
Riemannian Fuzzy K-Means on product manifolds

Jinghui Yuan, Zhuo Liu, Feiping Nie∗
School of Artificial Intelligence, Optics and Electronics (iOPEN),

Northwestern Polytechnical University,
Xi’an 710072, P.R. China

yuanjh@mail.nwpu.edu.cn
zhuoliu02@mail.nwpu.edu.cn;feipingnie@gmail.com

Abstract

In this paper, we address an open problem: how to perform fast clustering on
product manifolds. With the increasing interest in non-Euclidean data representa-
tions, clustering such data has become an important problem. However, a naive
extension of the classic K-Means algorithm to product manifolds requires O(νω)
time, where ω is the number of alternating iterations and ν is the time complexity
of each Riemannian optimization. Due to the need for numerous Riemannian
optimizations, the naive Riemannian K-Means (NRK) is not suitable for large-scale
data. To this end, we propose the Riemannian Fuzzy K-Means (RFK) algorithm for
product manifolds, which reduces the time complexity to O(ν). Importantly, RFK
is not a straightforward extension of K-Means or Fuzzy K-Means to manifolds, it
leverages the fuzzy relaxation to eliminate alternating updates and achieve a true
single-loop optimization. Furthermore, we introduce Radan to accelerate the opti-
mization of RFK. We conduct extensive experiments. RFK and Radan outperform
across nearly all metrics in almost every dataset, reaching an impressive level of
performance. RFK and Radan have been integrated into several non-Euclidean
machine learning libraries. (See Appendix F)

1 Introduction

Non-Euclidean data representations have received widespread attention. Examples include text
embeddings in hyperbolic space [1], tree embeddings in the Poincaré disk [2], and representations of
cell-cycle data on the sphere [3]. This is because many real-world datasets exhibit non-Euclidean
structure, and embedding such data in appropriate non-Euclidean spaces can better preserve those
structures [4, 5]. For example, hyperbolic space captures the hierarchical structure [6, 7], while
spheres retain the periodic information [8]. Many datasets not only have a single structure, so to
preserve as much information as possible [9], it is necessary to represent them on product manifolds.

A product manifold is formed by the Cartesian product of multiple manifolds [10], i.e., M = M1 ×
· · · ×MQ = ⊗Q

p=1Mp, where Mp denotes the p-th component manifold of the product manifold,
with p ∈ {1, . . . , Q}. The product manifold inherits the characteristics of each component manifold
and possesses greater expressive power [11]. As a result, product manifolds have been widely used
for representing data from diverse domains [12, 13, 14, 15], and clustering data represented on such
manifolds or their components has become an important problem [16].

A natural approach is to naively extend the K-Means algorithm to product manifolds, referred to as
Naive Riemannian K-Means (NRK) [17]. However, we point out that NRK incurs a time complexity
of O(νω), where ω is the number of alternating iterations and ν is the time complexity of each
Riemannian optimization [18]. This results in a double-loop structure to solve the clustering problem,

∗Corresponding author.

Preprint. Under review.

which is unacceptable for large-scale data. Therefore, how to perform clustering efficiently remains
an open problem that requires a solution [19].

To address this problem, we propose Riemannian Fuzzy K-Means, abbreviated as RFK. Specifically,
we consider the equivalent relaxed version of K-Means, namely Fuzzy K-Means [20]. We identify
a special structure of Fuzzy K-Means and leverage a particular technique to transform the required
double loop into a single loop and reduce the time from complexity O(νω) to O(ν). In other
words, the previously required ω times Riemannian optimizations are reduced to only 1, significantly
lowering the computational cost, where ω ≫ 1.

To further accelerate RFK, we adapt the well-known Nesterov adaptive optimization algorithm (Adan)
[21] to product manifolds, resulting in a Riemannian Nesterov acceleration method, termed Radan.
We also establish the regret bound [22] and convergence properties of Radan under certain conditions.

We validate our algorithm on a wide range of datasets. Specifically, we perform clustering using
various methods on data represented in hyperbolic space, spherical manifolds, Euclidean space, and
their product manifolds. We compare the speed of RFK with that of NRK, the speed of Radan with
that of Riemannian Adam [23], and the clustering performance of RFK with several state-of-the-art
clustering algorithms. We conducted extensive experiments, which yielded remarkable results: RFK
significantly outperforms NRK in speed, Radan converges faster than Radam, and RFK achieved the
best clustering performance on nearly all datasets. In summary, our contributions are following.

• We address the open problem of fast clustering on manifolds by proposing the RFK algorithm,
which reduces the time complexity from O(νω) of the naive Riemannian K-Means to O(ν).

• We modify the Adan optimizer to make it compatible with product manifolds, resulting in
Radan, and provide theoretical guarantees including a regret bound and convergence proof.

• We conduct extensive numerical experiments to demonstrate the effectiveness of our al-
gorithm. RFK is significantly faster than NRK, Radan provides acceleration over the
Riemannian Adam (Radam), and RFK substantially outperforms existing algorithms in
clustering metrics on manifold-represented data.

In addition, we propose a new insight, pointing out that the reason NRK cannot be accelerated lies in
its hard assignment. We recommend using RFK in place of NRK for clustering on manifolds.

2 Preliminaries

2.1 Notations

Let the dataset be X = {x1, . . . , xN}, and let cj denote the j-th cluster center. C is the number
of clusters. For a product manifold denoted by M, each of its component manifolds is written
as Mp, such that M = ⊗Q

p=1Mp. For any x ∈ M, x can be represented as (x1, x2, . . . , xQ),
where xp ∈ Mp. For any points xp and yp on the component manifold Mp, dp(xp, yp) denotes the
geodesic distance between xp and yp on Mp, the geodesic distance on M is denoted by d(x, y).

Let Hhi,K denote a hyperbolic space of dimension hi with curvature K, Ssi,K denote a spherical
manifold of dimension si with curvature K, Rri denote a Euclidean space of dimension ri, and D
denote a two-dimensional Poincaré disk. Especially, when the curvatures of Ssi,K and Hhi,K are
(1,−1), we denote them simply as Ssi and Hhi , respectively.

TxpMp denotes the tangent space of the component manifold Mp at point xp, and ∥ · ∥ denotes
the norm in Euclidean space. The parallel transport on Mp from point xp to yp is denoted by
φp
xp→yp(up), where up ∈ TxpMp. When there is no ambiguity, it is abbreviated as φp(up). The

parallel transport on the product manifold M is denoted by φx→y(u). The exponential map on Mp

is denoted by Exppcp(u
p), and the exponential map on M is denoted by Expc(u). Log

p
cp(x

p) denotes
the logarithmic map on Mp. Logc(x) denotes the logarithmic map on the product manifold M;
log(·) refers to the natural logarithm. All the notations are summarized in Table 4.

2.2 Constant-curvature Spaces and Product Manifolds

Constant-curvature spaces [24] typically refer to one of the following: spherical spaces (positive
curvature), hyperbolic spaces (negative curvature), or Euclidean spaces (zero curvature) [25].

2

For an s-dimensional sphere Ss,K , it can be represented as Ss,K =
{
x ∈ Rs+1

∣∣ ∥x∥ = 1
K , K > 0

}
.

∀x, y ∈ Ss,K , the geodesic distance between x and y is given by d(x, y) = cos−1(K2⟨x,y⟩)
K , where

⟨x, y⟩ denotes the standard inner product in Rs+1 [26].

For an h-dimensional hyperbolic space Hh,K , it can be represented as:

Hh,K =

{
x ∈ Rh+1

∣∣∣∣ ∥x∥h = ⟨x, x⟩h = − 1

K2
, K < 0, x0 ≥ 0

}
, (1)

where any x ∈ Hh,K is written as x = (x0, . . . , xh), with xi ∈ R1 [27], and the Lorentzian inner
product [28] is defined as ⟨x, y⟩h = −x0y0+

∑h
i=1 x

iyi. For any x, y ∈ Hh,K , the geodesic distance

[29] between x and y is given by d(x, y) = − cosh−1(K2⟨x,y⟩h)
K .

A product manifold can be represented as M = ⊗Q
p=1Mp. For any x, y ∈ M, the geodesic distance

is generally given by d(x, y) =
√∑Q

p=1 d
2
p(x

p, yp), x, y ∈ M = ⊗Q
p=1Mp, x

p, yp ∈ Mp. where
xp denotes the component of x on the p-th manifold Mp [30].

In particular, when we focus on product manifolds composed of constant-curvature spaces, the
structure becomes M = ⊗n

i=1Ssi,K × ⊗m
j=1Hhj ,K × Rr. In this case, the dimension of M is

dimM =
∑n

i=1 si +
∑m

j=1 hj + r [31].

2.3 K-Means and Fuzzy K-Means

The K-Means algorithm is a well-known clustering method [32, 33], and its optimization problem
can be formulated as following [34]:

min
cj ,uij

JKM =

N∑
i=1

C∑
j=1

um
ij∥xi − cj∥2

s.t.
C∑

j=1

uij = 1, uij ∈ {0, 1}, ∀i = 1, . . . , N, ∀j = 1, . . . , C

(2)

Here, uij is an indicator variable, where uij = 1 indicates that the i-th sample belongs to the j-th
cluster. This problem is typically solved by alternating updates [35] of {uij} and {cj}.

Fuzzy K-Means is a relaxed version of K-Means [36, 37], in which the constraint
uij ∈ {0, 1} is relaxed to 0 ≤ uij ≤ 1, with the additional requirement that∑C

j=1 uij = 1, where C is the number of clusters. Moreover, the loss term of K-Means
uij∥xi − cj∥2 is replaced by um

ij∥xi − cj∥2 when using fuzzy K-Means , where m is
the fuzziness parameter [38, 39, 40]. Other related work can be found in Appendix C.

Cluster Center

Data Point

Geodesic
Straight Line

Figure 1: Visualization of the two reasons

3 Our proposed method

3.1 Naive Extension of K-Means

The K-Means is clearly unsuitable for data
represented on a manifold M, for two fol-
lowing reasons and shown in Figure 1.

• Incorrect distance comparisons: When data lie on a manifold, the Euclidean distance may
have ∥xi−cj∥ > ∥xi−ck∥, while the actual geodesic distances satisfy d(xi, cj) < d(xi, ck).
This mismatch can lead to incorrect cluster assignments.

• Invalid cluster centers: Without appropriate constraints, the computed cluster centers cj
may lie outside the manifold, i.e., cj /∈ M, rendering the cluster centers meaningless in the
context of the manifold. Meanwhile, the geodesic distance d(xi, cj) is not well-defined.

