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Abstract

Solving mathematical problems requires advanced reasoning abilities and presents
notable challenges for large language models. Previous works usually synthesize
data from proprietary models to augment existing datasets, followed by instruction
tuning to achieve top-tier results. However, our analysis of these datasets reveals
severe biases towards easy queries, with frequent failures to generate any correct
response for the most challenging queries. Hypothesizing that difficult queries
are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection
Tuning (DART), a method that allocates difficult queries more trials during the syn-
thesis phase, enabling more extensive training on difficult samples. Utilizing DART,
we have created new datasets for mathematical problem-solving that focus more on
difficult queries and are substantially smaller than previous ones. Remarkably, our
synthesis process solely relies on a 7B-sized open-weight model, without reliance
on the commonly used proprietary GPT-4. We fine-tune various base models on
our datasets ranging from 7B to 70B in size, resulting in a series of strong models
called DART-Math. In comprehensive in-domain and out-of-domain evaluation
on 6 mathematical benchmarks, DART-Math outperforms vanilla rejection tuning
significantly, being superior or comparable to previous arts, despite using much
smaller datasets and no proprietary models. Furthermore, our results position
our synthetic datasets as the most effective and cost-efficient publicly available
resources for advancing mathematical problem-solving.1

1 Introduction

Recent years have seen remarkable advancements in various tasks through the use of large language
models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Chowdhery et al., 2023; Anthropic, 2023;
OpenAI et al., 2023). However, these models still struggle with complex reasoning (Hendrycks et al.,
2021; Jimenez et al., 2024; He et al., 2024; Lin et al., 2024), a cornerstone of human cognitive essential
for tackling intricate tasks. Mathematical reasoning, in particular, represents a significant challenge
and stands as one of the most difficult categories of reasoning for state-of-the-art LLMs (Hendrycks
et al., 2021; Cobbe et al., 2021b; Zheng et al., 2022).

In this work, we focus on mathematical problem-solving to explore enhancement of the mathematical
reasoning abilities of pretrained LLMs. We investigate instruction tuning (Longpre et al., 2023; Wang
et al., 2023), which is recognized as the most cost-effective method and achieves the state-of-the-
art performance on various mathematical benchmarks (Yu et al., 2024; Yue et al., 2024). Current
SOTA instruction tuning methods for mathematical problem-solving are typically implemented as

∗Work done during visit to HKUST.
1Our datasets, models and code are publicly available at https://github.com/hkust-nlp/dart-math.
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Figure 1: Left: Average accuracy on six mathematical benchmarks. We compare with models fine-tuned on the
best, public instruction tuning datasets for mathematical problem-solving: MetaMath (Yu et al., 2024) with 395K
examples, MMIQC (Liu et al., 2024a) with 2.3 million examples, as well as vanilla rejection tuning (VRT) with
590K examples. Both DART-Math (Uniform) and DART-Math (Prop2Diff) use 590K training examples. Right:
Number of responses for each query descending by difficulty across 3 synthesis strategies. Queries are from the
MATH training split (Hendrycks et al., 2021). VRT is the baseline biased towards easy queries, while Uniform
and Prop2Diff are proposed in this work to balance and bias towards difficult queries respectively. Points are
slightly shifted and downsampled for clarity.

augmenting existing training datasets with synthetic data generated from proprietary models like
GPT-4 (OpenAI et al., 2023). A prevalent method of data augmentation is to sample multiple
responses to given queries from a strong model and filter out the incorrect ones. This method, known
as rejection tuning, ensures the high quality of the augmented thought steps and yields competitive
performance (Yuan et al., 2023; Yu et al., 2024; Singh et al., 2023).

However, after careful examination of these SOTA synthetic datasets, we find that they suffer from a
severe bias towards responses to easy queries and low coverage for hard queries. For example, as
shown in Figure 2 (Left and Middle), while the original queries vary in difficulty, the augmented
samples in the MetaMathQA dataset (Yu et al., 2024) focus more on easier queries, with zero
new responses generated for 51.1% of the most difficult training queries in the MATH training
set (Hendrycks et al., 2021). This phenomenon commonly exists in rejection-sampling-based data
synthesis which typically samples an equal number of raw responses for each query, disadvantaging
difficult queries that are less likely to yield correct responses. We hypothesize that such biases hinder
the learning of mathematical problem-solving, since difficult examples are often deemed more crucial
during training (Sorscher et al., 2022; Burns et al., 2023; Liu et al., 2024b).

To address this issue, we propose Difficulty-Aware Rejecting Tuning (DART), a method that prioritizes
more sampling trials for challenging queries, thereby generating synthetic datasets enriched with
more responses for difficult questions compared to previous methods. Specifically, we develop two
strategies to achieve this: Uniform which collects the same number of correct responses for all queries,
and Prop2Diff which biases the data samples towards the difficult queries, contrasting with vanilla
rejection tuning. These different strategies are summarized in Figure 1 (Right), where the difficulty of
a query is automatically assessed by sampling multiple responses and calculating the ratio of incorrect
answers. Our difficulty-aware synthesis produces two synthetic datasets corresponding to Uniform
and Prop2Diff strategies respectively, consisting of ∼590K examples. Notably, while previous works
mostly utilize GPT-4 to synthesize data, we only rely on the DeepSeekMath-7B-RL model (Shao
et al., 2024) to produce all the data, thereby eliminating dependence on proprietary models.

