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Abstract

While Large Language Models (LLMs) are often used as virtual tutors in
computer science (CS) education, this approach can foster passive learning
and over-reliance. This paper presents a novel pedagogical paradigm that
inverts this model: students act as instructors who must teach an LLM to
solve problems. To facilitate this, we developed strategies for designing
questions with engineered knowledge gaps that only a student can bridge,
and we introduce Socrates, a system for deploying this method with min-
imal overhead. We evaluated our approach in an undergraduate course
and found that this active-learning method led to statistically significant
improvements in student performance compared to historical cohorts. Our
work demonstrates a practical, cost-effective framework for using LLMs to
deepen student engagement and mastery.

1 Introduction

Large language models (LLMs) represent a significant advancement in artificial intelligence.
After rapid developments, LLMs have demonstrated impressive improvements in natural
language processing (NLP) tasks (Zhao et al., 2023), surpassing traditional models in areas
such as task generation, translation, question answering, and code generation (Yang et al.,
2024; Cloutier & Japkowicz, 2023). Trained on massive datasets, LLMs are able to generate
human-like text. Some of the most popular LLMs include GPT models (Kalyan, 2023;
OpenAI et al., 2023) developed by OpenAI, PaLM (Anil et al., 2023), and Gemini (Team
et al., 2023; Gemini Team Google et al., 2024) from Google, Claude models (Anthropic, 2024)
from Anthropic, and LLaMa models (Touvron et al., 2023a) from Meta.

The significant performance of LLMs has prompted their exploration in computer science
(CS) education (Raihan et al., 2025). Here, a crucial distinction exists between using LLMs as
a utility (e.g., for professional code generation) and as a tutor for foundational learning. Our
work focuses on the latter. Within this pedagogical context, the dominant paradigm casts
the LLM as a virtual tutor, i.e., an assistant that explains concepts, debugs code, and answers
questions (Denny et al., 2024; Liu & M’Hiri, 2024; Kazemitabaar et al., 2024). However,
this model carries significant risks. Major concerns include the potential for academic
dishonesty (Perkins, 2023) and, more critically for learning outcomes, that students may
become overly dependent on the LLM for reasoning instead of developing their own
understanding (Wang et al., 2024; Abdelghani et al., 2023; Bastani et al., 2024). This can
foster passive learning and hinder the development of practical skills.

In this paper, we argue that the existing efforts on applying LLMs in education use LLMs as
an assistant which replace some necessary effort a student needs to make during learning.
To prevent this negative effect, we propose to use LLMs in a reversed role, i.e., let a student
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teach an LLM to solve a question. Therefore, a student will be pushed to understand the
materials behind the given question. This approach leverages the well-documented protégé
effect, where the act of teaching material deepens the instructor’s own understanding and
mastery (Roscoe & Chi, 2007; Chase et al., 2009).

To achieve this objective, dedicated questions need to be designed as many existing course
questions can already be solved by LLMs at a human level. Our objective is to make the
questions hard enough such that they cannot be solved by an LLM, but can be solved with
appropriately designed prompts, which is the expected answer from students. As it is
non-trivial to find questions at the appropriate level of difficulty, we develop a series of
strategies for designing such questions.

To equip students to solve these challenging problems, our methodology incorporates
techniques for both student guidance and system-level validation. Students are guided to
structure their solutions using established prompt engineering principles. They use Chain-
of-Thought (CoT) (Wei et al., 2022; Kojima et al., 2022) to deconstruct the problem into a
step-by-step process, often in combination with Few-Shot Prompting (Brown et al., 2020)
to provide complete, reasoned examples as templates for the LLM. To then robustly evalu-
ate this student-generated instruction, our Socrates system employs the Self-Consistency
inference strategy (Wang et al., 2022; Min et al., 2023), which sends the student’s prompt
multiple times to ensure the proposed solution is consistently effective.

To facilitate the deployment of the above designs, we implement Socrates, a system that
provides a playground for students to engage with our specially designed questions and
a grader that uses an LLM for verification. The system is designed for ease of use by
instructors, requiring minimal programming knowledge. To validate the effectiveness and
viability of this novel paradigm, this paper addresses the following research questions:

1. To what extent does our “learning by teaching” approach impact student performance
compared to traditional methods in an undergraduate computer science course?

2. How effectively can students guide an LLM to correctly solve complex, custom-designed
problems, and what are the associated computational costs and practical considerations
of our framework?

We evaluate these questions through a deployment in an undergraduate course at CUNY
Queens College. Our findings demonstrate that this approach yields statistically significant
improvements in student outcomes at a low operational cost, validating both its pedagogical
value and its practical feasibility for broader adoption.

2 Background

Recent generative LLMs, such as OpenAI’s GPT series (Kalyan, 2023; OpenAI et al., 2023),
Meta’s LLaMa series (Touvron et al., 2023a;b; Meta AI, 2024), and Google’s Gemini (Team
et al., 2023), have demonstrated remarkable capabilities in complex reasoning and code gen-
eration. Such capabilities are not static but are elicited through carefully crafted instructions
provided in context, i.e., prompt engineering. This reliance on prompting makes them highly
suitable for our pedagogical paradigm, which centers on the student’s ability to formulate
effective instructions. Hence, our pedagogical framework is built upon established prompt
engineering principles designed to elicit more robust and logical outputs from LLMs.

Chain-of-Thought (CoT): The CoT principle (Wei et al., 2022; Kojima et al., 2022) guides
an LLM to produce intermediate reasoning steps or “thoughts” before the final answer,
mimicking how humans break down complex problems (Zhou et al., 2023). By doing so, it
encourages the model to generate more structured and logical responses, especially in tasks
that require reasoning (Chu et al., 2024; Wei et al., 2022). For example, given an arithmetic
word problem, the model would generate step-by-step reasoning like “There are 3 cars
initially. 2 more cars arrive. So 3 + 2 = 5 cars in total.” before stating the final answer
of 5 cars. CoT has been shown to significantly improve performance on complex tasks.
We leverage this by designing assignments that require students to provide these explicit,
step-by-step instructions, thereby teaching the LLM to solve the problem logically.
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Few-shot prompting. Another cornerstone of our approach is few-shot prompting, a tech-
nique where providing a model with a small number of solved examples in its context
dramatically improves its performance on similar, unseen problems (Brown et al., 2020).
Instead of simply using this for model performance, we leverage it as a pedagogical instru-
ment. In our framework, students are required to construct these few-shot examples, often
including not just the final answer but also the intermediate reasoning steps (a combination
of few-shot and CoT prompting). This process forces students to deconstruct a problem,
identify its core patterns, and articulate a generalizable solution, thereby reinforcing their
own understanding before they ”teach” it to the LLM.

