normalized accuracy, which measures the average ratio of the merged model performance over each
 458 single model performance (details in Appendix A.3).
 459

460 The results in Figure 8 show how the learning rate affects the mergeability of two models trained on
 461 two different tasks. In the Figure 8 on the left, as a proxy of the task arithmetic loss landscape, we
 462 merge and study the robustness of models finetuned using the same hyperparameters when inter-
 463 polating α . We observe that the larger learning rate solutions perform better compared to the smaller
 464 ones (except for $lr = 0.0001$, which is the limit for stability). Moreover, larger values are also more
 465 robust to changes of α , representing flatter minima connecting the two different tasks. On the right
 466 of Figure 8, we merge models finetuned with different hyperparameters. The merged models with
 467 the best performance are those merged with similar and moderately large learning rates (near the
 468 antidiagonal). Merging models with a larger learning rate can result in better performance, but at the
 469 cost of losing flexibility for merging with other configurations. In particular, the largest learning rate
 470 $lr = 0.0001$ is the most unstable to merge with different learning rate models. Ilharco et al. (2023)
 471 also observed performance degradation when merging models trained with too large learning rates.
 472 Appendix C.4 reports additional results with further α values.
 473

474 Lastly, additional experiments with TIES merging in Appendix H demonstrate that TIES can better
 475 counteract the large noise, yielding a +2% improvement compared to task arithmetic at $lr=3e-5$
 476 (88% vs 85.9%). Overall, TIES merging follows a similar qualitative trend as task arithmetic, with
 477 a small performance gain across noise levels.
 478

479 5 RELATED WORKS 480

481 **Model merging.** Early works on merging independently trained solutions on the same task can be
 482 found on mode connectivity (Garipov et al., 2018; Draxler et al., 2018). Linear mode connectivity
 483 has a stricter condition such that connecting paths are linear (Frankle et al., 2020; Neyshabur et al.,
 484 2020). When this is not possible, re-basin methods can be used to reparametrize the solution and
 485 restore the linear connectivity (Entezari et al., 2022; Ainsworth et al., 2023; Theus et al., 2025). Built
 486 upon these results, model merging methods have been developed to increase the performance on a

486 single task (Wortsman et al., 2022) or to combine models trained on different tasks into one (Matena
 487 & Raffel, 2022; Ilharco et al., 2023). Yadav et al. (2025) provides a comprehensive survey of the
 488 latest merging methods.

489 **Optimization dynamics.** Standard optimization theory (Garrigos & Gower, 2023) shows that both
 490 batch sizes and learning rates drastically affect stability and convergence properties of SGD. In par-
 491 ticular, through an analysis of SGD’s stationary distribution on simple quadratic potentials (Jastrzeb-
 492 ski et al., 2017), it is possible to evince that, for single model training, the loss statistics at conver-
 493 gence only depend on the ratio between batch size and learning rates – as also validated empirically
 494 by Smith et al. (2020). In turn, either high learning rates or low batch sizes are known to favor flat
 495 minima (Keskar et al., 2016). While for more sophisticated optimizers, correlations between batch
 496 size, learning rates, and generalization might be more complex (Zhang et al., 2019; Malladi et al.,
 497 2022), other factors might more severely affect simple relations, such as non-Gaussianity (Simsekli
 498 et al., 2019) of gradient noise and non-convexity (Xie et al., 2021).

500 6 CONCLUSION

501 We study how optimizer choices implicitly shape the model-merging loss landscape and highlight
 502 the *effective noise scale* as a unifying factor. Learning rate, weight decay, batch size, and data aug-
 503 mentation all modulate this noise, which in turn determines whether independently trained solutions
 504 are compatible for merging. The relationship is non-monotonic – too little noise yields incompatible
 505 solutions, too much destabilizes training, but an intermediate “sweet spot” enables effective merg-
 506 ing. *In practice, model mergeability appears to be primarily determined by effective noise levels,*
 507 *suggesting that hyperparameter search can be simplified by focusing on this single dimension rather*
 508 *than exploring all hyperparameters independently.*

510 Our findings extend prior work connecting optimization trajectory noise to flatness and generaliza-
 511 tion of individual models, showing that noise also shapes the compatibility of independent solutions.
 512 However, many open questions remain. For example, how can we systematically tune effective noise
 513 levels, architectural designs, and pretraining strategies to produce models that are not only strong
 514 individually but also inherently mergeable with other solutions? To summarize our contributions in
 515 one sentence: *tune the noise to tune mergeability*.

516 **Limitations.** No new theoretical guarantees are developed, and no truly large-scale experiments are
 517 conducted due to our limited computational resources. We studied the standard merging methods,
 518 that form the foundation of state-of-the-art approaches. Our goal was to use a set of *simple, diverse,*
 519 *but realistic* experimental setups to understand the role of optimization in model merging.

520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES

541

542 Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models mod-
543 ule permutation symmetries. In *International Conference on Learning Representations*, 2023.

544 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
545 marion. A modern look at the relationship between sharpness and generalization. In *International
546 Conference on Machine Learning*, 2023a.

547 Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion.
548 Sgd with large step sizes learns sparse features. In *International Conference on Machine Learn-
549 ing*, 2023b.

550 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint
551 arXiv:1607.06450*, 2016.

552 Pratik Chaudhari, Anna Choromańska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
553 Borgs, Jennifer Tour Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: biasing gradi-
554 ent descent into wide valleys. *Journal of Statistical Mechanics: Theory and Experiment*, 2016.

555 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Bench-
556 mark and state of the art. *Proceedings of the IEEE*, 2017.

557 Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
558 in neural network energy landscape. In *International Conference on Machine Learning*, 2018.

559 Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak
560 coherent english? *arXiv preprint arXiv:2305.07759*, 2023.

561 Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation in-
562 variance in linear mode connectivity of neural networks. In *International Conference on Learning
563 Representations*, 2022.

564 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
565 nectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*,
566 2020.

567 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
568 surfaces, mode connectivity, and fast ensembling of dnns. In *Advances in Neural Information
569 Processing Systems*, 2018.

570 Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
571 gradient methods. *arXiv preprint arXiv:2301.11235*, 2023.

572 Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
573 Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. In *Advances
574 in Neural Information Processing Systems*, 2024.

575 Boris Hanin and Yi Sun. How data augmentation affects optimization for linear regression. In
576 *Advances in Neural Information Processing Systems*, 2021.

577 Alex Hernández-García and Peter König. Data augmentation instead of explicit regularization. *arXiv
578 preprint arXiv:1806.03852*, 2018.

579 Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
580 normalization schemes in deep networks. In *Advances in Neural Information Processing Systems*,
581 2018.

582 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
583 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
584 with scalable training strategies. In *First Conference on Language Modeling*, 2024.

585 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
586 and Ali Farhadi. Editing models with task arithmetic. In *International Conference on Learning
587 Representations*, 2023.

594 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 595 reducing internal covariate shift. In *International Conference on Machine Learning*, 2015.

596

597 Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
 598 Bengio, and Amos Storkey. Three factors influencing minima in sgd. *arXiv preprint*
 599 *arXiv:1711.04623*, 2017.

600 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 601 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv*
 602 *preprint arXiv:1609.04836*, 2016.

603

604 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 605 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
 606 benchmark of in-the-wild distribution shifts. In *International Conference on Machine Learning*,
 607 2021.

608

609 Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
 610 learning rate in training neural networks. In *Advances in Neural Information Processing Systems*,
 611 2019.

612

613 Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
 614 rules for adaptive gradient algorithms. *Advances in Neural Information Processing Systems*, 2022.

615

616 Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
 617 bayesian inference. *Journal of Machine Learning Research*, 2017.

618

619 Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. *Advances*
 620 *in Neural Information Processing Systems*, 2022.

621

622 Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
 623 large-batch training. *arXiv preprint arXiv:1812.06162*, 2018.

624

625 Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
 626 ing? In *Advances in Neural Information Processing Systems*, 2020.

627

628 Razvan Pascanu, Clare Lyle, Ionut-Vlad Modoranu, Naima Elosegui Borras, Dan Alistarh, Petar
 629 Velickovic, Sarath Chandar, Soham De, and James Martens. Optimizers qualitatively alter solu-
 630 tions and we should leverage this. *arXiv preprint arXiv:2507.12224*, 2025.

631

632 Boris T Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr compu-*
 633 *tational mathematics and mathematical physics*, 1964.