3

Therefore, a naive approach is to replace the Euclidean distance with geodesic distance and impose
the constraint that the cluster centers lie on the manifold. This leads to the following Equation (3).

min
cj ,uij

JKM (uij , cj) =

N∑
i=1

C∑
j=1

uijd
2(xi, cj) =

N∑
i=1

C∑
j=1

Q∑
p=1

uijd
2
p(x

p
i , c

p
j)

s.t.
C∑

j=1

uij = 1, uij ∈ {0, 1}, ∀i = 1, . . . , N, ∀j = 1, . . . , C

s.t. cj ∈ M, M = ⊗Q
p=1Mp, ∀j = 1, . . . , C

(3)

Similar to K-Means in Euclidean space, this problem can be solved by alternating updates of {uij}
and {cj}. The update of {uij} is identical to that in the Euclidean case: for each sample xi, one
simply identifies the cluster center cj that minimizes

∑Q
p=1 d

2
p(x

p
i , c

p
j), and sets the corresponding

uij = 1. However, the update of {cj} differs significantly from the Euclidean case.

When updating {cj}, the constraint cj ∈ M, M = ⊗Q
p=1Mp leads to the Riemannian optimization

problem (4), which can typically be addressed using methods such as Riemannian gradient descent.
min
cj

JKM (cj) =

N∑
i=1

C∑
j=1

uijd
2(xi, cj) =

N∑
i=1

C∑
j=1

Q∑
p=1

uijd
2
p(x

p
i , c

p
j)

s.t. cj ∈ M, M = ⊗Q
p=1Mp, ∀j = 1, . . . , C

(4)

This is the well-known problem of finding Fréchet means [41, 42] on a manifold. In general, closed-
form solutions do not exist [43], it’s the fundamental difference between flat Euclidean spaces and
curved manifolds. It is worth noting that the naive extension of Fuzzy K-Means to manifolds also
requires computing the Fréchet centers, which entails the same time complexity. This highlights that
our proposed RFK algorithm is not a naive extension of Fuzzy K-Means.

This approach to performing K-Means clustering on product manifolds is referred to as Naive
Riemannian K-Means (NRK). Analyzing this algorithm, it is not difficult to see that if computing the
Fréchet mean in each iteration requires Riemannian optimization with time complexity O(ν) [44],
and the clustering process involves O(ω) alternating updates of {uij} and {cj}, then the total time
complexity is O(νω). Since both ν and ω are typically large, clustering becomes computationally
infeasible for large-scale data. Therefore, reducing the time complexity is of critical importance.

3.2 Riemannian Fuzzy K-Means

From the above analysis, it is clear that due to the constraint cj ∈ M, M = ⊗Q
p=1Mp, Riemannian

optimization is unavoidable. Therefore, if we aim to reduce the overall complexity, the only viable
approach is to reconsider the treatment of {uij}.

If a smooth mapping uij = f(cj) can be found, such that JKM becomes a differentiable function of
cj , then alternating optimization can be avoided entirely. However, for standard K-Means, this is not
possible. The update rule for uij is inherently non-smooth and discrete:

uij =

{
1, j = argminj∈{1,...,C}

∑Q
p=1 d

2
p(x

p
i , c

p
j),

0, otherwise.
(5)

To address this issue, we adopt the relaxed version of K-Means, Fuzzy K-Means, whose optimization
objective is given by:

min
cj ,uij

JFK(uij , cj) =

N∑
i=1

C∑
j=1

um
ijd

2(xi, cj) =

N∑
i=1

C∑
j=1

Q∑
p=1

um
ijd

2
p(x

p
i , c

p
j)

s.t.
C∑

j=1

uij = 1, uij ≥ 0, ∀i = 1, . . . , N, ∀j = 1, . . . , C

s.t. cj ∈ M, M = ⊗Q
p=1Mp, ∀j = 1, . . . , C

(6)

For fixed {cj}, the optimal memberships uij are given in closed form by:

uij(cj) = argmin
uij≥0,

∑C
j=1 uij=1

(
N∑
i=1

C∑
j=1

Q∑
p=1

um
ijd

2
p(x

p
i , c

p
j)

)
=

 C∑
k=1

(∑Q
p=1 d

2
p(x

p
i , c

p
j)∑Q

p=1 d
2
p(x

p
i , c

p
k)

) 1
m−1

−1

, (7)

4

By substituting uij(cj) into JFK , the objective function JFK can be expressed as an optimization
problem depending solely on {cj}, specifically:

JFK

(
uij(cj), cj

)
=

N∑
i=1

C∑
j=1

[
C∑

k=1

(∑Q
p=1 d

2
p(x

p
i , c

p
j)∑Q

p=1 d
2
p(x

p
i , c

p
k)

) 1
m−1

]−m Q∑
p=1

d2p(x
p
i , c

p
j)︸ ︷︷ ︸

A1

=

N∑
i=1

C∑
j=1

((Q∑
p=1

d2p(x
p
i , c

p
j)
) 1

m−1 Si

)−m
Q∑

p=1

d2p(x
p
i , c

p
j) =

N∑
i=1

C∑
j=1

(Q∑
p=1

d2p(x
p
i , c

p
j)
)− 1

m−1 S−m
i

=

N∑
i=1

S−m
i

C∑
j=1

(Q∑
p=1

d2p(x
p
i , c

p
j)
)− 1

m−1 =

N∑
i=1

S1−m
i =

N∑
i=1

(
C∑

j=1

(Q∑
p=1

d2p(x
p
i , c

p
j)
)− 1

m−1

)1−m

︸ ︷︷ ︸
A2

.

(8)

Let Si =
∑C

j=1

(∑Q
p=1 d

2
p(x

p
i , c

p
j)
)− 1

m−1

be an intermediate variable introduced during simplifica-
tion. By simplifying to form A2, the objective function JFK is expressed solely in terms of {cj}.
This enables Riemannian optimization to be performed directly on {cj}, without alternating between
{uij} and {cj}.

It is important to note that the simplification from A1 to A2 is necessary, because computing the
gradient of Equation (4) requires evaluating a triple sum, while differentiating A1 involves a quadruple
sum. Only by converting to the A2 form, also involving a triple sum, can we ensure that this step
does not introduce additional computational cost.

Analyze the time complexity of optimizing JFK : since the time complexity of taking the derivative of
(4) and that of A2 are the same (both have closed-form solutions), and operations such as computing
the Riemannian gradient and Riemannian Hessian during the optimization process also have identical
complexity, while (4) requires ω alternating updates between {uij} and {cj}, A2 only requires one
optimization. Therefore, we have successfully reduced the time complexity from O(νω) to O(ν).

Specifically, when the distance on the product manifold is replaced by the distance on the manifold
M, A2 can be further simplified as (9). For convenience, we will also use the notation in (9) in the
following sections.

JFK

(
uij(cj), cj

)
=

N∑
i=1

(
C∑

j=1

d(xi, cj)
− 2

m−1

)1−m

, d(xi, cj) =

√√√√ Q∑
p=1

d2p(x
p
i , c

p
j), cj ∈ M = ⊗Q

p=1Mp

(9)

3.3 Radan on Product Manifolds

To further accelerate the RFK algorithm, we modify the Adan optimizer [21] and adapt it to manifolds.
Adan is an algorithm that incorporates Nesterov acceleration [45] into adaptive optimization [46].
We expect that this type of Nesterov method can also be effective on product manifolds.

For Adan, we adopt a standard modification strategy [47]. Our adaptation of Adan consists of three
main components: updating momentum via parallel transport, maintaining the second-order moment
as a scalar, and performing updates using the exponential map. Specifically, let Riemannian Adan at
the t-th iteration involve parameters {gpt ,m

p
t , v

p
t , z

p
t , n

p
t , u

p
t , α

p
t }, where g denotes the Riemannian

gradient, m is the momentum, v is an estimate of the Riemannian gradient difference, z and n are
the estimations of the second-order moment of the gradient, u is the update direction, and α is the
learning rate, with p indicating the component on the p-th manifold Mp. During the update of mp

t+1,
we apply parallel transport, i.e., mp

t = βp
1tφ

p(mt−1) + (1− βp
1t)g

p
t , similar updates are applied to

all other vector-based quantities involving subtraction. For the scalar maintenance of np
t , we use

the update np
t = βp

3tn
p
t−1 + (1 − βp

3t)∥z
p
t ∥2yp

t
. Finally, the parameter update is conducted via the

exponential map: ypt+1 = Expp(−αp
tu

p
t).

Figure 2 presents the update details of Adan, Radan, and Radam on the product manifold, using the
simplified notation from Equation (9). Here, mt = (m1

t , . . . ,m
Q
t), β1t = (β1

1t, . . . , β
Q
1t), and other

variables are similarly updated on each component manifold.

5

No. 1 / 1

(a) Adan optimizer

No. 1 / 1

(b) Radan optimizer

No. 1 / 1

(c) Radam optimizer

Figure 2: Update Process Illustration of Adan, Radan, and Radam Optimizers.

To characterize its local convergence rate, We adopt a standard approach by analyzing the algorithm’s
performance in a region where geodesic convexity holds, as the vicinity of a local minimum is
guaranteed to be geodesically convex under standard second-order optimality conditions [47]. In
this setting, we assume the product manifold M is bounded by a diameter D∞ and has a curvature
function ζ(κ, c). This is also a common assumption in the literature [23].
Theorem 3.1. Let yt be the sequence generated by the Radan algorithm. Under the standard
assumptions, the regret bound RT satisfies the following. The proof can be found in Appendix A.1.

RT ≤ ζ(κ, c) · (3− 2β1)ηG
2
√
T
√
1 + logT

2(1− β1)3
+

2ηβ1G

(1− β1)3

√
T

+
GD2

∞(1 + 2β2)
√
T

2(1− β1) · η
+

T∑
t=1

4D2
∞G2β2t

1− β1
+

T∑
t=1

√
t(1 + 2β2)GD2

∞β1t

η(1− β1)

(10)

Theorem 3.2. In the bound Equation (10), any non-summation term K(T) satisfies o
(

K(T)
T

)
=

0. For the summation terms, as long as the parameter decay conditions o
(∑T

t=1 β1t

√
t

T

)
= 0,

o
(∑T

t=1 β2t

T

)
= 0 and β3t = 1− 1

t are met, Radan converges to the optimum. Here, o(·) represent
asymptotically vanishing terms. The proof can be found in Appendix A.2.

While our convergence proof requires decaying β, our experiments adopt the standard practice of
using fixed values for their proven empirical effectiveness and simplicity. By optimizing Equation
(9), we obtain the final cluster centers {cj} upon completion. Then, by applying Equation (7), we
compute the final assignment results {uij}, completing the entire clustering process.

3.4 Calculate Riemannian Gradient

During the Riemannian optimization process, it is also necessary to compute the Riemannian gradient.
Below, we provide the expressions for the Riemannian gradient on three constant curvature manifolds:
Euclidean space, hyperspherical manifold, and hyperbolic space.
Theorem 3.3. On a single constant-curvature manifold Rr, Ss,K , or Hh,K , the Riemannian gradient
of the Riemannian Fuzzy K-Means objective function JFK with respect to the cluster center ck is
uniformly expressed as:

gradck
JFK = −2

N∑
i=1

S−m
i d(xi, ck)

− 2m
m−1 Logck (xi), (11)

where Logck(xi) denotes the logarithmic map of point xi at ck. The Logck(xi) on three types of
constant-curvature manifolds are given as follows. The proof can be found in Appendix A.3.