In our experiments, we evaluate DART based on Mistral-7B (Jiang et al., 2023), DeepSeekMath-
7B (Shao et al., 2024), Llama3-8B, and Llama3-70B (Meta, 2024), creating a series of strong
mathematical models that termed DART-Math. Across 6 in-domain and challenging out-of-domain
benchmarks, DART-Math significantly outperforms vanilla rejection tuning and the baselines trained
on the previously established top public datasets as shown in Figure 1 (Left), this is often achieved
with smaller training data size. For example, DART-Math improves Llama3-8B from 21.2% to 46.6%
on MATH (Hendrycks et al., 2021), and from 51.0% to 82.5% on GSM8K (Cobbe et al., 2021a); Our
results mark the DART-Math datasets as the state-of-the-art public resources of instruction tuning for
mathematical problem-solving.
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Figure 2: Left: Number of queries in the MATH training set and the MetaMathQA-MATH-AnsAug set across 5
difficulty levels annotated by humans. MetaMathQA-MATH-AnsAug is generated through rejection sampling
from the original training queries. We annotate the query coverage ratio of MetaMathQA. While the most
difficult queries (Level 5) are predominant in the original set, synthetic examples bias towards easier queries,
dropping over 50% of the most difficult queries. Middle: Total number of responses for queries across different
difficulty levels in MetaMathQA-MATH-AnsAug. The most difficult queries represent the smallest proportion,
only accounting for 10.5% of all the samples. Right: pass@k accuracy of different DeepSeekMath (DSMath)
models and temperatures (t) on MATH500 (Lightman et al., 2024), a subset of MATH test set. With enough
trials, models are actually able to sample out answer-correct responses to most (>99%) queries.

2 Biases in Rejection-Based Data Synthesis

In this section, we first introduce the background for rejection sampling and rejection tuning, and
then present our examination on the biases of rejection-based data synthesis.

2.1 Background: Rejection Sampling and Rejection Tuning

We begin by formulating the data synthesis setting used for instruction tuning. For instruction tuning,
the training dataset consists of (x, y) pairs, where x is the input query and y is the response. The
process of data synthesis involves generating new (x, y) pairs to augment the original training dataset,
thereby enhancing performance. For each input query xi, it is typical to sample M responses from
advanced models such as GPT-4, forming the set {(xi, y

(j)
i )}Mj=1. In the context of mathematical

problem-solving, a subsequent filtering step is often implemented to eliminate incorrect y(j)i . This
elimination is based on whether the final answer in the synthetic response aligns with the ground-truth
answer.2 This is crucial as mathematical reasoning poses a significant challenge for current LLMs,
and the generated y

(j)
i may often be of poor quality. This method of response sampling is known as

rejection sampling, and the subsequent fine-tuning process is referred to as rejection tuning, which is
widely employed to enhance the mathematical problem-solving abilities of LLMs (Yuan et al., 2023;
Yu et al., 2024; Singh et al., 2023; Xu et al., 2024). In addition to response synthesis, the queries are
typically kept constant (Singh et al., 2023; Hosseini et al., 2024; Toshniwal et al., 2024) or altered in
a controlled manner (Yu et al., 2024) to ensure that ground-truth answers are readily available, which
facilitates the implementation of rejection sampling. While some studies also synthesize queries
without utilizing rejection tuning (Li et al., 2024; Tang et al., 2024), our focus in this work is primarily
on rejection tuning, a method prevalently used for advancing the mathematical skills of LLMs.

2.2 On the Imbalance of Rejection-Based Data Synthesis

Next, we examine a representative synthetic dataset to identify the inherent biases present in rejection-
based data synthesis as implemented in most existing works. Specifically, our analysis focuses
on the AnsAug subset of the MetaMathQA-MATH dataset (Yu et al., 2024), which is a synthetic
dataset that produces multiple responses for each query in the original training set of the MATH
dataset (Hendrycks et al., 2021), through rejection sampling as described in §2.1. MetaMathQA has
been recognized as one of the most effective synthetic datasets for mathematical problem-solving.
We concentrate on the MATH split because it is a notably challenging benchmark in mathematical
reasoning, equipped with human-annotated difficulty levels that aid in our analysis.

2Strictly speaking, final answer correctness does not necessarily imply intermediate reasoning correctness.
We do not make further distinction across this paper which is not our focus.
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Rejection-based data synthesis biases towards easy queries: Across different difficulty levels,
Figure 2 (Left) shows the original query distribution of the MATH training dataset as well as the
new query distribution after synthesis in the MetaMathQA-Math dataset. While the most difficult
queries (Level 5) takes the largest proportion in the original query set, MetaMathQA changes the
query distribution implicitly towards easier queries, dropping many hard problems. For instance,
the proportion of Level 5 (the most difficult) queries notably decreases by 51.1%, indicating that
rejection sampling fails to generate any correct response for those queries. As a result, as depicted
in Figure 2 (Middle), the responses to the most difficult queries only account for 10.5% of all the
samples. Such a phenomenon generally exists in datasets synthesized through the conventional
rejection sampling method outlined in §2.1, primarily because the same number of responses is
sampled for each query, yet the likelihood of obtaining correct responses for difficult queries is
significantly lower, sometimes even zero. We hypothesize that this bias towards easy queries could
substantially undermine the effectiveness of instruction tuning, as hard queries are often considered
critical for instruction tuning (Lu et al., 2024; Liu et al., 2024b). We note that this bias towards easy
queries is less pronounced on relatively simple datasets such as GSM8K (Cobbe et al., 2021a), where
most queries are easier and it is not difficult to sample correct responses for most of the queries.
However, the bias remains a significant concern when tackling challenging tasks, which represent
a more compelling and complex field of study for LLMs. Building on these findings, we will next
introduce our method as a potential remedy to the limitations of vanilla rejection tuning.