While the prompt engineering principles above help students formulate clearer instructions,
they do not eliminate the inherent stochasticity of LLM outputs. A well-designed prompt can
still produce an incorrect result due to the probabilistic nature of the model. A more robust
result can be obtained by an inference-time decoding strategy, such as self-consistency (Wang
et al., 2022). Instead of relying on a single greedy decoding of the reasoning path, it samples
multiple diverse reasoning paths from the language model and selects the most consistent
or reliable final answer by marginalizing all sampled reasoning paths (Bartsch et al., 2023;
Min et al., 2023). The intuition is that for complex reasoning problems, multiple valid ways
of thinking can lead to the same correct answer. By considering the consensus across many
reasoning paths, self-consistency can boost accuracy compared to just taking the greedy
output (Chen et al., 2023). In our Socrates system, this is implemented by allowing students
to query the LLM multiple times and using a majority consensus to determine success,
making the interaction more robust against single-run failures.

3 Related Works

In computer science education, LLMs are most commonly employed as virtual teaching
assistants. Numerous studies have explored the benefits and challenges of this paradigm,
using models to provide instructional support, generate and grade questions, and enhance
accessibility in both traditional and online learning environments (Markel et al., 2023; Denny
et al., 2024; Liu & M’Hiri, 2024; Kazemitabaar et al., 2024). For example, Liu et al. (2024)
discuss the pivotal role of LLMs in CS education by integrating AI-driven instructional sup-
ports in courses like Harvard’s CS50. Moreover, the work by Liu & M’Hiri (2024) exemplifies
the focus on refining this tutor model. Their primary contribution was investigating how
to structure interactions with a GPT-3.5 assistant to provide accessible programming help
while implementing safeguards to maintain academic integrity. Similarly, the application
of LLMs in economically disadvantaged educational settings is further explored by Choi
et al. (2023), who investigate the deployment of AI tools in areas with limited educational
infrastructure. Their findings indicate that, despite challenges, LLMs can significantly
improve educational delivery and accessibility.

The dynamics of student engagement with LLMs are examined by Abdelghani et al. (2023),
who question whether students can remain active learners in environments enriched with
AI tools. Their study highlights the delicate balance required to maintain student interaction
without fostering over-reliance on AI technologies. The authors present a nuanced analysis
that highlights the potential risks associated with integrating generative AI tools into the
learning environment. They argue that while LLMs can provide substantial educational
benefits, there is a significant risk that students may become overly reliant on these AI
systems. This over-reliance, which is also proposed and confirmed by Wang and Xu, could
potentially diminish the students’ motivation and ability to engage deeply with the learn-
ing material on their own (Wang et al., 2024). Their findings suggest that without careful
implementation and continuous monitoring, the introduction of LLMs into the classroom
could inadvertently undermine the very educational engagement they aim to enhance. This
is echoed by Jeon & Lee (2023), who caution that without adequate pedagogical framing,
educators may inadvertently misuse LLMs, e.g., by providing overly-scaffolded prompts
that allow students to retrieve answers without engaging in productive struggle, thereby
undermining the learning process. This concern of fostering over-reliance is empirically
supported by Bastani et al. (2024) in a study with approximately 1000 high school students
(Grade 9-11) in mathematics. They found that while initial access to GPT-4 boosted perfor-
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mance, students who had the tool removed later performed worse than those who never
had access. This finding highlights the inherent risk of using LLMs as assistive tools and
underscores the need for alternative pedagogical models, like ours, that aim to prevent such
detrimental dependencies.

Collectively, these studies form a comprehensive view of the nuanced implications of
LLMs in educational settings, suggesting the need for further research and development
in terms of the interaction between LLMs and students to maximize the potential of LLM-
enhanced education (Markel et al., 2023). In this paper, we present our novel way of
utilizing LLMs in CS education by reversing the role of the LLM as a student. Our approach
is grounded in the well-established protégé effect, which demonstrates that the act of
preparing to teach, explaining concepts, and resolving confusion for another agent forces
the “teacher” to organize their own knowledge more effectively and identify gaps in their
understanding (Chase et al., 2009; Roscoe & Chi, 2007). By positioning the student as an
instructor who must teach an LLM, we aim to transform learning from passive information
consumption into a process of active knowledge construction, directly targeting the issues
of engagement and over-reliance identified in the literature.

4 Methodology

Our methodology is designed to create a pedagogical interaction where the student must
actively construct and articulate their knowledge to instruct an LLM. This is achieved
through two complementary components: the design of the problems themselves, and the
techniques used to guide the student’s instruction process.

4.1 Question Design

The success of our role-reversal pedagogy hinges on designing questions that LLMs cannot
solve independently, thereby preventing solution retrieval from training data and forcing a
guided reasoning process. The pedagogical value of this process is grounded in established
learning theories. Our strategy of creating novel, underspecified scenarios is a direct applica-
tion of constructivist learning theory, where students build a more rigorous understanding
by defining the rules of a new system (Harel & Papert, 1991; Kafai & Resnick, 1996). This
approach is fundamentally different from merely prompting an LLM to “act like a student
of level X.” Such simulation can be inconsistent and does not create a genuine informa-
tion dependency (Mannekote et al., 2025; Kumar et al., 2025). By engineering a genuine
knowledge dependency, we create a robust pedagogical setup where the student’s role as
instructor is essential. This section introduces the two core strategies designed to implement
this pedagogically-grounded approach. We applied these strategies to the modules of an
undergraduate course. A detailed description of this application is provided in Appendix A,
and full example questions are available in Appendix B.