Logc(x) =


x− c, if x, c ∈ Rr,

θ

sin(θ)
(x− cos(θ) c) , θ = cos−1(K2⟨c, x⟩), if x, c ∈ Ss,K ,

θ

sinh(θ)

(
x+K2⟨c, x⟩h c

)
, θ = cosh−1(K2⟨c, x⟩h), if x, c ∈ Hh,K .

(12)

After computing according to Equation (11), the expression of the Riemannian gradient can be
obtained. By combining the Riemannian gradient with the corresponding logarithmic map, exponen-
tial map, and other operations on different manifolds, all steps of the Riemannian optimization to
solve RFK can be completed. Thereafter, we conduct extensive experiments on the RFK and Radan
algorithms to validate their speed and superior performance.

6

4 Experiments

In this section, we conducted extensive experiments to answer the following three questions:

• Q1: How much faster is the RFK algorithm compared to the NRF algorithm when run on
product manifolds? Does it achieve a lower loss value?

• Q2: When running Radan on product manifolds, does it accelerate the RFK algorithm
compared to Radam with standard hyperparameters?

• Q3: Compared to the current state-of-the-art clustering algorithms, can RFK demonstrate
better advantages for data represented on product manifolds?

We also provide a analysis of the sensitivity of the fuzziness parameter m in the Appendix E.2.

4.1 Datasets

The datasets on product manifolds include four parts: synthetic data, graph embedding data and
mixed-curvature VAE latent space data.

Synthetic Data: We use the ’gaussian mixture’ function from Manify [48] to generate data with 3
clusters on different product manifolds, and generate a single set of labels for clustering.

Graph Embedding Data: For the graph embedding data, it is divided into two parts. One part
selects the optimal embedding from

{(
H2
)2

, H2E2, H2S2, S2E2,
(
S2
)2

, H4, E4, S4
}

by means
of curvature estimation [9]. The other part simply embeds the data into the 2D Poincaré disk D [49].

Mixed-curvature VAE Latent Space: We use data from the latent space of a mixed-curvature
variational autoencoder as one of the datasets [50], including the MNIST dataset with over 600,000
samples. These product manifold representations are derived from the Manify [48].

Overall, Table 5 presents all the datasets we used and other relevant details.

4.2 Experiments Setup

4.2.1 Experiment Setup for Q1

To verify that our RFK algorithm is faster than NRK, we ran both algorithms on the aforementioned
datasets and recorded their execution times. To ensure fair timing comparisons, we replaced non-
vectorized operations with matrix-based implementations for NRK (see Equation (7)). For the
optimization part, we used the proposed Radan optimizer for both methods, with parameters set as
{Radan: βp

1 = 0.7, βp
2 = 0.99, βp

3 = 0.99}, and a common learning rate of 0.5 for testing. For RFK, the
stopping criterion for Radan was that the change in loss between iteration t and t+ 1 was less than
1e− 4. For NRK, there are two convergence criteria: the condition for updating the Fréchet mean is
the same as in RFK, while the global convergence condition is that the distance between the Fréchet
centers of two consecutive iterations is less than 1e−4.

4.2.2 Experiment Setup for Q2

To evaluate the optimization capabilities of Radan and Radam on the RFK loss function, we designed
Experiment 2, where both optimizers adopt their standard parameter settings: {Radan: βp

1 = 0.7,
βp
2 = 0.99, βp

3 = 0.99}, {Radam: βp
1 = 0.99, βp

2 = 0.999}. We trained using a range of learning
rates {0.1, 0.3, 0.5, 0.7, 1}, comparing the minimum and last values of the mean RFK loss curve
under different learning rates. Each optimizer was run for 300 iterations.

4.2.3 Experiment Setup for Q3

To compare the clustering performance of the RFK algorithm, we evaluated it on the above datasets
against 10 competitive algorithms [51, 52, 53, 54, 55, 56, 57, 58, 59], some recent methods focus
on hyperbolic or spherical manifolds, but our experiments target general product manifolds, so they
are not directly comparable (see Appendix C). We use five metrics: ACC [60, 61], NMI [62], ARI
[63], F1 [64], and Purity [65]. RFK was optimized using Radan. Detailed experimental settings are
provided in Appendix D.2.

7

Table 1: RFK & NRK Time (s) and Cost on Datasets, OM means out-of-memory
Method Gauss R4 Gauss H4 Gauss S2H2 Gauss R2S2H2 Gauss S2(H2)2 Gauss R4S4H4 Gauss R16S16H16 CiteSeer

Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss

RFK 0.07 1499.84 0.21 1832.57 0.19 791.87 0.23 1569.92 0.45 1518.82 0.28 3549.86 0.25 35869.52 1.02 17.77
NRK 0.60 1451.24 36.27 1845.32 2.37 791.87 6.12 1569.92 63.90 1518.82 2.78 3549.86 0.82 35869.54 52.23 17.89

Method Cora PolBlogs Olsson Paul PoolBooks CIFAR-100 Lymphoma MNIST
Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss

RFK 0.29 16.00 0.13 39.54 0.17 65.88 0.25 88.06 0.07 127.00 67.28 46450.93 3.61 878.25 82.76 668268.50
NRK 68.46 16.01 0.44 39.54 4.82 65.88 606.23 88.47 2.40 127.01 OM OM OM OM OM OM

Table 2: Radan & Radam Min and Last Loss on Various Datasets, OM means out-of-memory
Method Gauss R4 Gauss H4 Gauss S2H2 Gauss R2S2H2 Gauss S2(H2)2 Gauss R4S4H4 Gauss R16S16H16 CiteSeer

Min Last Min Last Min Last Min Last Min Last Min Last Min Last Min Last

Radan 1499.84 1499.84 1832.57 1832.58 791.87 792.61 1518.82 1518.89 1569.92 1569.98 3459.86 3459.86 35869.50 35869.50 18.61 18.62
Radam 1533.27 1533.27 2016.92 2016.92 814.98 814.98 1544.57 1546.15 1619.51 1621.24 3627.76 3627.76 36047.06 36090.44 39.35 41.45

Method Cora PolBlogs Olsson Paul PoolBooks CIFAR-100 Lymphoma MNIST
Min Last Min Last Min Last Min Last Min Last Min Last Min Last Min Last

Radan 17.23 17.23 39.60 39.74 66.92 66.93 83.95 84.11 126.65 126.71 48850.73 49127.77 878.26 878.27 662611.31 667403.93
Radam 36.60 44.79 61.43 64.19 66.08 66.08 80.70 80.70 126.86 126.86 70860.14 71248.29 3381.86 3716.99 746378.43 727619.73

4.3 Experiments Result

4.3.1 Experiment Result for Q1

Table 1 presents the runtime and final loss of the RFK and NRK algorithms. As shown, RFK achieves
speedups of over 100× compared to NRK on some datasets. On certain large-scale datasets, NRK runs
out of memory and fails to produce results. Although RFK and NRK optimize the same objective,
RFK generally attains a lower final loss. Figure 3 shows the loss curves of RFK and NRK on selected
datasets. As observed, the NRK curves exhibit step-like drops due to alternating updates of the
assignment matrix and the Fréchet center, whereas the RFK curves decrease more smoothly, require
significantly fewer iterations, and converge to a lower final value.

0 50 100 150 200 250 300

Iteration Count

1000

1500

2000

2500

3000

3500

4000

C
lu

st
er

in
g

Lo
ss

RFK

NRK

(a) Gauss R4

0 2000 4000 6000 8000 10000 12000 14000 16000

Iteration Count

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

C
lu

st
er

in
g

Lo
ss

RFK
NRK

100 150 200 250
1800

2000

2200

2400

2600

(b) Gauss H4

0 50 100 150 200 250 300 350 400 450

Iteration Count

700

800

900

1000

1100

1200

1300

1400

1500

C
lu

st
er

in
g

Lo
ss

RFK

NRK

(c) Gauss S2H2

0 100 200 300 400 500 600 700 800 900

Iteration Count

1500

2000

2500

3000

C
lu

st
er

in
g

Lo
ss

RFK
NRK

(d) Gauss R2S2H2

0 1000 2000 3000 4000 5000 6000 7000

Iteration Count

1400

1600

1800

2000

2200

2400

2600

2800

C
lu

st
er

in
g

Lo
ss

RFK

NRK

-50 0 50 100

1600

1800

2000

2200

2400

2600

(e) Gauss S2(H2)2

0 50 100 150 200 250 300 350 400

Iteration Count

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

C
lu

st
er

in
g

Lo
ss

RFK
NRK

(f) Gauss R4S4H4

0 20 40 60 80 100 120

Iteration Count

3.5

4

4.5

5

5.5

6

6.5

C
lu

st
er

in
g

Lo
ss

104

RFK
NRK

(g) Gauss R16S16H16

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration Count

0

100

200

300

400

500

600

700

800

900

1000

C
lu

st
er

in
g

Lo
ss

RFK
NRK

50 100 150 200

18

19

20

21

22

(h) CiteSeer

0 1000 2000 3000 4000 5000 6000 7000 8000

Iteration Count

0

50

100

150

200

250

300

350

400

450

C
lu

st
er

in
g

Lo
ss

RFK

NRK

0 50 100 150
0

100

200

300

400

(i) Cora

0 50 100 150

Iteration Count

0

50

100

150

200

250

300

350

400

C
lu

st
er

in
g

Lo
ss

RFK
NRK

(j) PolBlogs

Figure 3: Clustering loss curves for RFK and NRK

4.3.2 Experiment Result for Q2

Table 2 presents the average loss reduction results across different datasets using the Radan and
Radam optimizers. It can be seen that Radan generally achieves lower loss values than Radam.
Figure 4 shows the loss curves for selected datasets, with the red curve representing the mean loss of
Radan and the blue curve representing the mean loss of Radam; the shaded areas indicate variance.
Radan consistently converges faster than Radam, typically within 50–100 iterations, whereas Radam
requires around 300 iterations. Additionally, Radan generally achieves lower final loss values.

