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ABSTRACT

Reinforcement learning (RL) has proven effective in incentivizing the reasoning
abilities of large language models (LLMs), but suffers from severe efficiency
challenges due to its trial-and-error nature. While the common practice employs su-
pervised fine-tuning (SFT) as RL warmup, its distribution mismatches the policy’s
rollouts. This mismatch produces a dip-then-rise dynamic: early RL forgets SFT-
acquired behavior and slowly re-explores, resulting in limited effectiveness and
inefficient exploration. We introduce BRIDGE, a novel method to employ bilevel
optimization to facilitate better cooperation between these training paradigms. By
conditioning the SFT objective on the optimal RL policy, our approach enables
SFT to meta-learn how to guide RL’s optimization process. During training, the
lower-level performs RL updates while simultaneously receiving SFT supervision,
while the upper-level explicitly maximizes the cooperative gain—the performance
advantage of joint SFT-RL training over RL alone. Empirical evaluations across
three LLMs and five reasoning benchmarks demonstrate that our method consis-
tently outperforms baselines and achieves a better balance between effectiveness
and efficiency. Specifically, BRIDGE achieves 44% faster training with a 13% per-
formance gain on Qwen2.5-3B, and 14% faster training with a 10% improvement
on Qwen3-8B.

1 INTRODUCTION

The emergence of OpenAI’s o1 (OpenAI) and DeepSeek-R1 (DeepSeek-AI et al., 2025) marks
a significant advance in LLM reasoning capabilities, particularly for challenging tasks such as
mathematics (Cobbe et al., 2021; Hendrycks et al., 2021b) and programming (Chen et al., 2021;
Codeforces, 2025). The key technique driving this progress is large-scale, rule-based RL. However, the
inherently trial-and-error nature of RL renders the training process highly inefficient. An alternative
approach is SFT on curated long chain-of-thought (CoT) datasets, which enables models to rapidly
acquire effective reasoning patterns through imitation learning. While more sample-efficient, SFT
typically exhibits poorer performance and generalization than RL (Chu et al., 2025).

In practice, production-scale pipelines often use a two-stage paradigm, warming up with SFT before
applying RL. This decoupled design induces a distribution mismatch between teacher-distilled SFT
traces and the student’s on-policy rollouts. Empirically, it yields a dip-then-rise dynamic, indicating
that it suffers from catastrophic forgetting; and because the RL stage lacks sustained, policy-aware
guidance, exploration is inefficient. Consequently, the two stages fail to synergize and the pipeline
fails to leverage the complementary strengths of imitation and reinforcement. This raises a natural
question:

Can we design a training framework that enables meaningful synergy between SFT and RL,
ensuring their cooperation yields performance superior to standalone RL?

To explore this possibility, we first propose a simple baseline that alternates between SFT and RL
updates during training. Despite its simplicity, this approach improves both convergence efficiency
and final performance. However, such independent updates cannot guarantee improvements over RL
alone, as not all SFT updates benefit RL optimization. Building on this insight, we develop BRIDGE,
a cooperative learning framework based on bilevel optimization, where SFT serves as the upper-level
problem and RL as the lower-level problem. By solving this nested structure—with the SFT objective
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explicitly conditioned on the RL solution—SFT provides targeted guidance that directly supports
RL’s optimization process.

Specifically, BRIDGE employs an augmented model architecture comprising two learnable compo-
nents: a base model and a LoRA module. The base model is optimized through the lower-level RL
objective, while the LoRA parameters are updated via the upper-level supervised objective. To solve
this bilevel problem, we adopt a first-order, penalty-based relaxation method. The relaxed lower-level
update blends SFT and RL gradients, while the upper-level update explicitly maximizes the coopera-
tive gain—the performance advantage of joint SFT-RL training over RL-only optimization. In this
way, the lower level realizes the cooperation between two objectives, while the upper level ensures
this cooperation yields superior performance.

To validate the effectiveness of our approach, we conduct experiments with three LLMs across
five diverse benchmark datasets covering both standard and competition-level math reasoning tasks.
Results demonstrate that BRIDGE consistently outperforms all baselines—including SFT, RL-zero,
cold-start, and our naive alternating baseline—while requiring less wall-clock training time. These
improvements confirm the benefits of tightly coupling SFT and RL through bilevel optimization
rather than treating them as separate phases.

Our work makes the following contributions:

1. Comparative analysis of reasoning training paradigms. We systematically analyze three
prevalent strategies for training large reasoning models. Our analysis reveals that the lack of
interaction in two-stage pipelines prevents SFT and RL from effectively synergizing and
leads to catastrophic forgetting and inefficient exploration. To mitigate these issues, we
introduce a simple alternating baseline that achieves superior performance.