634

635 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 636 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 637 models from natural language supervision. In *International Conference on Machine Learning*,
 638 2021.

639

640 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
 641 generalize to cifar-10? *arXiv preprint arXiv:1806.00451*, 2018.

642

643 Ildus Sadtdinov, Maxim Kodryan, Eduard Pokonechny, Ekaterina Lobacheva, and Dmitry P Vetrov.
 644 Where do large learning rates lead us? In *Advances in Neural Information Processing Systems*,
 645 2024.

646

647 Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
 648 noise in deep neural networks. In *International Conference on Machine Learning*, 2019.

649

650 Samuel Smith, Erich Elsen, and Soham De. On the generalization benefit of noise in stochastic
 651 gradient descent. In *International Conference on Machine Learning*, 2020.

652

653 Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
 654 descent. In *International Conference on Learning Representations*, 2018.

655

656 Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don't decay the learning rate,
 657 increase the batch size. In *International Conference on Learning Representations*, 2018.

648 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
 649 and momentum in deep learning. In *International Conference on Machine Learning*, 2013.
 650

651 Alexander Theus, Alessandro Cabodi, Sotiris Anagnostidis, Antonio Orvieto, Sidak Pal Singh, and
 652 Valentina Boeva. Generalized linear mode connectivity for transformers. In *Advances in Neural*
 653 *Information Processing Systems*, 2025.

654 Twan Van Laarhoven. L2 regularization versus batch and weight normalization. *arXiv preprint*
 655 *arXiv:1706.05350*, 2017.
 656

657 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 658 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, and Simon Kornblith. Model
 659 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 660 inference time. In *International Conference on Machine Learning*, 2022.

661 Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
 662 Stochastic gradient descent exponentially favors flat minima. In *International Conference on*
 663 *Learning Representations*, 2021.

664 Prateek Yadav, Tu Vu, Jonathan Lai, Alexandra Chronopoulou, Manaal Faruqui, Mohit Bansal,
 665 and Tsendsuren Munkhdalai. What matters for model merging at scale? *arXiv preprint*
 666 *arXiv:2410.03617*, 2024.
 667

668 Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen,
 669 Mohit Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging: Recy-
 670 cling and routing among specialized experts for collaborative learning. *Transactions on Machine*
 671 *Learning Research*, 2025.

672 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 673 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Interna-*
 674 *tional Conference on Computer Vision*, 2019.

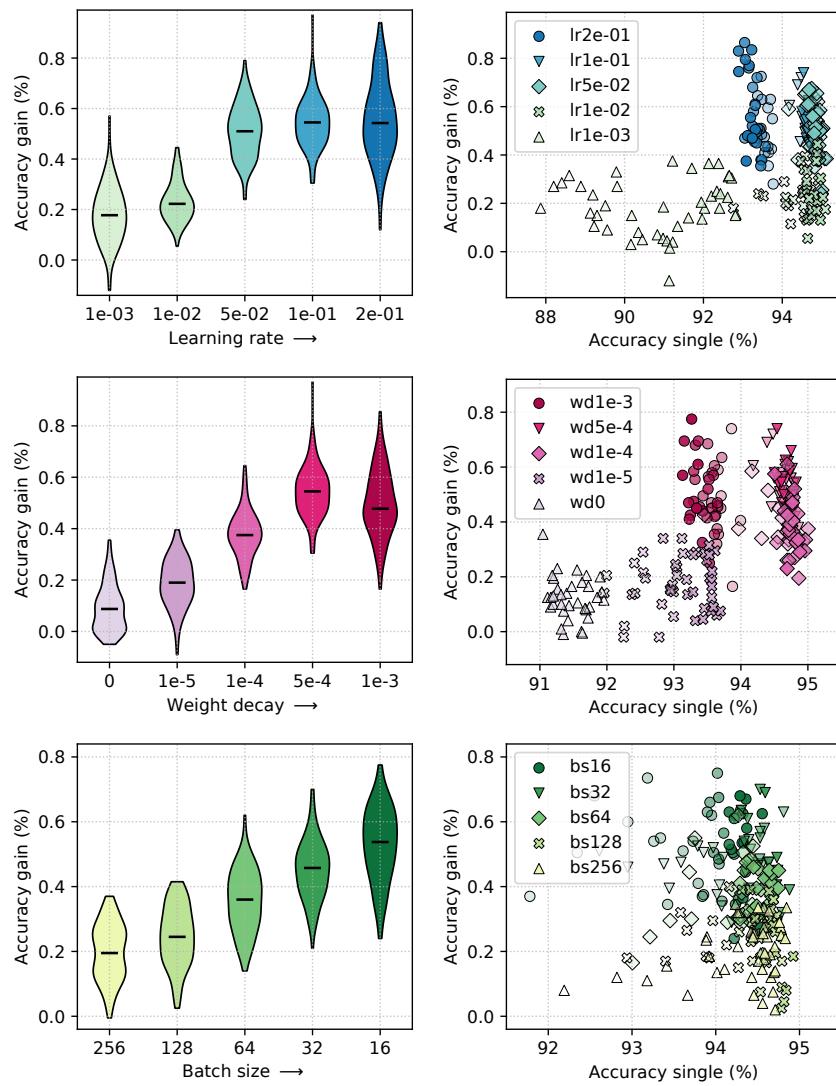
675 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
 676 In *Computer Vision and Pattern Recognition*, 2022.
 677

678 Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
 679 Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
 680 from a noisy quadratic model. *Advances in neural information processing systems*, 32, 2019.
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A DETAILED EXPERIMENT SETTING
703704 A.1 TRAINING AND MERGING SETUP
705706 For Section 3.2, Section 3.3, Section 3.4, and Section 3.5, we use the following training setup.
707708 We use the warmup-stable-decay (WSD) scheduler (Zhai et al., 2022; Hu et al., 2024). We use
709 the square root decay as in Hägele et al. (2024). Given a single configuration (e.g. lr = 0.1),
710 we use a constant learning rate to train a model for T_{stable} epochs, saving a checkpoint θ_i every i
711 epochs. For each θ_i , we use a decay learning rate scheduler and continue the training for T_{decay}
712 epochs, obtaining two final endpoint models $\theta_{i,A}$ and $\theta_{i,B}$. Finally, the merged model is a linear
713 interpolation (Equation (1)) between $\theta_{i,A}$ and $\theta_{i,B}$ with $\alpha = 0.5$.
714715 We provide an example. For the CIFAR100 task, we train a model using a constant learning rate for
716 $T_{stable} = 2000$ epochs and save a checkpoint θ_i every $i = 20$ epochs. Then, for each checkpoint,
717 we use a decay scheduler and create two endpoint models $\theta_{i,A}$ and $\theta_{i,B}$. This means that at the end,
718 there will be $T_{stable}/i = 2000/20 = 100$ different merged models.
719720 Note that, to account for the different magnitudes of settings (e.g. lr = 0.1 vs lr = 0.01), we use
721 a T_{stable} of one order of magnitude larger than the standard setting to ensure convergence of single
722 models. We use $T_{stable} = 2000$ for CIFAR10, CIFAR100, and SVHN and $T_{stable} = 1500$ for
723 TinyImagenet. We use $T_{decay} = 30$ for CIFAR10 and CIFAR100, and $T_{decay} = 20$ for SVHN and
724 TinyImagenet.
725726 A.2 TRANSFER LEARNING EXPERIMENTAL SETUP
727728 For Section 3.6 and Appendix B.3, we use the following training setup.
729730 For CLIP ViT-B/16 finetuned on WILDS-FMoW, we discard the language model. We use the
731 AdamW optimizer with a warmup-cosine learning rate scheduler. Since varying the learning rate
732 changes the speed of convergence, we carefully tune the number of training epochs for each setup
733 to ensure convergence (e.g. training loss = 0). The following hyperparams (epochs, lr) are used for
734 each setup (20, 1e-4), (20, 5e-5), (20, 3e-5), (20, 1e-5), (30, 5e-6), (40, 3e-6), and (100, 1e-6).
735736 For CLIP ViT-B/16 finetuned on RESISC45, we follow the above configuration. The following
737 hyperparams are used (20, 1e-4), (20, 3e-5), (20, 1e-5), (20, 3e-6), and (20, 1e-6).
738739 For ViT-S/16 pretrained on IN1k and finetuned on WILDS-FMoW, we use the AdamW optimizer
740 with a warmup-cosine learning rate scheduler. The following hyperparams are used (20, 1e-3), (20,
741 3e-4), (20, 1e-4), (40, 3e-5), and (100, 1e-5).
742743 For ConvNext-T pretrained on IN1k and finetuned on CIFAR10, we use the AdamW optimizer with
744 a warmup-cosine learning rate scheduler. The following hyperparams are used (20, 1e-3), (20, 5e-4),
745 (20, 3e-4), (40, 1e-4), (40, 5e-5), (80, 1e-5), and (80, 5e-6).
746747 Note that, for each setup, we have grid searched and used the largest learning rate possible. This
748 means that an even larger learning rate fails to converge.
749750 A.3 DETAILS ON METRICS
751752 **Normalized accuracy** compares the relative performance metric of the multi-task model to that of
753 single finetuned models:
754