4.3.3 Experiment Result for Q3

Table 3 presents the ACC metric of different clustering algorithms across various datasets. The
Dataset column lists all the datasets used, and Signature indicates the geometric structure of each
dataset. RFK is our proposed algorithm. As shown in the table, our method achieves the best
performance on nearly every dataset. In particular, for the MNIST dataset with 600,000 data points,

8

0 50 100 150 200 250 300

Iteration Count

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(a) Gauss R4

0 50 100 150 200 250 300

Iteration Count

1000

2000

3000

4000

5000

6000

7000

8000

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(b) Gauss H4

0 50 100 150 200 250 300

Iteration Count

500

1000

1500

2000

2500

3000

3500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(c) Gauss S2H2

0 50 100 150 200 250 300

Iteration Count

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(d) Gauss R2S2H2

0 50 100 150 200 250 300

Iteration Count

1000

2000

3000

4000

5000

6000

7000

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(e) Gauss S2(H2)2

0 50 100 150 200 250 300

Iteration Count

3000

4000

5000

6000

7000

8000

9000

10000

11000

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(f) Gauss R4S4H4

0 50 100 150 200 250 300

Iteration Count

3

3.5

4

4.5

5

5.5

6

C
lu

st
er

in
g

Lo
ss

104

Radan ± std
Radam ± std
Radan mean
Radam mean

(g) Gauss R16S16H16

0 50 100 150 200 250 300

Iteration Count

-200

0

200

400

600

800

1000

1200

1400

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(h) CiteSeer

0 50 100 150 200 250 300

Iteration Count

-200

0

200

400

600

800

1000

1200

1400

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(i) Cora

0 50 100 150 200 250 300

Iteration Count

-500

0

500

1000

1500

2000

2500

C
lu

st
er

in
g

Lo
ss

Radan ± std
Radam ± std
Radan mean
Radam mean

(j) PolBlogs

Figure 4: Clustering loss curves for Radan and Radam

Table 3: ACC for all benchmarks. OM means out-of-memory
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 96.00 95.40 96.02 99.00 96.00 96.10 88.80 37.30 78.05 73.60 97.20
H4 99.80 99.00 40.42 99.10 55.40 39.30 99.80 47.80 60.30 90.41 66.50

S2H2 95.20 94.80 83.91 88.00 87.70 87.30 97.70 41.20 68.46 74.00 87.70
R2S2H2 96.20 95.80 61.20 99.40 75.80 60.36 93.70 45.10 82.07 46.22 86
S2(H2)2 97.80 97.80 44.23 77.05 47.70 44.67 96.60 43.60 73.21 60.37 61.20
R4S4H4 99.10 98.90 39.55 68.40 64.70 41.50 97.20 38.70 87.17 62.21 95.90

R16S16H16 98.00 77.10 37.98 76.30 40.50 37.71 38.60 37.40 55.38 63.93 53.50

G
ra

ph

CiteSeer (H2)2 25.36 20.09 20.80 24.91 20.05 21.60 19.86 25.35 19.81 23.92 20.62
Cora H4 29.22 18.19 18.06 20.57 18.27 18.83 18.15 29.10 17.08 20.00 18.19

PolBlogs (S2)2 94.36 93.62 93.90 54.66 93.54 94.01 68.66 51.96 54.65 59.16 93.70
Olsson D 67.72 67.45 61.57 60.24 60.37 60.71 44.16 60.73 51.31 57.25 60.21

Paul D 52.73 48.15 47.05 45.47 46.57 46.86 22.94 13.88 26.01 46.00 44.03
PolBooks D 81.90 68.57 39.68 34.27 36.34 42.44 OM OM 8.81 44.12 36.12

VA
E CIFAR-100 (H2)4 71.19 OM 5.75 OM 6.00 5.53 OM OM OM 5.21 OM

Lymphoma (S2)2 100.00 OM 78.28 OM 78.28 OM OM OM OM 78.28 OM
MNIST S2E2H2 96.09 OM 12.09 OM 15.40 13.01 OM OM OM 11.42 OM

most clustering algorithms fail to produce results; K-Means achieves only about 12% accuracy,
whereas RFK reaches 96.09% accuracy, which is a remarkable outcome. This result is reasonable
because MNIST is well represented in non-Euclidean space, where existing algorithms cannot respect
the intrinsic geometric structure, while RFK effectively operates in non-Euclidean space, yielding
this impressive performance. Other results can be found in Appendix E.1.

5 Conclusion

In this paper, we address an open problem and propose the RFK algorithm, which reduces the time
complexity from O(νω) to O(ν). Furthermore, we introduce Radan, an adaptive optimization method
with Nesterov acceleration designed for product manifolds. Extensive experiments demonstrate that
our algorithm achieves remarkable performance: on some certain datasets, it runs over 100 times
faster than NRK while achieving better clustering results and lower loss values. Additionally, Radan
converges faster than Radam under the RFK loss with standard hyperparameters. Across almost all
datasets, RFK significantly outperforms other state-of-the-art clustering algorithms in all clustering
metrics.

6 Limitation

We conducted extensive clustering experiments with the RFK algorithm across numerous datasets.
Furthermore, we plan to incorporate RFK as part of a larger project and report its overall impact on
the project’s performance. The Radan algorithm is not limited to optimizing the RFK loss. Future
work will investigate Radan’s performance on different objective functions.

9

References
[1] Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai, and George E

Dahl. Embedding text in hyperbolic spaces. arXiv preprint arXiv:1806.04313, 2018.

[2] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. Advances in neural information processing systems, 30, 2017.

[3] Andreas Bjerregaard, Søren Hauberg, and Anders Krogh. Riemannian generative decoder. In
ICML 2025 Generative AI and Biology (GenBio) Workshop, 2025.

[4] Aditya Sinha, Siqi Zeng, Makoto Yamada, and Han Zhao. Learning structured representations
with hyperbolic embeddings. Advances in Neural Information Processing Systems, 37:91220–
91259, 2024.

[5] Raiyan R. Khan, Philippe Chlenski, and Itsik Pe’er. Hyperbolic genome embeddings. In The
Thirteenth International Conference on Learning Representations, 2025.

[6] Paolo Mandica, Luca Franco, Konstantinos Kallidromitis, Suzanne Petryk, and Fabio Galasso.
Hyperbolic learning with multimodal large language models. In European Conference on
Computer Vision, pages 382–398. Springer, 2024.

[7] Philippe Chlenski, Ethan Turok, Antonio Khalil Moretti, and Itsik Pe’er. Fast hyperboloid
decision tree algorithms. In The Twelfth International Conference on Learning Representations,
2024.

[8] Boris Bonev, Max Rietmann, Andrea Paris, Alberto Carpentieri, and Thorsten Kurth. Attention
on the sphere. arXiv preprint arXiv:2505.11157, 2025.

[9] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature represen-
tations in product spaces. In International conference on learning representations, 2018.

[10] Shen Wang, Xiaokai Wei, Cicero Nogueira Nogueira dos Santos, Zhiguo Wang, Ramesh
Nallapati, Andrew Arnold, Bing Xiang, Philip S Yu, and Isabel F Cruz. Mixed-curvature
multi-relational graph neural network for knowledge graph completion. In Proceedings of the
web conference 2021, pages 1761–1771, 2021.

[11] Philippe Chlenski, Quentin Chu, Raiyan R Khan, Kaizhu Du, Antonio Khalil Moretti, and Itsik
Pe’er. Mixed-curvature decision trees and random forests. arXiv preprint arXiv:2410.13879,
2024.

[12] Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and Philip S Yu. A
self-supervised mixed-curvature graph neural network. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 4146–4155, 2022.

[13] Daniel McNeela, Frederic Sala, and Anthony Gitter. Mixed-curvature representation learning
for biological pathway graphs. In 2023 ICML Workshop on Computational Biology, Honolulu,
Hawaii, USA, 2023.

[14] Zhirong Xu, Shiyang Wen, Junshan Wang, Guojun Liu, Liang Wang, Zhi Yang, Lei Ding, Yan
Zhang, Di Zhang, Jian Xu, et al. Amcad: adaptive mixed-curvature representation based adver-
tisement retrieval system. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE), pages 3439–3452. IEEE, 2022.

[15] Alex Chen, Philippe Chlenski, Kenneth Munyuza, Antonio Khalil Moretti, Christian A. Naes-
seth, and Itsik Pe’er. Variational combinatorial sequential monte carlo for bayesian phylogenetics
in hyperbolic space. In Yingzhen Li, Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan, edi-
tors, Proceedings of The 28th International Conference on Artificial Intelligence and Statistics,
volume 258 of Proceedings of Machine Learning Research, pages 2962–2970. PMLR, 03–05
May 2025.

[16] Li Sun, Feiyang Wang, Junda Ye, Hao Peng, and S Yu Philip. Congregate: Contrastive graph
clustering in curvature spaces. In IJCAI, pages 2296–2305, 2023.

10

[17] Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwer-
das, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, et al. Geomstats: A python
package for riemannian geometry in machine learning. Journal of Machine Learning Research,
21(223):1–9, 2020.

[18] Jinghui Yuan, Fangyuan Xie, Feiping Nie, and Xuelong Li. Riemannian optimization on relaxed
indicator matrix manifold. arXiv preprint arXiv:2503.20505, 2025.

[19] Mariano Tepper, Anirvan M Sengupta, and Dmitri Chklovskii. Clustering is semidefinitely not
that hard: Nonnegative sdp for manifold disentangling. Journal of Machine Learning Research,
19(82):1–30, 2018.

[20] Vinod Kumar Dehariya, Shailendra Kumar Shrivastava, and RC Jain. Clustering of image
data set using k-means and fuzzy k-means algorithms. In 2010 International conference on
computational intelligence and communication networks, pages 386–391. IEEE, 2010.

[21] Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(12):9508–9520, 2024.

[22] Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with
logarithmic regret bounds. In International conference on machine learning, pages 2545–2553.
PMLR, 2017.

[23] Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
International Conference on Learning Representations, 2019.

[24] Francisco Jos, AuthorNameForHeading-FJ Herranz, and A Ballesteros. Spaces of constant
curvature. In none, 1967.

[25] Dmitrij V Alekseevskij, Ernest B Vinberg, and Aleksandr S Solodovnikov. Geometry of spaces
of constant curvature. In Geometry II: Spaces of Constant Curvature, pages 1–138. Springer,
1993.

[26] Marshall Whittlesey. Spherical geometry and its applications. Chapman and Hall/CRC, 2019.

[27] Birger Iversen. Hyperbolic geometry. Number 25. Cambridge University Press, 1992.

[28] Michael Tsamparlis. Lorentz inner product and lorentz tensors. In Solved Problems and
Systematic Introduction to Special Relativity, pages 69–96. Springer, 2024.

[29] Neil He, Menglin Yang, and Rex Ying. Lorentzian residual neural networks. In Proceedings
of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pages
436–447, 2025.

[30] Marco Fumero, Luca Cosmo, Simone Melzi, and Emanuele Rodolà. Learning disentangled
representations via product manifold projection. In International conference on machine
learning, pages 3530–3540. PMLR, 2021.

[31] Yui Man Lui. Human gesture recognition on product manifolds. The Journal of Machine
Learning Research, 13(1):3297–3321, 2012.

[32] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means clustering algorithm.
Pattern recognition, 36(2):451–461, 2003.

[33] Shi Na, Liu Xumin, and Guan Yong. Research on k-means clustering algorithm: An improved
k-means clustering algorithm. In 2010 Third International Symposium on intelligent information
technology and security informatics, pages 63–67. Ieee, 2010.

[34] Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm. IEEE
access, 8:80716–80727, 2020.

[35] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm:
A comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

11

[36] Jinglin Xu, Junwei Han, Kai Xiong, and Feiping Nie. Robust and sparse fuzzy k-means
clustering. In IJCAI, pages 2224–2230, 2016.

[37] Daniel Krasnov, Dresya Davis, Keiran Malott, Yiting Chen, Xiaoping Shi, and Augustine
Wong. Fuzzy c-means clustering: A review of applications in breast cancer detection. Entropy,
25(7):1021, 2023.

[38] Hongzong Li and Jun Wang. From soft clustering to hard clustering: A collaborative annealing
fuzzy c-means algorithm. IEEE Transactions on Fuzzy Systems, 32(3):1181–1194, 2023.