2. A bilevel optimization framework for integrating SFT and RL. To achieve deeper
cooperation between SFT and RL, we propose BRIDGE, a bilevel optimization method that
formalizes SFT as the upper-level and RL as the lower-level problem. Built on an augmented
model architecture and solved using penalty-based relaxation, BRIDGE explicitly maximizes
the cooperative gain—ensuring joint training outperforms standalone RL.

3. Empirical validation on mathematical reasoning benchmarks. We conduct extensive
experiments with three LLMs across five mathematical reasoning benchmarks. BRIDGE
consistently outperforms five baselines in both accuracy and training efficiency, demonstrat-
ing the practical benefits of tightly integrated SFT-RL optimization.

2 PRELIMINARIES

We begin by reviewing three prevalent fine-tuning strategies for training reasoning models, conduct a
comparative analysis, and discuss limitations of the popular two-stage method. We then introduce a
simple yet effective baseline that improves upon it.

2.1 FINE-TUNING METHODS FOR REASONING MODELS

We consider a language model parameterized by θ, which defines a conditional distribution π(y|x;θ)
over output sequences y given input sequences x. This work focuses on three widely used method-
ologies for fine-tuning θ to enhance the model’s reasoning capabilities.

Supervised Fine-Tuning. In supervised fine-tuning, we assume access to a curated dataset
DSFT := {(x, r, y)} consisting of input prompts x, intermediate reasoning steps r distilled from
larger reasoning models or annotated by human experts, and final answers y. The training objective
maximizes the log-likelihood of generating both the reasoning process and the final answer:

max
θ

JSFT(θ) := E(x,r,y)∼DSFT
[log π (r, y | x;θ)] . (1)

This approach encourages the model to not only produce correct answers but also to imitate expert
reasoning steps that lead to those answers.

Reinforcement learning with verifiable rewards (RLVR). RLVR has gained increasing attention
for its effectiveness in training advanced reasoning models such as DeepSeek-R1 (DeepSeek-AI et al.,
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2025). Given a dataset DRL := {(x, y)} with verifiable outputs—such as mathematics competition
problems—the objective of rule-based RL is formulated as:

max
θ

JRL(θ) := E(x,y)∼DRL, (r̂,ŷ)∼π(·|x;θ) [R(ŷ, y)]

− E(x,y)∼DRL
[DKL (π(· | x;θ) ∥πref(· | x))]

(2)

where πref is a fixed reference model and R(ŷ, y) is a rule-based reward function that evaluates
prediction correctness using a binary signal:

R(ŷ, y) =

{
1, if ŷ ≡ y,

0, otherwise
(3)

Here, y denotes the ground-truth answer and ŷ is the model’s predicted output. The equivalence
relation ŷ ≡ y is typically computed by a rule-based verifier. This objective is commonly solved
using policy optimization methods such as Proximal Policy Optimization (PPO) (Schulman et al.,
2017) or Group Relative Policy Optimization (GRPO) (DeepSeek-AI et al., 2025).

Two-Stage Cold Start. In practice, the common recipe uses SFT as a warm-up stage before applying
RL. This two-stage approach, often referred to as "cold start," ensures that the model first learns to
imitate expert reasoning patterns, providing a strong initialization for subsequent RL training.

Figure 1: Comparison of Training Methods.

Algorithm 1: A Simple Alternating Method
1: Initialize parameters θ0; datasets DSFT,

DRL; learning rates αSFT, αRL; total steps T
2: for t = 1 to T do
3: // RL step
4: Sample (xt, yt) ∼ DRL

5: Generate solution with πθt−1
(xt)

6: Compute RL objective JRL using (2)
7: θ′t−1 ← θt−1 + αRL∇JRL(θt−1)
8: // SFT step
9: Sample example (xt, rt, yt) ∼ DSFT

10: Compute SFT objective JSFT using (1)
11: θt−1 ← θ′t−1 + αSFT∇JSFT(θ′t−1)
12: end for

2.2 COMPARISON OF FINE-TUNING METHODS

We evaluate these methods on mathematics problems at the grade 3–5 level. Figure 1 illustrates the
evolution of test accuracy during training. We observe that while SFT provides effective initialization
and rapid early convergence for cold-start training, it contributes little to final convergence perfor-
mance. This results in faster initial accuracy improvements, but performance plateaus with minimal
gains in the later stages of the two-phase pipeline. In contrast, RL alone converges more slowly but
eventually achieves comparable final performance.