3 DART – Difficulty-Aware Rejection Tuning

3.1 Open-Weight Models Are Able to Generate Good Responses

Intuitively, we aim to collect a sufficient number of responses for the difficult queries. To assess
whether this goal is achievable, given that models might not generate correct responses for challenging
queries despite extensive sampling, we explore the capabilities of DeepSeekMath-7B-RL (Shao et al.,
2024), a strong model specifically trained for mathematical reasoning. Figure 2 (Right) demonstrates
the pass@k accuracy on the queries in MATH500 (Lightman et al., 2024), a subset of MATH test
set, indicating the proportion of queries that have at least one correct response when sampling k
responses for each query. Notably, even though the synthesis model possesses only 7B parameters, a
90% pass@k accuracy can be achieved when sampling over 100 responses per query. These results
are consistent with the findings from recent studies (Toshniwal et al., 2024; Shao et al., 2024; Li et al.,
2024), which suggest that strong open-weight models are able to synthesize correct responses for
most of the queries. This evidence supports the potential for effectively mitigating the insufficient
coverage for difficult queries through strategic response sampling, which we introduce next.

3.2 DARS – Difficulty-Aware Rejection Sampling

Motivated by the observation above, we aim to collect more responses for harder queries. Specifically,
we introduce two strategies to increase the number of correct responses for difficult queries: (1)
Uniform, which involves sampling responses for each query until each query accumulates ku correct
responses, and ku is a preset hyperparameter determined by the desired size of the synthetic dataset;
(2) Prop2Diff, where we continue sampling responses until the number of correct responses for each
query is proportional to its difficulty score. The most challenging queries will receive kp responses
and kp is a hyperparameter. This method introduces a deliberate bias in the opposite direction to
vanilla rejection sampling, towards more difficult queries. Prop2Diff is inspired by previous works
that demonstrate difficult queries can be more effective to enhance model capabilities (Sorscher et al.,
2022; Liu et al., 2024b). Both the Uniform and Prop2Diff strategies prescribe a specific number of
correct response for each query, determined by ku or kp. Nevertheless, there are certain queries which
we cannot sample out the designated number of correct responses even with extensive sampling
efforts. To avoid endless running of the synthesis, we impose a cap on the maximum allowable
number of raw samples per query as nmax – once this limit is reached for a particular query, we
cease further sampling and retain any correct responses that have been gathered. The straightforward
implementation of the Prop2Diff strategy risks generating no synthetic responses for easier queries if
kp is set small. To mitigate this, we guarantee at least one synthetic response for each query when
implementing Prop2Diff. While it might seem sufficient to rely on the original, real training dataset
to ensure at least one human-annotated response per query, our findings highlight the importance of

4



Dataset # Samples (K) Synthesis Agent Open-Source

WizardMath (Luo et al., 2023) 96 GPT-4 ✗
MetaMathQA (Yu et al., 2024) 395 GPT-3.5 ✓
MMIQC (Liu et al., 2024a) 2294 GPT-4+GPT-3.5+Human ✓
Orca-Math (Mitra et al., 2024) 200 GPT-4 ✓
Xwin-Math-V1.1 (Li et al., 2024) 1440 GPT-4 ✗
KPMath-Plus (Huang et al., 2024) 1576 GPT-4 ✗
MathScaleQA (Tang et al., 2024) 2021 GPT-3.5+Human ✗

DART-Math-Uniform 591 DeepSeekMath-7B-RL ✓
DART-Math-Hard 585 DeepSeekMath-7B-RL ✓

Table 1: Comparison between our DART-Math datasets and previous mathematical instruction tuning datasets.
Most of previous datasets are constructed with ChatGPT, and many of them are not open-source, especially for
ones of the best performance.

maintaining synthetic response coverage to learn to solve easy problems, as we will quantitatively
shown in §4.3, partially because the human-annotated response is less detailed and not as beneficial
as synthetic responses, demonstrated previously in Yu et al. (2024). For both Uniform and Prop2Diff
strategies, we use the DeepSeekMath-7B-RL model to synthesize responses. We refer to the two sam-
pling strategies as DARS-Uniform and DARS-Prop2Diff respectively. DARS-Prop2Diff requires
assessing difficulties of queries, next we introduce an automatic approach to measure difficulties.

Evaluating Difficulty: Previous studies have used proprietary models like ChatGPT to assess
the difficulty or complexity of data samples (Lu et al., 2024; Liu et al., 2024b). In this work, we
introduce a new metric, fail rate – the proportion of incorrect responses when sampling nd responses
for a given query – as a proxy for difficulty. This metric aligns with the intuition that harder queries
less frequently yield correct responses. We utilize DeepSeekMath-7B-RL as the sampling model to
evaluate difficulty across all experiments in the paper. Varying this sampling model to align with the
generative model may further enhance performance, which we leave as future work. Notably, one of
the benefits of fail rate is that it allows to reuse the sampled responses during difficulty evaluation as
synthetic responses for dataset construction. See implementation details in Appendix A.2.

3.3 The DART Datasets

We utilize DARS-Uniform and DARS-Prop2Diff to construct two datasets, DART-Math-Uniform
and DART-Math-Hard respectively for instruction tuning. We use the original training queries of
the GSM8K (Cobbe et al., 2021a) and MATH datasets to synthesize responses. We maintain fixed
queries to better isolate the effects of difficulty-aware rejection tuning, while techniques for query
augmentation, as discussed in prior studies (Yu et al., 2024), could be potentially incorporated to
further improve the performance. The synthetic datasets are augmented with the original GSM8K
and MATH training data to form the final datasets. We set ku in DARS-Uniform as 40 and kp in
DARS-Prop2Diff as 192 to form both datasets of around 590K samples. Our data samples only
involve natural language reasoning without using external tools such as code execution. Comparison
of our datasets with previous datasets is illustrated in Table 1. Our datasets are generally smaller
than most previous datasets, and in §4.2 we will empirically demonstrate that the DART datasets
are the most cost-effective datasets publicly available. Remarkably, our approach solely utilizes
DeepSeekMath-7B-RL to evaluate difficulty of queries and synthesize responses, without relying on
ChatGPT that is commonly used in other studies.

