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ABSTRACT

Model merging methods combine models with different capabilities into a single
one while maintaining the same inference cost. Two popular approaches are lin-
ear interpolation, which linearly interpolates between model weights, and task
arithmetic, which combines task vectors obtained by the difference between fine-
tuned and base models. While useful in practice, what properties make merging
effective are poorly understood. This paper explores how the optimization pro-
cess affects the loss landscape geometry and its impact on merging success. We
show that a single quantity – the effective noise scale – unifies the impact of opti-
mizer and data choices on model merging. Across architectures and datasets, the
effectiveness of merging success is a non-monotonic function of effective noise,
with a distinct optimum. Decomposing this quantity, we find that larger learning
rates, stronger weight decay, smaller batch sizes, and data augmentation all inde-
pendently modulate the effective noise scale, exhibiting the same qualitative trend.
Unlike prior work that connects optimizer noise to the flatness or generalization of
individual minima, we show that it also affects the global loss landscape, predict-
ing when independently trained solutions can be merged. Our findings broaden
the understanding of how optimization shapes the loss landscape geometry and its
downstream consequences for model merging, suggesting the possibility of fur-
ther manipulating the training dynamics to improve mergeability.

1 INTRODUCTION

Model merging methods rely on mode connectivity to successfully combine independent solutions,
whose outcome depends on the loss landscape geometry in between. Merging has thus been ap-
plied to either improve the generalization performance of a single solution or to combine models
with different, but similar, capabilities. Importantly, the final merged model also retains the same
computational efficiency as a single model. Given the practical advantages, merging methods have
been applied to improve state-of-the-art architectures (Yadav et al., 2024). In practice, to improve
the performance using model merging, model soup (Wortsman et al., 2022) methods require training
and averaging several models from a large hyperparameter grid. Analogously, for merging models
with different capabilities, task arithmetic (Ilharco et al., 2023) methods also need multiple models
to be trained, merged, and evaluated to choose the best candidates for merging.

Early works for parameter merging two solutions in deep learning can be traced back to mode con-
nectivity, which showed that independent solutions can be connected by a path of low-loss models.
Specifically, Draxler et al. (2018); Garipov et al. (2018) demonstrated that different minima can
be connected by a path of solutions with similar loss. Frankle et al. (2020) introduced a stricter
condition named linear mode connectivity, where two modes can be connected by a linear path of
solutions with similar loss only if they share a common initial optimization trajectory. This condi-
tion suggests that optimizer properties play an essential role in understanding the properties of the
loss landscape between independently trained solutions.

In this work, we study the role of optimization dynamics on the outcome of model merging. First, we
present how different optimizer components (learning rate, weight decay, batch size, and data aug-
mentation) control the same underlying factor, the effective noise scale. Experiments demonstrate
how this noise controls the merging compatibility of different solutions. After that, we decom-
pose this quantity into individual components, showing that each one exhibits the same qualitative
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trend. We find that starting the optimization with a larger learning rate (until stability) can consis-
tently identify single solutions that are more compatible for merging than a smaller learning rate. In
practice, the compatibility is quantified using performance gain, which measures the performance
difference between the merged and the single model. Since decaying the learning rate (large or
small) during the optimization can always lead to a converged solution, it is perhaps surprising that
simply starting with a larger learning rate can change the merging outcomes. However, beyond
classical research showing direct advantage of large learning rates on generalization (Keskar et al.,
2016), recent works presented different implicit biases of training with a larger learning rate, such
as a sparser activation (Andriushchenko et al., 2023b), a different sequence of pattern learning (Li
et al., 2019), and a flatter solution (Andriushchenko et al., 2023a). Our results extend these benefits,
showing that a larger learning rate unlocks effective model merging, beyond single-task perfor-
mance. Practically, given two models with similar performance, the one trained with a higher noise
scale is more compatible for merging. This claim is supported by our comprehensive experimental
study across different architectures (MLP, Resnet, Densenet, Transformer, and GPT), tasks (SVHN,
CIFAR, TinyImagenet, WILDS, and TinyStories), and modalities such as transfer learning.

Similarly to the learning rate, we find that weight decay has a comparable effect: larger weight decay
also enables more effective merging, beyond improvements in the single model performance. We
explain this phenomenon through the effective learning rate (Van Laarhoven, 2017; Hoffer et al.,
2018), which attributes the main role of weight decay to prevent the gradual decay of learning rate,
and thus stochastic noise, to zero during the training. Additional components, such as batch size
and data augmentation, also contribute to adding noise to the optimization process. A smaller batch
size creates noisier gradient estimates since each gradient update is computed from fewer samples,
leading to more variation in the optimization path (Keskar et al., 2016; Jastrzebski et al., 2017). And
data augmentation adds extra randomness to the minibatches (Hanin & Sun, 2021).

Lastly, we study the effect of the learning rate in task arithmetic merging, which defines a differ-
ent subspace of solutions than linear interpolation. We find that the loss landscape geometry of
task arithmetic significantly changes depending on the initialization. Given an initialization with a
pretrained weight (e.g. CLIP), a larger learning rate identifies solutions with greater merging com-
patibility (Figure 7). Moreover, the landscape is also flatter compared to a smaller learning rate.
When merging solutions trained on two different downstream tasks using different learning rates,
we find that similar configurations are more compatible to merge (Figure 8).