These results suggest that SFT and RL offer complementary strengths in reasoning tasks: SFT
facilitates rapid initial learning, while RL enables better asymptotic performance. However, the naïve
two-stage combination in cold-start training fails to fully exploit these complementary advantages.
We identify two key limitations:

1. Catastrophic forgetting: The two-stage paradigm suffers from catastrophic forgetting—the
model loses valuable SFT-acquired knowledge when transitioning to RL training. This
phenomenon is evident in the response length dynamics during cold-start’s second stage (see
the length dynamics in Figure 3). Response lengths initially drop sharply before gradually
recovering, exhibiting a "dip-then-rise" pattern that indicates the model first forgets some
expert behaviors before slowly exploring new strategies.

2. Inefficient exploration: Despite effective SFT initialization, online RL frequently en-
counters inefficient exploration, particularly on challenging problems where LLMs fail to
generate reward-yielding solutions. LLMs often become trapped in local optima, unable
to make further progress (see the reward dynamics in Figure 3). Moreover, once the initial
SFT phase concludes, it cannot provide continued guidance for difficult problems.

These limitations motivate integrating SFT and RL training within a unified framework.
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Figure 2: Comparison of two training methods.

2.3 A SIMPLE ALTERNATING BASELINE

To investigate the potential synergy between two methods, we design a simple alternating optimization
strategy, as outlined in Algorithm 1. This approach alternates between RL steps, which explore novel
reasoning strategies, and SFT steps, which imitate expert reasoning patterns.

As shown in Figure 1, this alternating strategy converges faster than pure RL and achieves better final
performance than both standalone SFT and two-stage cold-start training. While this integration yields
empirical gains, the current formulation treats SFT and RL as independent update processes with no
guarantee that alternating updates will consistently outperform RL method alone. This limitation
prompts us to investigate: Can we develop a principled optimization framework where SFT and RL
updates are inherently coordinated to guarantee improvements over pure RL?

3 METHODOLOGY

In this section, we propose BRIDGE, a framework that tightly couples SFT and RL through a
cooperative meta-learning approach. We first introduce the mathematical formulation, then present
the learning algorithm and explanations.

3.1 BRIDGE: COOPERATIVE META-LEARNING FOR SFT AND RL

Given an SFT dataset DSFT and an RL dataset DRL (defined in Section 2.1), our objective is to
integrate policy optimization (Eq. equation 2) with supervised learning (Eq. equation 1). We propose
the following cooperative meta-learning formulation:

max
w

JSFT(θ
∗(w), w) := E(x,r,y)∼DSFT

[log π (r, y | x; θ∗(w), w)]

s.t. θ∗(w) := argmax
θ

{
E(x,y)∼DRL, (r̂,ŷ)∼π(·|x;θ,w) [R(ŷ, y)]

− E(x,y)∼DRL
[DKL (π(· | x; θ, w) ∥πref(· | x))]

}
.

(4)

where θ denotes the base model parameters and w represents the Low-Rank Adaptation (LoRA)
weights (Hu et al., 2021). Together, they form an augmented model with parameters θ̄ := [θ, w].

For clarity, we express Equation equation 4 in simplified notation:

max
w

JSFT(w, θ
∗(w)),

s.t. θ∗(w) := argmax
θ

JRL(θ, w).
(5)

This formulation exhibits a bilevel optimization structure inspired by the leader-follower game.
SFT acts as the leader (teacher) with access to the RL follower’s (student’s) optimal response
θ∗(w), enabling it to provide targeted guidance. Conversely, RL optimizes the base parameters
θ given the auxiliary support from SFT through w. During training, these components interact
dynamically, resulting in better cooperation. As illustrated in Figure 2, this structure enables
bidirectional information flow—where RL’s optimal solution becomes visible to SFT—in contrast to
the unidirectional flow of traditional two-stage approaches.

From a meta-learning perspective, BRIDGE implements cooperative framework where, at each
iteration, the upper-level SFT provides an improved initialization for RL exploration, while the lower-
level RL refines this initialization through reward-based optimization. This framework adaptively
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extracts the most beneficial information from SFT to enhance RL training, as SFT guidance may not
always be uniformly beneficial.

The single-stage cooperative meta-learning design provides three advantages: (1) it avoids catas-
trophic forgetting of the two-stage pipeline through unified single-stage training; (2) it improves
exploration efficiency via continuous supervised guidance; and (3) it guarantees RL performance
gains by enabling SFT to meta-learn how to guide RL, strategically transferring beneficial knowledge.