Our approach typically requires more sampling trials than vanilla rejection sampling to generate a
dataset of comparable size because difficult queries often need more samples to secure the required
number of correct responses. Despite this, it is crucial to point out that our overall training cost
does not exceed that of vanilla instruction tuning. We emphasize that the data synthesis process
is a one-time effort. Once the synthetic dataset is created, it can be utilized for multiple training
runs across various base models. Furthermore, this dataset will be publicly available, extending its
utility to a wide range of users. From this perspective, the initial higher synthesis cost is effectively
amortized over numerous training runs and the broad user base, rendering the synthesis cost virtually
imperceptible to individual dataset users. We will discuss the synthesis cost further in §4.3.
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4 Experiments

4.1 General Setup

Below we summarize the key setup details, while we include more information in Appendix A.

Data synthesis: We synthesize responses using the original training queries of the MATH and
GSM8K datasets. As described in §3.2, we utilize DeepSeekMath-7B-RL to synthesize all the
data. We use temperature sampling with adjusted temperature to sample answer-correct responses to
difficult queries. We set the maximum number of output tokens as 2048 and adopt top-p sampling
with p = 0.95. We use chain-of-thought prompt (Wei et al., 2022) to synthesize. We use the vLLM
library (Kwon et al., 2023) to accelerate the generation. In our setting, sampling 35K samples on
MATH / GSM8k queries takes about 1 NVIDIA A100 GPU hour.

Training: We perform standard instruction tuning on our synthetic datasets DART-Math-Uniform
and DART-Math-Hard, based on several base models including Llama3-8B (Meta, 2024), Mistral-
7B (Jiang et al., 2023), and Llama3-70B as representatives of general models, and DeepSeekMath-
7B (Shao et al., 2024) as the representative of math-specialized models. For simplicity, we keep
most hyperparameters the same across different models and datasets, and tune only several key
hyperparameters like learning rate and number of epochs, as detailed in Appendix A.1.

Evaluation: For comprehensive assessment of mathematical reasoning of the models, we adopt
6 benchmarks for both in-domain and out-of-domain (OOD) evaluation. Specifically, we use the
GSM8K and MATH test set as the in-domain test. GSM8K consists of grade school arithmetic tasks
and are considered much simper than MATH that contains challenging competition mathematical
problems. For OOD test, we utilize the following four challenging benchmarks:

• CollegeMath (Tang et al., 2024): This test set contains 2818 college-level mathematical
problems extracted from 9 textbooks across 7 domains such as linear algebra and differential
equations, testing generalization on complex mathematical reasoning in diverse domains.

• DeepMind-Mathematics (Saxton et al., 2019): This test set contains 1000 problems from a
diverse range of problem types based on a national school mathematics curriculum (up to
age 16), testing basic mathematical reasoning in diverse domains.

• OlympiadBench-Math (He et al., 2024): This benchmark contains 675 Olympiad-level
mathematical problems from competitions, which is a text-only English subset of Olympiad-
Bench, testing generalization on the most complex mathematical reasoning.

• TheoremQA (Chen et al., 2023): This benchmark contains 800 problems focused on
utilizing mathematical theorems to solve challenging problems in fields such as math,
physics and engineering, testing generalization on theoretical reasoning in general STEM.

All results are from natural language reasoning without using external tools, through greedy decoding.

Baselines: We compare DART with the state-of-the-art instruction-tuned mathematical models such
as MetaMath (Yu et al., 2024), MMIQC (Liu et al., 2024a), KPMah-Plus (Huang et al., 2024), and
Xwin-Math (Li et al., 2024). We copy the results directly from the respective papers except for
MetaMath and MMIQC, where we run our own training since their datasets are public. As shown
in Table 1, these SOTA datasets all rely on proprietary models for data synthesis. Another ablation
baseline to DART is vanilla rejection tuning (VRT), where we synthesize a dataset of the same size of
0.59M examples with DeepSeekMath-7B-RL, using vanilla rejection sampling as described in §2.1.
We note that there are other strong models such as Yue et al. (2024); Gou et al. (2024) that are trained
to solve mathematical problems utilizing code execution, we exclude them since this study focuses
on reasoning without using tools.

4.2 Main Results

Comparing with Vanilla Rejection Tuning: The main results are in Table 2. DART-Math based
on all four different base models outperforms the VRT baselines on most benchmarks consistently.
Focusing on performance with 7-8B general base models, DART-Math-Llama3-8B (Uniform) sur-
passes the VRT baseline across all 6 benchmarks by an average of 3.5 absolute points, while
DART-Math-Llama3-8B (Prop2Diff) achieves an average improvement of 4.5 points. On the in-
domain challenging MATH benchmark, DART-Math (Prop2Diff) enhances performance over VRT

6



Model # Samples In-Domain Out-of-Domain
MATH GSM8K College DM Olympiad Theorem AVG

GPT-4-Turbo (24-04-09) – 73.4 94.5 – – – 48.4 –
GPT-4 (0314) – 52.6 94.7 24.4 – – – –
Claude-3-Opus – 60.1 95.0 – – – – –
Gemini 1.5 Pro – 67.7 – – – – – –