2 PRELIMINARIES

Linear interpolation merging (Frankle et al., 2020). Linear mode connectivity refers to a phe-
nomenon where two minima with similar performance can be connected by a linear path in the
parameter space without significant performance degradation along that path. Formally, given two
neural networks with parameters θA and θB , we can define a linear interpolated model θli as:

θli = (1− α)θA + αθB (1)

where α ∈ [0, 1] is the interpolation coefficient. A pair of models exhibits linear mode connectivity
if the loss function L(θα) remains relatively low for all values of α along this linear path. Model
merging relies on mode connectivity, but instead, it aims to find solutions with lower loss values.

Task arithmetic merging (Ilharco et al., 2023). Given a base model θbase, a finetuned model θt on
task t, the task vector is defined as τt = θt − θbase. This vector τt encodes all the properties of the
task t. Interestingly, task arithmetic enables operations such as addition and scaling of different task
vectors, creating a merged model θta as:

θta = θbase +
∑
i

αiτti (2)

where αi ∈ R is the coefficient that controls the influence of each task vector. For simplicity, α
is usually the same for all the vectors. In order to succeed, both linear mode connectivity and task
arithmetic assume that the loss landscape around the finetuned models θt is near-convex.

Effective noise scale. Stochastic optimization injects gradient noise ξ into the optimization dynam-
ics. Writing the minibatch gradient as gt = ∇L(θt) + ξt where E[ξt] = 0 and Cov[ξt] ≈ Σ(θt)/B,
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the stochastic update (with momentum µ and decoupled weight decay λ) can be viewed as a dis-
cretized stochastic differential equation whose “temperature” scales with learning rate and inversely
with batch size (Mandt et al., 2017; Smith et al., 2018; McCandlish et al., 2018). This can be sum-
marized by the effective noise scale:

Seff(η,B, µ;A) ∝ η

B(1− µ)
tr ΣA(θt), S̃ =

η

B(1− µ)
, (3)

where η is the learning rate, B the batch size, and ΣA the gradient-noise covariance, which increases
with stronger data augmentation A and data diversity. We report the results using the normalized
proxy S̃ and show how it controls the effectiveness of mergeability.

3 THE OPTIMIZER’S IMPLICIT BIAS ON LINEAR INTERPOLATION

This section presents our key experimental findings for linear interpolation merging. We begin
by presenting the effective noise scale as the unifying implicit bias controlling the effectiveness of
merging. Then, we show that each optimizer component affects model mergeability via noise.

3.1 EFFECTIVE NOISE SCALE AS A UNIFYING FACTOR
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(c) Effective noise

Figure 1: Effective noise scale controls the effectiveness of merging. The y-axis reports the test
accuracy gain of merged models. On the x-axis, when plotting (a) batch sizes against learning rates
or (b) vice versa, there is no clear trend. When reparameterized in terms of (c) effective noise scale,
the curves are aligned, highlighting the interaction between different components for merging.

As introduced in Section 2, the effective noise scale S̃ captures the joint interaction of learning rate,
batch size, momentum, and augmentation of the stochasticity in SGD. Rather than treating these
hyperparameters as independent, we study how S̃ offers a unifying view on the compatibility of
single models under linear interpolation merging. We use Resnet18 on CIFAR100 and sweep across
different learning rates and batch sizes. The weight decay is fixed at 5e-4, and the random flip and
crop augmentation are used. To evaluate the effectiveness of merging, we define performance gain
as g(θmerge,θsingle) = f(θmerge) − f(θsingle) given an evaluation function f : Θ × D → R.
Appendix A.1 describes the training and merging setup.

The results in Figure 1 illustrate how S̃ affects the model mergeability. When we vary the learning
rate or batch size independently, there is no clear trend across both dimensions at the same time.
For example, when increasing the learning rate for a fixed batch size to B = 16, the accuracy gains
monotonically decrease, whereas the opposite holds for a batch size of B = 128. However, once we
represent the x-axis in terms of the normalized effective noise S̃, capturing both learning rate and
batch size together, the different curves become aligned. Importantly, this curve is non-monotonic:
mergeability improves as S̃ increases from small values, reaches a “sweet spot”, and then degrades
again once the noise grows too large.

In contrast to prior work that mainly links effective noise to properties of single solutions (Chaud-
hari et al., 2016; Mandt et al., 2017; Jastrzebski et al., 2017), our results show that it also governs
its surrounding solutions. Specifically, S̃ not only biases SGD toward particular regions of the loss
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landscape, but also controls the compatibility of solutions found in different runs under linear inter-
polation merging. In the following sections, we ablate each optimizer component and analyze how
it contributes to the merging effectiveness.

3.2 LARGE LEARNING RATE PRODUCES MORE COMPATIBLE SOLUTIONS
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(c) TinyImageNet / Densenet121

Figure 2: Larger learning rate leads to more effective merging. (top) The test accuracy gain of all
the models. (bottom) Each point represents the performance of a single model θA on the x-axis and
its additional performance gain after merging on the y-axis. The opacity indicates the number of
training epochs. For each setup, we observe that a larger learning rates have a higher accuracy gain,
even when there is a smaller learning rate with equivalent single model accuracy. Note, however,
solutions found using a “too large” learning rate fail to merge (details in Appendix B.6).

We present empirical results for deep neural networks on vision tasks trained from scratch. The ar-
chitectures used are a simple MLP, Resnet18, Densenet121 trained on SVHN, CIFAR10, CIFAR100,
and TinyImageNet datasets. The weight decay is fixed at 5e-4, and the random flip and crop aug-
mentation are used across the setups. Appendix A.1 describes the training and merging setup.