Strategy 1: Creating Non-Existing Scenarios. This strategy embeds known concepts within
a completely novel context defined by arbitrary, multi-part rules that an LLM cannot infer
from its training data. For instance, a question in data representation might define a
signed number system where digits A and B represent 0 and 1, and the number’s sign is
determined by its case: an all-uppercase string like BABA is positive, while an all-lowercase
one like baba is its negative equivalent. This two-part rule (digit mapping plus a case-based
sign convention) is outside any standard system and requires explicit definition by the
student. Similarly, in assembly language, a task could require the student to define and
use a hypothetical instruction like SWAPADD R1, R2, R3, which first swaps the values in
registers R1 and R2, and then adds the new values, storing the result in R3. The procedural
and arbitrary nature of this multi-step operation makes it impossible for an LLM to guess
its function, forcing it to rely entirely on the student’s explanation.

Strategy 2: Involving Guided Mathematical Reasoning. This strategy leverages complex,
multi-step procedures where LLMs are known to struggle without explicit step-by-step
guidance (Wei et al., 2022; Kojima et al., 2022). The student’s task is not to provide the final
answer but to act as a guide for the entire logical process. For example, to convert a Boolean
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function like y = a(b + bc′) into its canonical sum-of-minterms form, the student must
guide the LLM through the full algorithm. The student would first instruct the model to
“apply the distributive law to get ab + abc′”, then to “identify the missing variable c in the
term ab”, followed by instructing it to “expand the term ab by ANDing it with (c + c′)”, and
finally to “remove the duplicate minterm abc′”. Each command corresponds to a discrete
step in the algorithm, compelling the student to master the procedure itself, not just the final
outcome. Meanwhile, this strategy focuses on high-level logic over rigid syntax, significantly
flattening the learning curve and allowing students to concentrate on core concepts without
the initial barrier of mastering a formal language.

4.2 Guiding Student Instruction

Our pedagogical approach requires that the LLM cannot solve the problem independently,
creating a knowledge gap for the student to fill. This makes the use of less-capable, and thus
more affordable, LLMs not only feasible but preferable. However, this choice necessitates
that students learn how to effectively guide the model, which can be a challenge. Students
can be frustrated when trying different prompts with instructions they think are sufficient,
with no correct output from the LLM. Therefore, we provide guidance based on established
methods for structuring student instruction and ensuring its robustness. Requiring students
to provide step-by-step guidance aligns with problem decomposition, a core component of
computational thinking that reinforces procedural thinking (Brennan & Resnick, 2012; Lye
& Koh, 2014).

Guiding Reasoning with Chain-of-Thought. We apply the CoT principle (Kojima et al.,
2022; Wei et al., 2022) by guiding students to structure their answers as a series of simple,
sequential steps for the LLM to follow. For all questions in general, we make students aware
of the CoT principle and encourage them to decompose the work in their solutions into
steps and make each step simple enough for the LLM to follow. For some more difficult
questions which an LLM achieves a much lower success rate than others with answers from
volunteer students during testing, we split the answer into steps, and required students to
give the answer to each step. Eventually, the answers to all steps will be combined into the
prompt sent to the LLM, enforcing the application of CoT. Besides, we apply simple yet
efficient tricks in CoT, e.g., by including a phrase “let’s think step by step” in the prompt.

Demonstrating with Few-Shot Examples. We leverage few-shot prompting (Brown et al.,
2020) by requiring students to provide several examples of test cases with corresponding
input-output pairs. This serves a dual purpose: it provides a clear output format for the
LLM while compelling students to generalize the problem by constructing their own valid
examples. Few-shot learning can also be integrated with CoT to further enhance the quality
of the LLM’s output. Hence, besides asking students to give examples of test cases, we also
ask students to give detailed, step-by-step solutions to such test cases. These examples serve
as a guide for the LLM, setting the framework of how to approach similar problems. When
faced with a new problem, the LLM uses the few-shot examples as a reference to structure
its chain-of-thought, sequentially working through the problem while aligning its approach
with the demonstrated examples. For students, this integration gives them a chance to solve
the problem from simple examples, which can then be extended to general cases.

Ensuring Robustness via Self-Consistency. To manage the inherent stochasticity of LLM
outputs, we apply the principle of self-consistency (Wang et al., 2022). In our system, a
student’s prompt is sent to the LLM multiple times. This has direct pedagogical value: when
a student’s instructions fail on some trials but succeed on others, it helps them distinguish
between LLM variability and a fundamental flaw in their own logic. Conversely, consistent
failure across all trials provides a strong signal that their instructions must be refined. This
process helps students diagnose ambiguity in their prompts and formulate more robust
instructions (Madaan et al., 2023). The student’s answer is considered successful only if the
number of correct outputs meets a predefined threshold.
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5 System Design

To support these designs, a system is needed for both students and instructors, with its
requirements grounded in established pedagogical principles. For students, the system
must provide a controlled and uniform environment to ensure assessment fairness and
equity for all learners (Association et al., 2014). The interaction environment must also be
non-modifiable to uphold academic integrity, a key concern when integrating generative
AI (Denny et al., 2024). For instructors, particularly those with limited programming knowl-
edge, the system should be easily deployable. While a full human-computer interaction
(HCI) evaluation is beyond the scope of this paper, our design focuses on these core peda-
gogical requirements, a common approach when the primary goal is to evaluate learning
outcomes (Koedinger et al., 2013).

Playground

Grader

LLM

student

instructor
answers

questions

Figure 1: The architecture of Socrates.

We now present a system called Socrates that
incorporates LLMs as virtual students to en-
hance learning in CS courses, satisfying above
requirements. Fig. 1 illustrates the pedagog-
ical workflow enabled by the system. Our
core contribution lies in this novel interac-
tion model rather than in a new underlying
technical architecture. An instructor can de-
sign an assignment file with questions, which
can be sent to the playground and the grader.
The playground provides a web-based UI
generated from the assignment file, and lets
students provide answers and interact with
LLMs. The answers from a student for an as-
signment can be recorded into an answer file,
which will be sent to the grader for grading.