70B General Base Model
Llama2-70B-Xwin-Math-V1.1† 1.4M 52.5 90.2 33.1 58.0 16.3 14.9 44.2
Llama3-70B-ICL – 44.0 80.1 33.5 51.7 10.8 27.0 41.2
Llama3-70B-MetaMath 0.40M 44.9 88.0 31.9 53.2 11.6 21.9 41.9
Llama3-70B-MMIQC 2.3M 49.4 89.3 37.6 60.4 15.3 23.5 45.9
Llama3-70B-VRT 0.59M 53.1 90.3 36.8 62.8 19.3 28.6 48.5
DART-Math-Llama3-70B (Uniform) 0.59M 54.9 ↑1.8 90.4 ↑0.1 38.5 ↑1.7 64.1 ↑1.3 19.1 ↓0.2 27.4 ↓1.2 49.1 ↑0.6
DART-Math-Llama3-70B (Prop2Diff) 0.59M 56.1 ↑3.0 89.6 ↓0.7 37.9 ↑1.1 64.1 ↑1.3 20.0 ↑0.7 28.2 ↓0.4 49.3 ↑0.8

7B Math-Specialized Base Model
DeepSeekMath-7B-ICL – 35.5 64.2 34.7 45.2 9.3 23.5 35.4
DeepSeekMath-7B-Instruct 0.78M 46.9 82.7 37.1 52.2 14.2 28.1 43.5
DeepSeekMath-7B-MMIQC 2.3M 45.3 79.0 35.3 52.9 13.0 23.4 41.5
DeepSeekMath-7B-KPMath-Plus 1.6M 48.8 83.9 – – – – –
DeepSeekMath-7B-VRT 0.59M 53.0 88.2 41.9 60.2 19.1 27.2 48.3
DART-Math-DSMath-7B (Uniform) 0.59M 52.9 ↓0.1 88.2 40.1 ↓1.8 60.2 21.3 ↑2.2 32.5 ↑5.3 49.2 ↑0.9
DART-Math-DSMath-7B (Prop2Diff) 0.59M 53.6 ↑0.6 86.8 ↓1.4 40.7 ↓1.2 61.6 ↑1.4 21.7 ↑2.6 32.2 ↑5.0 49.4 ↑1.1

7-8B General Base Model
Llama2-7B-Xwin-Math-V1.1† 1.4M 45.5 84.9 27.6 43.0 10.5 15.0 37.8
Mistral-7B-ICL – 16.5 45.9 17.9 23.5 3.7 14.2 20.3
Mistral-7B-WizardMath-V1.1 (RL) – 32.3 80.4 23.1 38.4 7.7 16.6 33.1
Mistral-7B-MetaMath 0.40M 29.8 76.5 19.3 28.0 5.9 14.0 28.9
Mistral-7B-MMIQC 2.3M 37.4 75.4 28.5 38.0 9.4 16.2 34.2
Mistral-7B-MathScale 2.0M 35.2 74.8 21.8 – – – –
Mistral-7B-KPMath-Plus 1.6M 46.8 82.1 – – – – –
Mistral-7B-VRT 0.59M 38.7 82.3 24.2 35.6 8.7 16.2 34.3
DART-Math-Mistral-7B (Uniform) 0.59M 43.5 ↑4.8 82.6 ↑0.3 26.9 ↑2.7 42.0 ↑6.4 13.2 ↑4.5 16.4 ↑0.2 37.4 ↑3.1
DART-Math-Mistral-7B (Prop2Diff) 0.59M 45.5 ↑6.8 81.1 ↓1.2 29.4 ↑5.2 45.1 ↑9.5 14.7 ↑6.0 17.0 ↑0.8 38.8 ↑4.5
Llama3-8B-ICL – 21.2 51.0 19.9 27.4 4.2 19.8 23.9
Llama3-8B-MetaMath 0.40M 32.5 77.3 20.6 35.0 5.5 13.8 30.8
Llama3-8B-MMIQC 2.3M 39.5 77.6 29.5 41.0 9.6 16.2 35.6
Llama3-8B-VRT 0.59M 39.7 81.7 23.9 41.7 9.3 14.9 35.2
DART-Math-Llama3-8B (Uniform) 0.59M 45.3 ↑5.6 82.5 ↑0.8 27.1 ↑3.2 48.2 ↑6.5 13.6 ↑4.3 15.4 ↑0.5 38.7 ↑3.5
DART-Math-Llama3-8B (Prop2Diff) 0.59M 46.6 ↑6.9 81.1 ↓0.6 28.8 ↑4.9 48.0 ↑6.3 14.5 ↑5.2 19.4 ↑4.5 39.7 ↑4.5

Table 2: Main results on mathematical benchmarks. College, DM, Olympiad, Theorem denote the CollegeMath,
DeepMind-Mathematics, OlympiadBench-Math, TheoremQA benchmarks respectively. We annotate the absolute
accuracy change compared to the VRT baseline within the same base model. Bold means the best score within
the respective base model. ICL, MetaMath, MMIQC, and VRT baselines are from our own runs, while other
numbers are copied from the respective papers or reports. For WizardMath and Xwin-Math, we take the public
model checkpoints and evaluate ourselves using their official CoT prompt. †: For Xwin-Math, we take the best
public models that are based on Llama2 (Touvron et al., 2023), which is not a very fair comparison with others.