755
$$\text{accuracy}_{norm} = \frac{1}{T} \sum_{i=1}^T \frac{\text{accuracy}(\theta_M)}{\text{accuracy}(\theta_i)}$$

756 where T is the total number of tasks, θ_M represents the multi-task model and θ_i is the single fine-
757 tuned model for the task t_i . This metric compares the baseline performance against each task.
758

756 B ADDITIONAL RESULTS FOR LINEAR INTERPOLATION MERGING
757758 B.1 DATASET: CIFAR10
759795 Figure 9: Larger learning rate / larger weight decay / smaller batch size all lead to a larger performance gain in CIFAR10 dataset.
796
797

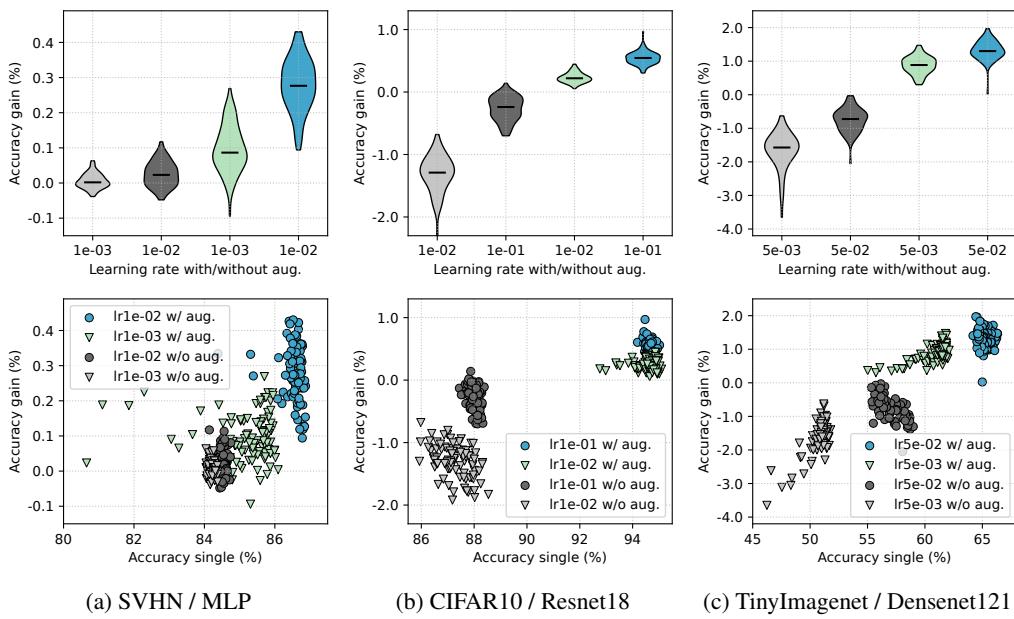
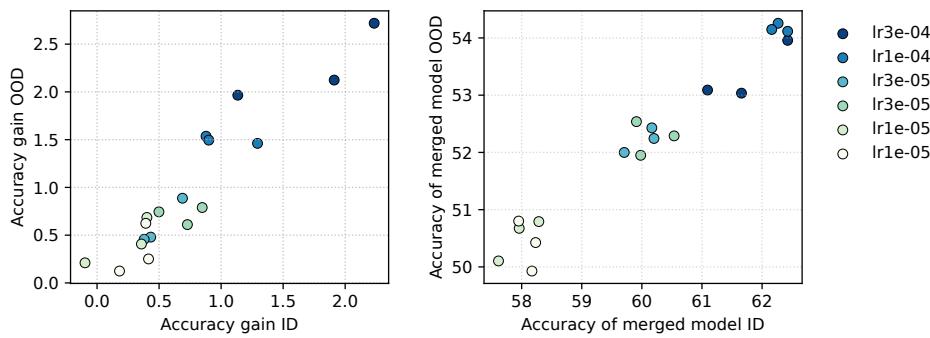
810
811 B.2 DATA AUGMENTATION: SVHN, CIFAR10, TINYIMAGENET
812

Figure 10: Accuracy gain and data augmentation. The merging fails w/o augmentation. However, a larger learning rate remains easier to merge than a smaller one.

864
865 B.3 TRANSFER LEARNING: ViT, CONVNEXT-T
866878
879 Figure 11: Larger learning rate enables easier merging under transfer learning for both ID and OOD
880 datasets. The pretrained architecture is ViT trained on IN1k and finetuned on FMoW. The evaluation
881 is done on the test set ID and OOD splits.882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919

B.4 LANGUAGE MODELING

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

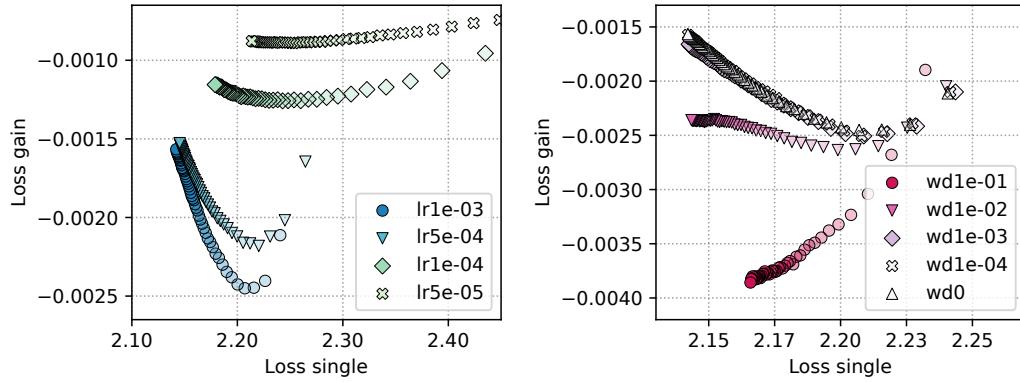


Figure 12: Larger learning rate and weight decay enable more effective merging in language modeling. (left) Different setups at loss single of ≈ 2.20 clearly differ in loss gain. (right) Similar phenomenon when tuning weight decay.