Architectural Design Rationale. The augmented model architecture, comprising base model
parameters θ and LoRA parameters w, is essential for enabling cooperative learning. This separation
allows the upper- and lower-level objectives to co-adapt during training, as illustrated in Figure 2.
Without this architectural separation, our formulation (Equation equation 4) would collapse to a
Model-Agnostic Meta-Learning (MAML)-style setup (Finn et al., 2017), where the lower-level
solution reduces to a single gradient step used to update the upper-level SFT parameters. In this case,
RL learning is disabled, and the cooperation between SFT and RL is lost.

3.2 LEARNING ALGORITHM

To solve the bilevel optimization problem in Eq. equation 5, we employ penalty-based methods (Shen
& Chen, 2023; Shen et al., 2025) to avoid expensive second-order derivative computations. We first
reformulate equation 5 as a single-level problem amenable to efficient first-order optimization.

We define the penalty function measuring the sub-optimality of the lower-level problem as:

p(w, θ) = max
θ′

JRL(θ
′, w)− JRL(θ, w). (6)

This penalty quantifies the optimality gap: p(w, θ) = 0 if and only if θ maximizes JRL(·, w).
Given a penalty weight λ ∈ (0, 1), we obtain the penalized reformulation:

max
θ,w
L(θ, w) := (1− λ)JSFT(θ, w)− λp(w, θ). (7)

The penalty weight λ follows an annealing schedule: starting from a small value to warm-start
training on supervised data, then gradually increasing to enforce the bilevel constraint more strictly.

Since maxθ′ JRL(θ
′, w) depends only on w, the gradient with respect to θ simplifies to:

θk+1 = θk + α [(1− λ)∇θJSFT(θ, w) + λ∇θJRL(θ, w)] (8)

For the gradient with respect to w, we invoke Danskin’s theorem. Assuming JRL(·, w) satisfies the
required regularity conditions, we have:

∇w max
θ′

JRL(θ
′, w) = ∇wJRL(θ

∗(w), w), (9)

where θ∗(w) = argmaxθ JRL(θ, w). In practice, we approximate θ∗(w) by taking a single gradient
ascent step with respect to the RL objective:

θ̂ = θ + α∇θJRL(θ, w), (10)

yielding the approximate gradient update for w:

∇wL(θ, w) ≈ (1− λ)∇wJSFT(θ, w) + λ
[
∇wJRL(θ, w)−∇wJRL(θ̂, w)

]
. (11)

The overall algorithm of BRIDGE is presented in Algorithm 2.

3.3 INTUITION BEHIND THE UPDATE RULES

Lower-level update: Curriculum-weighted gradient fusion. The update rule for θ in Eq. equation 8
performs a convex combination of SFT and RL gradients. As λ increases from 0 to 1 during training,
the algorithm smoothly transitions from pure imitation learning to pure reinforcement learning.

This adaptive curriculum (Bengio et al., 2009) reflects the model’s evolving capabilities: early in
training, when the base model lacks strong reasoning abilities, it benefits primarily from imitating
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Algorithm 2: Learning Algorithm of BRIDGE
1: Initialize augmented parameters θ̄0 = (θ0, w0), and auxiliary parameters θ̂0 := θ0;

learning rates α, β; penalty weight λ; number of iterations K
2: for k = 0 to K − 1 do
3: Sample mini-batches BSFT ∼ DSFT and BRL ∼ DRL

4: // Compute base objectives
5: Compute JSFT(θ

k, wk), JRL(θ
k, wk) and JRL(θ̂

k, wk) on BSFT and BRL

7: // Define composite objectives
8: JJoint(θ

k, wk) = (1− λ)JSFT(θ
k, wk) + λJRL(θ

k, wk)

9: JGain(w
k) = (1− λ)JSFT(θ

k, wk) + λ[JRL(θ
k, wk)− JRL(θ̂

k, wk)]
10: // Update base parameters via joint objective
11: θk+1 ← θk + α∇θJJoint(θ

k, wk)
12: // Update auxiliary parameters via pure RL
13: θ̂k+1 ← θ̂k + α∇θ̂JRL(θ̂

k, wk)
14: // Update LoRA parameters to maximize cooperative gain
15: wk+1 ← wk + β∇wJGain(w

k)
16: end for

expert demonstrations. As the model develops competence in generating correct solutions, it can
increasingly leverage reward signals through exploration, making RL updates progressively more
valuable.