Questions. In Socrates, an instructor can de-
fine assignment questions in a text file in JSON format. We chose JSON for its flexibility and
ease of use in a research prototype context, allowing for rapid development and modifi-
cation of question structures, and a graphical user interface (GUI) for question design is a
direction for future work. Each question includes a description field detailing the scenario
and requirements for students. It can also have one or more answer areas, allowing stu-
dents to provide answer(s) in the playground. Typically, a prompt combining the question
description with the student’s answer(s) will be sent to an LLM. Instructors can also specify
the LLM used for a particular question and an additional prompt, such as a test case or
simply “let’s think step by step”. Multiple test cases may be provided for students to select
in the playground, with the LLM solving the question accordingly. Each question may also
be associated with a few more fields for the grader only, such as dedicated test cases, their
sample correct output, and the threshold for self-consistency.

To help students get familiar with the format and requirements of the assignment, the
first question may be set to be a demonstration with a sample answer given such that
students can simply watch the output from the LLM. The instructor may also specify in the
question the number of times the prompt will be sent to the LLM for self-consistency in the
playground and grader. In this case, we allow some question(s), especially the first one, to
be specified as a demo in the assignment file, with an additional field for the sample answer
inside this question.

Besides questions, an assignment file may also contain an overview of the assignment and
passcodes for all students. The overview can provide a general introduction to the whole
assignment to students before all the questions. A passcode is a unique string assigned to
each student and should be distributed to each student separately, which can be used to
match the current user to a specific student in the playground and prevent unauthorized
usage of LLMs.

Playground. The playground in Socrates provides an interactive environment for students
to work on questions designed by an instructor. It first takes the assignment file that we
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described above as its input. Thanks to its format in JSON, we can easily convert it into a
Jupyter notebook where different fields of a question will become a text cell or a code cell
with one or multiple widgets for taking input from students. The notebook also includes
Python code and widgets for verifying the student’s passcode and submitting the prompt
to the LLM, and displaying the output from the LLM. At the end of the notebook, there will
also be a button widget allowing students to submit their final answers. The submission
will be saved as an answer file on the server running the playground, which can be sent to
the grader for grading offline.

After conversion, the playground launches a Voilá (The Voila Development Team, 2024)
session that turns the Jupyter notebook into an interactive web UI. The student can then
get access to the assignment in a web browser. Hosting the Jupyter Notebook in the Voilá
session hides the code from students, making them only work with questions without seeing
the necessary details. It makes students unable to modify the code, making sure they work
in a controlled and uniform environment. It also prevents students from getting sensitive
data such as the API key of the LLM.

Grader. The grader is a component for the instructor to grade students’ submissions. The
grader reads the question file to get the information about the questions and then grades
each answer file from the students. When grading each question, the same prompt is
generated in the grade as in the playground and sent to the LLM for the output. Multiple
requests with the same prompt may be sent to the LLM as specified in the question file. An
instructor may specify additional test cases for grading only in the question file.

After getting the output from the LLM, the grader sends the output for verification, during
which the grader uses an LLM to verify if the output is correct by comparing it with the
sample’s correct output. The prompt instructs the LLM to give either Yes or No to indicate
if the output is correct compared to the sample’s correct output. The answer is correct if
the number of Yes is no less than the threshold of self-consistency, such as when the LLM
returns Yes in 3 out of 5 outputs.

6 Evaluation

Assignments Projects Exams
0%

50%

100%

Pe
rc

en
ta

ge

82.9% 78.4% 71.3%86.4%
85.4%

72.5%

(p = 0.028) (p = 0.018) (p = 0.693)

Before After

Figure 2: Comparisons of student per-
formance before and after using our ap-
proach. Error bars represent the stan-
dard deviation.

Our evaluation is designed as an initial demon-
stration of our novel pedagogical approach, fo-
cusing on its feasibility, practical implementation,
and impact within a real-world classroom setting.
The study was conducted in an undergraduate
course on Computer Organization and Assembly
Language at CUNY Queens College. To establish
a clear baseline, the historical “before” cohorts
engaged with a stable curriculum of traditional
problem sets and extensive programming projects.
Our sole intervention in the “after” cohort was the
addition of four assignments using the Socrates
system, completed prior to the regular module
assignments. Given the practical constraints of a live course, our evaluation employs a
quasi-experimental design, comparing student outcomes against these historical cohorts
on the otherwise identical coursework rather than using a concurrent, randomized control
group. While this limits the generalizability of our findings, it allows us to assess the
framework’s potential and highlight key considerations for its deployment, such as system
cost and LLM performance.

6.1 Student Outcomes

We designed questions1 for the three modules for the class, and deployed them in four
assignments. To evaluate the impact, we compared student performance in assignments,
projects, and exams, where the number of students (N) ranged from approximately 49 to 80,

1The case study and detailed description of such questions can be found in Appendix A and B.
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against historical cohorts (N = 133 - 237), ensuring only unchanged coursework was used
for a fair comparison.

The results are illustrated in Fig. 2. Applying our approach led to a statistically significant
improvement in student performance on both Assignments (p = 0.028) and Projects (p =
0.018). These p-values are below the standard 0.05 threshold for significance, indicating
the observed improvements are unlikely to be due to random chance. This increase is
particularly notable for projects, where students must write code in a hardware description
language and an assembly language. Conversely, the observed score increases for Exams (p
= 0.693) were not statistically significant. This is likely because the intervention “dosage”
(four assignments) had a more localized effect that did not register as strongly on broader
measures. Exams assess a wider variety of skills, diluting the specific impact of the interven-
tion. The significant gains on assignments and projects, however, provide strong evidence
that the “learning by teaching” paradigm can effectively improve students’ mastery of core
course competencies.

6.2 LLM Performance

To measure the performance of the LLM when they are asked to solve the questions above,
we keep logs recording the performance metrics in the playground and the grader. We used
gpt-3.5-turbo, and applied gpt-4o and gemini-1.0-pro in the grader on students’ submissions
of the four assignments. Through such results, we demonstrate the performance of LLMs as
they perform in the playground and the grader as follows.

A1 A2 A3 A4
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101

102

103
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 (U
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0.75
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0.63
1.472.07
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0.78 0.85

playground (gpt-3.5-turbo)
grader (gpt-3.5-turbo)

grader (gpt-4o)
grader (gemini-1.0-pro)

(a) Costs of the playground and the grader.

A1 A2 A3 A4
0%

25%

50%

75%

100%

Gr
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69%69%
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60%

gpt-3.5-turbo gpt-4o gemini-1.0-pro

(b) Correctness of the grader, where error bars represent the
standard deviation.