The results in Figure 2 shows the key finding of our work. Using linear interpolation with a fixed
α = 0.5, we merge two solutions with the same learning rates at each checkpoint. We observe
that the solutions identified with a larger learning rate are consistently more compatible to merge
than those of a smaller learning rate. For example, in CIFAR100, the solutions found using an
lr = 0.2 report +1.2% of the median gain compared to a +0.2% gain of lr = 0.01, despite having
a similar performance for the single model of ≈ 75% (x-axis). The same phenomenon is observed
across different datasets (SVHN, CIFAR, and TinyImagenet) and architectures (MLP, Resnet, and
Densenet). Furthermore, we also ensure that all the solutions are well-converged by asserting that
the training loss is near-zero (details in Appendix B.5). As argued by Pascanu et al. (2025), it is
important to understand how the implicit bias of the optimizer alters the final solutions and how
to leverage this bias to find better solutions. Furthermore, recent works found different implicit
biases of training with a larger learning rate, such as a sparser activation (Andriushchenko et al.,
2023b; Sadrtdinov et al., 2024), a different order for feature learning order (Li et al., 2019), and a
flatter solution (Andriushchenko et al., 2023a). Our results demonstrate an additional benefit: larger
learning rate has an implicit bias on the loss landscape, identifying more compatible solutions for
model merging. Note, however, Appendix Figure 14 shows that a too large learning rate leads to
instabilities or failures in model merging.
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3.3 WEIGHT DECAY AND EFFECTIVE LEARNING RATE
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Figure 3: Weight decay has a similar effect as the learning rate. For CIFAR100 and TinyImagenet,
we use scale-invariant networks (w/ normalization layers) and observe that a larger weight decay
can not only improve the accuracy of the single model, but also the accuracy gain via the effective
learning rate (Van Laarhoven, 2017). For MLP trained on SVHN, there is no trend as the architec-
ture is not scale-invariant.

The traditional understanding of the role of weight decay regularization is that it reduces overfitting
by proportionally decaying the weights towards zero, favouring less “complex” models. In practice,
this is achieved by adding a penalty term λ||θ||22 to the objective L(θ). However, modern neu-
ral network architectures ubiquitously use normalization layers (Ioffe & Szegedy, 2015; Ba et al.,
2016) and are therefore weight scale-invariant. The output is invariant to the scale of the weights as
f(x, αθ) = f(x,θ). Then, what is the new role of weight decay regularization in scale-invariant
networks? Van Laarhoven (2017); Hoffer et al. (2018) answer this question by demonstrating that
weight decay controls the effective learning rate during training. In practice, without any weight
constraints, scale-invariant networks will decay the learning rate over time, hindering the learning
process.

We hypothesize that weight decay has a similar effect to the learning rate in model merging. That
is, solutions found with a larger weight decay are easier to merge than those found with a smaller
or no weight decay. Note that this should hold only for scale-invariant networks. We use the same
experimental setup as in Section 3.2, except that we now sweep across different weight decay values
instead of learning rates.

The results in Figure 3 confirm our hypothesis about the implicit bias of weight decay. Larger weight
decay increases the effective learning rate for scale-invariant networks during training, affecting also
the model mergeability. For example, in TinyImagenet, the solutions found using a wd = 0.0005
report +1.2% of the median gain compared to a +0.5% of other wd values. Furthermore, interest-
ingly, for the architecture MLP trained on SVHN, larger weight decay does not differ from smaller
ones in terms of mergeability. This validates the fact that weight decay affects model merging only
for scale-invariant architectures. Our results extend how the weight decay affects the loss landscape
of an individual minima (Van Laarhoven, 2017) to its connection with other minima. Similar to
the learning rate, Appendix Figure 15 shows that excessive weight decay leads to failure in model
performance and model merging.
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3.4 BATCH SIZE, MOMENTUM, AND DATA AUGMENTATION
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Figure 4: Batch size and data augmentation control the noise during the optimization dynamics.
(left) A smaller batch size has more noise and improves the merging effectiveness. (middle) A larger
momentum leads to more noise and improves the merging effectiveness. (right) Data augmentation
improves performance and retains merging properties.

We now consider two additional components that affect the effective noise scale: batch size, mo-
mentum, and data augmentation. The experimental setup uses CIFAR100 with Resnet18. For batch
size, we use the same setup as in Section 3.2, except that we sweep across different batch sizes and
fix the training steps to 200k steps instead of using epochs. Similarly, we sweep across different
momentum values. For data augmentation, we simply turn off the augmentation during the training
phase. Additional results are provided for the scheduler choice in Appendix F.1 and for alternative
datasets in Appendix B.1 Appendix B.2.

Batch size. The stochastic gradient of a minibatch ĝ is unbiased but its variance scales as V ar(ĝ) ∝
σ2/B, where σ2 is the per-sample variance and B the batch size. Prior work has emphasized that
this inverse scaling underlies the implicit regularization of SGD: smaller batch sizes inject more
gradient noise, often leading to flatter solutions and better generalization (Jastrzebski et al., 2017;
Smith & Le, 2018; Keskar et al., 2016). Our results in Figure 4 (left) extend this observation to
model merging. We find that solutions obtained with smaller batch sizes are more compatible under
linear interpolation: the smallest setup with B = 16 achieves a median accuracy gain of +1%,
while a larger setup with B = 256 yields almost no benefit. Thus, in addition to generalization,
batch-size–induced noise also improves the mergeability of independently trained models.