by nearly 7 absolute points for both Mistral-7B and Llama3-8B models. For OOD benchmarks,
DART-Math (Prop2Diff) shows particularly notable gains on more difficult benchmarks, with im-
provements ranging from 5.2 to 9.5 absolute points on CollegeMath, DeepMind-Mathematics, and
OlympiadBench-Math. This indicates effective generalization of our approach. These improvements
over the VRT baselines demonstrate the effectiveness of the proposed difficulty-aware rejection
sampling. We note that DART-Math does not greatly boost the relatively simple, in-domain GSM8K
benchmark. This is expected, as explained in §2.2, because vanilla rejection tuning expected does
not face severe bias issues like those seen in more challenging datasets. Thus, difficulty-aware
rejection sampling has a limited impact on easy datasets. Interestingly, on much stronger base models
DeepSeekMath-7B and Llama3-70B, the improvement margin of DART-Math over VRT narrows,
with about a 1-point gain on average. We hypothesize that this is due to these models’ extensive
pretraining on mathematical content. This pretraining likely covers most skills that could be learned
from the GSM8K and MATH training queries, suggesting that the query set itself, rather than the
responses, becomes the bottleneck. Thus augmenting the range of queries could be a more effective
strategy for future improvements.

Comparison with previous top-performing methods: DART-Math achieves superior or com-
parable performance to previous best models. Specifically, when compared with MetaMath,
DART-Math wins greatly in all cases. Additionally, DART-Math-DSMath-7B achieves the state-of-the-
art results for models sized 7-8B on challenging benchmarks such as MATH, OlympiadBench-Math,
and TheoremQA. On average, DART-Math-Mistral-7B (Prop2Diff) surpasses Mistral-7B-MMIQC
by 4.6 absolute points, despite using only a quarter of its training sample size. Compared with
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Figure 3: Scaling curves of MATH test performance against number of training samples synthesized from MATH
training queries, training is on three base models.

concurrent work KPMath-Plus which relies on GPT-4 and has not released either the data or the
model, our approach slightly underperforms on Mistral-7B for GSM8K and MATH. However,
DART-Math excels against it on DeepSeekMath-7B by a significant margin, utilizing around one-third
of its training data size. The Xwin-Math models perform well on the GSM8K benchmark but fall
behind DART-Math (Prop2Diff) on other challenging benchmarks overall, particularly with a more
pronounced gap on 70B models – although we note that their models are based on Llama2 which is
not very fair to compare with. Importantly, we fully open-source our datasets and models, designating
both DART-Math-Uniform and DART-Math-Hard as the best-performing and most cost-effective
public instruction tuning datasets available for advancing mathematical problem-solving.

4.3 Analysis

Scaling behaviors of different data synthesis methods: We study the scaling behaviors of our
data synthesis approach and compare it to vanilla rejection sampling. As described in 2.2, our method
is motivated to mitigate the bias towards easy queries that are only pronounced in challenging datasets.
Therefore, in the scaling experiment we only synthesize responses for the training queries of the
challenging MATH dataset and report the performance on the MATH test set. Figure 3 presents
the results across three different base models as we scale the training data size from thousands to
nearly 1 million samples. We observe a steady improvement in performance as the training data size
increases exponentially. DART consistently outperforms VRT on general base models Mistral-7B and
Lllama3-8B, achieving better scaling. On DeepSeekMath-7B, however, the performance differences
between various approaches are minimal. Observing the absolute accuracy changes, DeepSeekMath-
7B already achieves over 50% accuracy with just thousands of training samples, and scaling up
to 1 million samples leads to only a modest 3-point improvement. This is in stark contrast to the
over 20-point improvements seen on other models like Mistral-7B and Llama3-8B. As discussed
in §4.2, we believe this phenomenon is due to the MATH training queries not being particularly
beneficial for DeepSeekMath-7B, which has undergone extensive math-specific continual pretraining.
Consequently, for DeepSeekMath-7B, the differences between these approaches are not significant,
and the main bottleneck shifts to query coverage rather than the responses themselves.

Effect of one-response coverage: In §3.2, we describe that DARS-Prop2Diff can cause zero
synthetic responses for easy queries, especially when the number of training samples is small.
Therefore, we ensure that the easy queries have at least one correct response practically. Here we
examine the impact of this one-response coverage by comparing the Prop2Diff strategy with and
without this coverage constraint, as training data sizes increase. Figure 4 (Left) displays the outcomes
on the MATH and GSM8K benchmarks respectively. As anticipated, when the training data size is
relatively small, the one-response coverage proves beneficial, particularly on the simpler GSM8K
benchmark, improving accuracy by about 8 points. This suggests that effective learning for easy
problem-solving can be achieved with just one additional correct response. As we scale up the training
data size, the natural increase in coverage for easy queries causes that the difference between the
two approaches diminishes. Additionally, we explore the implementation of one-response coverage
in vanilla rejection tuning to determine if adding one synthetic response for difficult queries could
address its issue of low coverage for such queries. However, this modification does not significantly
aid in learning difficult queries, as observed on the challenging MATH benchmark. This indicates
that complex problems generally require a greater number of training samples for effective learning.
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Figure 4: From Left to Right, (1) and (2): Scaling curves studying the effect of one-response coverage.
“Prop2Diff (−Cover)” denotes DARS-Prop2Diff without enforcing at least one synthetic response for each
query, while “VRT (+Cover)” denotes vanilla rejection sampling enforcing at least one synthetic response for
each query. (3) and (4): The total number of raw samples needed, and the actual ratio (r) of queries achieving
the desiderata of the two DARS synthesis strategy for 585K-sized dataset curation respectively, when we vary the
maximum allowable raw samples per query (nmax).

