Published as a conference paper at ICLR 2025

KRONECKER MASK AND INTERPRETIVE PROMPTS
ARE LANGUAGE-ACTION VIDEO LEARNERS

Jingyi Yang'*, Zitong Yu*’; Xiuming Ni*, Jia He*, HuiLi'f

"University of Science and Technology of China, 2Great Bay University,
*Dongguan Key Laboratory for Intelligence and Information Technology,
4 Anhui Tsinglink Information Technology Co.,Ltd.
yangjingyi@mail.ustc.edu.cn, yuzitong@gbu.edu.cn,
{nixm, hejia}@tsinglink.com, mythlee@.ustc.edu.cn

ABSTRACT

Contrastive language-image pretraining (CLIP) has significantly advanced image-
based vision learning. A pressing topic subsequently arises: how can we effec-
tively adapt CLIP to the video domain? Recent studies have focused on adjust-
ing either the textual or visual branch of CLIP for action recognition. However,
we argue that adaptations of both branches are crucial. In this paper, we pro-
pose CLAVER: a Contrastive Language-Action Video Learner, designed to shift
CLIP’s focus from the alignment of static visual objects and concrete nouns to
the alignment of dynamic action behaviors and abstract verbs. Specifically, we
introduce a novel Kronecker mask attention for temporal modeling. Our tailored
Kronecker mask offers three benefits 1) it expands the temporal receptive field
for each token, 2) it serves as an effective spatiotemporal heterogeneity induc-
tive bias, mitigating the issue of spatiotemporal homogenization, and 3) it can be
seamlessly plugged into transformer-based models. Regarding the textual branch,
we leverage large language models to generate diverse, sentence-level and seman-
tically rich interpretive prompts of actions, which shift the model’s focus towards
the verb comprehension. Extensive experiments on various benchmarks and learn-
ing scenarios demonstrate the superiority and generality of our approach. Code is
available at https://github.com/yjyddq/CLAVER.

1 INTRODUCTION

Video action recognition has long been a representative topic in video understanding. Over the past
decade, there has been a continuous pursuit of learning spatiotemporal representations, giving rise
to diverse architectures, such as traditional two-stream networks [Simonyan & Zisserman| (2014));
Wang et al.| (2016)); [Zhou et al.| (2018)); Karpathy et al.| (2014)); Xie et al.| (2024), 3D convolutional
neural networks |Carreira & Zisserman| (2017)); [Feichtenhofer| (2020); [Feichtenhofer et al.| (2019);
Hara et al.|(2017); |Qiu et al.| (2017); [Tran et al.[(2015;2018); 'Wang et al.| (2018)); [Xie et al.| (2018},
and Video Vision Transformers |Arnab et al.| (2021)); Bertasius et al.| (2021)); [Fan et al.| (2021); |[Liu
et al.| (2022); [Patrick et al.| (2021)); |Zhao et al.| (2022); [Li et al.| (2022a); [Yan et al.|(2022)). Recently,
there has been increasing interest in leveraging visual-language models (VLMs) like CLIP Radford
et al. (2021)), Florence|Yuan et al.|(2021)), and ALIGN Jia et al.|(2021) for various video tasks, owing
to the superior generalization abilities of these models. Several studies|Wang et al.|(2021)); Lin et al.
(2022); N1 et al.| (2022); Ju et al.| (2022); |[Rasheed et al.| (2023); [Tu et al.| (2023)); |Chen et al.| (2023)
have devoted to adapt the CLIP for video action recognition, but they often focus on adjusting a
single branch. According to predecessor studies, transferring CLIP from the image domain to the
video domain involves two key considerations: 1) how to perform effective temporal modeling. 2)
how to design suitable text descriptions for verb understanding that align with rich text semantics in
the VLM’s pre-training dataset. We argue that addressing both issues simultaneously is crucial.
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Figure 1: An overview of CLAVER. (Right) Image encoder and KMT transformer are assembled
as a video encoder. (Left) How to get the interpretive prompts for actions.

Kronecker Mask
Temporal Attention

LLaMA3 | @ ChatGPT

In addressing the issue 1), several studies Wang et al.| (2021)); Ju et al.| (2022); |Chen et al.| (2023));
Rasheed et al| (2023) implement straightforward and simple strategies such as mean pooling or
1D-temporal convolution across the temporal dimension, or employing temporal attention among
class tokens. X-CLIP N1 et al.| (2022)) and CLIP-ViP [Xue et al.  (2022)) introduce extra tokens for
cross-frame communication. Alternatively, some studies |Lin et al.|(2022)); |Tu et al.| (2023) engineer
tailored modules. In our work, we aim to elucidate the distinctions and intrinsic correlations between
space and time, as well as design more general spatiotemporal modeling approaches.

Regarding the issue 2), some studies Hendricks & Nematzadehl (2021)); [Thrush et al.|(2022) indicate
that VLMs tend to focus on the correspondence between visual objects and nouns rather than action
behaviors and verbs. We consider the essential gap is that visual objects are static and presented in
lower dimensions, and nouns are concrete and easily understandable. However, action behaviors are
dynamic that presented in higher dimensions, and verbs are intricate and abstract. Several existing
methods|N1 et al.|(2022); Lin et al.[(2022)); [Rasheed et al.|(2023)); Tu et al.| (2023)) use verbs or phrases
as direct text descriptions. ActionCLIP |Wang et al.| (2021)) integrates prompt templates to expand
verbs or phrases into sentences. Ju et al. Ju et al.| (2022) propose trainable continuous prompts to
construct virtual prompt templates. However, these methods do not address aforementioned issues
in essence. Alternatively VFC|Momeni et al.|(2023)) and MAXI Lin et al.|(2023)) consider leveraging
large language models (LLMs) to provide positive and negative text samples for contrastive learning
or multiple instance learning, while ASU |Chen et al.| (2023) presents the concept of semantic units
to supplement the semantic information of action labels.

To address these issues, we propose a Contrastive Language-Action Video Learner (CLAVER, Fig.
[I) to efficiently adapt the CLIP for video action recognition. Specifically, for the issue 1), we first
obtain the frame-level visual representation from the image encoder, then apply tailored Kronecker
mask for temporal modeling with a wider temporal receptive field to establish long-range and wide-
range dependencies among frames, while mitigating spatiotemporal homogenization. Additionally,
we reveal the intrinsic correlations between space and time from the perspective of Kronecker mask
attention. Regarding the issue 2), we leverage LLMs to effectively generate diverse, sentence-level,
and semantically rich interpretations of actions, augmenting text descriptions during training and
testing. This approach allows the text descriptions to be presented in a more flexible, sentence-level
form during inference. In summary, our main contributions are four-fold:

* We propose the Contrastive Language-Action Video Learner (CLAVER) to adapt both the
visual and textual branches, efficiently shifting the alignment in CLIP from visual objects
and nouns to action behaviors and verbs.

* We propose the Kronecker mask temporal attention and Kronecker mask causal temporal
attention for temporal modeling, aiming to capture the long-range and wide-range depen-
dencies among frames with spatiotemporal heterogeneity.

* We introduce interpretive prompts of actions to facilitate the alignment of action behaviors
and verbs, thereby improving zero-shot and few-shot generalization capabilities.

» Extensive qualitative and quantitative experiments demonstrate the effectiveness of
CLAVER. Our method achieves superior or competitive performance on Kinetics-400 and
Kinetics-600 under fully-supervised scenario, and on HMDB-51 and UCF-101 under zero-
shot, few-shot scenarios.
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2 RELATED WORK

Video Recognition. Among early video recognition methods, 3D convolution is widely employed
Qiu et al.| (2017); [Tran et al.| (20155 2018); |Xie et al.| (2018)); [Feichtenhofer et al.| (2019); [Feichten-
hofer| (2020); |Yu et al.|(2021). Some studies |Qiu et al.|(2017); Tran et al.| (2018); Xie et al.| (2018)
propose to factorize convolutional operations across spatial and temporal dimensions, while others
design the specific temporal modules to embed them into 2D CNNss |Li et al.| (2020b)); [Lin et al.
(2019); [L1u et al.| (2021). Over the past few years, there has been an influx of transformer-based
video works |Arnab et al.| (2021)); [Neimark et al.| (2021)); Bertasius et al.| (2021)); Fan et al.| (2021));
Liu et al.|(2022);|Yan et al.| (2022); |Li et al.[(2022a), demonstrating promising performance. For ex-
ample, some methods |Arnab et al.| (2021)); Neimark et al.|(2021); |Girdhar & Grauman|(2021) adopt
a factorized encoder structure for spatial-temporal fusion. Alternatively, another family employ a
factorized attention structure. Such as TimeSformer [Bertasius et al.| (2021}, ViViT |Arnab et al.
(2021), and ATA |[Zhao et al.|(2022) which proposes alignment-guided tepmoral attention. While
Video Swin Transformer [Liu et al.| (2022)) employs 3D window attention. The representative atten-
tion calculation forms in these works can be summarized into joint attention and factorized (divided)
spatiotemporal attention. In this paper, to make minimal modifications to the original structure, we
adopt a factorized encoder structure for video stream.