Momentum. Gradient descent uses momentum to introduce a temporal smoothing which accumu-
lates an exponentially weighted moving average of past gradients. While momentum is traditionally
understood as an acceleration mechanism that helps escape shallow local minima and traverse flat
regions more efficiently (Polyak, 1964; Sutskever et al., 2013), it also alters the effective noise char-
acteristics of SGD. Figure 4 (middle) show that models trained with a larger momentum values
(β = 0.9) exhibit consistently better mergeability than those trained with a lower or no momentum,
achieving median accuracy gains of up to +1.0% compared to +0.2% gains for low damped trajec-
tories. This demonstrate that smoothing gradient noise throughout training leads to solutions that
are more diverse but compatible at the same time.

Data augmentation. Data augmentation can likewise be viewed as injecting stochasticity into the
optimization process: by applying random transformations to the data, the effective gradient co-
variance ΣA changes, introducing additional variance beyond minibatch sampling. Previous work
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has argued that augmentation acts as a form of implicit regularization and invariance enforce-
ment (Hernández-Garcı́a & König, 2018; Yun et al., 2019), with recent perspectives interpreting
augmentation as an additional source of optimization noise (Hanin & Sun, 2021). Our results
in Figure 4 (right) show that augmentation not only improves single-model accuracy but also re-
tains mergeability. Interestingly, even without augmentation, a sufficiently large learning rate can
yield positive merging gains, though this effect is not universal (Figure 10). Overall, augmentation-
induced noise complements the minibatch noise and learning-rate noise, shaping solutions that are
both stronger individually and more compatible when merged.

3.5 WHAT ABOUT LANGUAGE MODELING?
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Figure 5: Larger learning rate and weight decay enable
more effective merging in language modeling. (left)
A larger learning rate has a better loss gain. (right)
Adding a larger weight decay offers further merging
gains. Appendix B.4 shows the scatter plots.

Now we consider a language modeling
task using the TinyStories dataset (Eldan
& Li, 2023). We train a small GPT Trans-
former model with two layers using the
AdamW optimizer with a constant learn-
ing rate for 200k steps and save a check-
point every 2k steps, following the setup
at Appendix A.1. Two endpoint models
are trained for an additional 20k steps us-
ing a decayed learning rate scheduler. We
use the loss performance gain to quantify
the merging process. The lower the loss
gain, the easier the merging process.
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Figure 6: Mergeability in transfer learn-
ing for ID and OOD data. (top)
Accuracy gain linearly correlates with
learning rate. (bottom) However, a
larger learning rate leads to a subopti-
mal merged model, despite having the
largest accuracy gain.

The results in Figure 5 extend our previous findings to
the language domain. For the learning rate experimental
setup, we fix wd = 0. Figure 12 (left) shows that a larger
learning rate, such as lr = 0.001, requires fewer steps to
reach a loss value of 2.20 compared to lr = 0.0001. Not
only that, Figure 5 shows that a larger learning rate also
has the implicit bias of simplifying the merging process,
as measured by a lower loss gain. This behaviour is simi-
lar to the results from vision in Section 3.2. When weight
decay regularization is added to the equation, there are
further merging benefits. We fix the lr = 0.001 and
sweep across weight decay. Figure 5 on the right shows
that a larger weight decay leads to a better loss gain than
smaller ones. Specifically, the largest weight decay, such
as wd = 0.1, has the best loss gain, but also has a slower
convergence (x-axis). The second largest weight decay of
wd = 0.01 has a similar convergence speed as the smaller
one, in addition to better loss gain. Lastly, smaller values
have similar results as training without weight decay.

3.6 WHAT ABOUT TRANSFER LEARNING?

In the previous sections, we analyzed settings where mod-
els were trained on one single task. Now we consider
transfer learning setup, where the pretraining and finetun-
ing tasks differ. We finetune only the vision encoder of
the ImageNet pretrained model CLIP ViT-B/16 (Radford
et al., 2021) on the WILDS-FMoW (Koh et al., 2021)
dataset using the AdamW optimizer with cosine sched-
uler. Since varying the learning rate changes the speed
of convergence, we carefully tune the number of training
epochs for each setup and ensure proper convergence (details in Appendix A.2). We train three seeds
for each setup and merge each different pair, obtaining three different merged models per learning
rate. Additional results comparing optimizers choice in transfer learning are in Appendix F.2.
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The results on the top of the Figure 6 shows that a larger learning rate identifies solutions that are
easier to merge. Specifically, the smallest values lie in a flatter loss landscape region where the
performance gain is 4× smaller than the largest learning rate when merged. The Pearson correlation
coefficient is r = 0.981, indicating an almost perfect linear correlation between accuracy gain and
learning rate. Note, however, that one should not blindly use the largest learning rate. Figure 6 on
the bottom shows that the merged models with the best performance are the one with a moderate
learning rate, as also observed by (Wortsman et al., 2022). The largest learning rate setup has the
largest accuracy gain, but the worst-performing single model. Appendix B.3 presents similar results
using different datasets and a pretrained model.

4 THE OPTIMIZER’S IMPLICIT BIAS ON TASK ARITHMETIC

In the previous section, we have seen how the optimizer implicitly biases the loss landscape of linear
interpolation merging. We now consider task arithmetic interpolation, which defines a different
subspace of solutions. This section studies how the principal optimizer choice, the learning rate,
affects the loss landscape of task arithmetic merging.

4.1 LOSS LANDSCAPE OF TASK ARITHMETIC
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(b) w/o Pretrained weight

Figure 7: Task arithmetic loss landscape drastically changes depending on the initialization model.
(a) With a pretrained initialization on ImageNet, larger learning rate solutions have higher gain and
are more robust to task arithmetic interpolation. (b) Without a pretrained weight, a larger learning
rate solution lies in a sharper minima (i.e. more sensitive to α changes).