Synthesis cost: DART generally needs more sampling trials to synthesize the same size of dataset
compared to vanilla rejection tuning, as discussed in §3.3. It is important to underline that the
synthesis cost, although initially higher, is a one-time expense. Once the dataset is synthesized, it
can be used by the community and us to train numerous models, effectively amortizing the cost. To
provide a quantitative understanding of the synthesis cost, we consider two main factors: nmax, the
maximum allowable raw samples for each query, and r, the ratio of queries that achieve the designated
number of responses. If nmax is set too high, sampling may continue indefinitely for particularly
difficult or noisy queries, resulting in a high synthesis cost. Conversely, a too small nmax may result in
many queries not gathering the sufficient number of correct responses, leading to a lower r. Figure 4
(Right) illustrates the total number of raw samples required to synthesize 585K examples and the
query achieving ratio r as we increase nmax. When nmax reaches 2048, over 90% of the queries can
collect the designated number of responses under DARS-Uniform, with a corresponding total number
of samples around 5 million. To reach 90% achieving ratio for DARS-Prop2Diff, nmax needs to be
at least 8K, and the total number of raw samples exceeds 15 million. In our experiments, we achieved
an over 95% ratio r, sampling approximately 150 million samples in total, which required about 5
days running inference of DeepSeekMath-7B-RL on 32 NVIDIA A100 GPUs. Besides that synthesis
is a one-time cost, we would like to emphasize the number of samples is not a fair metric to compare
synthesis cost between different works – our synthesis model of 7B size is relatively inexpensive
and fast to run, compared to the much more costly and slower GPT-4 used in most previous studies.
Moreover, achieving a query ratio as high as 95% may not be necessary to reach good performance. A
slightly lower ratio of 85% or 90% might not significantly impact performance but could substantially
reduce the synthesis cost. We plan to explore this balance further in future work.

5 Discussion

In this paper, we focus on instruction tuning for mathematical problem solving, and discuss the
impact of distribution and coverage of training queries across different difficulties. We identify the
bias towards easy queries in vanilla rejection tuning, and propose difficulty-aware rejection tuning,
DART, as a remedy. Based on our approach, we create and open-source the best-performing and
the most cost-effective instruction tuning datasets for mathematical reasoning, without relying on
proprietary models. Extensive experiments across various base models and benchmarks demonstrate
the effectiveness of our approach.

Limitations: We utilize fail rate as the difficulty metric, yet it may be sub-optimal. Other metrics
such as direct scoring (Liu et al., 2024b), Elo ratings, or the minimum pretraining compute to train a
model that can always answer correctly (Burns et al., 2023) may be further explored. DART-Math is
limited by natural language reasoning, while it is shown that generating and executing code helps
solve mathematical problems significantly (Zhou et al., 2024; Yue et al., 2024; Gou et al., 2024; Liao
et al., 2024; Toshniwal et al., 2024) – we think the bias in vanilla rejection sampling also exists for
code generation, and DART could be integrated to potentially improve code generation as well.

9



References

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and graph compilation. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pp. 929–947, 2024.

Anthropic. Introducing claude, 2023. URL https://www.anthropic.com/index/
introducing-claude.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. TheoremQA: A theorem-driven question answering dataset. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023. URL https://openreview.net/
forum?id=Wom397PB55.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving.
In The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=Ep0TtjVoap.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the math dataset. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.
URL https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/
2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen.
Key-point-driven data synthesis with its enhancement on mathematical reasoning. arXiv preprint
arXiv:2403.02333, 2024.

10

https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://openreview.net/forum?id=Wom397PB55
https://openreview.net/forum?id=Wom397PB55
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf


Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
et al. A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322, 2019.

Mario Michael Krell, Matej Kosec, Sergio P Perez, and Andrew Fitzgibbon. Efficient sequence
packing without cross-contamination: Accelerating large language models without impacting
performance. arXiv preprint arXiv:2107.02027, 2021.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pp.
611–626, 2023.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and Kai Fan. Mario: Math reasoning with code
interpreter output – a reproducible pipeline, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=v8L0pN6EOi.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SkhQHMW0W.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo, Haowei Liu, and Yujiu Yang. Criticbench:
Benchmarking llms for critique-correct reasoning. arXiv preprint arXiv:2402.14809, 2024.

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew Chi-Chih Yao. Augmenting math word problems
via iterative question composing, 2024a.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for align-
ment? a comprehensive study of automatic data selection in instruction tuning. In The Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=BTKAeLqLMw.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
for effective instruction tuning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 22631–22648. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
longpre23a.html.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. #instag: Instruction tagging for analyzing supervised fine-tuning of large language
models. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=pszewhybU9.

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=SkhQHMW0W
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://proceedings.mlr.press/v202/longpre23a.html
https://proceedings.mlr.press/v202/longpre23a.html
https://openreview.net/forum?id=pszewhybU9


Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Meta. Introducing meta llama 3: The most capable openly available llm to date., 2024. URL
https://ai.meta.com/blog/meta-llama-3.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kirpichev, Matthew
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A Experimental Setup

A.1 Training Setup

We train all the models using the Transformers library (Wolf et al., 2019).

Sequence Packing: To efficiently save computation wasted by padding tokens, we employ sequence
packing (Krell et al., 2021). We shuffle all samples in each epoch before sequence packing, ensuring
that the same semantic sequences are not always in the same computation sequence.

Batch Size: The computation sequence token length is set to 4096, considering that most sequences
in the training datasets are shorter than this length. The batch size is 64, though there are usually
more than 64 samples in one batch because one computation sequence can pack multiple semantic
sequences. We disable gradient accumulation (Lin et al., 2018) by default, but when the memory is not
sufficient, we increase the number of gradient accumulation steps and keep other settings unchanged.
Specifically, we use 2 gradient accumulation steps when training Llama3-8B on 8 NVIDIA A100
GPUs under our setting.