[39] R Suganya and R Shanthi. Fuzzy c-means algorithm-a review. International Journal of Scientific
and Research Publications, 2(11):1, 2012.

[40] James C Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means clustering
algorithm. Computers & geosciences, 10(2-3):191–203, 1984.

[41] Su I Iao, Yidong Zhou, and Hans-Georg Müller. Deep fréchet regression. Journal of the
American Statistical Association, (just-accepted):1–30, 2025.

[42] Chengmao Wu and Sifan Pan. Fuzzy c-poincaré fréchet means clustering in hyperbolic space.
Expert Systems with Applications, page 128245, 2025.

[43] Louis Capitaine, Jérémie Bigot, Rodolphe Thiébaut, and Robin Genuer. Fréchet random forests
for metric space valued regression with non euclidean predictors. Journal of Machine Learning
Research, 25(355):1–41, 2024.

[44] Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher
De Sa. Differentiating through the fréchet mean. In International conference on machine
learning, pages 6393–6403. PMLR, 2020.

[45] Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, and Shuicheng Yan. Win: Weight-
decay-integrated nesterov acceleration for faster network training. Journal of Machine Learning
Research, 25(83):1–74, 2024.

[46] Dongdong Yue, Simone Baldi, Jinde Cao, and Bart De Schutter. Distributed adaptive opti-
mization with weight-balancing. IEEE Transactions on Automatic Control, 67(4):2068–2075,
2021.

[47] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University
Press, 2023.

[48] Philippe Chlenski, Kaizhu Du, Dylan Satow, Raiyan R Khan, and Itsik Pe’er. Manify: A python
library for learning non-euclidean representations. arXiv preprint arXiv:2503.09576, 2025.

[49] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embed-
dings. Advances in neural information processing systems, 32, 2019.

[50] Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational
autoencoders. In 8th international conference on learning representations (ICLR 2020)(virtual).
International Conference on Learning Representations, 2020.

[51] Haize Hu, Jianxun Liu, Xiangping Zhang, and Mengge Fang. An effective and adaptable
k-means algorithm for big data cluster analysis. Pattern Recognition, 139:109404, 2023.

[52] Abdulhady Abas Abdullah, Aram Mahmood Ahmed, Tarik Rashid, Hadi Veisi, Yassin Hussein
Rassul, Bryar Hassan, Polla Fattah, Sabat Abdulhameed Ali, and Ahmed S Shamsaldin. Ad-
vanced clustering techniques for speech signal enhancement: A review and metanalysis of fuzzy
c-means, k-means, and kernel fuzzy c-means methods. arXiv preprint arXiv:2409.19448, 2024.

[53] Feiping Nie, Runxin Zhang, Yu Duan, and Rong Wang. Unconstrained fuzzy c-means based
on entropy regularization: An equivalent model. IEEE Transactions on Knowledge and Data
Engineering, 2024.

[54] Guo Zhong and Chi-Man Pun. Improved normalized cut for multi-view clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(12):10244–10251, 2021.

12

[55] Xiaojun Chen, Joshua Zhexue Haung, Feiping Nie, Renjie Chen, and Qingyao Wu. A self-
balanced min-cut algorithm for image clustering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2061–2069, 2017.

[56] Dong Huang, Chang-Dong Wang, Jian-Sheng Wu, Jian-Huang Lai, and Chee-Keong Kwoh.
Ultra-scalable spectral clustering and ensemble clustering. IEEE Transactions on Knowledge
and Data Engineering, 32(6):1212–1226, 2019.

[57] Feiping Nie, Jitao Lu, Danyang Wu, Rong Wang, and Xuelong Li. A novel normalized-cut
solver with nearest neighbor hierarchical initialization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(1):659–666, 2023.

[58] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE transactions on pattern analysis and
machine intelligence, 35(1):171–184, 2012.

[59] Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and appli-
cations. IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–2781,
2013.

[60] Jinghui Yuan, Hao Chen, Renwei Luo, and Feiping Nie. A margin-maximizing fine-grained
ensemble method. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE, 2025.

[61] Shuo Wang, Shunyang Huang, Jinghui Yuan, Zhixiang Shen, and zhao kang. Cooperation of
experts: Fusing heterogeneous information with large margin. In Forty-second International
Conference on Machine Learning, 2025.

[62] Fangyuan Xie, Jinghui Yuan, Feiping Nie, and Xuelong Li. Dual-bounded nonlinear optimal
transport for size constrained min cut clustering. arXiv preprint arXiv:2501.18143, 2025.

[63] Jinghui Yuan, Chusheng Zeng, Fangyuan Xie, Zhe Cao, Mulin Chen, Rong Wang, Feiping Nie,
and Yuan Yuan. Doubly stochastic adaptive neighbors clustering via the marcus mapping. arXiv
preprint arXiv:2408.02932, 2024.

[64] Liang Du, Yunhui Liang, Mian Ilyas Ahmad, and Peng Zhou. K-means clustering based on
chebyshev polynomial graph filtering. In ICASSP 2024-2024 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 7175–7179. IEEE, 2024.

[65] Huajie Huang, Bo Liu, Xiaoyu Xue, Jiuxin Cao, and Xinyi Chen. Imbalanced credit card fraud
detection data: A solution based on hybrid neural network and clustering-based undersampling
technique. Applied Soft Computing, 154:111368, 2024.

[66] Tadashi Fujioka. Noncritical maps on geodesically complete spaces with curvature bounded
above. Annals of Global Analysis and Geometry, 62(3):661–677, 2022.

[67] Marc Arnaudon and Frank Nielsen. On approximating the riemannian 1-center. Computational
Geometry, 46(1):93–104, 2013.

[68] Foivos Alimisis and Bart Vandereycken. Geodesic convexity of the symmetric eigenvalue
problem and convergence of steepest descent. Journal of Optimization Theory and Applications,
203(1):920–959, 2024.

[69] Horst Alzer and Man Kam Kwong. On young’s inequality. Journal of Mathematical Analysis
and Applications, 469(2):480–492, 2019.

[70] Kisung You. Gradient of squared distance on a Riemannian manifold.

[71] Chengmao Wu and Sifan Pan. Fuzzy c-poincaré fréchet means clustering in hyperbolic space.
Expert Systems with Applications, 288:128245, 2025.

[72] Vladimir Jaćimović and Aladin Crnkić. Clustering in hyperbolic balls. arXiv preprint
arXiv:2501.19247, 2025.

13

[73] Sagar Ghosh and Swagatam Das. Consistent spectral clustering in hyperbolic spaces. arXiv
preprint arXiv:2409.09304, 2024.

[74] Fangfei Lin, Bing Bai, Kun Bai, Yazhou Ren, Peng Zhao, and Zenglin Xu. Contrastive
multi-view hyperbolic hierarchical clustering.

[75] Li Sun, Feiyang Wang, Junda Ye, Hao Peng, and Philip S Yu. Contrastive graph clustering in
curvature spaces. arXiv preprint arXiv:2305.03555, 2023.

14

Contents

1 Introduction 1

2 Preliminaries 2

2.1 Notations . 2

2.2 Constant-curvature Spaces and Product Manifolds 2

2.3 K-Means and Fuzzy K-Means . 3

3 Our proposed method 3

3.1 Naive Extension of K-Means . 3

3.2 Riemannian Fuzzy K-Means . 4

3.3 Radan on Product Manifolds . 5

3.4 Calculate Riemannian Gradient . 6

4 Experiments 7

4.1 Datasets . 7

4.2 Experiments Setup . 7

4.2.1 Experiment Setup for Q1 . 7

4.2.2 Experiment Setup for Q2 . 7

4.2.3 Experiment Setup for Q3 . 7

4.3 Experiments Result . 8

4.3.1 Experiment Result for Q1 . 8

4.3.2 Experiment Result for Q2 . 8

4.3.3 Experiment Result for Q3 . 8

5 Conclusion 9

6 Limitation 9

Appendices 17

A Proofs of Theorems 17

A.1 Proof of Theorem 3.1 . 17

A.1.1 Assumptions . 17

A.1.2 Proof Details . 17

A.1.3 Proof of Lemma . 23

A.2 Proof of Theorem 3.2 . 24

A.3 Proof of Theorem 3.3 . 24

A.3.1 Proof Details . 24

A.3.2 Proof of Lemma . 25

B Notations 27

15

C Related Work about Clustering on Manifold 27

D Details of the Experimental Setup 28

D.1 Datasets Description . 28

D.2 Experiment 3 Setup . 29

D.2.1 Benchmark Clustering Algorithms . 29

D.2.2 Clustering Accuracy (ACC) . 30

D.2.3 Normalized Mutual Information (NMI) 30

D.2.4 Adjusted Rand Index (ARI) . 31

D.2.5 F1 Score . 31

D.2.6 Purity . 31

E Additional Experimental Results 32

E.1 Experimental 3 Results . 32

E.2 Sensitivity Analysis . 33

F Run and Reference Code 34

F.1 Run the Code . 34

F.2 Replication Statement . 34

F.3 Acknowledgments . 34

F.4 Code of Riemannian Fuzzy K-Means . 35

F.5 Code of Riemannian Adan . 39

16

A Proofs of Theorems

A.1 Proof of Theorem 3.1

In this section, we will prove the Theorem 3.1, which provides the regret bound for the Radan
algorithm. Before proceeding, we make the following assumption. These assumptions are all
standard assumptions in Riemannian optimization.

A.1.1 Assumptions

Assumption 1. In the optimization problem solved by the Radan algorithm, the feasible domain is
geodesically bounded [66]. That is, for any geodesic γ(t) within the feasible domain D, its length
satisfies that: ∫ ∞

t0

∥γ(t)∥yt dt ≤ D∞ (13)

Furthermore, let Log denote the logarithmic map. Then we have the inequality

∥Logyt
(y)∥yt

≤ D∞ (14)

which we state as Lemma 1, and will prove later in the paper.

Assumption 2. We assume that in the Riemannian optimization problem solved by the Radan
algorithm, the curvature ζ of the Riemannian manifold on which the constraints are defined is
bounded. Specifically, in the Riemannian cosine law [67]:

d2(yt+1, y
∗) ≤ d2(yt+1, yt) · ζ(κ, c) + d2(yt, y

∗)− 2d(yt+1, yt)d(yt, y
∗) cosA (15)

the function ζ(κ, c) is assumed to be bounded.

Assumption 3. We assume that the gradient is bounded, i.e., the norm of the gradient at yt
satisfies∥gt∥yt ≤ G, which is a standard assumption commonly used in the proof of the theorem.