So far, we have only considered merging using linear interpolation (see Equation (1)). Task arith-
metic interpolates two models along a different subspace compared to linear interpolation, identify-
ing functionally different solutions. We apply task arithmetic interpolation to two settings:

(a) Models w/ pretraining weight from Section 3.6 (i.e. pretraining dataset is different from
the finetuning dataset). Task arithmetic is applied to a base model and two task vectors.
The base model θbase is the pretrained model CLIP ViT-B/16, and the task vectors are the
finetuned models with different random seeds.

(b) Models w/o pretraining weight from Section 3.2 (i.e. pretraining shares the same dataset
as finetuning). For task arithmetic, we treat each checkpoint θi as the base model θbase,
and the task vectors are obtained from the endpoint models τA = θA − θbase and τB =
θB − θbase.

For each learning rate setup, we traverse the subspace defined by the task arithmetic interpolation
by changing the coefficient α. This measures the performance change as a function of α, which can
also be seen as a measure of landscape flatness. For simplicity, we use the same α for the two task
vectors when applying task arithmetic.

The results in Figure 7 show the robustness of each learning rate to task arithmetic interpolation for
CIFAR10. There is a clear dichotomy between the two settings. In setting (a), a larger learning rate
identifies merged solutions that are more robust to α-interpolation, corresponding to a flatter land-
scape (Andriushchenko et al., 2023a). However, in setting (b), the opposite is true. This highlights
that a larger learning rate has to be used together with a suitable initialization to achieve a smoother
and flatter landscape (Wortsman et al., 2022). Furthermore, as in linear interpolation merging, a
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“too large” learning rate becomes unstable. Appendix C.3 presents further experimental results for
different datasets.

4.2 LOSS LANDSCAPE OF MERGING DIFFERENT TASKS
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Figure 8: Task arithmetic merging of models trained on two different tasks. (left) The merged models
are finetuned using the same learning rate. Larger learning rate solutions have better performance
and are more robust to task arithmetic interpolation, unless it is too large. (right) The models are
merged using different learning rates. Merging pairs of similar, relatively large learning rates yields
the best performance. Results are averaged over three seeds.

We now consider task arithmetic merging of two models sharing the same initialization θbase fine-
tuned on two different, but similar, tasks t. As in Section 3.6, we finetune one CLIP ViT-B/16 on
task t1 WILDS-FMoW and another on task t2 RESISC45 (Cheng et al., 2017). Then, task arithmetic
merging is applied to merge the two models. To quantify the merging success, we use the averaged
normalized accuracy, which measures the average ratio of the merged model performance over each
single model performance (details in Appendix A.3).

The results in Figure 8 show how the learning rate affects the mergeability of two models trained on
two different tasks. In the Figure 8 on the left, as a proxy of the task arithmetic loss landscape, we
merge and study the robustness of models finetuned using the same hyperparameters when interpo-
lating α. We observe that the larger learning rate solutions perform better compared to the smaller
ones (except for lr = 0.0001, which is the limit for stability). Moreover, larger values are also more
robust to changes of α, representing flatter minima connecting the two different tasks. On the right
of Figure 8, we merge models finetuned with different hyperparameters. The merged models with
the best performance are those merged with similar and moderately large learning rates (near the
antidiagonal). Merging models with a larger learning rate can result in better performance, but at the
cost of losing flexibility for merging with other configurations. In particular, the largest learning rate
lr = 0.0001 is the most unstable to merge with different learning rate models. Ilharco et al. (2023)
also observed performance degradation when merging models trained with too large learning rates.
Appendix C.4 reports additional results with further α values.

Lastly, additional experiments with TIES merging in Appendix H demonstrate that TIES can better
counteract the large noise, yielding a +2% improvement compared to task arithmetic at lr=3e-5
(88% vs 85.9%). Overall, TIES merging follows a similar qualitative trend as task arithmetic, with
a small performance gain across noise levels.

5 RELATED WORKS

Model merging. Early works on merging independently trained solutions on the same task can be
found on mode connectivity (Garipov et al., 2018; Draxler et al., 2018). Linear mode connectivity
has a stricter condition such that connecting paths are linear (Frankle et al., 2020; Neyshabur et al.,
2020). When this is not possible, re-basin methods can be used to reparametrize the solution and
restore the linear connectivity (Entezari et al., 2022; Ainsworth et al., 2023; Theus et al., 2025). Built
upon these results, model merging methods have been developed to increase the performance on a
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single task (Wortsman et al., 2022) or to combine models trained on different tasks into one (Matena
& Raffel, 2022; Ilharco et al., 2023). Yadav et al. (2025) provides a comprehensive survey of the
latest merging methods.

Optimization dynamics. Standard optimization theory (Garrigos & Gower, 2023) shows that both
batch sizes and learning rates drastically affect stability and convergence properties of SGD. In par-
ticular, through an analysis of SGD’s stationary distribution on simple quadratic potentials (Jastrzeb-
ski et al., 2017), it is possible to evince that, for single model training, the loss statistics at conver-
gence only depend on the ratio between batch size and learning rates – as also validated empirically
by Smith et al. (2020). In turn, either high learning rates or low batch sizes are known to favor flat
minima (Keskar et al., 2016). While for more sophisticated optimizers, correlations between batch
size, learning rates, and generalization might be more complex (Zhang et al., 2019; Malladi et al.,
2022), other factors might more severely affect simple relations, such as non-Gaussianity (Simsekli
et al., 2019) of gradient noise and non-convexity (Xie et al., 2021).