Figure 3: Comparisons of LLMs’ performance in the play-
ground and the grader.

We compare the costs of dif-
ferent LLMs in the playground
and the grader in Fig. 3a. We
can see that except gpt-4o which
is expected to be more intelli-
gent and much more expensive,
all other models incur a very
low amount of costs which can
be easily covered by an instruc-
tor. Even gpt-4o consumes only
$169.90.

Fig. 3b demonstrates the cor-
rectness of the grader. We com-
pare the results from the grader
with those from manual grad-
ing. We combine the percent-
ages of true positives (actual
correct answers graded to be
correct) and true negatives (ac-
tual incorrect answers graded
to be incorrect), and compare
the correctness of gpt-3.5-turbo,
gpt-4o, and gemini-1.0-pro. In
almost all assignments (except
A3), gpt-4o demonstrates the
highest correctness. However, as a cost-benefit observation from our data, the modest
performance gain comes at a substantially higher cost, which may make it an impractical
choice for budget-constrained educational applications. Interestingly, for assignment A3,
which focused on applying transformations in boolean algebra, gemini-1.0-pro achieved
much higher correctness than both gpt-3.5-turbo and gpt-4o. This is a tentative observa-
tion specific to our test cases, but it suggests a potential strength for gemini-1.0-pro on this
particular type of logical reasoning problem.
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7 Discussion, Limitations, and Future Work

Several important considerations frame this work and point toward future research direc-
tions. A primary concern is the risk that students might “game” the system rather than
internalizing the content. This could range from simple trial-and-error prompting to a more
sophisticated strategy of instructing the LLM to map the novel problem onto a known equiv-
alent. Our methodology includes several layers of mitigation. First, our assessment focuses
on the quality and clarity of the student’s explanation within the novel context, not merely
on achieving a correct final output. A student who simply remaps the problem would likely
receive a lower score for an insufficient explanation. Furthermore, the question designs
themselves, requiring a coherent mental model to solve, make superficial prompting less
effective. Most importantly, our evaluation suggests this engagement fosters genuine learn-
ing; the statistically significant gains indicate that the understanding students developed
was both transferable and robust, not just a task-specific skill. However, designing questions
that are robust against all forms of sophisticated gaming remains an open challenge.

A key methodological choice in this paper was using re-encoded problems to create an
information dependency. The pedagogical rationale for this strategy is to foster a deeper en-
gagement with first principles, as students must deconstruct and explicitly define concepts
rather than relying on rote memorization. While our results suggest this approach suc-
cessfully promotes a transferable understanding, we acknowledge that this study does not
isolate the specific cognitive effects of re-encoding versus other factors. A focused empirical
study directly comparing learning outcomes from re-encoded versus traditional problem
formats is a valuable next step. This could lead to exploring more advanced techniques,
such as those from machine unlearning, to deliberately suppress an LLM’s prior knowledge.
Our current prompt-based methodology was intentionally chosen for its practicality and
low cost, but the ability to selectively erase knowledge could significantly broaden the
applicability of this paradigm, allowing instructors to use state-of-the-art models while still
creating the authentic tabula rasa effect essential for our approach.

A natural question also arises as to whether our question design strategies can survive
the advent of more advanced models, which may solve problems previously considered
“LLM-hard.” Our framework is designed with this longevity in mind. Instructors can use
Socrates to select less-capable models, preserving the pedagogical knowledge gap, and
we assume a controlled environment to mitigate the use of external LLMs. The system
also allows instructors to append a hidden prompt to the student’s submission, which
can introduce specific constraints or personas that an external, powerful LLM would not
anticipate. This ensures the methodology’s longevity, as it depends on the student’s direct
instruction rather than the LLM’s raw reasoning capability.

Finally, we acknowledge the limitations of this study. It lacks a concurrent control group
and long-term retention analysis. Future work should conduct larger-scale, controlled
experiments to generalize these findings. Exploring the adaptation of this framework to
other disciplines also presents a promising research direction. Our design strategies can
be adapted accordingly: Strategy 1 is well-suited for novel thought experiments or logic
puzzles, while Strategy 2 can also be applied to constructing proofs in STEM or even outlin-
ing critical analyses in the humanities. The primary challenge for cross-disciplinary scaling
lies in the creation of effective, domain-specific question sets by educators, representing an
exciting avenue for future research.

8 Conclusions

In this paper, we presented a novel educational methodology that reverses the traditional
student-tutor roles by having students instruct an LLM. Our framework, implemented
in the Socrates system, uses specifically designed ”LLM-hard” questions to foster a more
engaging and active learning environment. Our evaluation shows that this approach not
only mitigates the risk of student over-reliance by compelling them to produce solutions,
but also leads to performance gains on core coursework, demonstrating its pedagogical
value and practical viability.
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Ethics Statement

This research involved the evaluation of a novel pedagogical approach using LLMs within
an undergraduate computer science course on Computer Organization and Assembly
Language. The primary goal was to assess the potential impact of this approach on student
learning outcomes.

To evaluate the effectiveness of the methodology, we utilized routinely collected educational
data. Specifically, we analyzed aggregated, anonymous student performance metrics,
including average grades on coursework (assignments, projects, and exams), comparing
the cohort exposed to the new methodology with cohorts from previous semesters where
the methodology was not used. Additionally, we examined aggregated, anonymous data
from standard end-of-semester course evaluations, focusing on average scores related to the
learning experience.

Prior to analyzing this data for research purposes, clarification was sought from the institu-
tional body responsible for research ethics oversight at CUNY Queens College. Following
institutional guidance, it was determined by the relevant institutional official that formal
Institutional Review Board (IRB) approval was not necessary for this study. This determina-
tion was based on the fact that the research relied exclusively on pre-existing, anonymous,
and aggregated data typically used for course assessment and improvement, and did not
involve interaction with human subjects specifically for research data collection, nor did it
involve access to or reporting of any personally identifiable information.

The implementation of the LLM-based teaching activities was integrated into the regular
curriculum and assignments for the course. Student participation was part of their stan-
dard educational engagement. No individual student data is reported in this paper. All
presented results reflect class-level averages and trends, ensuring student anonymity and
confidentiality.

Our analysis was conducted with the aim of contributing to the improvement of computer
science education practices, while respecting student privacy and adhering to institutional
guidelines regarding the use of educational data.