Visual-language Representation Learning. Visual-textual multi-modality is a hot topic in recent
years. Several studies based on masked image modeling (MIM) have achieved commendable per-
formance |L1 et al.| (2020a); [Lu et al.| (2019); |Su et al.| (2019); Tan & Bansal (2019). There are also
efforts focused on video-language representation learning Miech et al.|(2019); Sun et al.| (2019aib);
Zhu & Yang| (2020); Xu et al.|(2021). Concurrently, contrastive language-image pretraining Rad-
ford et al.| (2021); Jia et al.| (2021)); 'Yuan et al.| (2021) achieved remarkable progress, particularly
in demonstrating impressive zero-shot generalization capacities. CLIP [Radford et al.|(2021) is one
of the most representative works, with numerous follow-up studies have explored to adapt it for
downstream tasks. For example, object detection, semantic segmentation, video retrieval and cap-
tioning, etc/Gu et al|(2021); |Vinker et al. (2022); IL1 et al.| (2022b); [Luo et al.[ (2022); Xu et al.
(2022). Additionally, there are also many applications in the video action recognition |Wang et al.
(2021)); N1 et al.| (2022); [Lin et al.| (2022); Ju et al.| (2022); [Pan et al.| (2022); Rasheed et al.| (2023));
Chen et al.| (2023); [Tu et al.| (2023); |[Lin et al.| (2023); Momenti et al.| (2023); |Yang et al.| (2023)).
For instance, ViFiCLIP Rasheed et al.[(2023) aim to minimize modifications to original models and
facilitate efficient transfer, while Chen Ju et al. Ju et al.| (2022) suggest optimizing a few prompt
vectors for adapting CLIP to various video understanding tasks. X-CLIP N1 et al.| (2022)) proposes
an efficient cross-frame attention module. ILA [Tu et al|(2023) designs implicit mask-based align-
ment to align features of two adjacent frames and EVL [Lin et al.| (2022) proposes a image encoder
and video decoder structure. Regrading to the language branch, most previous works directly use
verbs or phrases that lack rich semantics which overlook the importance of semantics. With the
advancement of large language models like the GPT-3 |Brown et al.|(2020), PaLLM |Chowdhery et al.
(2023)), LLaMAs [Touvron et al.| (2023a;b)); /Abhimanyu Dubey et al.| (2024) and ChatGPT |[OpenAl
(2024). LLMs can replace manual labor (Chen & Huang| (2021)); |(Qian et al.| (2022)) and automati-
cally generate texts that meet human expectations to benefit visual-textual learning. For example,
LaCLIP |Fan et al.| (2024) employs LLMs to rewrite text descriptions associated with each image
for text augmentation. VFC [Momeni et al.| (2023) and MAXI |Lin et al.[(2023) leverage LLMs to
generate positive and negative texts with diversity for language-video learning.

3 METHODOLOGY

In Sec. [3.1] we overview our proposed contrastive language-action video learner architecture. Then,
we elaborate on the detail of the Kronecker mask attention in Sec. Finally, we present the
technique details of action interpretive prompt in Sec.

3.1 OVERVIEW

Our contrastive language-action video learner architecture is illustrated in Fig. [l We utilize a
video encoder to obtain video representations, comprising two transformers-based components:
an image encoder (ViT) from CLIP, a Kronecker mask temporal transformer. The text encoder
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Figure 2: (Left) Red indicates the currently focal patch, green patches are visible in spatial attention,
orange patches are visible in temporal attention, purple patches are visible in joint attention. (Right)
Kronecker mask attention: Several attentions can be seen as employing tailored Kronecker masks
for joint attention.

aims to align text representations with the video representations. Concretely, given a video clip
V = [vo, v, -vp_q] € RIXEXWX3 ., ¢ REXWX3 and corresponding text descriptions
C = co, Cm, cp—1) € RMXN ¢ € RN, where T, H, W are the number of frames, height,
width, respectively, M is the number of diverse text descriptions (share the same central concept)
for an action category, N is the max sequence length. We feed texts C into the text encoder fp,. ()
to obtain text representations C = [cg, - - - €pr—1]. For the video stream, firstly, we input the video
clip V to the image encoder fy, (-) to obtain frame-level representations I;.

L = fo, (PE(v;) +€7),  C = f5.(C), M

where PE(-) is the patch embedding. Each frame is split into L = % X % patches, L is the
number of patches P is the patch size, eP°% is the absolute positional embedding, PE(v;) + eP°® =
['Ut,O —I—eo PE(’Ut 1) —l—epos . ,PE(vt7l)+e§’03, e, PE(UtyL) +e]£0s] = [Zt70, Y N PR ,Zt)L]y
Ut o is the class token. I; = fez([zt,l]teT,l€L+l) =MLo, - Ly L)

Then, we add absolute temporal embedding e“™ to the I;,¢ € T and feed them into the Kronecker

mask temporal transformer fp,, (). Finally, by selecting the class token from each frame and aver-
aging them, we obtain a video representation v with the same dimension as ¢,,, m € M.

V = fo, (L)ier +€™), v= Avg([Violter), (2)
where V. = fo, ([(I)ier + ') = fev([lt + e"ier) = oy (Moo + e, T +
e, Lo + e T 4 e I + e Ty + etem]]) =
[[Vo,0, -+, Vo], ,[Vt,o, o, Ve, ,[VT_LO, -, Ve_1 1]l Avg( ) is the average pool-

ing function. Our optimization goal is to maximize the cosine similarity between video v and its
corresponding texts ¢, € C representations:

(V,Cm)
(VI flemll

3)

sim(v, ¢y, ) =

3.2 KRONECKER MASK ATTENTION

For an image € R >*WX3 /it is first split into patches and then ﬁattened into a token sequence after

patch embedding. The resulting feature shape is ( , where D is the hidden
dimension. This process is a standard operation in V1T Dosov1tsk1y et al 12020) denoted as Spatial
Attention (SA):

Z(,p) = SOftmaX(Q(L,D)K(TL,D)/\/B)V(L,D), “4)

where Q, K, V represent the query, key, value matrices, respectively.

For a video € RT*H*Wx3 T i5 the number of frames, previous studies Arnab et al. (2021); Berta-

(2021)); Neimark et al| (2021); [Guo et al| (2021)); [Tong et al.| (2022); [Feichtenhofer et al.
(2022)) typically employ either joint attention Bertasius et al.[(2021); |[Feichtenhofer et al.| (2022) or
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factorized (divided) attention [Bertasius et al.| (2021)); /Arnab et al.| (2021). Joint attention flattens a
video into a longer token sequence, resulting in a feature shape of (T x L, D). This token interac-
tion mode is illustrated in Fig. 2| Left (a). Joint attention encounters spatiotemporal homogenization
issues, where random shuffling of tokens not affecting (or slightly) the final pooling result.

In contrast, factorized attention factorize joint attention into spatial attention and temporal attention
to avoid spatiotemporal homogenization. They utilize the same spatial attention as Eqn. [4] while the
temporal attention varies. Two common temporal attentions are pipeline temporal attention |Arnab
et al.| (2021); Bertasius et al.[ (2021) and class-token-only temporal attention |Arnab et al.| (2021));
Ni et al.| (2022); [Wang et al.| (2021). Their feature shapes are (L, T, D) and (T, D), respectively.
Pipeline temporal attention has a limited temporal receptive field, which is limited to a fixed time
pipeline (tube), hence the term “pipeline temporal attention”, as shown in Fig. [2| Left (c). It has
limited scope of capture dynamic information since objects of interest do not always appear in the
same 2D location across frames. Although ATA [Zhao et al.| (2022) utilizes alignment techniques
to bend the time pipeline to capture dynamic objects, it still has a limited temporal receptive field,
in Fig. 2] Left (d). Similarly, class-token-only temporal attention retains only the class token time
pipeline and discard others, which both face limited receptive field and may discard lots of poten-
tially valuable information. It is worth noting that in pipeline temporal attention, mean pooling is
necessary across all tokens, otherwise, it is equivalent to class-token-only temporal attention.