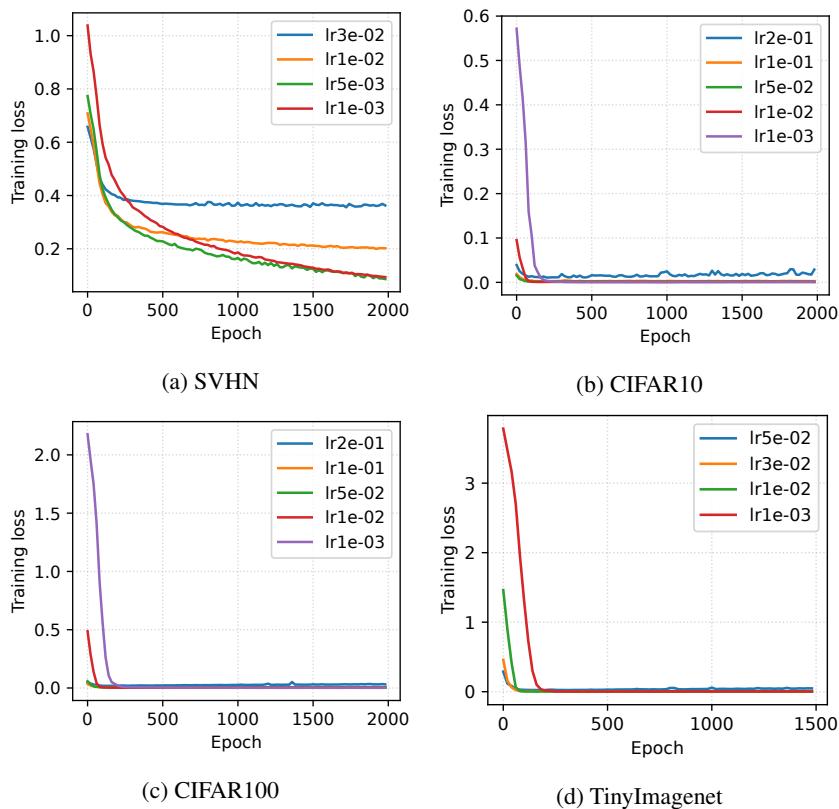
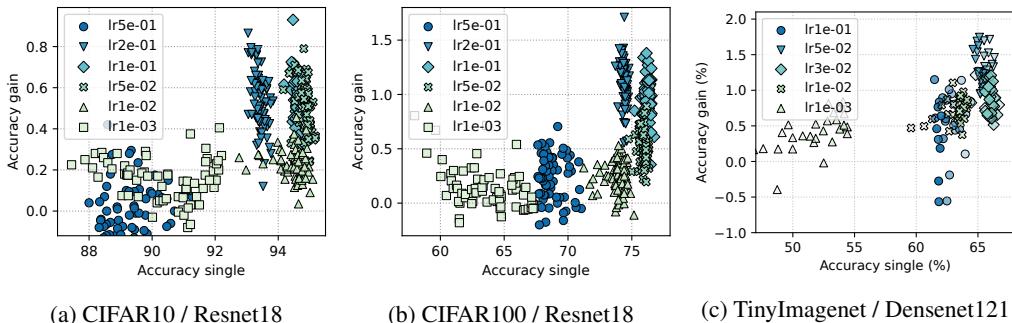
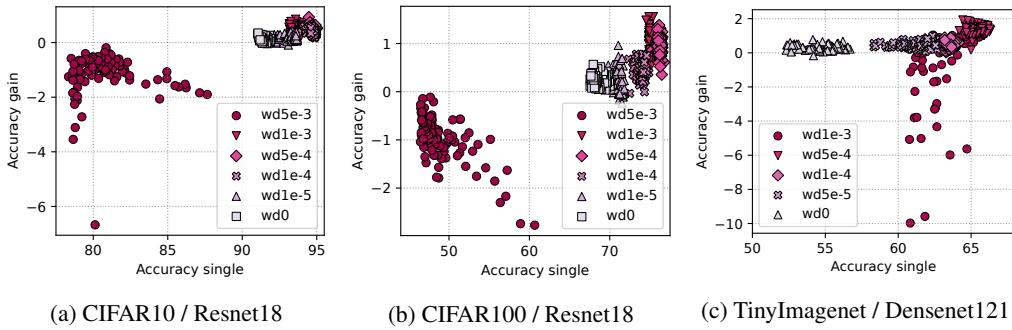
972
973 B.5 TRAINING LOSS OF DECAYED MODELS
974

Figure 13: Training loss of decayed models from Section 3.2. For deep networks trained on CIFAR and TinyImageNet, we ensure that different setups reach near 0 training loss. For the simple MLP trained on SVHN, convergence to 0 training loss is slow. However, the largest learning rate $lr = 0.03$ has the highest accuracy model despite a larger loss.

1026 B.6 MERGING FAILS DUE TO HIGH EFFECTIVE NOISE
10271038 Figure 14: Too large learning rate causes instability/failure in merging.
10391039 Figure 15: Too large weight decay causes instability/failure in merging.
1040

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

C ADDITIONAL RESULTS FOR TASK ARITHMETIC

C.1 LEARNING RATE, WEIGHT DECAY

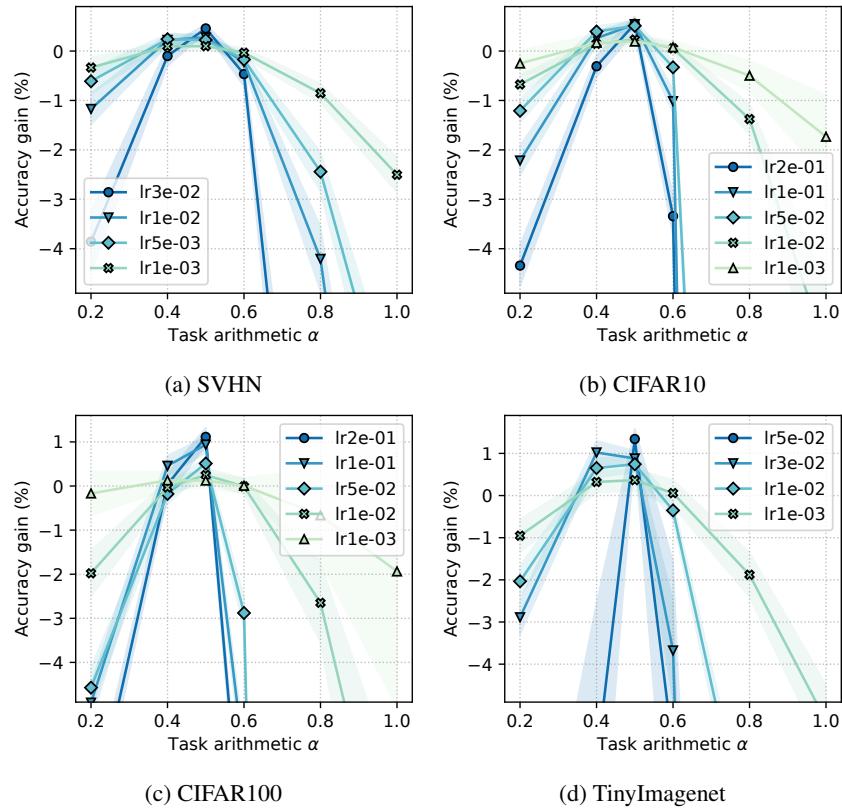


Figure 16: Task arithmetic interpolation robustness of models w/o Pretrained weight from the Section 3.2. In the absence of a pretrained weight, the largest learning rate is the least robust to task arithmetic interpolation.

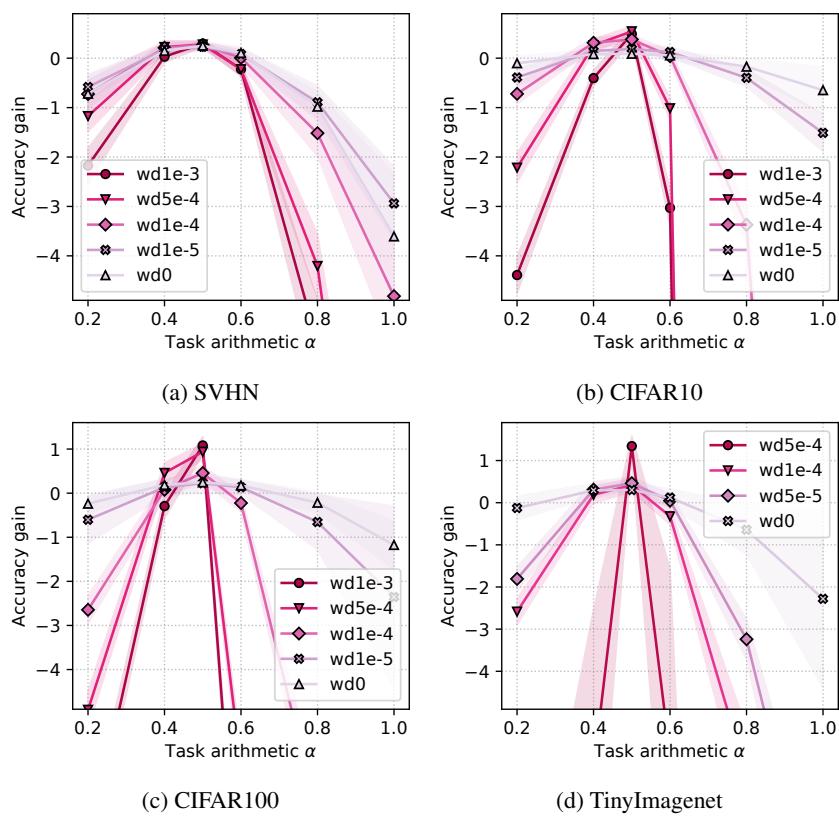


Figure 17: Task arithmetic interpolation robustness of models w/o Pretrained weight from the Section 3.3. In the absence of a pretrained weight, the largest weight decay is the least robust to task arithmetic interpolation.