6 CONCLUSION

We study how optimizer choices implicitly shape the model-merging loss landscape and highlight
the effective noise scale as a unifying factor. Learning rate, weight decay, batch size, and data aug-
mentation all modulate this noise, which in turn determines whether independently trained solutions
are compatible for merging. The relationship is non-monotonic – too little noise yields incompatible
solutions, too much destabilizes training, but an intermediate “sweet spot” enables effective merg-
ing. In practice, model mergeability appears to be primarily determined by effective noise levels,
suggesting that hyperparameter search can be simplified by focusing on this single dimension rather
than exploring all hyperparameters independently.

Our findings extend prior work connecting optimization trajectory noise to flatness and generaliza-
tion of individual models, showing that noise also shapes the compatibility of independent solutions.
However, many open questions remain. For example, how can we systematically tune effective noise
levels, architectural designs, and pretraining strategies to produce models that are not only strong
individually but also inherently mergeable with other solutions? To summarize our contributions in
one sentence: tune the noise to tune mergeability.

Limitations. No new theoretical guarantees are developed, and no truly large-scale experiments are
conducted due to our limited computational resources. We studied the standard merging methods,
that form the foundation of state-of-the-art approaches. Our goal was to use a set of simple, diverse,
but realistic experimental setups to understand the role of optimization in model merging.
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A DETAILED EXPERIMENT SETTING

A.1 TRAINING AND MERGING SETUP

For Section 3.2, Section 3.3, Section 3.4, and Section 3.5, we use the following training setup.

We use the warmup-stable-decay (WSD) scheduler (Zhai et al., 2022; Hu et al., 2024). We use
the square root decay as in Hägele et al. (2024). Given a single configuration (e.g. lr = 0.1),
we use a constant learning rate to train a model for Tstable epochs, saving a checkpoint θi every i
epochs. For each θi, we use a decay learning rate scheduler and continue the training for Tdecay

epochs, obtaining two final endpoint models θi,A and θi,B . Finally, the merged model is a linear
interpolation (Equation (1)) between θi,A and θi,B with α = 0.5.

We provide an example. For the CIFAR100 task, we train a model using a constant learning rate for
Tstable = 2000 epochs and save a checkpoint θi every i = 20 epochs. Then, for each checkpoint,
we use a decay scheduler and create two endpoint models θi,A and θi,B . This means that at the end,
there will be Tstable/i = 2000/20 = 100 different merged models.

Note that, to account for the different magnitudes of settings (e.g. lr = 0.1 vs lr = 0.01), we use
a Tstable of one order of magnitude larger than the standard setting to ensure convergence of single
models. We use Tstable = 2000 for CIFAR10, CIFAR100, and SVHN and Tstable = 1500 for
TinyImagenet. We use Tdecay = 30 for CIFAR10 and CIFAR100, and Tdecay = 20 for SVHN and
TinyImagenet.

A.2 TRANSFER LEARNING EXPERIMENTAL SETUP

For Section 3.6 and Appendix B.3, we use the following training setup.

For CLIP ViT-B/16 finetuned on WILDS-FMoW, we discard the language model. We use the
AdamW optimizer with a warmup-cosine learning rate scheduler. Since varying the learning rate
changes the speed of convergence, we carefully tune the number of training epochs for each setup
to ensure convergence (e.g. training loss = 0). The following hyperparams (epochs, lr) are used for
each setup (20, 1e-4), (20, 5e-5), (20, 3e-5), (20, 1e-5), (30, 5e-6), (40, 3e-6), and (100, 1e-6).

For CLIP ViT-B/16 finetuned on RESISC45, we follow the above configuration. The following
hyperparams are used (20, 1e-4), (20, 3e-5), (20, 1e-5), (20, 3e-6), and (20, 1e-6).

For ViT-S/16 pretrained on IN1k and finetuned on WILDS-FMoW, we use the AdamW optimizer
with a warmup-cosine learning rate scheduler. The following hyperparams are used (20, 1e-3), (20,
3e-4), (20, 1e-4), (40, 3e-5), and (100, 1e-5).

For ConvNext-T pretrained on IN1k and finetuned on CIFAR10, we use the AdamW optimizer with
a warmup-cosine learning rate scheduler. The following hyperparams are used (20, 1e-3), (20, 5e-4),
(20, 3e-4), (40, 1e-4), (40, 5e-5), (80, 1e-5), and (80, 5e-6).

Note that, for each setup, we have grid searched and used the largest learning rate possible. This
means that an even larger learning rate fails to converge.

A.3 DETAILS ON METRICS

Normalized accuracy compares the relative performance metric of the multi-task model to that of
single finetuned models:

accuracynorm =
1

T

T∑
i=1

accuracy(θM )

accuracy(θi)

where T is the total number of tasks, θM represents the multi-task model and θi is the single fine-
tuned model for the task ti. This metric compares the baseline performance against each task.
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B ADDITIONAL RESULTS FOR LINEAR INTERPOLATION MERGING