To address aforementioned drawbacks, we propose Kronecker Mask Temporal Attention (KMTA).
Specifically, we allow each patch (token) at timestamp ¢ can interact with all other patches (tokens),
excluding those sharing the same timestamp ¢, as illustrated in Fig. 2] Left (b). Compared to pipeline
temporal attention, KMTA expands the temporal receptive field width of each token. KMTA can be
achieved through joint attention incorporated a Kronecker mask, as shown in Fig. 2] Right (left
down). Additionally, KMTA alleviates the impact of spatiotemporal homogenization due to the
presence of the Kronecker mask. The trick for obtaining the Kronecker mask is Kronecker product

®:
an B apB -+ a,B
ang CLQQB te CLQnB
Amxn @ Bpxq = . : . : @)
amlB amQB e amnB

mpXxXng
Eqn. is the definition of ®, where A € R™*" B ¢ IRP*4, Thus, it is referred to as the Kronecker
mask. Kronecker Mask Temporal Attention (KMTA) can be formulated as:

Mrxr.rxr) = e © Jw,n) — Lz,0))1==—int, (6)
Z(rx1,p) = SOftmaX(Q(TxL,D)K(TTxL,D)/\/5 +Mrxr,rx0))VrxL,D)s (7N
where I _ _y is an identity matrix, J_ _ is an all-ones matrix, [ ]i==—_int means replacing 1 in

the matrix with negative infinity (—inf), and M(7x1,7x 1) is the Kronecker mask. A transformer
equipped with KMTA is referred to as a Kronecker Mask Temporal (KMT) transformer.

In fact that both the spatial and temporal attention we mentioned above can be derived by com-
bining a tailored Kronecker mask with joint attention. Therefore, we collectively refer to them as
Kronecker Mask Attention, as depicted in Fig. |2 (Right). The Kronecker mask serves as a prior
spatiotemporal heterogeneity inductive bias. Spatial attention allows intra-frame interactions but
blocks inter-frame interactions, while Kronecker mask temporal attention allows inter-frame inter-
actions but blocks intra-frame interactions, exhibiting a spatiotemporal structural complementarity.

Kronecker Mask Causal Temporal Attention

Moreover, we design another type of
Kronecker mask for temporal model-
ing, known as Kronecker mask causal

temporal attention (KMCTA) that aims ® ® -

to alleviate the low-rank bottleneck, as 3

shown in Fig. [3l The mask M )

of KMCTAgc be formulatec(lTaXs:L’TX D Figure 3: Kronecker mask causal temporal attention.
Mrxrrxr) = Lrr) ® Jw.) — L) + Uarr —Lrr) ®J@wpli=—=ne,  8)

where U(_ _y is an upper triangular matrix, and all elements of the upper triangle are 1. A trans-
former equipped with KMCTA is referred to as a KMCT transformer. KMCTA ensures the causality
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of time (in the time dimension, KMTA is bidirectional, while KMCTA is unidirectional). In addition,
KMCTA always has a full-rank attention matrix, whereas KMTA and joint attention can not guaran-
tee this property. The proof is detailed in Appendix[A] Some studies Bhojanapalli et al.| (2020); [Han
et al.| (2023) indicate that it is important to avoid the low-rank bottleneck to improve the representa-
tion power of transformer architecture. This problem may become more knotty when transitioning
images to videos.

3.3 INTERPRETIVE PROMPT

To address the issue 2) in Sec. we prompt
LLMs to generate interpretive texts that align
the text semantics of video-text pairs with the
rich text semantics in VLM’s pre-training dataset.
This design aids the model in understanding ab-
stract verbs. This approach, termed interpre-
tive prompt, designed from the following aspects:
1) Action decomposition: Providing detailed de-
scriptions of actions by decomposing complex  Figure 4: The Interpretive Prompt scheme.

actions into simpler, more basic ones. This clarifies the include relationship between complex and
basic actions, and help distinguish similar actions, as not all action concepts are of equal status. For
example, the action ’playing basketball’ may consist of "running’, ’jumping’, and ’shooting’. ’Run-
ning’, "jumping’, and "hand movements’ are considered as basic actions, while *playing basketball’
is a complex action. Similarly, dribbling’ may also involves 'running’, and "hand movements’, be-
sides, it is also a subset of ’playing basketball’. Action decomposition enhances the separability of
action concepts in semantic space, helping models understand the relationships between actions. 2)
Synonym conversion: Generating synonyms for verbs and phrases that convey the same core concept
but with more varied expressions. This improves zero-shot generalization as an action concept may
have multiple expressions. When encountering similar action descriptions in the unseen domain, the
model demonstrates stronger generalization robustness. 3) Involving body parts: Describing actions
based on possible body parts involved, helping the model to localize the region where action occurs.

We leverage ChatGPT [OpenAl| (2024) and LLaMA-3 |/Abhimanyu Dubey et al.|(2024) to automati-
cally generate action interpretations. Initially, we ask the knowledgeable ChatGPT |OpenAll (2024)
to provide several examples of text descriptions that align with our expect (based on the aforemen-
tioned aspects). Subsequently, we provide the format prompt to LLaMA-3|Abhimanyu Dubey et al.
(2024) for text completion, as illustrated in Fig. E} For example, "Generate a detailed text descrip-
tion corresponding to the video class...” —Command, accompanied by a few examples like, "abseil-
ing — Abseiling combines several actions...” —Examples, and the action concept that LLM needs
to interpret —Action Concept. We feed the format prompt to LLaMA-3 multiple times to obtain di-
verse interpretive prompts of actions. For a given action category, the texts used during training and
inference include the original verbs or phrases, template filling prefixes or suffixes, and interpretive
prompts. Our interpretive prompts provide texts at the sentence, phrase, and word-levels, enhancing
the flexibility of text usage during the inference. More technique details refer to Appendix|[E]

Preparing Examples via
Humman LM Interaction (3@ Interpretive Prompts corresponding to Action Concept

3.4 TRAINING AND INFERENCE

In each training step, a batch of B videos is sampled, and M represents the total number of text
descriptions of each verb or phrase. There are a total of K action categories. The training loss is
formulated as follows:

bub{]W } B

exp(sim(v?, ¢))/T)
; ©))
Z Xz: >y exp(sim(vi, ck,)/7)

where, 7 is the temperature parameter, sub{M } indicates that we sample a subset of all text descrip-
tions for a single training step. v* represents the video belonging to the i-th category. ¢, denotes the
descriptions correspondlng to the i-th category. During inference, we take the sum of the similarities
between each v* and all ¢}, as the final similarity score S

g_ log exp(sim(v, ¢t,)/7) ' 10
Z Zk exp(sim(v?, ¢},)/7) (o
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Table 1: Comparison with state-of-the-art on Kinetics-400. * indicates pretraining with a video-text
collection. The FLOPs per view of each method is reported. Red represents optimal performance.
Bold represents optimal performance among CLIP-based methods at the same model scale.

Method Pretrain Frames Top-1 Top-5 Views FLOPs(G)
_ Without I
Uniformer-B|Li et al.[{2022a} IN-1k 32 83.0 95.4 4x3 259
TimeSformer-L ™ |Bertasius et _al. IN-21k 96 80.7 94.7 1x3 2380
{@0271]
Mformer-HR |Patrick et al. |(2021) IN-21k 16 81.1 95.2 10x3 959
ATA [Zhao et al.[(2022] IN-21k 32 81.9 95.5 4x3 793
Swin-L'(384 T)|Liu et al.|(2022} IN-21k 32 849 96.7 10x5 2107
MViTv2-L (3127f)|L1 et al. IN-21k 40 86.1 97.0 5x5 2828
ViViT-H/14x2|Arnab et al.|(2021) JFT-300M 32 849 95.8 4x3 8316
TokenLearner-L/TORyoo et al. (2021} JFT-300M - 85.4 96.3 4x3 4076
CoVeR [Zhang et al. [(2021} JFT-3B - 87.2 - 1x3 -
) With Lang;
MTV-H|Yan et al.|[(2022) WTS* 32 89.1 98.2 4x3 3705
X-CLIP-B/32|Ni et al.[(2022] CLIP-400M 8 80.1 94.8 4x3 26
X-CLIP-B/32|N1 et al. (2022} CLIP-400M 16 81.0 95.1 4x3 49
ILA-B/32(Tu et al.|(2023) CLIP-400M 8 80.6 94.9 4x3 40
ILA-B/32[Tu et al.|(2023) CLIP-400M 16 81.8 95.4 4x3 75
CLAVER-B/32 (KMT) CLIP-400M 8 81.5 95.5 4x3 33
CLAVER-B/32 (KMT) CLIP-400M 16 824 95.9 4x3 64
CLAVER-B/32 (KMCT) CLIP-400M 8 81.4 95.5 4x3 33
CLAVER-B/32 (KMCT) CLIP-400M 16 82.6 95.9 4x3 64
Action-CLIP-B/16|Wang et al. [(2021} CLIP-400M 16 82.6 96.2 10x3 -
A6Ju et al.|(2022) CLIP-400M 16 76.9 93.5 - -
X-CLIP-B716|N1 et al. (2022} CLIP-400M 8 83.1 96.5 4x3 92
X-CLIP-B/16|N1 et al. (2022} CLIP-400M 16 843 96.8 4x3 183
EVL-B/16|Lin et al.[(2022) CLIP-400M 8 829 - - 444
EVL-B/16|Lin et al.|(2022) CLIP-400M 16 83.6 - - 888
ViFiCLIP-B/T6|Rasheed et al.|(2023) CLIP-400M 16 83.9 96.3 4x3 281
ASU-B/16|Chen et al.[(2023} CLIP-400M 8 84.1 96.3 4x3 146
ASU-B/16/Chen et al.|(2023] CLIP-400M 16 84.8 96.7 4x3 288
ILA-B/16[1u et al.|(2023) CLIP-400M 8 83.4 96.3 4x3 150
ILA-B/16/1u et al.|(2023) CLIP-400M 16 85.0 97.0 4x3 302
ALT-B/16|Chen et al.|(2024b) CLIP-400M 16 855 96.7 3x1 1308
CLAVER-B/16 (KMT) CLIP-400M 8 84.3 96.3 4x3 122
CLAVER-B/16 (KMT) CLIP-400M 16 85.9 97.3 4x3 241
CLAVER-B/16 (KMCT) CLIP-400M 8 84.1 96.2 4x3 122
CLAVER-B/16 (KMCT) CLIP-400M 16 86.0 97.2 4x3 241
X-CLIP-L/T4|Ni et al.[(2022) CLIP-400M 8 87.0 97.7 4x3 420
X-CLIP-L/14 (336T)|N1 et al. (2022} CLIP-400M 16 87.6 97.5 4x3 1870
EVL-L/14|Lin et al.|(2022] CLIP-400M 8 86.3 - - 2022
EVL-L/14 (336T)|Lin et al.|(2022) CLIP-400M 32 87.7 - - 18196
ASU-L/14|Chen et al.[(2023) CLIP-400M 8 87.8 97.8 4x3 660
ASU-L/14 (336T)|Chen et al.[(2023} CLIP-400M 16 88.3 98.0 4x3 3084
ILA-L/14(Tu et al.[(2023} CLIP-400M 8 87.6 97.8 4x3 647
ILA-L/14 (336T)[1u et al.|(2023} CLIP-400M 16 88.1 97.8 4%3 3130
ALT-B/14/|Chen et al.|[(2024b) CLIP-400M 16 87.8 97.7 3x1 4947
CLAVER-L/14 (KMT) CLIP-400M 8 88.1 97.7 4x3 558
CLAVER-L/14(3361) (KMT) CLIP-400M 16 88.8 98.1 4x3 2488
CLAVER-L/14 (KMCT) CLIP-400M 8 87.9 97.7 4x3 558
CLAVER-L/14(3361) (KMCT) CLIP-400M 16 88.9 98.0 4x3 2488