Assumption 4. Let the parallel transport of the vector mt−1 from yt−1 to yt be denoted by
φyt−1→yt(mt−1), which we abbreviate as φ(mt−1) when there is no ambiguity. We assume that the
parallel transport preserves the inner product of the vector, i.e.,

⟨mt−1, vt−1⟩yt−1
= ⟨φ(mt−1), φ(vt−1)⟩yt

. (16)

Assumption 5. We assume that in the Riemannian optimization problem solved by the Radan
algorithm, the objective function is geodesically convex [68]. That is, for any p, q ∈ M and t ∈ [0, 1],
the following holds:

f(γ(t)) ≤ (1− t)f(p) + tf(q), (17)

where γ is the geodesic connecting p and q. Furthermore, it can be shown that

f(yt)− f(y∗) ≤ ⟨−gt, Logyt
(y∗)⟩yt

, (18)

and we will provide a proof of this in Lemma 2.

A.1.2 Proof Details

We now present Theorem 3.1 along with its proof.
Theorem A.1. Let yt be the sequence generated by the Radan algorithm. Under the standard
assumptions, the regret bound RT satisfies the following.

RT ≤ η
√
T
√
1 + logTG

(1− β1)2

[
ζ(κ, c)(3− 2β1)G

2(1− β1)
+

β1√
1− β3t(1− δ)

]
+

GD2
∞(1 + 2β2)

√
T

2(1− β1) · η
+

T∑
t=1

4D2
∞G2β2t

1− β1
+

T∑
t=1

√
t(1 + 2β2)GD2

∞β1t

η(1− β1)

(19)

17

Proof. According to the Radan algorithm, the update from step t to step t+ 1 is as follows:

mt = β1tφ(mt−1) + (1− β1t)gt
vt = β2tφ(vt−1) + (1− β2t)(gt − φ(gt−1))

zt = gt + β2t(gt − φ(gt−1))

nt = β3tnt−1 + (1− β3t)∥zt∥2yt

ut = mt + β2tvt

αt =
ηt√
nt

+ ϵt

yt+1 = Expyt(−αtut)

(20)

Here, φ is a parallel translation, which is assumed to preserve the inner product. Exp(·) is the
exponential map, and Log(·) is the logarithmic map. Also, β1t = β1 · f1(t), where f1(t) is a decay
function, and β2t = β2 · f2(t), where f2(t) is a decay function.

Given yt+1 = Exp(−αtut), according to the cosine theorem on the manifold, we have:

a2 ≤ b2ζ(κ, c) + c2 − 2bc cosA (21)

Based on the assumption of bounded curvature, we have that ζ(κ, c) is bounded, let:

a = d(yt+1, y
∗), b = d(yt+1, yt), c = d(yt, y

∗). (22)

Then , that is:

d2(yt+1, y
∗) ≤ d2(yt+1, yt) · ζ(κ, c) + d2(yt, y

∗)− 2d(yt+1, yt)d(yt, y
∗) cosA (23)

According to the definition of cosA, we have:

d(yt+1, yt)d(yt, y
∗) cosA = ⟨Logyt

(yt+1), Logyt
(y∗)⟩yt

= −αt⟨ut, Logyt
(y∗)⟩yt

(24)

Substituting this into the above Equation (23), we get:

2d(yt+1, yt)d(yt, y
∗) cosA = −2αt⟨ut, Logyt(y

∗)⟩yt

≤ d2(yt, y
∗)− d2(yt+1, y

∗) + ζ(κ, c) · d2(yt+1, yt)

= d2(yt, y
∗)− d2(yt+1, y

∗) + ζ(κ, c)α2
t ∥ut∥2yt

(25)

By rearranging the terms and dividing both sides by αt, we obtain the following expression:

⟨−ut, Logyt
(y∗)⟩yt

≤ 1

2αt
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c)αt∥ut∥2yt

2
(26)

Since ut = mt + β2tvt, then:

⟨−mt, Logyt
(y∗)⟩yt

≤ 1

2αt
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c)αt∥ut∥2yt

2
+ β2t⟨vt, Logyt

(y∗)⟩yt

(27)
Also, because mt = β1tφ(mt−1) + (1− β1t)gt, finally we have:

⟨−(1− β1t)gt, Logyt(y
∗)⟩yt ≤

1

2αt
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c)αt∥ut∥2yt

2

+ β2t⟨vt, Logyt
(y∗)⟩yt

+ β1t⟨φ(mt−1), Logyt
(y∗)⟩yt

(28)

Dividing both sides of the equation by (1− β1t), we get the following expression:

⟨−gt, Logyt(y
∗)⟩yt ≤

1

2αt(1− β1t)
[d2(yt, y

∗)− d2(yt+1, y
∗)] +

ζ(κ, c) · αt

2(1− β1t)
∥ut∥2yt

+
β2t

(1− β1t)
⟨vt, Logyt

(y∗)⟩yt
+

β1t

1− β1t
⟨φ(mt−1), Logyt

(y∗)⟩yt

(29)

Since f(x) is geodesically convex, according to Lemma 2, we have the following:

f(yt)− f(y∗) ≤ ⟨−gt, Logyt
(y∗)⟩yt

(30)

18

The regret bound is:

RT =

T∑
t=1

f(yt)− f(y∗) ≤
T∑

t=1

⟨−gt, Logyt(y
∗)⟩yt

≤
T∑

t=1

1

2αt(1− β1t)
[d2(yt, y

∗)− d2(yt+1, y
∗)]︸ ︷︷ ︸

B1

+

T∑
t=1

ζ(κ, c)αt

2(1− β1t)
∥ut∥2yt︸ ︷︷ ︸

B2

+

T∑
t=1

β2t

(1− β1t)
⟨vt, Logyt

(y∗)⟩yt︸ ︷︷ ︸
B3

+

T∑
t=1

β1t

1− β1t
⟨φ(mt−1), Logyt

(y∗)⟩yt︸ ︷︷ ︸
B4

(31)

For B1: First, we estimate the B1 term and identify its upper bound.

B1 ≤ 1

2(1− β1)

[
T∑

t=1

(
1

αt
d2(yt, y

∗)− 1

αt
d2(yt+1, y

∗)

)]

=
1

2(1− β1)

[
T∑

t=2

(
1

αt
− 1

αt−1

)
d2(yt, y

∗) +
1

α1
d2(y1, y

∗)− 1

αT
d2(yT+1, y

∗)

]

≤ 1

2(1− β1)
·

T∑
t=2

(
1

αt
− 1

αt−1

)
D2

∞ +
1

α1
D2

∞

=
1

2(1− β1)
· 1

αT
D2

∞ − 1

α1
D2

∞ +
1

α1
D2

∞

=
1

2(1− β1)αT
D2

∞

=
D2

∞
2(1− β1) · ηT

√
nT (where ηT =

η√
T
)

(32)

The first inequality follows from the fact that β1t = β1f1(t), which decays term by term. Therefore,
1

1−β1t
≤ 1

1−β1
. The second inequality follows from the assumption that the feasible domain is

bounded, i.e.,
d(yt, y

∗) ≤ sup
x∈D

d(x, y∗) ≤ D∞. (33)

The mathematical logic behind the second inequality also includes 1
αt

≥ 1
αt−1

, which is derived from
β3t = 1− 1

t .

For B4: Next, we provide the upper bound for the fourth term B4. By Young’s inequality [69], after
making simple transformations, we can obtain the following expression:

⟨φ(mt−1), Logyt(y
∗)⟩yt ≤

ηt√
nt

∥φ(mt−1)∥2yt︸ ︷︷ ︸
B41

+

√
nt

ηt
∥Logyt(y

∗)∥2yt︸ ︷︷ ︸
B42

(34)

Considering B41: Since φ preserves the inner product, we can obtain the following equality:

∥φ(mt−1)∥2yt
= ⟨φ(mt−1), φ(mt−1)⟩yt

= ⟨mt−1,mt−1⟩yt−1
= ∥mt−1∥2yt−1

. (35)

Furthermore, we can perform an equivalence transformation on B41.

T∑
t=1

ηt√
nt

∥φ(mt−1)∥2yt
=

T∑
t=1

ηt√
nt

∥mt−1∥2yt−1
(36)

Since ∥gt+1∥yt+1
is bounded, it is evident that ∥mt+1∥yt+1

is also bounded. Therefore, to prove that
B41 is bounded, it suffices to show that

∑T
t=1

ηt√
nt
∥mt∥2yt

is bounded.

19

Since mt = β1tφ(mt−1)+ (1− β1t)gt, by using the recurrence relation and mathematical induction,
it can be proven that:

m1 = β11φ(m0) + (1− β11)g1 = (1− β11)g1
m2 = β12φ(m1) + (1− β12)g2 = β12(1− β11)φ(g1) + (1− β12)g2
m3 = β13φ(m2) + (1− β13)g3 = β12β13(1− β11)φ(g1) + (1− β12)β13φ(g2) + (1− β13)g3

...

mt =

t∑
j=1

(1− β1j)

(
t−j∏
k=1

β1,(t−k+1)

)
φ(gj)

(37)
According to Lemma 3, using the inequality∥∥∥∥∥

n∑
i=1

aipi

∥∥∥∥∥
2

≤

(
n∑

i=1

ai

)(
n∑

i=1

ai∥pi∥2
)
, (38)

we can derive the following.

∥mt∥2yt
= ∥

t∑
j=1

(1− β1j)

(
t−j∏
k=1

β1,(t−k+1)

)
φ(gj)∥2yt

≤

 t∑
j=1

(1− β1j)

t−j∏
k=1

β1,(t−k+1)

 t∑
j=1

(1− β1j)

t−j∏
k=1

β1,(t−k+1) · ∥gj∥2yj


≤

 t∑
j=1

(1− β1j)β
t−j
1

 t∑
j=1

(1− β1j)β
t−j
1 ∥gj∥2yj


(39)

Using the formula for the sum of a geometric series combined with the fact that β1 < 1:

1− β1j < 1,

t∑
j=1

βt−j
1 = βt

1

t∑
j=1

β−j
1 = βt

1 ·
β−1
1 (1− β−t

1)

1− β−1
1

≤ 1

1− β1
(40)

we can proceed to derive the desired result.

∥mt∥2yt
≤

 t∑
j=1

(1− β1j)β
t−j
1

 t∑
j=1

(1− β1j)β
t−j
1 ∥gj∥2yj

 ≤ 1

1− β1

t∑
j=1

βt−j
1 ∥gj∥2yj

(41)

For nt, because nt = β3tnt−1 + (1− β3t)∥zt∥2yt
, a similar discussion still applies:

n1 = β31 · n0 + (1− β31)∥z1∥2y1
= β31 · 0 + (1− β31)∥z1∥2y1

n2 = β32(1− β32)∥z1∥2y1
+ (1− β32)∥z2∥2y2

...

nt =
1

t

t∑
j=1

∥zj∥2yj

(42)

For zj , because of following:

zj = gj + β2t(gj − φ(gj−1)) = (1 + β2t)gj − β2tφ(gj−1) (43)

we have that:

∥zj∥yj ≥ (1 + β2t)∥gj∥yj − β2t∥φ(gj−1)∥yj = ∥gj∥yj + β2t(∥gj∥yj − ∥φ(gj−1)∥yj) (44)

gj is the gradient at yj , gj−1 is the gradient at yj−1. For the step - size formula, ηt = η√
t
, when t is

large, yj ≈ yj−1, assume ∥gj∥yj
≈ ∥φ(gj−1)∥yj

, similar to the Lipschitz continuity of the gradient.