C.2 LANGUAGE MODELING

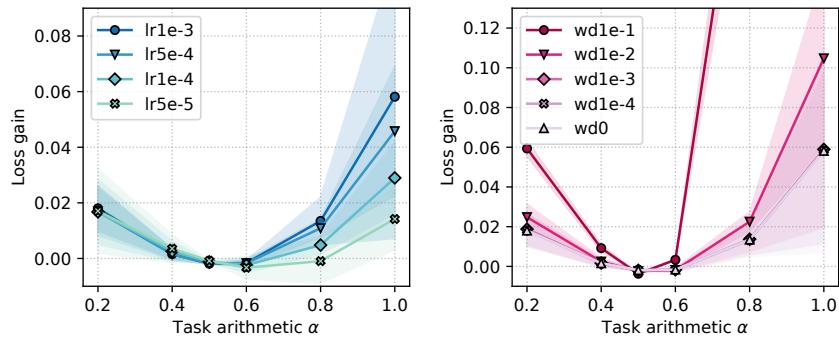
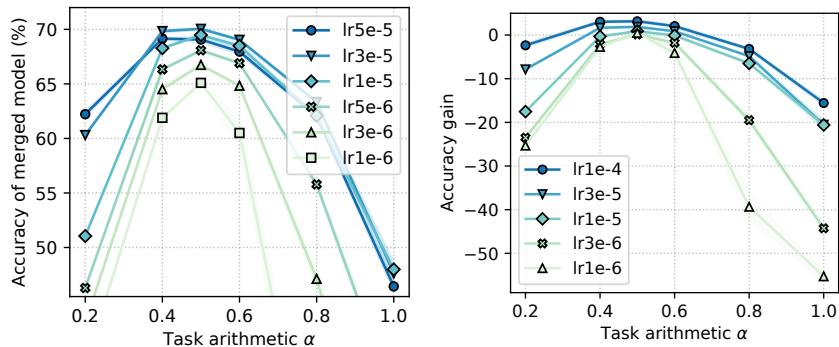
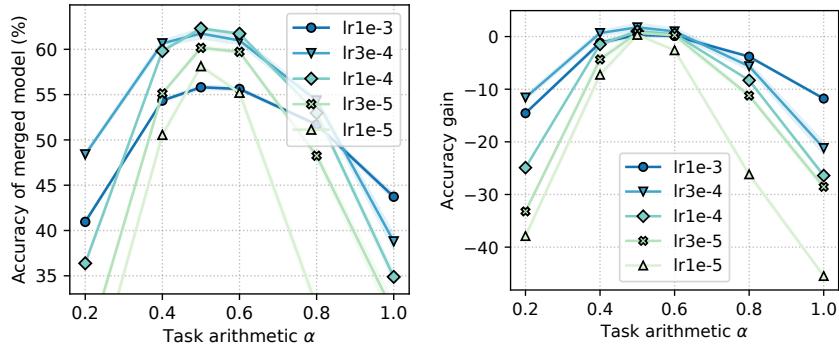
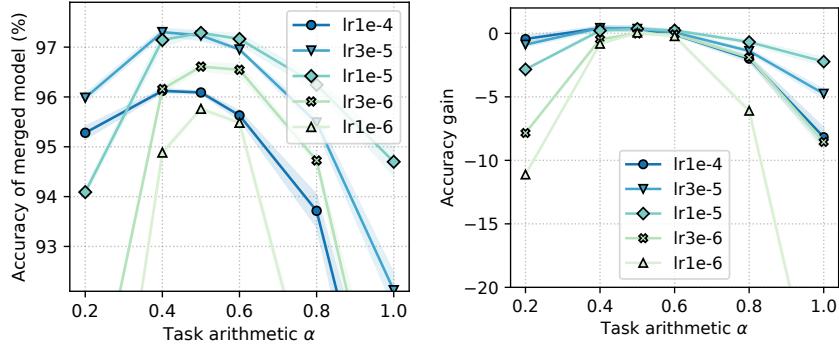


Figure 18: Task arithmetic loss gain in language modeling for a small GPT on the TinyStories dataset trained for 200k steps. In the absence of a pretrained weight, the largest learning rate/weight decay is the least robust to task arithmetic interpolation.

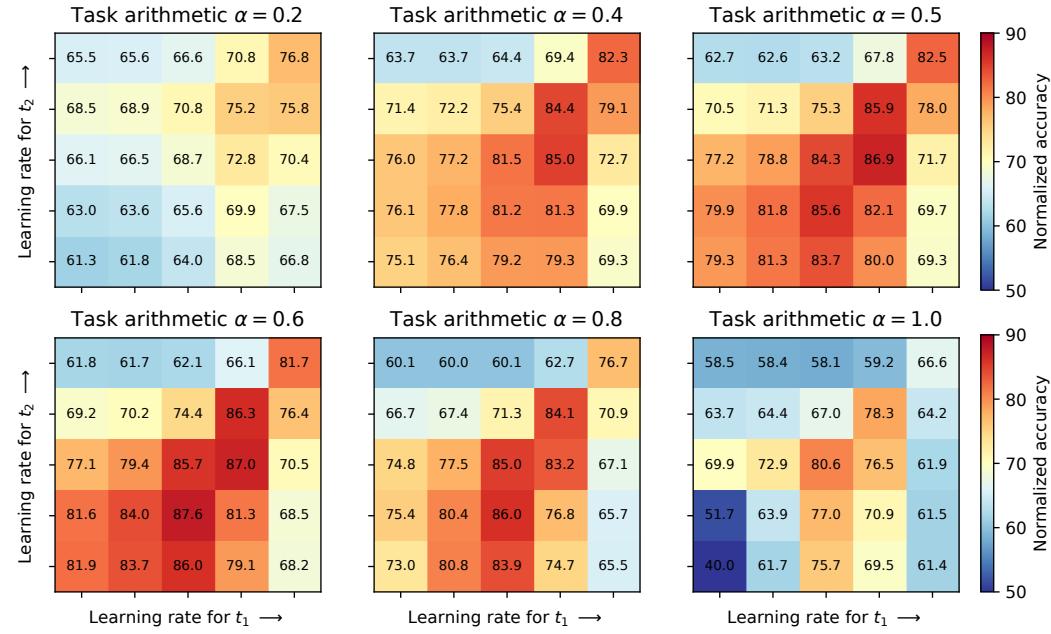
1188
1189 C.3 TRANSFER LEARNING: FMOW, RESISC45
11901200
1201
1202 Figure 19: Task arithmetic robustness and gain for CLIP ViT-B/16 finetuned on FMoW.
12031204
1205 Figure 20: Task arithmetic robustness and gain for ViT-S/16 pretrained on IN1k finetuned on FMoW.
12061207
1208 Figure 21: Task arithmetic robustness and gain for CLIP ViT-B/16 finetuned on RESISC45.
1209