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Architectures and hyperparameters. We employ CLIP-B/32, CLIP-B/16, CLIP-L/14 as our back-
bones and derive corresponding variants: CLAVER-B/32, CLAVER-B/16, CLAVER-L/14, respec-
tively. The frame length settings include 8 and 16. For all CLAVER variants, the number of layers
in the KMT/KMCT transformer is equal to one-third of the number of layers in the image encoder.
For example, if the image encoder has 12 or 24 layers, then the KMT/KMCT transformer employs
4 or 8 layers. The detailed hyperparameter settings are provided in Appendix|D}

Datasets and metrics. We evaluate the performance of our method on four benchmarks: Kinetics-
400Kay et al.|(2017), Kientics-600 Carreira et al.|(2018)), UCF-101/Soomro et al.|(2012)), HMDB-51
Kuehne et al.[(2011). We report the Top-1 and Top-5 accuracy as evaluation metrics.

4.2 COMPARISON RESULTS

Fully-supervised Experiments. We conducted fully supervised experiments on Kinetics-400 and
Kinetics-600, respectively. In Tab. [I] we employ three variant models, CLAVER-B/32, CLAVER-
B/16, and CLAVER-L/14, and sample 8 or 16 frames (8f,16f) with a sparse sampling for each
model, employ KMT/KMCT, respectively. CLAVER-B/16g; (KMT/KMCT) and CLAVER-B/16,¢¢
(KMT/KMCT) surpass several methods Bertasius et al.| (2021)); [Patrick et al.| (2021)); [Zhao et al.
(2022); L1 et al.| (2022a)) pretrained on ImageNet-1k/21k Deng et al.[ (2009) with shorter frames.
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Table 2: Comparison with state-of-the-art on Table 3: Few-shot performance on HMDB-51

Kinetics-600. and UCF-101.
Method Pretrain Frames Top-1 Top-5 Views Method HMDB-51 UCF-101
MViT-B-24|Fan et al.|(2021 B 32 838 963  5xI K=2 K4 K=8 K=16 K=2 K4 K=% K=I6
Swin-L (384 T)L1u et al. (2022 JFT-300M 32 858 965  4x3 T TSM|Lin et al {2019 175 209 184 310 253 470 644 610
ViViT-H/14x2|Arnab et al. (2021} JFT-300M 32 85.8 96.5 4x3 TimeSformer|Bertasius et al. 2021 19.6 406 494 554 485 756 837 894
TokenLearner-L/T0/Ryoo et al. {2021} JFT-300M - 86.3 97.0 4x3 Swin-B|Liu et al. {2022] 209 413 479 561 533 741 858 887
CoVeR|Zhang et al. (2021 JFT-3B 32 87.9 - 4x3 Action-CLIP|W: et al. {2021} 550 560 580 - 80.0 850 89.0 -
MTV-HIYan et al (2022, WTS* 3 806 983  4x3 X-CLIP[NI et al {2022 530 573 628 640 764 834 883 914
Florence (3847){Yuan ct al (2021]  FLD-900M _ 878 K 1%3 X-Florence|Ni et al. 12022 516 578 641 642 840 885 925 948
50 MAXIILin et al. §2023 58.0 60.1 650 66.5 868 893 924 935
)/is%lg/]i/a?"' Gl :fgﬁ gt:gjggm 2 22:3 ot 3 ASU[CremeraT 00T 60.1 638 672 708 914 946 960 972
CLAVER-B/T6 (KMT) CLIP-400M 3 859 973 %3 CLAVER (KMT) 58.6 639 68.0 725 897 929 96.1 98.0
Table 4: Zero-shot on HMDB-51 and UCF-101. Table 5: Zero-shot on Kinetics-600.
Method HMDB-51 UCF-101
MTE|Xu et al.|(2016] 19716 158+13 Method Top-1 Top-5
ASR|Wang & Chen|(2017) 218+09 2444+1.0 DEVISE|Frome et al. |(2013) 238+03 51.0+0.6
ZSECOC|Qin et al. (2017} 26+12 151+1.7 ALE|AKata et al.|[(2015a} 234+£08 503+14
UR|Zhu et al.|(2018] 244+16 17.5+1.6 SJE[AKata et al.|(2015b) 223406 482+04
TS-GCNIGao et al. (2019} 232430 342+3.1 ESZSL|Romera-Paredes & Torr|(2015) 229+ 1.2 483 +0.8
E2E|[Bratiol et al (2020} 327 48 DEM Zhang et al.|(2017) 23.64+0.7 4954+04
ER-ZSAR[Chen & Huang|(2021] 353 +4.6 51.8+2.9 GCN Uhush etal. {2()2('), 223406 49.7+0.6
Action-CLIP|Wang et al.|(2021]  40.8+54 583434 ER-ZSAR|Chen & Huang|(2021) 421414 731403
X-CLIP/NT et al [(2022] M6+52 120423 X-CLIP[NT et al.|(2022] 652+04 86.1+08
ASU|Chen et al. |(2023 481428 750423 ASU|Chen et al. 2073} 67602 872403
MAXI[Lin et al.|(2023} 512+ 11 752409 MAXI[Lin et al. (U2) 709412 921405
OSTIChen et al. |(2024a) 529409 753+21 OST|Chen et al. {2023} 705407 92.1£03
CLAVER (KMT) Si1124 8617 CLAVER (KMT) 738 +0.6 93.1+0.6

CLAVER-B/16,6¢ (KMT) outperforms Swin-L (3841) Liu et al.[(2022) by 1.0%, and is slightly
lower than MViTv2-L (3121) |Li et al.), as lower resolution, shorter frames and fewer views.
CLAVER-B/14g; (KMT/KMCT) outperforms some methods|Arnab et al.[(2021); Ryoo et al.| (2021);
Zhang et al.[(2021) pretrained on JFT-300M/JFT-3B. CLAVER-B/14 ¢ (KMT) outperforms CoVeR
Zhang et al.| (2021) by 1.6%, however, inferior to MTV-H [Yan et al.| (2022), as it utilizes WTS*,
which contains 70M video-text pairs with about 17B images, much larger than CLIP-400M. Com-
pared to those approaches based on CLIP Radford et al|(2021), under configuration ViT-B/32g¢
and ViT-B/32155, CLAVER (KMT/KMCT) surpasses X-CLIP [Ni et al|(2022) and ILA |Tu et al.
(2023)). Under configuration ViT-B/16gy 165 and ViT-L/145¢ 165, CLAVER (KMT/KMCT) exceeds
most methods under the same configuration. In Tab. 2} CLAVER-B/16g; (KMT) achieves higher
performance compared to ViViT-H/14x2 |Arnab et al.| (2021), MViT-B-24 [Fan et al.| (2021). Our
method has lower performance than these methods [Ryoo et al| (2021); Zhang et al.| (2021); [Yan
et al.|(2022);|Yuan et al.|(2021); Liu et al.| (2022), as they use longer frames, or more data, or higher
resolutions. In addition, CLAVER-B/16g; (KMT/KMCT) outperforms ASU-B/16g |Chen et al.
(2023) and X-CLIP-B/16g N1 et al.| (2022) at the same scale.