Learning Rate: We use the Adam optimizer (Zhang, 2018) with the weight decay as 0. We
use a linear warmup with a warmup step ratio of 0.03 and cosine learning rate scheduler.
The maximum learning rates are set as follows: Mistral-7B at 1e-5, DeepSeekMath-7B and
Llama3-8B at 5e-5, and Llama3-70B at 2e-5. We determine the values by searching through
1e-6,5e-6,1e-5,2e-5,5e-5,1e-4 according to the MATH performance after training on MMIQC
for 1 epoch.

# Training Epochs: The default number of epochs is 3. For MMIQC, we train for 1 epoch following
Liu et al. (2024a). For Llama3 models, we train for 1 epoch because preliminary experiments indicate
that 1 epoch consistently outperforms 3 epochs.

Prompt Template: For the prompt template, we use the format following Taori et al. (2023):

Prompt Template

Below is an instruction that describes a task. Write a response that
appropriately completes the request.\n\n###Instruction:\n{query}\n\n###
Response:\n

Other Details: For efficiency, We utilize various tools / libraries / techniques including:

• the DeepSpeed distributed framework (Rasley et al., 2020) with ZeRO (Rajbhandari et al.,
2020) stage 3

• gradient checkpointing (Chen et al., 2016)

• torch.compile (Ansel et al., 2024)

• mixed-precision training (Micikevicius et al., 2018) of BrainFloat16 (Kalamkar et al., 2019)
and TensorFloat32 (NVIDIA, 2020)

Hardware: For 7B or 8B models, we train on 8 NVIDIA A100 GPUs. For 70B models, we train
on 32 NVIDIA A100 GPUs.

A.2 Synthesis Setup

Generation: We utilize the vLLM library Kwon et al. (2023), setting the maximum number of
output tokens as 2048 and adopt top-p sampling with p = 0.95. For temperature t, we search from
0.3 to 1.8 with a step of 0.1 by using DeepSeekMath-7B-RL to sample answer-correct responses to
queries in MATH training set. We observe the speeds to achieve specified correct answer coverage of
different temperatures and find that, for DeepSeekMath-7B-RL, higher temperatures achieve faster,
but t ≥ 1.0 are quite similar and t ≥ 1.7 cause the output to be nonsense. Besides, we find that
higher temperatures produce more diverse responses by visualizing the embedings of response from
different temperatures to the same query using t-SNE (Van der Maaten & Hinton, 2008). Finally, we
set the temperature as t = 1.6.
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Grading: To judge whether the answers in raw responses are correct or not as accurately as possible,
we implement an elaborate answer extraction and judgement pipeline based on regular expressions
and SymPy (Meurer et al., 2017) symbolic calculation, which is able to correctly process most
mathematical objects such as matrices (vectors), intervals, symbols besides numbers, as well as some
special texts like bool expressions, dates and times.

Calculating Fail Rate: For efficiency, we merge DARS-Uniform synthesis and calculating fail
rates as mentioned in §3.2. Specifically, we set ku = 192 to synthesize our data pool, and based on
all the responses sampled, we calculate fail rate for each query as

fail rate =
# all correct responses

# all raw responses

which would produce more accurate fail rate values but is not necessary for general algorithm
implementations.

A.3 Evaluation Setup

Generation Like §A.2, we use the vLLM library, setting the maximum number of output tokens as
2048 and adopting top-p sampling with p = 0.95. But we use greedy decoding (i.e. set temperature
t = 0) for evaluation. Note that there might still be randomness from vLLM implementation despite
using greedy decoding, so we run each evaluation in §2 with at least 3 random seeds. When evaluating
models trained by us, we use the Alpaca (Taori et al., 2023) prompt template consistent with training
as shown in §A.1. All SFT & RL models are evaluated with 0-shot, while all base models with few-
shot in-context learning (ICL): MATH (4-shot), GSM8K (4-shot), CollegeMath (4-shot), DeepMind
Mathematics (4-shot), OlympiadBench-Math (4-shot), TheoremQA (5-shot). For baseline models,
prompts in official implementations are used. Specially, the CoT version of Alpaca prompt template
is used for WizardMath.

Grading We utilize the same pipeline as §A.2 by default, except that, for OlympiadBench, we
use the official implementation of answer correctness judgement component by He et al. (2024),
which utilizing the numerical error range information provided with query, but keep the answer
extraction component of ours, because the official implementation fails to extract a non-negligible
part of answers, especially for base model ICL.

B Training Time Cost

The specific training time cost depends on too many factors to give a precise expression, such as model
architecture, model size, data content, training algorithm implementation, hardware environment, etc.
Here we provide several data points under our setting for reference:

Dataset # Samples
(k) Model Hardware Time

(hour/epoch)

DART-Math-Hard 585 DeepSeekMath-7B 8 A100 GPUs 3
DART-Math-Hard 585 Mistral-7B 8 A100 GPUs 3
DART-Math-Hard 585 Llama3-8B 8 A100 GPUs 3
DART-Math-Hard 585 Llama3-70B 32 A100 GPUs 6

Table 3: Examples of training time cost.

15


	Introduction
	Biases in Rejection-Based Data Synthesis
	Background: Rejection Sampling and Rejection Tuning
	On the Imbalance of Rejection-Based Data Synthesis

	 – Difficulty-Aware Rejection Tuning 
	Open-Weight Models Are Able to Generate Good Responses
	 – Difficulty-Aware Rejection Sampling
	The DART Datasets

	Experiments
	General Setup
	Main Results
	Analysis

	Discussion
	Experimental Setup
	Training Setup
	Synthesis Setup
	Evaluation Setup

	Training Time Cost