20

Therefore, we have ∥zj∥2yj
≥ ∥gj∥2yj

. From another perspective, if ∥zj∥2yj
≤ ∥gj∥2yj

, one can always
restrict β2t = 0, in which case ∥zj∥2yj

≥ ∥gj∥2yj
. Then for nt:

nt =
1

t

t∑
j=1

∥zj∥2yj
≥ 1

t

t∑
j=1

∥gj∥2yj
(45)

Next, consider the sum:
T∑

t=1

ηt√
nt

∥mt∥2yt
≤

T∑
t=1

ηt
(1− β1)

·
∑t

j=1(β
t−j
1 ∥gj∥2yj

)√
1
t

∑t
j=1 ∥gj∥2yj

=

T∑
t=1

η

(1− β1)
·
∑t

j=1(β
t−j
1 ∥gj∥2yj

)√∑t
j=1 ∥gj∥2yj

≤ 2η

(1− β1)2
·

√√√√ T∑
j=1

∥gj∥2yj

(46)

Since we assume the gradient is bounded, i.e., ∥gj∥yj ≤ G, we can proceed accordingly in the
analysis.

T∑
t=1

ηt√
nt

∥mt∥2yt
≤ 2η

(1− β1)2
·

√√√√ T∑
j=1

∥gj∥2yj
≤ 2η

(1− β1)2
·
√
TG2 =

2ηG

(1− β1)2
·
√
T (47)

In summary, we have:
T∑

t=1

β1t

1− β1t
· ηt√

nt
∥mt∥2yt

≤
T∑

t=1

β1

1− β1
· ηt√

nt
∥mt∥2yt

≤ 2ηβ1G

(1− β1)3
·
√
T (48)

Considering B42, we can directly use the boundedness of the feasible domain to obtain the following
expression:

T∑
t=1

√
nt

ηt
∥Logyt(y

∗)∥2yt
· β1t

1− β1t
≤ 1

1− β1

T∑
t=1

√
t · √nt

η
D2

∞ · β1t (49)

Since nt =
1
t

∑t
j=1 ∥zj∥2yj

, we have the following:

nt =
1

t

t∑
j=1

∥zj∥2yj

≤ 1

t

t∑
j=1

(
∥gj∥yj + β2t∥gj∥yj + β2t∥φ(gj−1)∥yj

)2
≤ 1

t
G2

t∑
j=1

(1 + 2β2t)
2

≤ 1

t
G2t (1 + 2β2)

2 ≤ (1 + 2β2)
2G2

(50)

The above expression still uses the bounded gradient assumption. Substituting the earlier result, we
obtain:

T∑
t=1

√
nt

ηt
∥Logyt

(y∗)∥2yt
· β1t

1− β1t
≤ (1 + 2β2)GD2

∞
1− β1

T∑
t=1

√
tβ1t

η
(51)

For B2, we aim to provide an upper bound for
∑T

t=1
ζ(κ,c)αt

2(1−β1t)
∥ut∥2yt

. According to the update rules:{
ut = mt + β2tvt
vt = β2tφ(vt−1) + (1− β2t)(gt − φ(gt−1))

(52)

21

According to the update rule for vt and using the triangle inequality, we have
∥vt∥yt

≤
(
(1−β2t)·∥gt−φ(gt−1)∥yt

+β2t∥φ(vt−1)∥yt

)
≤
(
(1−β2t)·(∥gt∥yt

+∥φ(gt−1)∥yt
)+β2t∥φ(vt−1)∥yt

)
(53)

Since (1− β2t) · (∥gt∥+ ∥φ(gt−1)∥yt
) + β2t∥φ(vt−1)∥yt

can be viewed as a convex combination
of (∥gt∥+ φ(gt−1)∥yt

) and ∥φ(vt−1)∥yt
, we have:

(1− β2t) · (∥gt∥yt + ∥φ(gt−1)∥yt) + β2t∥φ(vt−1)∥yt ≤ sup
yt

(∥gt∥yt + ∥φ(gt−1)∥yt) ≤ 2G. (54)

Therefore, based on the update rule for ut, together with the above result and the triangle inequality,
we obtain the following inequality:

∥ut∥2yt
= ∥mt + β2tvt∥2yt

≤ (∥mt∥yt + β2t · ∥vt∥yt)
2

≤ (supyt
∥mt∥yt

+ supyt
β2t · ∥vt∥yt

)2

≤
(G

1− β1
+ 2β2G

)2
≤ (

3− 2β1

1− β1
)2G2

(55)

Therefore, we can obtain the upper bound for B2 as follows:

B2 =

T∑
t=1

ζ(κ, c)αt

2(1− β1t)
∥ut∥2yt

≤
T∑

t=1

ζ(κ, c) · η
2(1− β1)

√
t
(
3− 2β1

1− β1
)2G2

≤ ζ(κ, c) · η(3− 2β1)

2(1− β1)3

√√√√ T∑
t=1

1

t

√√√√ T∑
t=1

G4 ≤ ζ(κ, c) · (3− 2β1)ηG
2
√
T
√
1 + logT

2(1− β1)3

(56)

For B3, we can directly apply the Cauchy-Schwarz inequality to estimate it.
T∑

t=1

β2t

1− β1t
⟨vt, Logyt

(y∗)⟩yt
≤

T∑
t=1

β2t

1− β1
∥vt∥2yt

∥Logyt
(y∗)∥2yt

≤
T∑

t=1

β2t

1− β1
· (2G)2 ·D2

∞

≤
T∑

t=1

4β2t

1− β1
D2

∞G2

(57)

We also need to slightly rearrange and simplify the previously obtained expression for B1.

B1 =
D2

∞
2(1− β1) · ηT

√
nT ≤ D2

∞
√
T

2(1− β1) · η
√
(1 + 2β2)2G2 =

GD2
∞(1 + 2β2)

√
T

2(1− β1) · η
(58)

By organizing all the terms, we obtain the regret bound:

RT =

T∑
t=1

(f(yt)− f(y∗)) ≤
T∑

t=1

⟨−gt, Logyt
(y∗)⟩yt

≤ GD2
∞(1 + 2β2)

√
T

2(1− β1) · η
+

ζ(κ, c) · (3− 2β1)ηG
2
√
T
√
1 + logT

2(1− β1)3
+

T∑
t=1

4β2t

1− β1
D2

∞G2

+
2ηβ1G

(1− β1)3
·
√
T +

(1 + 2β2)GD2
∞

1− β1

T∑
t=1

√
tβ1t

η

(59)

Simplification yields the final expression for the regret bound:

RT ≤ ζ(κ, c) · (3− 2β1)ηG
2
√
T
√
1 + logT

2(1− β1)3
+

2ηβ1G

(1− β1)3

√
T

+
GD2

∞(1 + 2β2)
√
T

2(1− β1) · η
+

T∑
t=1

4D2
∞G2β2t

1− β1
+

T∑
t=1

√
t(1 + 2β2)GD2

∞β1t

η(1− β1)

(60)

22

A.1.3 Proof of Lemma

In this section, we will provide proofs for the three lemmas used in Theorem 3.1.

Lemma 1. If the feasible domain D ⊂ M is geodesically bounded (i.e., there exists a constant D∞
such that d(x, y) ≤ D∞ for all x, y ∈ D), then for any x ∈ D,

∥Logyt
(x)∥yt

≤ D∞, (61)
where x is any point, and Logyt

(·) is the logarithmic map on M.

Proof. By definition, the logarithmic map Logx(y) maps a point y ∈ M to a tangent vector in TxM
whose norm equals the geodesic distance d(x, y):

∥Logx(y)∥x = d(x, y). (62)
Since D is geodesically bounded, for any yt ∈ D and x ∈ D , d(yt, x) ≤ D∞. Combining the above
two results,

∥Logyt
(x)∥yt

= d(yt, x) ≤ D∞. (63)
This completes the proof.

Lemma 2. If f : M → R is a geodesically convex function, then for any yt ∈ M,
f(yt)− f(y∗) ≤

〈
−gradf(yt),Logyt

(y∗)
〉
yt
, (64)

where gradf(yt) is the Riemannian gradient of f at yt.

Proof. A function f is geodesically convex if, for any geodesic γ : [0, 1] → M,
f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)), ∀t ∈ [0, 1]. (65)

Let γ(0) = yt and γ(1) = y∗. Then,
f(γ(t)) ≤ (1− t)f(yt) + tf(y∗). (66)

Expand f(γ(t)) around t = 0 using the exponential map γ(t) = Expyt
(t · Logyt

(y∗)):

f(γ(t)) = f(yt) + t
〈
gradf(yt),Logyt

(y∗)
〉
yt

+ o(t). (67)

Substituting into the geodesic convexity inequality:
f(yt) + t

〈
gradf(yt),Logyt

(y∗)
〉
yt

+ o(t) ≤ (1− t)f(yt) + tf(y∗). (68)

Rearranging terms and dividing by t > 0:〈
gradf(yt),Logyt

(y∗)
〉
yt

+
o(t)

t
≤ f(y∗)− f(yt). (69)

Taking t → 0, the higher-order term o(t)
t → 0, yielding:

f(yt)− f(y∗) ≤ −
〈
gradf(yt),Logyt

(y∗)
〉
yt
. (70)

This completes the proof.

Lemma 3. Let p1,..., pk ∈ Rd and weights a1,...,ak ≥ 0. Then∥∥∥∥∥
k∑

i=1

aipi

∥∥∥∥∥
2

≤

(
k∑

i=1

ai

)(
k∑

i=1

ai∥pi∥2
)
. (71)

Proof. Define wi =
√
ai, vi :=

√
aipi. Then∥∥∥∥∥

k∑
i=1

aipi

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

wivi

∥∥∥∥∥
2

=

〈
k∑

i=1

wivi,

k∑
j=1

wjvj

〉
=

k∑
i=1

k∑
j=1

wiwj⟨vi, vj⟩

≤

(
k∑

i=1

w2
i

) k∑
j=1

∥vj∥2


︸ ︷︷ ︸
(by Cauchy Schwarz)

=

(
k∑

i=1

ai

) k∑
j=1

aj∥pj∥2
 ,

(72)

which proves the claim.

23

A.2 Proof of Theorem 3.2

Theorem A.2. In the bound Equation (10), any non-summation term K(T) satisfies o
(

K(T)
T

)
=

0. For the summation terms, as long as the parameter decay conditions o
(∑T

t=1 β1t

√
t

T

)
= 0,

o
(∑T

t=1 β2t

T

)
= 0 and β3t = 1− 1

t are met, Radan converges to the optimum.