Few-shot Experiments. We pretrain CLAVER-B/1635; (KMT) (32f means with 32 frames) on
Kinetics-400, and then perform few-shot transfer of 2, 4, 8, 16 samples on HMDB-51 and UCF-101.
Tab. [3 depicts the results of few-shot experiments. CLAVER is comparable wtih ASU [Chen et al.
(2023)), and consistently surpasses the X-CLIP|Ni et al.|(2022)) and MAXI|Lin et al.|(2023)) across all
K ranges. Additionally, CLAVER significantly outperforms other previous methods like |Lin et al.
(2019); Bertasius et al.| (2021); [Liu et al.| (2022)). More details about the evaluation protocols are
provided in the Appendix|D}

Zero-shot Experiments. We also pretrain CLAVER-B/1635 5 (KMT) on Kinetics400 for zero-shot.
As shown in Tab. @ on HMDB-51 |Kuehne et al.|(2011) and UCF-101 [Soomro et al.|(2012) bench-
marks, CLAVER surpasses OST Chen et al.[(2024a) , ASU |Chen et al.|(2023) and X-CLIP Ni et al.
(2022) under the same configuration, and far outperforms other previous methods. Additionally, in
Tab. E} on Kinetics600 (Carreira et al.| (2018)) benchmark, CLAVER outperforms OST |Chen et al.
(2024a), MAXI|Lin et al.|(2023) and all other methods. More details about the evaluation protocols
are provided in the Appendix|D]

4.3 ABLATION STUDY

Components ablation studies. We performed ablation studies to evaluate the effects of each com-
ponent under the CLAVER-B/32g¢ (KMT) configuration. The results are shown in Tab. @ Our
baseline, denoted as CLIP-Mean, implements temporal mean pooling for CLIP. By equipping the
CLIP with a KMT transformer at 1/3 scale, the Top-1 accuracy increases by 3.5%. We only intro-
duce interpretive prompt, the performance increases by 1%. When we further incorporate both of
them, CLAVER surpasses the CLIP-Mean by 4.1%. In addition, we test the effect of the number of
KMT transformer layers. With only one layer, the performance improvement is minimal. Increasing
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Table 6: Ablation of each component. Table 7: Comparison of temporal attentions.
Components Top-1 (%) Temporal Modeling Top-1(%) Top-5 (%)
Baseline (CLIP-Mean) 774 Baseline (Mean Pooling) 78.4 94.3
Baseline + KMTA 1 layer 78.3 _ Class-Token-Only 78.9 94.3
Baseline + KMTA 1/6 scale 79.6 Pipeline Temporal Attention 79.4 94.4
e . ' Joint Attention 80.1 94.9
Bas?lme + KMTA,1/3 scale 80.9 Kronecker Mask Causal Temporal Attention 81.4 95.5
Baseline + Interpretive Prompt 78.4 Kronecker Mask Temporal Attention 81.5 95.5
Baseline + KMTA 1/3 scale + Interpretive Prompt 81.5

Table 8: The impact of patch size and frame length on joint attention (JA), KMTA and KMCTA.
Conducting on HMDB-51 and UCF-101.

patch size = 32 (ViT-B/32) patch size = 16 (ViT-B/16)

JA (%) KMTA (%) KMCTA (%) JA(%) KMTA (%) KMCTA (%)
frame length=8  67.9,93.3 68.8,94.1 687,939 722,962 732,963  72.2,96.1
frame length=16  68.0,93.6 69.1,942  69.4,948  72.1,963 723,966  72.8,96.4

HMDB-51, UCF-101

cLIP CLAVER
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.
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Figure 5: Word importance of CLIP, X-CLIP, ILA and CLAVER. Darker color, higher importance.

the number of layers to 1/6 scale results in further performance gains, and at 1/3 scale, we observe
significant improvement.

Comparison of different temporal attentions and low-rank bottleneck issue. Tab. [7|compares
the performance of different temporal modeling methods mentioned in Sec. [3.2] We find that class-
token-only temporal attention and pipeline temporal attention have inferior performance. KMTA
and KMCTA outperform joint attention. The top-1 (%) of KMTA slightly surpasses KMCTA by
0.1%. Then, we conduct further experiments on HMDB-51 and UCF101 that observing the impact
of the low-rank bottleneck issue on them. We increasing the length of token sequences by reducing
patch size or increasing frame length, and observe the effects on them, as shown in Tab. [§] When
reducing the patch size, however, we do not observe the low-rank bottleneck. Joint attention, KMTA
and KMCTA achieve better performance due to more fine-grained features as the smaller patch size
results in each token representing smaller local region. In contrast, when we increase the frame
length, KMCTA’s performance is optimal in most configurations, and only the performance of KM-
CTA can steadily improve. The performance improvement of joint attention and KMTA is limited.
Meanwhile, in Tab. m with the increase of frame length under the same backbone, the performance
increase of KMCTA is also greater than that of KMTA. This indicates that KMCTA has a more
significant advantage with longer frame length.

5 VISUALIZATION AND ANALYSIS

We employ (Chefer et al.| (2021) for bi-modal visualization and show the explainability of visual-
textual attentions.

Word importance. We visualize word importance for CLIP, X-CLIP, ILA and CLAVER in Fig.
E} Observations indicate that CLIP tends to focus on nouns, whereas CLAVER prefers to verbs.
Compared to previous works, CLAVER is more inclined towards verb concept, while X-CLIP Ni
et al.[ (2022) and ILA [Tu et al.| (2023) show a slight inclination towards nouns. These findings
indicate the effectiveness of interpretive prompts for nouns concept to verbs concept transition.

Spatiotemporal homogenization study. We define spatiotemporal homogenization as a phe-
nomenon where random token shuffling has little impact on the semantics of the visual branch,
which is illogical. It aims to illustrate the interpretability behind the performance of spatiotemporal
modeling. In Fig. [6] (Upper Left), we illustrate the token shuffling. We denote token shuffling
before adding time embedding as PreTE shuffling, token shuffling after adding time embedding as
PostTE shuffling, and None represents no shuffle. Fig. [6] shows changes in word importance and
similarity following both PreTE and PostTE shuffling. For joint attention, we observe that PreTE
shuffling marginally affects similarity and word importance, while PostTE shuffling does not affect
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Figure 6: Spatiotemporal Homogenization. (Upper Left) Token shuffling. (Vertical bar chart)
Word importance refers to the degree of correlation between each word in a sentence description and
the semantics of the video content, while (Horizontal bar chart) Similarity refers to the similarity
between visual and textual representations.

Mark some unreasonable attention areas and attention deficits with red circles

Spatial & Kronecker Mask Temporal Attention

Figure 7: Visualizing spatiotemporal attention maps of different spatio-temporal modeling.

similarity score and word importance. Regarding KMTA, both PreTE and PostTE shuffling lead to
changes in the similarity and word importance. Meanwhile, KMCTA is profoundly affected by both
PreTE and PostTE shuffling, which result in lower similarity and disturbance of word importance.
This phenomenon suggest that KMTA and KMCTA possess varying degrees ability in mitigating
spatiotemporal homogenization and the Kronecker mask serves as a natural inductive bias for spa-
tiotemporal structural heterogeneity. It also demonstrates that equipping learnable position/time
encoding is not insufficient to alleviate spatiotemporal homogenization. Please refer to Appendix [B]
for more and explanations and visualizations.

Visualization of spatiotemporal attention map. Fig. [7] presents various spatiotemporal attention
maps. X-CLIP|Ni et al[(2022) and ILA [Tu et al.|(2023)) adopt factorized attention structures resulting
in intertwined spatiotemporal attention maps. However, CLAVER employs a factorized encoder
structure, allowing for the separation of spatial and temporal attention maps. Notably, class-token-
only temporal attention discards other time tubes so that its temporal attention maps appear vacant.
KMTA and KMCT have more reasonable spatial (focuses on the executor of the action) and temporal
(focuses on areas where the action occurs) attention maps, while ILA and X-CLIP ignore some
action dense areas. Moreover, joint attention and pipeline temporal attention will be attracted by
some irrelevant backgrounds.

6 CONCLUSION

In this work, we present the Contrastive Language-Action Video Learner (CLAVER) to shift from
the alignment of visual objects and nouns in CLIP to the alignment of action behaviors and verbs.
We propose Kronecker mask temporal attention and Kronecker mask causal temporal attention for
temporal modeling. Interpretive prompts are employed to transition the focus on nouns to verbs. Ex-
tensive experiments under different evaluation settings demonstrate the effectiveness of our method.