Upper-level update: Maximizing cooperative gain. The update for w in Eq. equation 11 solves
the bilevel problem by finding LoRA parameters w that ensure the RL-optimized model θ∗(w) also
excels on the supervised dataset DSFT.

The update in Eq. equation 11 can be interpreted as performing gradient ascent on the following
objective:

f(θ, w) = (1− λ) JSFT(θ, w)︸ ︷︷ ︸
↑ likelihood on expert data

+λ
[
JRL(θ, w)− JRL(θ̂, w)

]
︸ ︷︷ ︸

↑ cooperative gain: SFT-RL vs RL-only

(12)

The first term maintains alignment with expert reasoning patterns, while the second term—the
cooperative advantage—quantifies how much the joint SFT-RL optimization (using θ) outperforms
pure RL training (using θ̂). By maximizing this advantage term, the algorithm explicitly encourages
cooperation between supervised and reinforcement learning, ensuring their combination yields
superior performance compared to RL alone.

4 EXPERIMENT

4.1 SETTINGS

Datasets. We use LIMR (Li et al., 2025) (1.3k problems; Qwen2.5-3B) and MATH (Hendrycks
et al., 2021a) (8.5k; lama-3.2-3B-Instruct and Qwen3-8B) for RL training For the SFT dataset, we
pair queries from LIMR and MATH with corresponding intermediate reasoning traces extracted
from DeepMath-103k (He et al., 2025), which were distilled from the DeepSeek-R1 model. We
evaluate on five mathematical reasoning benchmarks: MATH500 (Hendrycks et al., 2021a), Minerva
Math (Lewkowycz et al., 2022), OlympiadBench (He et al., 2024), AIME 2024, and AMC 2023, and
two out-of-distribution (OOD) benchmarks (LiveCodeBench v5 (Jain et al., 2024) and GPQA (Rein
et al., 2024)) to assess generalization.

Models. To demonstrate the generality of our approach, we experiment with three LLMs: Qwen2.5-
3B (Yang et al., 2024), Llama-3.2-3B-Instruct (Grattafiori et al., 2024), and Qwen3-8B-Base (Yang
et al., 2025). All models use prompt formats consistent with SimpleRL (Zeng et al., 2025).

Implementation Details. We use Verl (Sheng et al., 2024) for RL training; full settings are in
Appendix B.
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4.2 BASELINES

We compare BRIDGE against five baselines on the same base models:
Base/Instruct Model. Base or instruction-tuned model with no reasoning-specific training.
Supervised Fine-Tuning (SFT). Trained only on curated reasoning traces by SFT (no RL).
RL-Zero. RL applied to the base model from scratch (no SFT warm-up).
Cold-Start Two-stage SFT then RL, with fully decoupled objectives.
Naive Alternating. Alternates SFT and RL updates without a cooperative objective.

4.3 EXPERIMENTAL RESULTS

Method MATH
500

Minerva
Math

Olympiad
Bench AIME24 AMC23 Average

Base 32.4 11.8 7.9 0.0 20.0 14.4

SFT 53.4 18.8 21.5 3.3 42.5 27.9
RL-zero 64.4 26.5 27.0 3.3 40.0 32.2
Cold-start 66.0 24.3 26.8 9.0 35.0 32.2

Naive Alter. 65.2 25.3 27.1 6.7 42.5 33.4 (+3.7%)
BRIDGE 66.2 23.9 28.9 13.3 47.5 36.0 (+11.8%)

Table 1: Performance on Qwen2.5- 3B. Average gains over Cold-start are highlighted in blue.

Main results across three LLMs. Across five math benchmarks and three LLMs (Tables 1, 2, 3),
BRIDGE attains the highest average accuracy. Cold-start behaves inconsistently across backbones:
on Llama-3.2-3B-Instruct it is lower than RL-zero on average, whereas on Qwen3-8B-Base it exceeds
RL-zero; this suggests that the two stage SFT then RL pipeline can constrain subsequent exploration
and is not reliably optimal. Naive Alternating exceeds RL-zero and Cold-start on Qwen2.5-3B and
Qwen3-8B-Base, indicating that training SFT and RL at the same time helps, although the gains are
limited. In contrast, BRIDGE consistently outperforms all methods on all three backbones, with
average improvements over Cold-start of 11.8% on Qwen2.5-3B, 30.9% on Llama-3.2-3B-Instruct,
and 9.7% on Qwen3-8B-Base. Unlike naive alternating, BRIDGE treats SFT and RL as a cooperative
objective and adapts the supervision so that it benefits RL objective; this coupling yields robust and
transferable gains across instruction tuned and base models and remains effective at larger scales.