1242

1243 C.4 MERGING DIFFERENT TASKS

1244

1245



1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

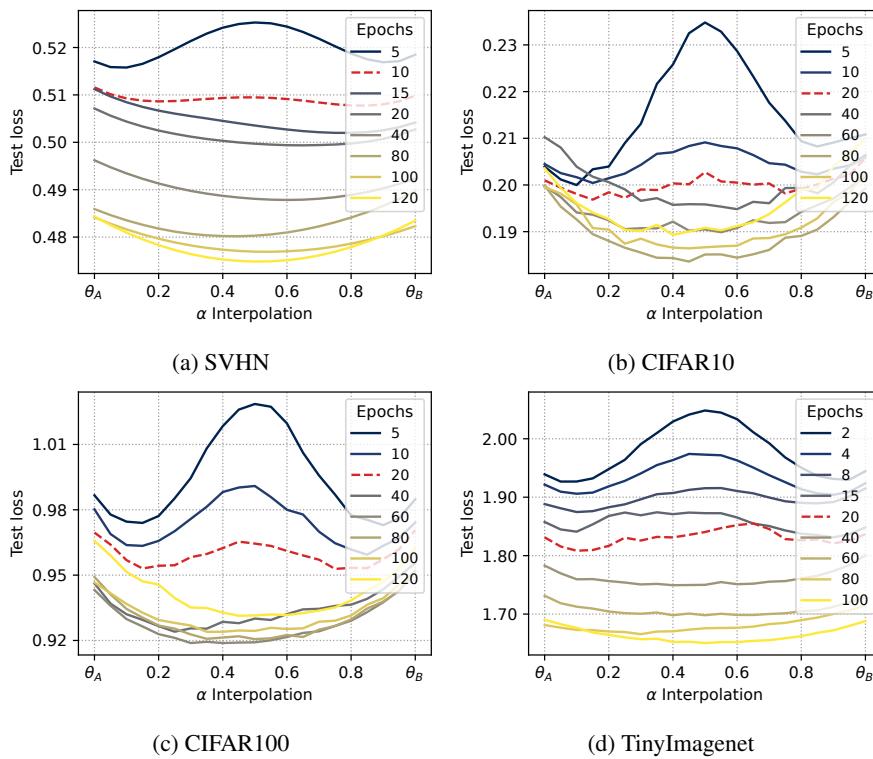
1291

1292

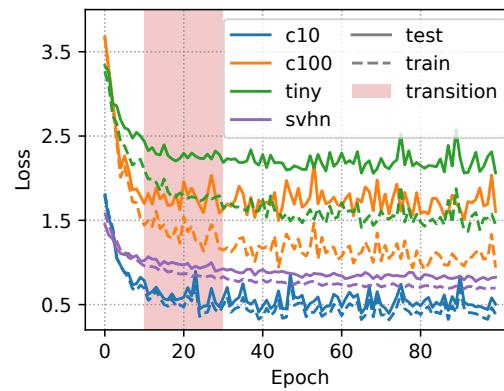
1293

1294

1295

1296 **D ADDITIONAL RESULTS ON LOSS LANDSCAPE**
12971298 **D.1 TRANSITION PHASE: HILLS, FLATLAND, AND VALLEYS**
1299

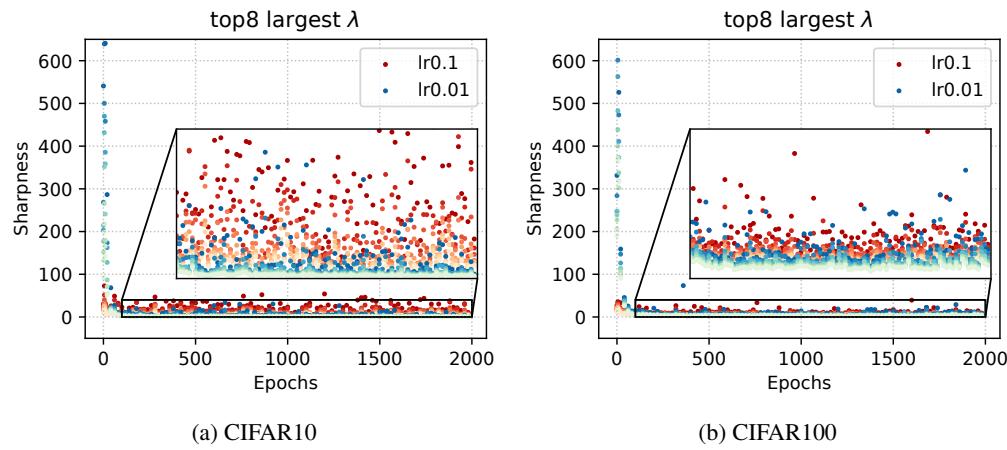
1311 Figure 23: The loss geometry of the linear interpolation between two endpoints changes from a
1312 *hill* \rightarrow *valley*, based on the timing of the bifurcation. Given a training budget T , the legend
1313 indicates the bifurcation start epoch T_a , which means the training continues for $T_b = T - T_a$ epochs
1314 with θ_A and θ_B . The transition phase (dashed line) marks the phase change from a hill into a valley.
1315



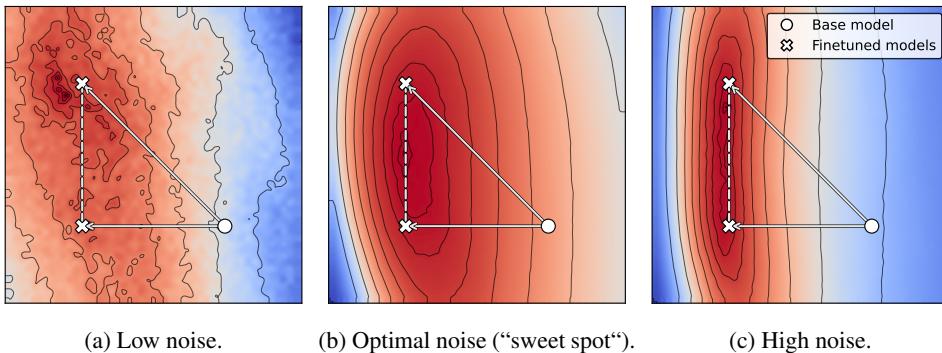
1343 Figure 24: Identifying the transition phase from hill to valley.
1344

1350
1351

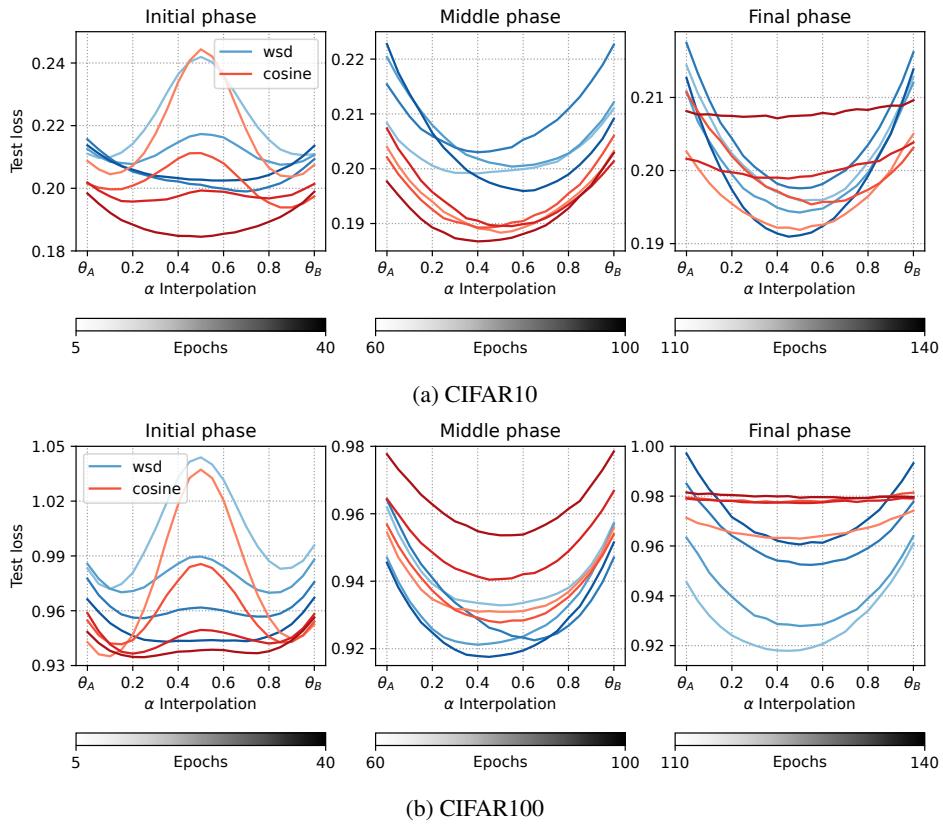
D.2 FLATNESS

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
13661367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

D.3 LANDSCAPE VS. EFFECTIVE NOISE

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 **E LLM RESEARCH ASSISTANCE**
14051406 We use LLM to assist this research project in the following tasks: manuscript polishing and retrieval
1407 of related work. For both tasks, we make mild use of LLM for the manuscript writing phase. In
1408 particular, polishing has been used only to improve the flow of the sentences, while the retrieval of
1409 contents has been used to find a few related works.
14101411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 F ADDITIONAL RESULTS FOR TRAINING DYNAMICS
14591460 F.1 SCHEDULER
14611489 Figure 27: Comparison between WSD and cosine scheduler.
1490

1491 We use the same setup described in Appendix A, varying only the scheduler for the whole training
1492 duration. The same training budget (epochs) is used. Figure 27 shows that WSD scheduler enables
1493 easier merging, especially when bifurcating in the final phase where the learning rate of cosine is
1494 already small.