10
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8 APPENDIX

Roadmap

In the Appendix, we present proof in[A] Spatiotemporal homogenization study details in [B] some
additional experiment results in [C], experiment setting details in [D] interpretive prompt technique
details in[E] analysis of synthetic video testing in[F] dataset details in[G] and more visualization of
spatiotemporal attention map in[H]

A  PROOF

We conclude that there is a low-rank bottleneck problem for joint attention and KMTA when facing
longer token sequence lengths (d < n), while KMCTA always guarantees the property of full rank
under our assumption. Proofs as follow:

A.1 PROOF OF JOINT ATTENTION CANNOT GUARANTEE FULL RANK

Based on the Representation Theorem of Bhojanapalli et al. |Bhojanapalli et al.| (2020):

Theorem 1 (Representation Theorem Bhojanapalli et al.[(2020)). If d, = di = d > n, then given

any full row rank matrix X € R"*® and an arbitrary n x n positive row stochastic matrix P, subject
to the sum of each row of P is equal to 1, i.e., P1 = 1, there always exists d X d projection matrices
W, and Wy, such that

(XW,)(XW;)"
Vi
If dg = di, = d < n, there exist X and P such that Eqn. d()es not hold for all Wy and Wi

The proof process of Theorem 1 are referred from Bhojanapalli et al. Bhojanapalli et al| (2020).
By the way, in Bhojanapalli et al. Bhojanapalli et al.| (2020), they set X € R%*™, However, for the
convenience of our subsequent proof, we transpose the n and d dimensions, X € R"™*<.

Softmax| |=P (11)

For d > n case. Since X exhibits full row rank, there exists a right pseudo inverse X =
X7 (XXT)~1 € R such that XX' = I,,. Let Wy, = X'W,, and W, = X'W,. Then

(XW,)(XW;)T = XwW, Wi X" (12)
= XXTW, W, (X")7X” (13)
= XX'W, W, (XX)T (14)
= LW, W, 17 (15)
=W, W, =W, (16)

According Eqn. [TT] we obtain that

T

Softmax[(xw\/(dﬁvvk)] = Softmax[%] (17)

k k

_n-1! qu

where Dqu is a n x n diagonal matrix such that
- (War)ji
Dy )i = exp(—=== (19)
( Wk ; \/@ )
w
= (exp( \/;i)l)i (20)
k
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We can establish the desired result by showing that there always exists a qu that satisfies the
following fixed point equation:

w
-1 qk\ _
qukeXp(m) =P 20
Given P, to construct such a qu, we can pick an random positive diagonal matrix Dy:
Wi = V/dy - log(DoP) (22)

Since P is a positive matrix, and Dy is a positive diagonal matrix, such a qu always exists. Ac-
cording to Eqn. [[9) we can conclude

Wi
Dy = Diag(exp(f;z)l) (23)

= Diag(DoP1)) = Diag(Do1)) = Dy (24)
qu
Vi,

which indicates that exp(
Theorem 1.

) = DgP = qukP. This completes the proof of d > n case of

Regarding d < n case. Consider the special case of d = 1 and n = 2. There has X € R?*! and

W,, W, € R, Suppose X = [(1)} , S0 that:

[ H W, W1, 0]

(XW,o) XW,)"
Softmax] NGP ] = Softmax NG ] (25)
w,wF 0
= Softmax[[ Vi ]] (26)
0 0

This matrix clearly cannot be used to generate P. Then we extend the above special case to general
values of n and d, (d < n). Let X = [14,--- ,14,04]7 = [Lyat, 04]7 € R™*?, where 14,04 € R?
denotes the all ones, zeros column vector, and 1,,,,; denotes the d x (n — 1) all ones matrix. Then

T T T
Softmax[()(vvq)\/(dﬁwk)] _ Softmax[ [lmat7 Od] ‘Y/qu)Vk [lmata Od]] (27)
k k
T W,WE
— Softmax] [Lnat Omk Liat 0"0—1]} (28)
n—1

The basic idea of the proof remains consistency, and we can conclude the same conclusion. Accord-
ing to the Theorem 1, we can not ensure the attention matrix of joint attention to be full rank.

A.2 PROOF OF KMCTA CAN GUARANTEE FULL RANK

Assumption 1 The elements of (XW,

T
% does not exist negative infinity in normal cases,

which means that O will not appear at any other position in the attention matrix A =

Softmax[w + M] except for the masked position.

The softmax operation can ensure that the elements at all other positions are greater than 0 except
for the masked position. The attention matrix A of KMCTA is always a lower triangular matrix due
to the presence of the M and the diagonal elements are always greater than 0, i.e., Va;; > 0:

a1 0 0 s 0
a1 a9 0 tee 0

A= |as1 a3 azz -+ 0O (29)
apl  Ap2 Gp3 - Apnp

The determinant of the A, \A| = a11Q22 * " Gnn > 0 # 0, because Va;; > 0. Thus, the attention
matrix A of KMCTA is always reversible, i.e. always be full rank.
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A.3 PROOF OF KMTA CANNOT GUARANTEE FULL RANK

According to the Assumption 1. We consider a special case, when T'=2 and L=2, the attention

: (XWo) (XWy) ™
matrix A = SoftmaX[T + M] of KMTA can be formulated as:
k
a1 0 a3 aua a1 0 a13 a14
0 a92 Q23 Q24 = 0 a22 @23 24
aq: ans a a
as1 ase ass 0O 0 0 ass— gtaz — Zas —artazy — G2az
_ @iz, . _ a3 _an _Tags
asy a2 0 agy 0 0 o041 — GRasy agq — phag — Zag
(30)
where a1 +a13+ a1y = 1, a22 + Q23 + Q24 = 1, a31 + aszz +azz = 1, 41 + Q42 + Qg4 = 1. When
asz — %(Lgl - Z—i;’agg = —Zﬁau - %a@, A can not always be full rank. For example:
04 0 04 0.2
0 04 04 0.2
A= (31

04 05 01 O
04 04 0 0.2

For a video, n =T x L, If we fix the number of attention heads, the dimension of tokens, the patch
size, and the resolution of the input image, the only factor that can affect n for a video is the frame
length. When we pray for a longer frame length and an increase in the number of tokens to improve
performance, we may face the problems pointed out in Theorem 1. Because increasing the frame
length will further increase n, the expressive power of self attention may encounter bottlenecks. The
low-rank bottleneck is vital, because it may lead to that many rows of the attention map are seriously
homogenized. As the output of self-attention is the weighted sum of the same set of value vectors,
the homogenization of attention weights inevitably leads to the resemblance among the aggregated
features.

a cartoon kangaroo disco dances a man is abseiling via using a rope
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Figure 8: We visualize the impact of token shuffling on the ILA, XCLIP. In most cases, token
shuffling has limited influence on their word importance. Surprisingly, in some figures, after token
shuffling, the similarity actually increases, which is illogical. This indicates that the response of ILA
and XCLIP to spatiotemporal position destruction is uncertain and has poor interpretability.

B SPATIOTEMPORAL HOMOGENIZATION STUDY

Fig. [ shows that equipping learnable position/time encoding with joint attention is not insufficient
to alleviate spatiotemporal homogenization. For example, (Upper Left) ’a cartoon kangaroo disco
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dances’. We can observe that token shuffling has a limited impact on word importance and similarity
of joint attention, but it has a significant impact on the word importance of KMT and both similarity
and word importance of KMCT. (Upper Right) ’a man is abseiling via using a rope’. (Lower Left)
“an otter stands on a surfboard surfing water’. (Lower Right) ’a person is cutting watermelon with a
knife’. The key point is that classification accuracy does not necessarily indicate that these learnable
position encoding or attention biases genuinely grasp the concept of spatiotemporal structure. Since
the optimization goal of the network is usually to pursue performance, the learned positional encod-
ing or attention bias serve to improve accuracy rather than understand the spatiotemporal concept.
This is because their optimization is guided by gradients aimed at increasing accuracy, rather than
by an objective function that tells them what spatiotemporal structure is. The Kronecker mask in
KMTA and KMCTA pursues not only for good performance, but also for interpretability. The Kro-
necker mask act as a natural spatiotemporal heterogeneity inductive bias, KMTA/KMCTA exhibit
better spatiotemporal complementarity with spatial attention. Additionally, in Fig. [§] we show that
several tailored modules (ILA and XCLIP) also encounter spatiotemporal homogenization issues
during our testing. Surprisingly, in some cases like ’a man is abseiling via using a rope,” ’an otter
stands on a surfboard surfing water,” and ’a person is cutting watermelon with a knife,” the similarity
actually increases after token shuffling, which is illogical.

Additionally, we evaluate the performance of joint attention, Kronecker mask temporal attention
(KMTA) and Kronecker mask causal temporal attention (KMCTA) on K400 [Kay et al.|(2017) after
introducing token shuffling. The results are shown in Tab. 9] The greater performance degrada-
tion observed in KMTA and KMCTA indicates that they are more sensitive to disturbances in the
spatiotemporal structure, thus alleviating spatiotemporal homogenization.