Generalization to More Challenging Math Tasks Baseline methods tend to yield larger improve-
ments on relatively easier benchmarks but generalize poorly to more complex reasoning tasks. For
example, the Cold-start underperforms RL-zero on Minerva Math, OlympiadBench, and AMC23,
indicating that Cold-start can restrict exploration and transfer poorly to harder problems. While
the Naive Alternative partially mitigates this issue, its gains remain limited. In contrast, BRIDGE
achieves consistent and substantial improvements on the more challenging benchmarks. These results
underscore BRIDGE’s superior generalizability in handling complex mathematical reasoning.

Method MATH
500

Minerva
Math

Olympiad
Bench AIME24 AMC23 Average

Instruct 38.0 14.3 13.0 13.3 25.0 20.7

SFT 38.4 10.3 11.9 27.5 3.3 18.3
RL-zero 48.6 15.1 17.8 10.0 17.5 21.8
Cold-start 45.0 11.8 12.0 3.3 22.5 18.9

Naive Alter. 49.8 17.6 17.2 20.0 0.0 20.9 (+10.6%)
BRIDGE 51.8 15.1 19.3 10.0 27.5 24.7 (+30.7%)

Table 2: Performance on Llama3.2-3B-Instruct.

Generalization to Out-of-Domain tasks. To test whether BRIDGE’s benefits transfer beyond math
into out-of-domain reasoning. We evaluate on two non-math OOD benchmarks, LiveCodeBench and
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Method MATH
500

Minerva
Math

Olympiad
Bench AIME24 AMC23 Average

Base 55.4 24.3 22.5 3.3 27.5 26.6

SFT 67.8 32.0 29.8 45.0 13.3 37.6
RL-zero 76.2 36.0 42.4 10.0 50.0 42.9
Cold-start 80.4 38.2 39.6 16.6 52.5 45.5

Naive Alter. 78.2 37.5 40.6 13.3 65.0 46.9 (+3.1%)
BRIDGE 79.0 39.7 44.0 16.7 70.0 49.9 (+9.7%)

Table 3: Performance on Qwen3-8B-Base.

Method LiveCodeBench GPQA Avg.

Base 32.95 32.32 32.64
Instruct 33.07 35.80 34.44
RL-zero 32.50 38.38 35.44
Cold-start 23.86 25.76 24.81
BRIDGE 34.55 42.93 38.74

Table 4: OOD evaluation on Qwen3-8B.

Method Average Performance Avg.
Epoch=1 Epoch=3 Epoch=6

SFT 24.1 26.5 27.9 26.2
RL-zero 14.8 17.5 32.2 21.5
Cold-start 33.4 28.5 32.2 31.4
Naive Alt. 13.0 30.8 33.4 25.7
BRIDGE 32.3 33.3 36.4 34.0

Table 5: Performance across training epochs.

GPQA based on Qwne3-8B, as seen in Table 4, BRIDGE attains the best performance, demonstrating
that joint training yields consistent cross-domain gains.

Figure 3: Training dynamics of mean reward and response length on Qwen2.5-3B.

Training Dynamics Analysis. We analyze the dynamics of mean reward and response length
during training for BRIDGE, Cold-start, and RL-Zero on Qwen2.5-3B. As shown in Figure 3,
the three methods exhibit markedly different patterns. RL-Zero suffers from online RL’s sample
inefficiency, showing slow growth in both response length and reward. Cold-start begins with
extremely long responses due to SFT warm-up, causing slow training (see in Table 6), followed
by a sharp decline and gradual recovery. This "dip-then-rise" pattern indicates the model initially
loses expert behavior acquired during SFT, then slowly explores new strategies—a mismatch that
contributes to training inefficiency. Despite starting with higher rewards, Cold-start’s second-phase
RL lacks proper guidance, resulting in final rewards similar to RL-Zero. In contrast, BRIDGE benefits
from continuous SFT guidance throughout training, enabling rapid reward growth that surpasses
Cold-start and achieving superior convergence. These dynamics demonstrate that BRIDGE’s bilevel
optimization enables more efficient policy learning through sustained and targeted expert guidance.