B.1 DATASET: CIFAR10
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Figure 9: Larger learning rate / larger weight decay / smaller batch size all lead to a larger perfor-
mance gain in CIFAR10 dataset.
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B.2 DATA AUGMENTATION: SVHN, CIFAR10, TINYIMAGENET
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Figure 10: Accuracy gain and data augmentation. The merging fails w/o augmentation. However, a
larger learning rate remains easier to merge than a smaller one.
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B.3 TRANSFER LEARNING: VIT, CONVNEXT-T
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Figure 11: Larger learning rate enables easier merging under transfer learning for both ID and OOD
datasets. The pretrained architecture is ViT trained on IN1k and finetuned on FMoW. The evaluation
is done on the test set ID and OOD splits.
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B.4 LANGUAGE MODELING
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Figure 12: Larger learning rate and weight decay enable more effective merging in language mod-
eling. (left) Different setups at loss single of ≈ 2.20 clearly differ in loss gain. (right) Similar
phenomenon when tuning weight decay.
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B.5 TRAINING LOSS OF DECAYED MODELS
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(b) CIFAR10
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(c) CIFAR100
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Figure 13: Training loss of decayed models from Section 3.2. For deep networks trained on CIFAR
and TinyImageNet, we ensure that different setups reach near 0 training loss. For the simple MLP
trained on SVHN, convergence to 0 training loss is slow. However, the largest learning rate lr = 0.03
has the highest accuracy model despite a larger loss.
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B.6 MERGING FAILS DUE TO HIGH EFFECTIVE NOISE
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(c) TinyImagenet / Densenet121

Figure 14: Too large learning rate causes instability/failure in merging.
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(b) CIFAR100 / Resnet18
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Figure 15: Too large weight decay causes instability/failure in merging.
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C ADDITIONAL RESULTS FOR TASK ARITHMETIC

C.1 LEARNING RATE, WEIGHT DECAY

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

−4

−3

−2

−1

0
Ac

cu
ra

cy
 g

ai
n 

(%
)

lr3e-02
lr1e-02
lr5e-03
lr1e-03

(a) SVHN
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Figure 16: Task arithmetic interpolation robustness of models w/o Pretrained weight from the Sec-
tion 3.2. In the absence of a pretrained weight, the largest learning rate is the least robust to task
arithmetic interpolation.
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(b) CIFAR10
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(d) TinyImagenet

Figure 17: Task arithmetic interpolation robustness of models w/o Pretrained weight from the Sec-
tion 3.3. In the absence of a pretrained weight, the largest weight decay is the least robust to task
arithmetic interpolation.

C.2 LANGUAGE MODELING

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

0.00

0.02

0.04

0.06

0.08

Lo
ss

 g
ai

n

lr1e-3
lr5e-4
lr1e-4
lr5e-5

0.2 0.4 0.6 0.8 1.0
Task arithmetic α

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

 g
ai

n

wd1e-1
wd1e-2
wd1e-3
wd1e-4
wd0

Figure 18: Task arithmetic loss gain in language modeling for a small GPT on the TinyStories dataset
trained for 200k steps. In the absence of a pretrained weight, the largest learning rate/weight decay
is the least robust to task arithmetic interpolation.
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C.3 TRANSFER LEARNING: FMOW, RESISC45
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Figure 19: Task arithmetic robustness and gain for CLIP ViT-B/16 finetuned on FMoW.
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Figure 20: Task arithmetic robustness and gain for ViT-S/16 pretrained on IN1k finetuned on FMoW.
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Figure 21: Task arithmetic robustness and gain for CLIP ViT-B/16 finetuned on RESISC45.
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C.4 MERGING DIFFERENT TASKS
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Figure 22: Task arithmetic merging of two different tasks across α values. Similar setups (antidiago-
nal) consistently have better merged models. Note that for α = 0.2 smallest learning rate models do
not merge well. Same for α = 1.0, indicating a sharper minima defined by task arithmetic subspace,
similar as Section 4.1.
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D ADDITIONAL RESULTS ON LOSS LANDSCAPE

D.1 TRANSITION PHASE: HILLS, FLATLAND, AND VALLEYS
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Figure 23: The loss geometry of the linear interpolation between two endpoints changes from a
hill → valley, based on the timing of the bifurcation. Given a training budget T , the legend
indicates the bifurcation start epoch Ta, which means the training continues for Tb = T −Ta epochs
with θA and θB . The transition phase (dashed line) marks the phase change from a hill into a valley.
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Figure 24: Identifying the transition phase from hill to valley.
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D.2 FLATNESS
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(a) CIFAR10
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Figure 25: The flatness measured using the top-8 eigenvalues of the hessian. The larger learning
rate solutions lie inside a sharper minima.

D.3 LANDSCAPE VS. EFFECTIVE NOISE

(a) Low noise. (b) Optimal noise (“sweet spot“).

Base model
Finetuned models

(c) High noise.

Figure 26: 2D loss slices in the plane spanned by the base model and two fine-tuned models under
varying effective noise scales. Low and high noise both yield broad, flat corridors between the
fine-tuned solutions, whereas an intermediate (optimal) noise level introduces performance gains
(“valleys”) between them. Model: ResNet18; dataset: CIFAR100.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E LLM RESEARCH ASSISTANCE

We use LLM to assist this research project in the following tasks: manuscript polishing and retrieval
of related work. For both tasks, we make mild use of LLM for the manuscript writing phase. In
particular, polishing has been used only to improve the flow of the sentences, while the retrieval of
contents has been used to find a few related works.
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F ADDITIONAL RESULTS FOR TRAINING DYNAMICS

F.1 SCHEDULER
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Figure 27: Comparison between WSD and cosine scheduler.

We use the same setup described in Appendix A, varying only the scheduler for the whole training
duration. The same training budget (epochs) is used. Figure 27 shows that WSD scheduler enables
easier merging, especially when bifurcating in the final phase where the learning rate of cosine is
already small.
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F.2 OPTMIZER
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(b) SGD

Figure 28: Optimizer comparison under transfer learning. Using AdamW, larger learning rate en-
ables easier merging for both ID and OOD datasets, while for SGD, benefits are only for ID dataset.
The pretrained architecture is ConvNext-T trained on IN1k and finetuned on CIFAR10. The test set
ID is CIFAR10 and test set OOD is CIFAR10.1 (Recht et al., 2018).