Table 9: Performance of joint attention, KMTA and KMCTA while introducing token shuffling.

Token Shuffling (Yes-Y, No-N) Top-1 (%)
Joint Attention, N 80.1
Kronecker Mask Temporal Attention, N 81.5
Kronecker Mask Causal Temporal Attention, N 81.4
Joint Attention, Y 58.9 (-21.2)
Kronecker Mask Temporal Attention, Y 43.5 (-38.0)

Kronecker Mask Causal Temporal Attention, Y ~ 42.6 (-38.8)

C ADDITIONAL EXPERIMENTS

The effects of interpretive prompt. In Tab. we can observe that, directly use verbs and phrases
achieve the lowest performance. When employing prefix and suffix prompt templates, the perfor-
mance slightly improved. When introducing action decomposition interpretive prompts, the perfor-
mance significantly improved. When adding synonym conversion interpretive prompts, the perfor-
mance is further increased. Last, we involve body parts interpretive prompts that the performance
reaches the best.

Which branches should be finetuned? We separately freeze the parameters of the pretrained image
and text encoder. From Tab. [T1] we conclude the following observations: 1) Freezing both image
and text encoders, only tuning KMT transformer achieves the worst performance. 2). Finetuning
only one of them will improve the performance. 3). Finetuning them simultaneously achieves the
best performance.

The Evaluation performance of zero- and few-shot experiments on Kinetics-600, HMDB-51,
and UCF-101 with CLAVER-B/16 (KMCT) configuration. The comparison of KMT and KMCT
as shown in Tab. [12] [I3] In the zero-shot scenario, the performance of KMCTA and KMTA has
its own wins and losses, which is due to the lack of further fine-tuning, and the model’s ability is
relatively dependent on previous training. In the few-shot scenario, we can observe that in most
cases, the performance of KMCTA is better, which further indicates that when the scale of training
data is limited, the low-rank bottleneck is more significant.

Table 10: Ablation on interpretive prompt. Table 11: Which branches should be finetuned.

Text Prompts Top-1(%) Top-5 (%) KMT transformer Visual Text Top-1(%) Top-5(%)
Noun and Phrase of Action 774 935 7 ™ X 787 944
-+ Prefix-Suffix 774 93.6 v v « $1.0 95.1
+ Action Decomposition Interpretive Prompt 78.0 94.0 . :
+ Synonym Conversion Interpretive Prompt 78.2 94.2 v X v 80.8 95.2
+ Involving Body Parts Interpretive Prompt 78.4 94.3 v v v 81.5 95.5
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Table 12: Comparison of KMT and KMCT on Table 13: Cpmparison of KMT and KMCT on
zero-shot settings. few-shot settings.

LAVER-B/1 KMT KMCT
Zero-shot Kinetics-600 (%) HMDB-51 (%) UCF-101 (%) CLAVERB6 _  KMT __Kmer
Fewshot  K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16
CLAVER-B/16 (KMT) 3806 S41E24 T86E17 HMDB.SI (%) 386 650 680 7105 553 645 686 729
CLAVER-B/16 (KMCT) 741+ 0.9 540+ 2.0 784421 S1(%) 586 63 : > 38364, - g

UCF-101 (%)  89.7 929 96.1 98.0 90.0 929 96.6 98.1

D EXPERIMENTAL SETTING DETAILS

Architectures. CLAVER-B/32 adopts ViT-B/32 (Ly =12, N,=12, d=768, p=32) and is equipped
with a KMT/KMCT transformer (Lx=2, N,=12, d=768, p=32). CLAVER-B/16 employs ViT-
B/16 (Ly=12, Np=12, d=768, p=16), along with the KMT/KMCT transformer (Lx=2, Np=12,
d=768, p=32). CLAVER-L/14 is equipped with ViT-L/14 (Ly =24, N;=16, d=1024, p=14) and the
KMT/KMCT transformer (L x=4, N;=16, d=1024, p=14). Here Ly denotes the layers of ViT, Ly
denotes the layers of Kronecker mask temporal transformer, [V, refers to the number of attention
heads, d represents the embedding dimension and p is the patch size.

Hyperparameters. The experiments are conducted on 8 NVIDIA 80G A100 GPUs. We present the
training hyperparameters in Tab. Additionally, the learning rate for updating the KMT/KMCT
transformer (randomly initialized) parameters is set 10x higher than the learning rate for parameters
of the text encoder or image encoder. Because the text/image encoder already possesses a ability
to extract high-quality text/image representations, conversely, KMT/KMCT transformer is trained
from scratch. In the experiment, we freeze the parameters of the CLIP’s image encoder to reduce
certain computational costs, as it already has strong image feature extraction capabilities. And then
we also conducted experiments on this aspect in subsequent ablation study.

Table 14: The training hyperparameters settings of experiments.

Config Fully-sup Few-shot Zero-shot
Optimizer AdamW
Base learning rate 12e-6 2e-6 12e-6
Minimal learning rate 12e-8 2e-8 12e-8
Weight decay 0.001
Optimizer betas 51, B2 =0.9, 0.98
Batch size 128 (ViT-B) 32 (ViT-L)
Learning rate schedule Cosine decay
Warmup epochs 5
Training epochs 60 (ViT-B) 40 (ViT-L) 80 (20 on K400) 0 (20 on K400)

RandomFlip, MultiScaleCrop, Colorlitter

Augmentation GrayScale, Label smoothing, Mixup, Cutmix

Fully-supervised experiments setting. We conduct the fully-supervised experiments on Kinetics-
400&600. During training, a sparse sampling strategy is used. The number of frames is set to 8
or 16. We spatially scale the shorter side of each frame to 256 and take a 224 crop center crop.
Following, we adopt the multi-view inference with 3 spatial crops and 4 temporal clips.

Few-shot experiments setting. We randomly sample 2, 4, 8 and 16 videos from each class on UCF-
101 and HMDB-51 constructing the training set. For evaluation, we use the first split of the test set
on UCF-101 and HMDB-51.

Zero-shot experiments setting. We train CLAVER-B/16 with 32 frames on Kinetics-400. The
same as, we apply the following two evaluation protocols in zero-shot experiments. 1) Evaluation
for HMDB-51 and UCF-101. Following, the prediction is conducted on the three splits of the test
data, and we report the average top-1 accuracy and standard deviation. 2) Evaluation for Kinetics-
600. Following, the 220 new categories outside Kinetics-400 in Kinetics-600 are used for evaluation.
The evaluation is conducted three times. For each iteration, we randomly sampled 160 categories
for evaluation from the 220 categories in Kinetics-600.

E INTERPRETIVE PROMPT DETAILS

First, we input command prompts into the ChatGPT OpenAll (2024)) chatbot API to obtain a demon-
stration case of a small amount (in our experiment, we set it to 3 here) of detailed descriptions of
actions.
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Question to ChatGPT:

Below, I will provide you with some action nouns. Please provide a simple
and detailed description (explanation) about the action decomposition

of these action nouns. Please note that the sentence length of the
description should not exceed 76 words.

Answered by ChatGPT:

Certainly! Please go ahead and provide the action nouns you’d like
descriptions for, and I’1ll provide concise explanations within the
specified sentence length.

Question to ChatGPT:

abseiling.

Answered by ChatGPT:

Abseiling combines several actions to descend a vertical surface with a
rope. Climbers secure themselves with a harness and utilize a descender
device for controlled descent. Simple actions, like maintaining a
straight body position and regulating rope tension, form the basis.
Abseiling demands proper training, safety measures, and is popular in
adventure sports and rescue operations, allowing individuals to
experience controlled descent in various settings.

Question to ChatGPT:

air drumming.

Answered by ChatGPT:

Air drumming is a rhythmic expression where individuals simulate playing
drums without physical instruments. Simple actions, like mimicking
drumming motions in the air, combine to create this imaginative and
playful activity. Enthusiasts use their hands and feet to imitate
drumming patterns, syncing with music. It’s a spontaneous, enjoyable
gesture often done during music listening or live performances,
showcasing one’s connection to the rhythm without the need for actual
drums or drumsticks.

Question to ChatGPT:

answering questions.

Answered by ChatGPT:

Answering questions involves providing responses to queries posed by
others. Simple actions like active listening, comprehension, and concise
articulation combine in this communicative process. It is fundamental

in various contexts, facilitating information exchange and problem-—
solving. Respondents draw on their knowledge and expertise to address
inquiries, contributing to effective communication and fostering
understanding between individuals or groups.