Reproducibility Statement

This statement provides information regarding the reproducibility of the research presented
in this paper, covering the data, code, models, and methodology used. Our aim is to facilitate
understanding and potential replication of our work where feasible, while respecting ethical
and privacy constraints. The source code and all public data artifacts we share are available
at: https://github.com/junli-cuny/Socrates.

Data. The evaluation relies on two main types of data. Firstly, student performance data was
used, consisting of aggregated, anonymous student grades on coursework (assignments,
projects, and exams), as detailed in Section 6. Due to student privacy regulations and
ethical considerations outlined in the Ethics Statement, the raw, disaggregated student data
cannot be publicly shared. The paper, however, describes the nature of the aggregated
data used and the comparative analysis performed (Section 6). Secondly, LLM interaction
data, specifically logs of interactions within the Socrates system (student prompts, LLM
responses during assignments and grading), were collected. Raw logs containing potentially
identifiable student inputs cannot be shared, but the structure of prompts, the interaction
flow, and the types of responses generated are described in Sections 4 are publicly shared.
Representative examples of designed questions are provided in Appendix B. Regarding
assignment/question design, the strategies are detailed in Section 4.1, and the JSON format
used within Socrates is described in Section 5. We make anonymized examples of the
assignment JSON files available to illustrate the structure and types of questions used.

Code. The core software component developed for this research is the Socrates system,
comprising the Playground and Grader modules (Section 5). This system is primarily imple-
mented in Python, utilizing Jupyter notebooks, Voilà for the web UI, and standard libraries
for interacting with LLM APIs. We release the source code for the Socrates framework
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(excluding sensitive API keys and specific course passcodes) under an open-source license.
Setting up and running the system will require obtaining API keys from the respective LLM
providers (e.g., OpenAI and Google) and installing necessary Python dependencies, details
of which will be provided in the repository. Scripts used for generating the figures in Section
6 from aggregated data will also be included in the repository.

Models and Environment. The specific LLMs used in our evaluation were OpenAI’s
gpt-3.5-turbo, gpt-4o, and Google’s gemini-1.0-pro. These were accessed via their respec-
tive APIs for comparative analysis. Reproducing the exact LLM outputs may be challenging
due to the proprietary nature of these models, potential updates made by the providers over
time, and inherent stochasticity in model responses. The performance reported reflects the
model versions available at the time of the experiments. Accessing these models requires
accounts with the providers and may incur costs based on API usage. No specialized
hardware is required beyond standard computing resources capable of running Python and
accessing web APIs.

Methodology. The pedagogical approach, question design strategies, prompt engineering
techniques, system architecture, and evaluation methods are described in detail within
the main body of the paper. We believe these descriptions provide sufficient detail for
conceptual replication of the educational intervention and evaluation framework.

Limitations. Full reproducibility is limited by the inability to share raw student data, the
dependency on third-party, potentially evolving, commercial LLM APIs, and the inherent
costs associated with LLM API calls. Replication in different institutional or course con-
texts may yield quantitatively different results, though we expect the qualitative findings
regarding the pedagogical approach to be informative.
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A Case Study

This appendix provides a detailed description of how the question design strategies pre-
sented in Section 4.1 were applied to an actual undergraduate course on Computer Orga-
nization and Assembly Languages. This course covers the principles of computer design
and implementation across four modules: introduction, data representation, digital logic,
and assembly languages. The following sections describe the specific application of our
design strategies to the latter three modules. For the complete text of the example questions
discussed here, please refer to Appendix B.

Data representation. This module covers the fundamental concepts of number systems,
including integer and floating-point representations on various bases. It typically introduces
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number systems that are essential in computing and digital electronics. For this module, we
design questions by leveraging the strategy of creating non-existing scenarios. Here, we
introduced new symbols and bases for number representations (such as replacing digits with
symbols or altering the base from binary to a non-standard base like three or four). Even
if LLMs know arbitrary bases, they only recognize conventional symbols. Thus, human
students must provide explicit definitions for LLMs to solve these problems. Following
this idea, we design questions with examples of numbers in an arbitrary number system
and those in a decimal number system with the same values, and ask human students
to teach LLM to convert one to the other. Meanwhile, these questions compel students
to apply their understanding of standard number systems in unfamiliar contexts. It tests
students’ flexibility in applying basic principles to decode and work with completely new
systems, mirroring real-world scenarios where theoretical knowledge must be adapted to
novel situations.

Digital logic. This module delves into digital logic, exploring concepts such as logic gates,
Boolean algebra, and circuit design. These are foundational for understanding how comput-
ers process information at the most basic level. Questions of this module emphasize complex
mathematical reasoning. For example, we ask human students to instruct an LLM to apply
De Morgan’s laws in intricate ways or transform logical expressions into sum-of-minterms
or product-of-sums forms, instead of giving solutions directly. This approach encourages
deep engagement with logical constructs, requiring students to perform sequential trans-
formations akin to debugging or optimizing code in software development. By requiring
detailed step-by-step manipulations of logical formulas, these questions prepare students
for real-world engineering tasks where precise logic manipulation is crucial for designing
efficient digital circuits.

Furthermore, we ask students to describe the design of digital circuits using natural language
instead of a hardware description language. This gives them a chance to solve the problem by
focusing on the design instead of the language details, significantly flattening the learning
curve. By focusing on natural language descriptions, students can concentrate on the
underlying concepts of digital logic without the initial barrier of learning a new syntactical
language. This method not only makes the material more accessible but also enhances
inclusiveness, allowing students from diverse academic backgrounds to participate and
succeed. Furthermore, it enables them to grasp the essentials of digital logic and circuit
design more quickly, fostering a more intuitive understanding of how digital systems work,
which can later be translated into more technical languages as their skills and confidence
grow. This pedagogical strategy helps us ensure that all students gain a solid foundation in
digital logic, regardless of their prior experience with specific programming or hardware
description languages. By removing the need to simultaneously master a complex hardware
description language, our approach aligns with Cognitive Load Theory (Sweller, 2011).
It reduces the extraneous cognitive load (learning syntax), allowing students to focus
their mental resources on the intrinsic challenge of understanding digital logic concepts,
regardless of their prior programming experience.