1512
1513

F.2 OPTMIZER

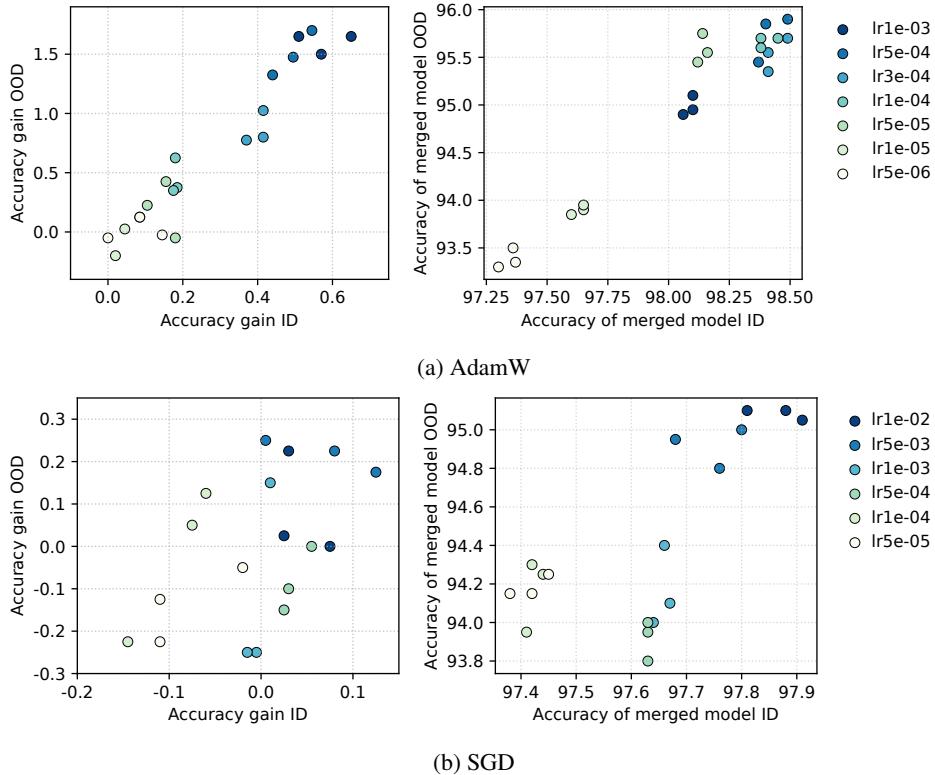
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524

Figure 28: Optimizer comparison under transfer learning. Using AdamW, larger learning rate enables easier merging for both ID and OOD datasets, while for SGD, benefits are only for ID dataset. The pretrained architecture is ConvNext-T trained on IN1k and finetuned on CIFAR10. The test set ID is CIFAR10 and test set OOD is CIFAR10.1 (Recht et al., 2018).

We compare the optimizer effect on merging effectiveness between AdamW to SGD. Note that in this experiment, SGD with small lr required $20\times$ more steps compared to AdamW for convergence. Figure 28 shows that SGD have larger performance gain with larger lr for ID dataset, but not for OOD dataset. Moreover, SGD trained models have a lower final performance compared to AdamW models (95% vs 96%).

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

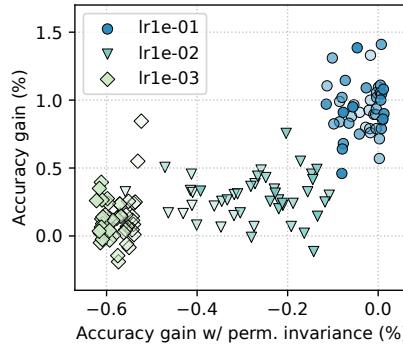
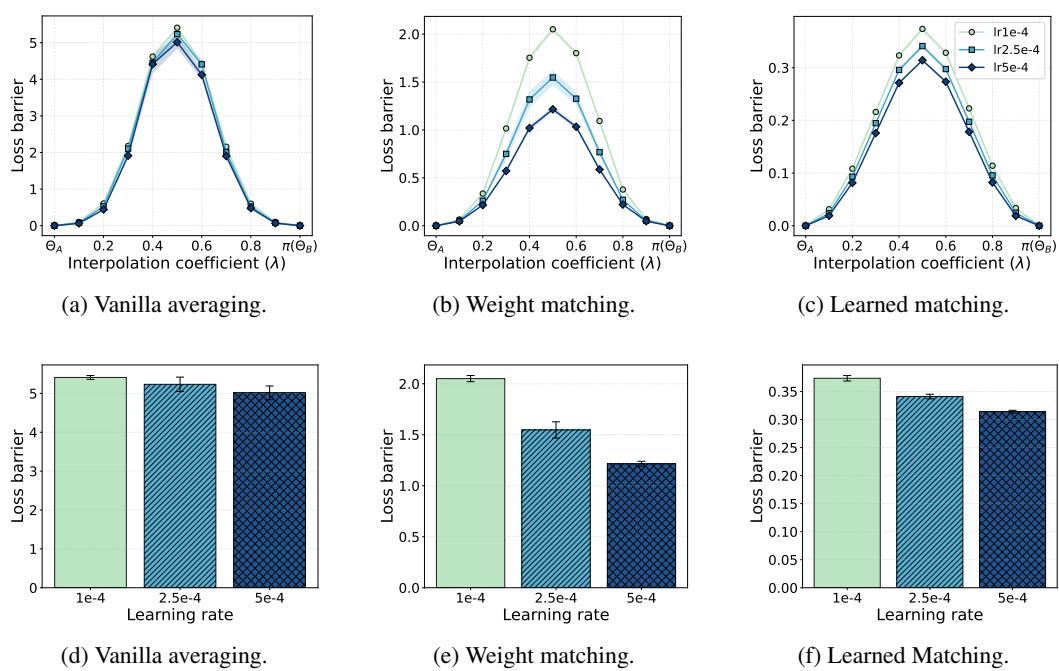
1566 **G ADDITIONAL RESULTS UNDER NETWORK SYMMETRIES**
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

Figure 29: Accuracy gain after permutation invariance for CIFAR100.

1584 We validate the following hypothesis: *the minima identified with a larger effective noise makes re-
1585 basing methods more effective*. We train two sets of models with independent initialization using the
1586 same setup as in Section 3.2. Note that, to enable successful merging, these independent models θ
1587 must be first rebased θ_r before merging θ_{rm} . The weight-based matching is used. Then, we measure
1588 the permutation invariant $gain_{inv} = acc(\theta_{rm}) - acc(\theta)$. A larger $gain_{inv}$ value corresponds to a
1589 more successful rebasing.

1590 Figure 29 shows a clear correlation between the standard merging *gain* obtained in the shared initializa-
1591 tion and branching setup (*y*-axis) against the merging $gain_{inv}$ between independent initialized
1592 models (*x*-axis). In particular, a larger lr (or effective noise) helps to identify “flatter” basins that
1593 also enables more effective rebasin.

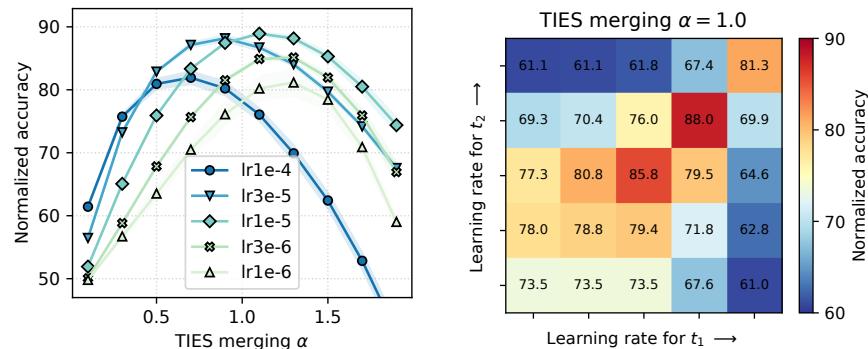


1616 Figure 30: **Loss-barrier analysis** for small GPT-2 models trained on WikiText-103 under the align-
1617 ment methods of Theus et al. (2025). Panels (a)–(c) show the complete loss interpolation curves
1618 for different learning rates, while the remaining panels highlight the peak (maximum) loss barrier
1619 extracted from each trajectory. Lower loss barriers are better.