Performance on downstream tasks across training epochs shows the same pattern (Table 5): Cold-start
learns quickly at the beginning but dips mid-training and finishes no better than RL-zero, indicating
constrained exploration. BRIDGE starts strong and improves steadily to the best final performance.
Naive Alternating narrows the gap mid-training yet remains below BRIDGE. RL-zero shows the
poorest early-stage efficiency. (see Appendix C for details.)
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Cost-Benefit Analysis. We evaluated the cost-performance trade-offs by measuring wall-clock
training time, average GPU memory usage per device, and final convergence performance across two
model scales: Qwen2.5-3B (4×A100-80GB) and Qwen3-8B-Base (8×MI300-192GB). As shown
in Table 6, Cold-start requires nearly 2x the training time of RL-zero, despite the short SFT stage.
This overhead stems from long sequence lengths induced by the SFT stage (see Figure 3). BRIDGE
achieved 44% and 14% time savings compared to Cold-start for the 3B and 8B models, respectively.
Despite a modest 11% increase in memory usage for the larger model, BRIDGE consistently delivered
superior performance improvements (13% for 3B and 9.7% for 8B models), demonstrating favorable
cost-benefit trade-offs for practical deployment.

Metric Qwen 2.5-3B Qwen 3-8B-Base

RL-zero Cold-start BRIDGE RL-zero Cold-start BRIDGE

Time (hr) 6.1 12.3 6.9 38.5 39.1 33.5
Mem. (GB) 52.2 45.9 59.3 50.7 60.8 67.4
Acc. (%) 32.2 32.2 36.4 42.9 45.5 49.9

Table 6: Cost-performance analysis on Qwen2.5-3B and Qwen3-8B-Base

LoRA ablation. We prove BRIDGE is insensitive to LoRA hyperparameters (Appendix D).

5 RELATED WORK

SimpleRL (Zeng et al., 2025) observes that fine-tuning on short-CoT datasets can harm reasoning
ability, while He et al. (2025) find that fine-tuning on long-CoT distilled data can improve the
reasoning performance of smaller models—especially when used as a warm-up stage before RL
training. In practice, two-stage pipelines that combine SFT and RL are commonly used to balance
stability and performance. However, existing approaches often rely solely on supervised fine-tuning,
which tends to generalize poorly, or on pure RL, which suffers from sample inefficiency and unstable
optimization.

Recent efforts move beyond the decoupled “SFT then RL” recipe by mixing two objectives within
one stage. LUFFY (Yan et al., 2025) combines off-policy expert traces with on-policy rollouts
using Mixed-Policy GRPO and regularized importance sampling, but it requires the off-policy
demonstrations to be paired with the same prompts as the on-policy data, limiting flexibility and
data reuse. CHORD (Zhang et al., 2025) integrates SFT into on-policy RL via a weighted-sum
objective with a global weight and a token-level weight that up-weights uncertain expert tokens and
down-weights large-divergence tokens. This stabilizes training compared with naïve loss addition, but
the coupling is heuristic and offers no mechanism to ensure that the injected supervision is useful for
the RL update. BRIDGE instead treats SFT–RL cooperation as a bilevel problem, meta-adapting the
supervision to maximize the reward gain of joint training over RL alone and yields larger and more
robust improvements than simple loss mixing. It offers a new perspective on integrating imitation
and exploration for large reasoning models. We provide an extended discussion of related work in
Appendix E.

6 CONCLUSION

This work investigates how to effectively integrate supervised fine-tuning and reinforcement learning
to improve the reasoning capabilities of LLMs. We begin by analyzing three widely used training
paradigms and identify a key limitation of existing multi-stage pipelines: the lack of interaction
between SFT and RL. To address this, we propose a simple alternating baseline and further introduce
BRIDGE, a bilevel optimization framework that models SFT as the upper-level objective and RL as
the lower-level objective. By employing a penalty-based relaxation, BRIDGE explicitly encourages
joint training to outperform standalone RL, fostering tighter cooperation between the two learning
paradigms. Empirical results on five mathematical reasoning benchmarks demonstrate that our
method consistently outperforms strong baselines in both accuracy and training efficiency. These
findings underscore the potential of bilevel optimization as a unifying framework for combining
supervised and reward-driven learning in complex reasoning tasks.
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Rand/α MATH500 Minerva OlympiadBench AIME24 AMC23 Avg.

32/16 79.0 39.7 44.0 16.7 70.0 49.9
16/32 79.0 38.6 44.0 16.0 70.0 49.5

Table 7: LoRA sensitivity ablation on Qwen3-8B-Base.

A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used a large language model (LLM) solely for polishing the writing
style and improving the clarity of the manuscript. The LLM was not used for generating research
ideas, designing experiments, conducting analyses, or deriving results. All scientific contributions,
including the conceptualization, methodology, experiments, and conclusions, were developed entirely
by the authors.