Assembly language. This module introduces assembly language, a low-level programming
language crucial for understanding how software interacts with hardware. It is commonly
used in systems programming, embedded systems, and performance-critical applications.
We utilize the strategy of creating non-existing scenarios by having students define a new,
hypothetical assembly language. Students design instructions for arithmetic, memory, and
control flow using natural language. This approach, far from being unconventional, is a
standard pedagogical practice in computer architecture education designed to force students
to move beyond merely using an instruction set to fundamentally understanding why it
is designed a certain way (Patt & Patel, 2003). By requiring students to think like system
architects and articulate the precise semantics of each new instruction, this method fosters a
deeper and more robust comprehension of the relationship between software and hardware.
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B Example Question Designs

This appendix provides the complete text of example questions designed for the course
on Computer Organization and Assembly Languages, illustrating the application of the
strategies discussed in Section 4.1 and Appendix A. The questions are categorized by the
course module they belong to.

B.1 Data Representation

These questions2 primarily leverage Strategy 1 (Creating Non-Existing Scenarios) by in-
troducing novel number systems with unfamiliar symbols, bases, or encoding rules. This
requires students to deduce the underlying principles and explicitly define them for the
LLM, preventing the LLM from solving the problem using only its pre-existing knowledge
of standard systems.

Question 1: Novel Base-3 System with Symbols

Question Text: We introduce a novel number system where every distinct symbol denotes
a unique digit. Let’s observe the provided examples of numbers in this system and their
respective values in decimal notation:

• = 0

• A = 1

• A = 3

• AB = 5

Given these examples, deduce the definitions and guiding principles of this number system.

Rationale: This demonstration question introduces a base-3 system using symbols “ ”, “A”,
and “B” instead of “0”, “1”, “2”. An LLM cannot interpret this system without explicit
rules defining the base and symbol mapping, which the student must provide based on the
examples. It forces students to apply base conversion principles in an unfamiliar context.

Question 2: Modified Hexadecimal Representation

Question Text: Below we define a new number system. Various examples are furnished to
demonstrate conversions between this system, binary, and decimal representations. Here
are the provided examples:

• Binary to new system

– 0011 = D
– 1001 = J
– 10011000 = JIa
– 01000001 = EB

• New system to binary

– AA = 00000000
– CF = 00100101

Based on these examples, your task is to decipher the definitions and rules of this number
system.

Rationale: This question modifies hexadecimal by mapping digits 0-9 and potentially A-F
to a different set of symbols (e.g., A=0, B=1, ..., J=9, then potentially other symbols). The
LLM requires the student to explicitly define this non-standard mapping (Strategy 1) to
perform conversions based on the provided examples.

Question 3: Signed Binary with Letter Case

2Questions in this module were given to students in two assignments.
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Question Text: Below we present another new number system. The examples given below
demonstrate numbers in this system alongside their corresponding decimal values:

• AABB = 3

• BABB = 11

• aabb = -3

• baba = -10

• AAAA = 0

• aaaa = 0

• ABAB = 5

• abab = -5

• BBBA = 14

• bbbb = -15

From the provided examples, your task is to decipher the definitions and rules of this
number system.

Rationale: This uses Strategy 1 by replacing “0” and “1” with “A” and “B”, and introducing
a novel sign encoding based on letter case (e.g., uppercase for positive/zero, and lowercase
for negative, possibly sign-magnitude or a similar scheme). The LLM needs the student
to define both the digit mapping and the case-based sign convention derived from the
examples.

Question 4: Mixed Base Representation

Question Text: Following examples show numbers in a new base system.

• 1.1 new base = 1.25 decimal

• 10.01 new base = 2.0625 decimal

• 101.001 new base = 5.015625 decimal

Based on these examples, please figure out how a number with the new base can be
converted into a decimal.

Rationale: This employs Strategy 1 by defining a non-standard mixed-base system (likely
base-2 integer part, base-4 fractional part) without explicitly stating the bases. The student
must infer these rules from the examples and communicate them clearly to the LLM for
conversion.

Question 5: Custom Floating-Point Format

Question Text: Following examples show a new method to represent the floating-point
number with 8 symbols. Based on these examples, please figure out the underlying rules of
the new method.

• BAAA0000

– +1 × 20 = 1

• Baai0100

– +1.25 × 2−8 = 0.0048828125

• bABJ0000

– −1 × 219 = −524288

• baac1000

– −1.5 × 2−2 = −0.375
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Hint: The new representation is not biased compared with the traditional one.

Rationale: This question uses Strategy 1 to define a completely custom 8-symbol floating-
point format. It likely uses letters for sign (B/b), a multi-symbol non-biased exponent
(with A-J mapping and case for sign), and an encoded/implicit mantissa. The student
must reverse-engineer the complete format (sign representation, exponent base/encoding,
mantissa representation) from the examples and explain it step-by-step to the LLM.

B.2 Digital Logic

These questions emphasize Strategy 2 (Involving mathematical reasoning) and sometimes
Strategy 1 by requiring natural language descriptions of circuits. Students must guide the
LLM through multi-step logical manipulations or circuit design logic.

Question 1: De Morgan’s Law Application

Question Text: Using De Morgan’s law, demonstrate why a xnor b = not(a xor b).

Rationale: This demonstration question requires guiding the LLM through a step-by-step
proof using Boolean algebra rules (Strategy 2), specifically De Morgan’s law. The student
provides the reasoning path, defining the intermediate steps for the logical derivation.

Question 2: Sum-of-Minterms Conversion

Question Text: Convert y = a(b + bc’) to the sum-of-minterms form.

Rationale: Requires the student to instruct the LLM on the algebraic steps needed for
conversion (Strategy 2), such as applying distributive laws, introducing missing variables
(e.g., by ANDing with (c + c′) which equals 1), and removing duplicate terms. The LLM
typically needs explicit guidance for these multi-step transformations to reach the canonical
form.

Question 3: Product-of-Maxterms Conversion

Question Text: A sum term is an ORing of (one or more) variables, like (a + b’ + c’). A sum
term is sometimes called just a term. An expression in product-of-sums (POS) form consists
solely of an ANDing of sum terms, like (a + b’ + c)(a + b).