Question to ChatGPT:

Below, I will provide you with some action nouns or phrases. Please
provide many words and phrases that share the same central concept

as these action nouns or phrases but have more diverse expressions.
Please note that your reply should not exceed 76 words in length.
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Answered by ChatGPT:

1. Running: Jogging, sprinting, dashing, hurrying, racing, pounding the
pavement, speeding, trotting.

2. Eating: Dining, feasting, devouring, munching, nibbling, gobbling up,
indulging, savoring.

3. Writing: Scribbling, jotting down, composing, drafting, penning,
inscribing, scrawling, scripting.

4. Laughing: Chuckling, giggling, guffawing, snickering, roaring with
laughter, belly laughing, cackling, chortling.

5. Reading: perusing, browsing, scanning, skimming, devouring books,
absorbing, immersing oneself, delving into texts.

Question to ChatGPT:

Cutting in the kitchen.

Answered by ChatGPT:

Slicing, dicing, chopping, mincing, cleaving, carving, trimming,
preparing ingredients.

Question to ChatGPT:

driving car.

Answered by ChatGPT:

Operating a vehicle, maneuvering behind the wheel, navigating the road,
piloting an automobile, steering, cruising, commuting by car, motoring.

Question to ChatGPT:

Walking With Dog.

Answered by ChatGPT:

Strolling with a canine companion, ambling with a pet, promenading with a
pup, hiking with a furry friend, sauntering alongside a dog, wandering
with a four-legged buddy, leash-walking, trotting with a pooch.

Question to ChatGPT:

Below, I will provide you with some action nouns. Please describe

these actions based on their nouns and possible body parts involved.
Please note that the sentence length of your response should not exceed
76 words.

Answered by ChatGPT:

1. Running: The rhythmic motion of legs propelling the body forward, feet
striking the ground with each stride, muscles contracting and
relaxing to generate momentum.
2. Swimming: Arms slicing through water, legs kicking to maintain
propulsion, torso rotating to streamline movement, lungs rhythmically
inhaling and exhaling for oxygen.
3. Writing: Fingers gripping a pen or pencil, hand moving across paper or
keyboard, muscles in the forearm and wrist coordinating precise
movements to form letters and words.
4. Jumping: Legs bending at the knees, feet pushing off the ground, arms
swinging for momentum, body soaring through the air momentarily
before landing.
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5. Dancing: Feet tapping, legs extending and bending, hips swaying, arms
gesturing and flowing in sync with music, body moving rhythmically
with expression and grace.

Question to ChatGPT:

Cutting in the kitchen.

Answered by ChatGPT:

Using a sharp knife, fingers gripping the handle, hand guiding the blade
through ingredients on a cutting board, wrist controlling the motion,
fingers curling slightly to hold the food steady, precision applied

to achieve desired shapes or sizes, ensuring safety and efficiency
during food preparation.

Question to ChatGPT:

driving car.

Answered by ChatGPT:

Gripping the steering wheel, hands adjusting position, fingers pressing

pedals for acceleration and braking, eyes scanning surroundings for

obstacles, feet coordinating between clutch, brake, and accelerator,

body positioned comfortably in the driver’s seat, mind focused on
navigation

and traffic signals, reacting swiftly to changing road conditions.

Question to ChatGPT:

Walking With Dog.

Answered by ChatGPT:

Leash in hand, fingers securing grip, arm relaxed as it swings alongside

the body, legs moving in tandem with the dog’s pace, feet stepping

forward with purpose, eyes attentive to the dog’s behavior and
surroundings,

occasional stops for sniffing or marking, a bond of companionship

evident in synchronized movement.

Subsequently, as illustrated in Fig[4] we input the examples generated by ChatGPT [OpenAl| (2024)
into LLaMA-3|Abhimanyu Dubey et al.|(2024) multiple times in the format of Command + Exam-
ples + Action Concept, automatically generating diverse text descriptions about the Action Con-
cept through the program. When dealing with datasets containing a large number of categories, this
scheme can greatly save labor costs. In addition, it should be noted that LLaMA-3 offers control-
lable parameters to control the randomness (7) and diversity (p) of output texts. We set 7 and p to
0.90 and 0.95, respectively to ensure that there are significant variations in output content for the
same input, while maintaining consistency in the central concept.

F ANALYSIS OF SYNTHETIC VIDEO TESTING

We use the original prompts of synthetic videos (several action-related examples generated by Im-
agen Saharia et al.[(2022) and Sora Brooks et al|(2024)) as their corresponding text descriptions,
and show Top-5 most relevant texts in Fig. [9] The results shows the robustness and generalization
of CLAVER.

For cases generated by Imagen, in Fig. 0] Upper, we denote the Kinetics-400 action text set as .A.
The action category “lift a cup” in Fig. 0| (a) does not appear in A, while, (b) “washing dishes”, (c)
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Figure 9: Testing on synthetic videos from Imagen (Upper) and Sora (Lower). The bar chart
represents the Top-5 similarity texts, orange bar denotes the original prompts of synthetic videos.

riding horse”, (d) ”shoveling snow” do appear in A. All videos do not come from the real-world,
which are synthetic. We observe that all the original prompts appear in the Top-5 similarity (more
precisely, Top-2). Specifically, for (a), “making tea” has the highest similarity, possibly due to the
presence of cups and human hands in the scene. In addition, the original text has the second-highest
similarity. In (b), apart from the original prompt in Top-1, other texts such as “washing dishes”
convey the same meaning as the original prompts but lack a description of the subject ("teddy”)
of the action. ”"Washing hands” and “’peeling potatoes” may involve actions and scenes like hand
movements and sinks, thus exhibiting high similarity. For (c), although the one with the highest
similarity is not ”An astronaut riding a horse” , “’riding or walking horses” is the exactly describes
the action in the video, with the only difference being the lack of the subject of the action. For (d),
”Shoveling snow” belongs to .4, and since the original prompt of the video is ”Shoveling snow”, its
similarity is very high, exceeding 90%.

For the cases generated by Sora, as depicted in Fig. [9] Lower, (e) "disco dances” concept is not
in A but has the highest similarity. Besides, other action concepts in the Top-5 (“country line
dancing”,”air druming”, “dancing macarena”,”’zumba”) are all dance-related. (f) is a relatively chal-
lenging sample here. Although the ground truth description is located in the second, the “smoking”
in Top-1 is entirely unrelated to the content of the video, because the original prompt of the video
primarily describes the scene and the action-related text is relatively short. In addition, the shot is
a process from far to near, which may lead the model to arrive at an unreasonable Top-1. In (g),
the Top-2 descriptions are original prompt and “reading book”, both strongly related to the action in
video. For (h), the original prompt only rank third, however, Top-1 “’surface water”” and the second
“water skimming” are descriptions strongly related to the action in video.

G DATASET DETAILS

Kinetics-400&600. The Kinetics dataset consists of 10-second video clips collected from YouTube.
Specifically, Kinetics-400 [Kay et al.|(2017) consists of approximately 240k training videos and 20k
validation videos with 400 categories, while Kinetics-600 |Carreira et al.| (2018)) is an extension of
Kinetics-400, consisting of approximately 410k training videos and 29k validation videos with 600
categories.

UCF-101. UCF-101 Soomro et al.| (2012) consists of 101 action categories, over 13k clips and
27 hours of video data. The database comprises realistic user uploaded videos containing camera
motion and cluttered backgrounds. The training and test data are divided into three splits.

HMDB-51. HMDB-51 |Kuehne et al. (2011) is a collection of realistic videos from various sources,
including movies and web videos. It is composed of 6,766 video clips from 51 action categories,
with each category containing at least 101 clips. The dataset is divided into three splits for training
and test data. In each split, each action class has 70 clips for training and 30 clips for testing.

Synthetic Videos. We select some action-related videos from the demo cases generated by Imagen
Saharia et al.| (2022) and Sora [Brooks et al| (2024), and employ the original prompts and their
corresponding synthetic videos as a pair of test samples.
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H MORE ATTENTION HEAT MAP VISUALIZATION
We visualize several spatiotemporal attention map of samples from Kinetics400, Imagen, Sora.
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Figure 10: Attention map of synthetic videos from Imagen.
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Spatial & Kronecker Mask Temporal Attention
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Figure 11: Attention map of videos from Kinetics400.

Spatial & Kronecker Mask Temporal Attention

( I I I I I )
Word Importance

Word Importance
an otter stands on a surf board , surfing water .

Figure 12: Attention map of synthetic videos from Sora.
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a pole vaul ter picks up the pole and starts running and then lifting the pole to jump

a man is ab se iling with ropes and ice axes along a steep ice surface
CLAVER
a man is ab se iling with ropes and ice axes along a steep ice surface

cross - country skiing involves gli ding forward , turning , stopping , and maneu vering around obstacles

CLAVER

Toss - country skiing involves gli ding forward , turning , stopping , and maneu vering around obstacles

Figure 13: More visualization examples of transition of CLIP’s attention on nouns to CLAVER’s
preference on verbs.
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Figure 14: The rank of Kronecker temporal attention (KMT), Kronecker causal temporal attention
(KMCT) and joint attention (Joint) on different patch size and frame length. (The calculation of

rank is done via torch.linalg.svd)
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