B IMPLEMENTATION DETAILS

All models are trained using the Verl framework (Sheng et al., 2024). We use a prompt batch size of
64, mini-batch size of 64, and learning rate of 5× 10−7. For LoRA, we set both rank and α to 16.
The penalty weight λ is set to 0.5. We employ two configurations: (1) for 3B models: 5 rollouts per
prompt with 3k maximum tokens; (2) for 8B models: 8 rollouts per prompt with 8k maximum tokens.
During evaluation, we use greedy decoding (temperature 0) with a 5k or 8k token limit and report
pass@1 accuracy. Experiments are conducted on 4×NVIDIA A100 GPUs (80GB) for 3B models
and 8×AMD MI300 GPUs (192GB) for 8B models.

C PERFORMANCE ON VARIED FINE-TUNING EPOCHS

We assess BRIDGE’s effectiveness across different fine-tuning epochs on Qwen2.5-3B using average
performance across epochs as the metric. As shown in Table 5, BRIDGE achieves the highest
average performance. Among the baselines, Cold-start yields the second-best trade-off. However, its
performance becomes unstable as training progresses, eventually converging to the same final result
as RL-zero. In contrast, BRIDGE demonstrates consistent improvement throughout training. Overall,
nearly all hybrid baselines outperform RL-zero in terms of early-stage efficiency, highlighting the
advantage of integrating supervised fine-tuning and reinforcement learning paradigms.

D LORA HYPERPARAMETER SENSITIVITY

To ensure BRIDGE’s gains do not hinge on a particular LoRA setting and to assess robustness to
LoRA. We ablate LoRA rank (R) and α on Qwen3-8B-Base, keeping all training settings fixed and
only changing (R,α). Table 7 indicates nearly identical outcomes across configurations, confirming
that BRIDGE is insensitive to the LoRA choice.

E RELATED WORK

Reinforcement Learning for Large Reasoning Models. Recent progress has highlighted the
critical role of reinforcement learning in enhancing the reasoning capabilities of large language
models (OpenAI; DeepSeek-AI et al., 2025). DeepSeek-R1 introduced a simple yet effective rule-
based reward model and demonstrated further gains through multiple rounds of supervised distillation
and RL training. LIMR (Li et al., 2025) showed that complex reasoning behaviors can emerge from
as few as one thousand curated examples from the MATH dataset (Hendrycks et al., 2021b).

In parallel, substantial advances have been made in training recipes for large reasoning models. Chu
et al. (2025) compare SFT and RL for reasoning tasks and find that RL generalizes significantly
better, whereas SFT is prone to overfitting. SimpleRL (Zeng et al., 2025) observes that fine-tuning
on short-CoT datasets can harm reasoning ability, while He et al. (2025) find that fine-tuning on
long-CoT distilled data can improve the reasoning performance of smaller models—especially when
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used as a warm-up stage before RL training. In practice, two-stage pipelines that combine SFT
and RL are commonly used to balance stability and performance. However, existing approaches
often rely solely on supervised fine-tuning, which tends to generalize poorly, or on pure RL, which
suffers from sample inefficiency and unstable optimization. In this work, we propose the first unified
training framework that enables explicit interaction between SFT and RL via a bilevel optimization
formulation. This approach offers a new perspective on integrating imitation and exploration for large
reasoning models.

Bilevel Optimization in LLMs. Bilevel optimization (BLO) is a classical framework for modeling
hierarchical learning problems, originating from Stackelberg leader-follower games. Two major
classes of methods have been developed to solve BLO problems. Implicit gradient methods (Hong
et al., 2020; Khanduri et al., 2021; Shen & Chen, 2022; Xiao et al., 2023) compute gradients through
the lower-level problem using second-order derivatives. While theoretically robust, these methods
are often computationally expensive and memory-prohibitive when applied to large-scale models
such as LLMs. In contrast, penalty-based relaxation methods (Shen & Chen, 2023; Kwon et al.,
2023; Shen et al., 2024; Lu, 2024) approximate the BLO formulation using only first-order gradients,
making them substantially more scalable and thus better suited for LLM applications. Recent work
has explored the use of bilevel optimization in LLMs for tasks such as data selection (Lin et al., 2024;
Shen et al., 2025), inverse reinforcement learning (Li et al., 2024), and meta-learning (Choe et al.,
2023; Shirkavand et al., 2025). To the best of our knowledge, our work is the first to cast reasoning-
oriented LLM training as bilevel optimization, introducing a novel augmented model architecture for
modeling and solving this problem. This provides a principled framework for integrating supervised
and reinforcement learning, where SFT actively assists RL optimization rather than merely serving as
warmup.
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