A maxterm is a sum term that has all of the function variables exactly once in either true or
complemented form. Product-of-maxterms form is a canonical form of a Boolean equation
where the right-side expression is a product-of-sum with each sum consisting only of
maxterms.

Convert a’b+ac to its POM form.

Rationale: Similar to Question 2 but for the dual canonical form (POS/POM). It requires
applying different algebraic manipulations (Strategy 2), often involving principles like
duality, starting from the complement, or converting from a truth table, which the student
must explain step-by-step to the LLM.

Question 4: Generalizing a Boolean Function from a Truth Table

Question Text: The truth table below describes a boolean function y(y1, y2, y3) with 3 input
boolean variables.

y1 y2 y3 y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 1: Truth table for function y(y1, y2, y3).
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Describe a function z with the same functionality for 5 input boolean variables, i.e.,
z(z1, z2, z3, z4, z5).

Rationale: This involves recognizing the underlying function implemented by the truth
table (a 3-input majority function) and then generalizing that logic to a different number of
inputs (Strategy 2). The student needs to identify and explain the majority logic concept to
the LLM so it can correctly describe the 5-variable implementation.

Question 5: Circuit Design using Natural Language

Question Text: Define (c, s) = HA(x, y) as a half-adder, such that x and y are two boolean
input variables, and c and s are two boolean output variables where s is the sum and c is the
carry. Typically, the half-adder can be implemented as s = x ⊕ y and c = x ∧ y.

Describe how we can use the half-adder(s) to implement a 2-bit incrementer (c, y1, y2) =
INC(x1, x2) such that (y1y2)2 = (x1x2)2 + 1 and c is the carry.

Rationale: This combines Strategy 2 (reasoning about how components connect to achieve
functionality) and Strategy 1 (using natural language to describe the circuit structure instead
of HDL). The student must break down the incrementer logic (e.g., how to add “1” to a
2-bit number x1x2) and explain step-by-step how to realize this logic by interconnecting
half-adder instances described functionally.

B.3 Assembly Language

These questions heavily rely on Strategy 1 (Creating Non-Existing Scenarios) by asking
students to define and use a new, hypothetical assembly language, often described in natural
language. In this section, instructions defined in previous questions may be used in later
questions.

Question 1: Defining Basic Instructions (Init, Load, Add)

Question Text: In assembly language, we use addi, mul, ld, and sw and else to finish simple
calculations. In this question, create a new assembly language and an addition instruction
that initializes the addresses 5004 and 5012 to $t0 and $t1. Load the value to $t2 and $t3
respectively. Then, add up the value and put the sum in $t4.

Register file

$zero 0
$t0 5004
$t1 5016
$t2 16
$t3 96
$t4 16
$t5
$t6

Table 2: Register File State for Question 1.

Address Data memory DM

5000
5004 16
5008
5012 32
5016 96

Table 3: Data Memory State for Question 1.

Note that this is a demo question. Students will be given instructions to complete this
question.

Rationale: This demo question introduces the core task: defining hypothetical instructions
(like “init”, “load”, “add”) using natural language descriptions of their behavior (Strategy 1).
The student teaches the LLM the precise semantics of this new language (how instructions
affect registers and memory based on the tables), which the LLM then uses to generate code
for the specified task.

Question 2: Defining Division and Store Instructions

Question Text: Design instructions for division and store, and develop an corresponding
assembly program to complete tasks as follows. Instructions defined in all the above
questions can also be used.
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• Save memory addresses 5004 and 5016 to $t0 and $t1, respectively.
• Load integers from the memory addresses above to $t2 and $t3 respectively.
• Divide the above two integers ($t3/$t2) and save the value in $t4.
• Store the result in the memory address 5008.

Rationale: Builds on Question 1, requiring students to define more complex instructions
(“divide”, “store”) using natural language (Strategy 1), specifying their exact effects on
registers and memory. Students must then write a program using both new and previously
defined instructions, demonstrating understanding of the language they created.

Question 3: Defining a Conditional Instruction

Question Text: Design a new instruction that could check the value of two registers and
complete the following requirements. You can continue using the assembly language created
in the last question. Be sure to enter the definition and steps in the required area.

• Add up the integers saved in registers $t2 and $t4 and compare the sum with value
in register $t3.

• If the sum is less than the value, find the difference and save the difference in the
register $t6. Otherwise, leave $t6 unchanged.

Rationale: Focuses on defining conditional logic (Strategy 1). The student must specify
the semantics of a new comparison and potentially conditional execution or branching
instruction in natural language for the LLM to understand and apply correctly to implement
the if-then logic.

Question 4: Defining a Loop Structure

Question Text: A for loop executes a section of codes repeatedly until it meets a certain
condition. In this question, using the logic of a loop, design a new instruction and complete
the following requirements.

• While i is less than 5, double variable x.
• Variable i, x are in $t0 and $t1 respectively.
• $t0 = 0, $t1 = 2, $t2 = 5.

Rationale: Requires defining instructions necessary for implementing loops (e.g., a condi-
tional jump, decrement/increment, or a specialized loop instruction) using natural language
(Strategy 1). The student must explain how these instructions work together to create the
iterative behavior needed for the LLM to generate the correct loop code.

Question 5: Array Initialization using Defined Instructions

Question Text: Define an instruction for multiplication and develop a program using all
instructions defined so far to create an array with 3 32-bit integers. The value of each
elements should be the square of the index (starting from 0). The base address of this array
is 5000.

Rationale: Combines previously defined concepts (loops, arithmetic, memory access via
“store”) and potentially requires a new “multiply” instruction definition (Strategy 1). The
student must structure the program logic (looping through indices, calculating the square,
storing to the correct memory address) using the custom language they have defined for the
LLM.

Question 6: Array Processing (Min/Max) using Defined Instructions

Question Text: Design a program that finds the minimum and maximum value of an array
with 32-bit integers using the instructions created above. The base address of the array is
5000, and the size of the array is 4. Save the result in the register $t0.

Rationale: This acts as a capstone, requiring students to apply the full set of previously
defined instructions to implement a more complex algorithm (finding min/max in an array)
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purely within the student-defined assembly language. No new definitions are needed,
focusing on demonstrating mastery of applying the created language constructs (loops,
comparisons, loads/stores) to solve the problem.
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