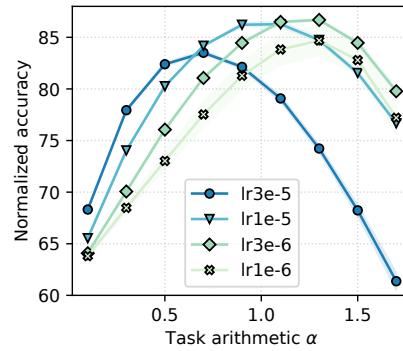
1620
1621 In Figure 30, we evaluate the connectedness of small GPT-2 models trained from scratch on
1622 WikiText-103 under varying learning rates. All models are 6-layer GPT-2-style decoders (block
1623 size 512, $d_{\text{model}} = 512$, $n_{\text{head}} = 8$, $n_{\text{inner}} = 2048$), trained with the GPT-2 tokenizer using a batch
1624 size of 32 for 10 epochs, weight decay 0.01, and a learning-rate warmup ratio of 0.05. To obtain
1625 optimal neuron alignments, we apply the symmetry-aware merging methods of Theus et al. (2025).
1626 We consider three settings: vanilla averaging (no alignment), weight matching (alignment via max-
1627 imizing parameter similarity), and learned matching (alignment optimized directly for next-token
1628 prediction on WikiText-103).

1629 As in our experiments without symmetry alignment, higher learning rates tend to improve connectiv-
1630 ity and reduce loss barriers. However, consistent with prior observations that text-based Transfor-
1631 mers trained from scratch do not exhibit linear mode connectivity, we see no cases where interpolation
1632 reduces the loss.

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
1675 **H ADDITIONAL RESULTS ON TIES MERGING**
1676

1689 Figure 31: TIES merging of models trained on two different tasks (RESISC45, FMoW). TIES merging
 1690 has better performance compared to task arithmetic in Figure 8. (left) The merged models are
 1691 finetuned using the same learning rate. Larger learning rate solutions have better performance and
 1692 are more robust to TIES interpolation, unless it is too large. (right) The models are merged using
 1693 different learning rates. Merging pairs of similar, relatively large learning rates yields the best per-
 1694 formance. Results are averaged over three seeds.



1708 Figure 32: TIES merging of models trained on three different tasks (RESISC45, FMoW, CIFAR10).
 1709 Results are averaged over three seeds.

1710
 1711 We study whether more advanced merging methods can reduce sensitivity to hyperparams as sug-
 1712 gested. First, we apply TIES directly to the existing setting in Section 4 with two tasks (RESISC45,
 1713 FMoW). We use TIES to keep 70% of the values and “mean” aggregation. Figure 31 shows that
 1714 TIES can yield slight improvement over TA (88.0% vs 85.9% normalized accuracy at lr=3e-5).
 1715 Therefore, TIES merging can partially counteract the high noise. Second, we extend the setting by
 1716 applying TIES to three tasks (RESISC45, FMoW, and CIFAR10) and measure its normalized accu-
 1717 racy across interpolation. Figure 32 shows that at small $\alpha < 0.5$, a larger lr trained models have the
 1718 highest performance, while at a larger $\alpha > 0.5$, larger lr becomes unstable. This suggests that TIES
 1719 can help, but not fully counteract the effects of noise.

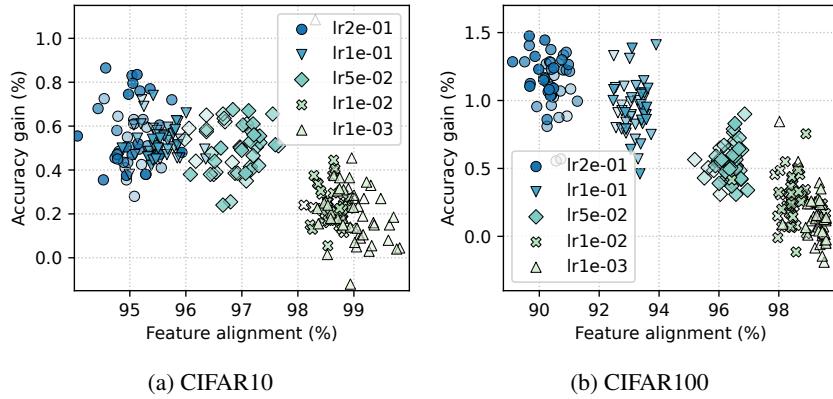
1728
1729
1730
1731 I ADDITIONAL RESULTS ON FEATURE SIMILARITY
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

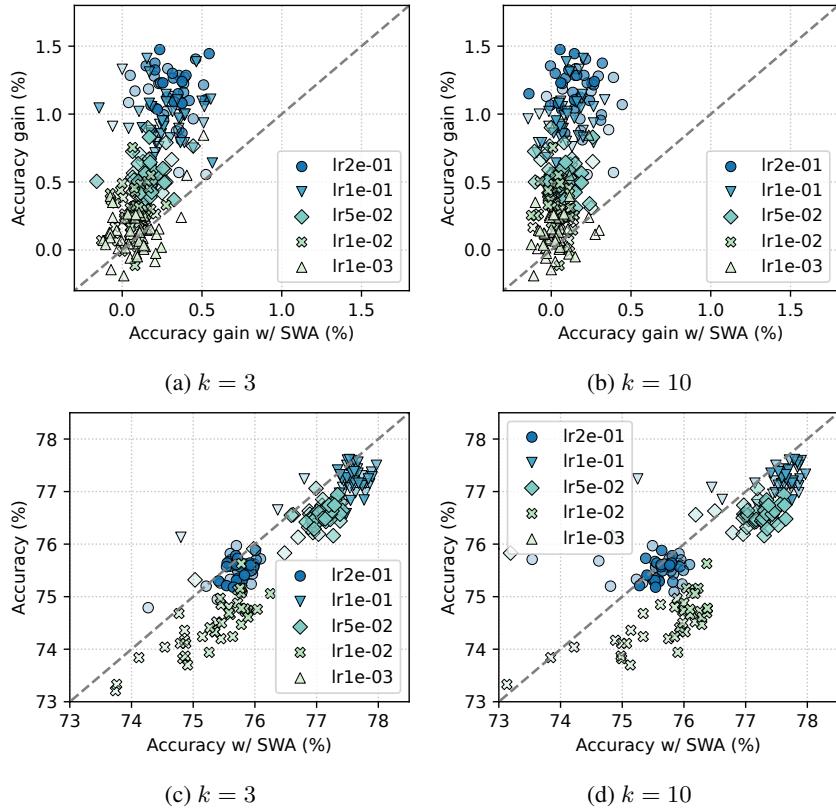
Figure 33: Feature similarity correlates with accuracy gain.

We use the linear-CKA to measure the penultimate-layer features of the branched checkpoints, and correlate it with the merge gain. We use a batch of 2048 samples from the test set.

Figure 33 shows that a higher lr (equivalent to higher noise) has larger merge gain and lower feature alignment (CKA). While a smaller lr has lower merge gain and higher alignment. Therefore, merging can occur at different effective noise level, but in order to obtain merge gain, models need complementary features.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

J ADDITIONAL RESULTS ON SWA

1811
1812
Figure 34: Accuracy gain when applying stochastic weight averaging (SWA).

1813
1814
1815
1816
Using the models trained in Section 3.2, we apply stochastic weight averaging (SWA) to the last
1817
1818
1819
1820
1821
1822
 k checkpoints of the branched models, obtaining θ_A^{swa} and θ_B^{swa} , which are merged into θ_m^{swa} . We
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
define $gain_{swa} = acc(\theta_m^{swa}) - 0.5 * (acc(\theta_A^{swa}) + acc(\theta_B^{swa}))$ to measure the accuracy gain of SWA
models after merging.

1813
1814
1815
1816
Figure 34 (top) show that SWA endpoints can also benefit from merging the branched models θ_A^{swa}
1817
1818
1819
1820
1821
1822
and θ_B^{swa} . However, the merge gains are lower compared to the standard setting w/o SWA. This is
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
because SWA already incorporates the benefit of large lr (noise) to explore wider valleys by merging
the models along the same trajectory, while merging combine models from different trajectories. Fig-
1831
1832
1833
1834
1835
Figure 34 (bottom) shows that the final accuracy are comparable, and the methods are complementary.
These results support the conclusion that effective noise governs mergeability, including SWA.