We compare the optimizer effect on merging effectiveness between AdamW to SGD. Note that in
this experiment, SGD with small lr required 20× more steps compared to AdamW for convergence.
Figure 28 shows that SGD have larger performance gain with larger lr for ID dataset, but not for
OOD dataset. Moreover, SGD trained models have a lower final perfomance compared to AdamW
models (95% vs 96%).
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G ADDITIONAL RESULTS UNDER NETWORK SYMMETRIES
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Figure 29: Accuracy gain after permutation invariance for CIFAR100.

We validate the following hypothesis: the minima identified with a larger effective noise makes re-
basing methods more effective. We train two sets of models with independent initialization using the
same setup as in Section 3.2. Note that, to enable successful merging, these independent models θ
must be first rebased θr before merging θrm. The weight-based matching is used. Then, we measure
the permutation invariant gaininv = acc(θrm) − acc(θ). A larger gaininv value corresponds to a
more successful rebasing.

Figure 29 shows a clear correlation between the standard merging gain obtained in the shared ini-
tialization and branching setup (y-axis) against the merging gaininv between independent initialized
models (x-axis). In particular, a larger lr (or effective noise) helps to identify “flatter” basins that
also enables more effective rebasin.
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Figure 30: Loss-barrier analysis for small GPT-2 models trained on WikiText-103 under the align-
ment methods of Theus et al. (2025). Panels (a)–(c) show the complete loss interpolation curves
for different learning rates, while the remaining panels highlight the peak (maximum) loss barrier
extracted from each trajectory. Lower loss barriers are better.
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In Figure 30, we evaluate the connectedness of small GPT-2 models trained from scratch on
WikiText-103 under varying learning rates. All models are 6-layer GPT-2–style decoders (block
size 512, dmodel = 512, nhead = 8, ninner = 2048), trained with the GPT-2 tokenizer using a batch
size of 32 for 10 epochs, weight decay 0.01, and a learning-rate warmup ratio of 0.05. To obtain
optimal neuron alignments, we apply the symmetry-aware merging methods of Theus et al. (2025).
We consider three settings: vanilla averaging (no alignment), weight matching (alignment via max-
imizing parameter similarity), and learned matching (alignment optimized directly for next-token
prediction on WikiText-103).

As in our experiments without symmetry alignment, higher learning rates tend to improve connectiv-
ity and reduce loss barriers. However, consistent with prior observations that text-based Transform-
ers trained from scratch do not exhibit linear mode connectivity, we see no cases where interpolation
reduces the loss.
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H ADDITIONAL RESULTS ON TIES MERGING
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Figure 31: TIES merging of models trained on two different tasks (RESISC45, FMoW). TIES merg-
ing has better performance compared to task arithmetic in Figure 8. (left) The merged models are
finetuned using the same learning rate. Larger learning rate solutions have better performance and
are more robust to TIES interpolation, unless it is too large. (right) The models are merged using
different learning rates. Merging pairs of similar, relatively large learning rates yields the best per-
formance. Results are averaged over three seeds.
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Figure 32: TIES merging of models trained on three different tasks (RESISC45, FMoW, CIFAR10).
Results are averaged over three seeds.

We study whether more advanced merging methods can reduce sensitivity to hyperparams as sug-
gested. First, we apply TIES directly to the existing setting in Section 4 with two tasks (RESISC45,
FMoW). We use TIES to keep 70% of the values and “mean” aggregation. Figure 31 shows that
TIES can yield slight improvement over TA (88.0% vs 85.9% normalized accuracy at lr=3e-5).
Therefore, TIES merging can partially counteract the high noise. Second, we extend the setting by
applying TIES to three tasks (RESISC45, FMoW, and CIFAR10) and measure its normalized accu-
racy across interpolation. Figure 32 shows that at small α < 0.5, a larger lr trained models have the
highest performance, while at a larger α > 0.5, larger lr becomes unstable. This suggests that TIES
can help, but not fully counteract the effects of noise.
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I ADDITIONAL RESULTS ON FEATURE SIMILARITY
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Figure 33: Feature similarity correlates with accuracy gain.

We use the linear-CKA to measure the penultimate-layer features of the branched checkpoints, and
correlate it with the merge gain. We use a batch of 2048 samples from the test set.

Figure 33 shows that a higher lr (equivalent to higher noise) has larger merge gain and lower fea-
ture alignment (CKA). While a smaller lr has lower merge gain and higher alignment. Therefore,
merging can occur at different effective noise level, but in order to obtain merge gain, models need
complementary features.
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J ADDITIONAL RESULTS ON SWA
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(a) k = 3
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(d) k = 10

Figure 34: Accuracy gain when applying stochastic weight averaging (SWA).

Using the models trained in Section 3.2, we apply stochastic weight averaging (SWA) to the last
k checkpoints of the branched models, obtaining θswa

A and θswa
B , which are merged into θswa

m . We
define gainswa = acc(θswa

m )−0.5∗ (acc(θswa
A )+acc(θswa

B )) to measure the accuracy gain of SWA
models after merging.

Figure 34 (top) show that SWA endpoints can also benefit from merging the branched models θswa
A

and θswa
B . However, the merge gains are lower compared to the standard setting w/o SWA. This is

because SWA already incorporates the benefit of large lr (noise) to explore wider valleys by merging
the models along the same trajectory, while merging combine models from different trajectories. Fig-
ure 34 (bottom) shows that the final accuracy are comparable, and the methods are complementary.
These results support the conclusion that effective noise governs mergeability, including SWA.
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