Proof. Recall from Theorem 3.2 that the total regret RT obeys:

RT ≤ K(T) +

T∑
t=1

At = K(T) +

T∑
t=1

4D2
∞G2

1−β1
β2t︸ ︷︷ ︸

=:a2t

+

T∑
t=1

√
t(1 + 2β2)GD2

∞β1t

η(1− β1)︸ ︷︷ ︸
=:a1t

, (73)

where we have that:

K(T) =
ζ(κ, c) · (3− 2β1)ηG

2
√
T
√
1 + logT

2(1− β1)3
+

2ηβ1G

(1− β1)3

√
T +

GD2
∞(1 + 2β2)

√
T

2(1− β1) · η
(74)

Dividing both sides by T gives:

RT

T
≤ K(T)

T
+

1

T

T∑
t=1

a1t +
1

T

T∑
t=1

a2t. (75)

Set the constants c1 =
(1+2β2)GD2

∞
η(1−β1)

, c2 =
4D2

∞G2

1−β1
, so that:

1

T

T∑
t=1

a1t =
c1
T

T∑
t=1

β1t

√
t,

1

T

T∑
t=1

a2t =
c2
T

T∑
t=1

β2t. (76)

Each summand in K(T) scales like T−1/2 (up to logarithmic factors), hence K(T)
T = o(1) =⇒

o
(

K(T)
T

)
= 0. By hypothesis, o

(
1
T

∑T
t=1 β1t

√
t
)

= 0, o
(

1
T

∑T
t=1 β2t

)
= 0. Multiplying by

the constants c1, c2 preserves the vanishing rate, so 1
T

∑T
t=1 a1t = o(1) and 1

T

∑T
t=1 a2t = o(1).

Combining these,

RT

T
≤ o(1)︸︷︷︸

K(T)/T

+ o(1)︸︷︷︸
(1/T)

∑
a1t

+ o(1)︸︷︷︸
(1/T)

∑
a2t

= o(1). (77)

Hence limT→∞ RT /T = 0, i.e. Radan attains vanishing average regret and converges to the global
optimum.

A.3 Proof of Theorem 3.3

A.3.1 Proof Details

Theorem A.3. On a single constant-curvature manifold Rr, Ss,K , or Hh,K , the Riemannian gradient
of the Riemannian Fuzzy K-Means objective function JFK with respect to the cluster center ck is
uniformly expressed as:

gradck
JFK = −2

N∑
i=1

S−m
i d(yi, ck)

− 2m
m−1 Logck (yi), (78)

where Logck(xi) denotes the logarithmic map of point xi at ck. The Logck(xi) on three types of
constant-curvature manifolds are given as follows.

Logc(x) =


x− c, if x, c ∈ Rr,

θ

sin(θ)
(x− cos(θ) c) , θ = cos−1(K2⟨c, x⟩), if x, c ∈ Ss,K ,

θ

sinh(θ)

(
x+K2⟨c, x⟩h c

)
, θ = cosh−1(K2⟨c, x⟩h), if x, c ∈ Hh,K .

(79)

24

Proof. To transform it into the above form, we simplify JFK using the expression of Si.

JFK

(
uij(cj), cj

)
=

N∑
i=1

 C∑
j=1

d(xi, cj)
− 2

m−1

1−m

,

Si =

C∑
j=1

(
Q∑

p=1

d2p(x
p
i , c

p
j)

)− 1
m−1

=

C∑
j=1

d(xi, cj)
− 2

m−1

(80)

Due to Equation 80, we can simply express JFK as Equation 81.

JFK

(
uij(cj), cj

)
=

N∑
i=1

 C∑
j=1

d(xi, cj)
− 2

m−1

1−m

=

N∑
i=1

S1−m
i (81)

Consider taking the Riemannian gradient with respect to the kk-th center ck. Obviously, when
differentiating Si with respect to ck, only the term with j = k is nonzero. Therefore, according to the
chain rule of Riemannian gradients, we obtain Equation 82.

gradck JFK = (1−m)

N∑
i=1

S−m
i gradck

(
d(xi, ck)

− 2
m−1

)
(82)

According to the lemma gradc d(x, c) = −Logc(x)
d(x,c) (proved later), we further simplify Equation 82

and obtain Equation 83.

gradc d(x, c)
a = ad(x, c)a−1 gradc d(x, c) = −ad(x, c)a−2Logc(x). (83)

By setting a = − 2
m−1 , we obtain Equation 84.

gradck
(
d(xi, ck)

− 2
m−1

)
= − 2

m− 1
d(xi, ck)

2
m−1−2Logck(xi) = − 2

m− 1
d(xi, ck)

−2m
m−1Logck(xi)

(84)
Simply substituting Equation 84 into Equation 82 yields Equation 11.

gradck JFK =(1−m)

N∑
i=1

S−m
i gradck

(
d(xi, ck)

− 2
m−1

)
=(1−m)

N∑
i=1

S−m
i

(
− 2

m− 1
d(xi, ck)

−2m
m−1Logck(xi)

)
=− 2

N∑
i=1

S−m
i d(xi, ck)

− 2m
m−1 Logck(xi)

(85)

A.3.2 Proof of Lemma

We now prove a key lemma.

Lemma A.4. Let x, c ∈ M, and let d(x, c) denote the geodesic distance between x and c. Then we
have gradc d(x, c) = −Logc(x)

d(x,c) .

Proof. First, consider the function f(c) = 1
2d

2(x, c) and its directional derivative along the direction
w, denoted by ∂f

∂w .
∂f

∂w
= lim

t→0

1

2

d2(x,Expc(tw))− d2(x, c)

t
(86)

Let γ(t) = Expc(tw), which is the geodesic starting from c along w. The directional derivative can
then be written as:

∂f

∂w
= lim

t→0

1

2

d2(x,Expc(tw))− d2(x, c)

t
=

d

dt
|t=0

1

2
d2(x, γ(t)) (87)

25

According to the standard formula in Riemannian geometry [70], we have:

d

dt

∣∣∣
t=0

1

2
d2(x, γ(t)) = ⟨−Logc(x), w⟩c (88)

Therefore, we obtain the final equation:

∂f

∂w
=

d

dt

∣∣∣
t=0

1

2
d2(x, γ(t)) = ⟨−Logc(x), w⟩c = ⟨gradc(

1

2
d2(x, c)), w⟩c (89)

So that:

gradc(d(x, c)) =
gradc(

1
2d

2(x, c))

d(x, c)
= −Logc(x)

d(x, c)
(90)

With this, we complete all the proofs.

26

B Notations

Table 4 lists all the symbols used and their corresponding meanings.

Table 4: Notations in this paper.

Notation Description
X = {x1, . . . , xN} Dataset notation, consisting of N samples
xi The i-th sample
yt The coordinate of optimization variable y at step t
cj The j-th cluster center
Mp The p-th component manifold
⊗Q

p=1Mp The product manifold of Q component manifolds
(x1

i , x
2
i , . . . , x

Q
i) The coordinate representation of xi under Q product manifolds ⊗Q

p=1Mp

dp(x
p, yp) The geodesic distance computed from the coordinates of x and y on the p-th component manifold

d(x, y) The distance between x and y on the product manifold ⊗Q
p=1Mp

Hhi,K The hyperbolic space of dimension hi and curvature K, with K < 0
Hhi The hyperbolic space of dimension hi and curvature K, with K = −1
Ssi,K The spherical space of dimension si and curvature K, with K > 0

Ssi The spherical space of dimension si and curvature K, with K = 1
Rri The Euclidean space of dimension ri
D The 2-dimensional Poincaré disk
TxpMp The tangent space at xp on the p-th component manifold
TxM The tangent space at x on the product manifold ⊗Q

p=1Mp

∥ · ∥ Euclidean norm
∥ · ∥xt Riemannian norm at xt on the product manifold

φp
xp→yp(up) On the p-th component manifold, parallel transport up from xp to yp.

φx→y(u) On the product manifold, parallel transport u from x to y.
Exppcp(u

p) Apply the exponential map to up at cp on the p-th component manifold.
Expc(u) Apply the exponential map to u at c on the product manifold.
Logpcp(x

p) Apply the logarithmic map to up at cp on the p-th component manifold.
Logc(x) Apply the logarithmic map to u at c on the produc manifold.
log(·) Logarithmic function
{gpt ,m

p
t , v

p
t , z

p
t , n

p
t , u

p
t , α

p
t } Intermediate quantity of Radan on the p-th component manifold

{gt,mt, vt, zt, nt, ut, αt} Intermediate quantity of Radan on the product manifold
ζ(κ, c) Curvature function
D∞ Upper bound of the size of the geodesically convex region
γ(t) Geodesic

⟨·, ·⟩yt Riemannian inner product at yt
⟨·, ·⟩h hyperbolic inner product
Si Intermediate variable of RFK
β1t First hyperparameter of Radan
β2t Second hyperparameter of Radan
β3t Third hyperparameter of Radan
O(·) Infinitely large of the same order
o(·) infinitely small of the same order
RT Regret bound

C Related Work about Clustering on Manifold

In terms of clustering algorithm design for data distributed on manifolds, there has not been extensive
research so far. In [17], an iterative Riemannian K-Means–style algorithm was implemented by
alternately updating the assignments {uij} and the centers {cj}, with a time complexity of O(ων).
Many application scenarios adopt this alternating update paradigm, such as [71]. Some recent
methods for clustering data distributed in hyperbolic spaces have been proposed [72, 73, 74]; however,
these approaches are not applicable to product manifolds and therefore cannot be compared with
RFK. There also exist deep learning–based clustering methods [75]. However, they lack flexibility,
lightweight implementation, and interpretability compared to machine learning–based algorithms.
Moreover, deep clustering frameworks often require a clustering procedure similar to RFK to generate
pseudo-labels for the learned deep representations. Hence, RFK can serve as a natural and effective
replacement for NRK in this context.

27

Table 5: Description Table of the benchmark datasets

Dataset Signature Dimension Class Objects

Sy
nt

he
tic

Gaussian R4 4 3 1000
H4 5 3 1000

S2H2 6 3 1000
R2S2H2 8 3 1000
S2(H2)2 9 3 1000
R4S4H4 14 3 1000

R16S16H16 50 3 1000

G
ra

ph

CiteSeer (H2)2 6 6 2110
Cora H4 5 7 2485

PolBlogs (S2)2 6 2 1222
Olsson D 2 9 382

Paul D 2 20 2730
PolBooks D 2 3 106

VA
E CIFAR-100 (H2)4 12 10 500000

Lymphoma (S2)2 6 10 134100
MNIST S2E2H2 8 10 600000

D Details of the Experimental Setup

D.1 Datasets Description

Table 5 presents the basic information of the datasets we used. Here, Signature refers to the type
of manifold onto which the dataset is embedded, Dimension indicates the dimensionality of the
embedding space, Class denotes the number of clusters in the data, and Objects specifies the total
number of samples in the dataset.

Here, we also provide a brief introduction to the background of these datasets, along with the sources
from which each dataset can be obtained.

• All Gaussian datasets are generated using Manify’s ’gaussian mixture’ function, with the
specific code as follows:

from manify.manifolds import ProductManifold
signature = [

(0.0, 16), # R^16 (Euclidean space)
(1.0, 16), # S^16 (Spherical space)
(-1.0, 16), # H^16 (Hyperbolic space)

]
P = ProductManifold(signature , device="cpu", stereographic=

False)
n_clusters = 3
X, y_true = P.gaussian_mixture(

num_points =1000,
num_classes=n_clusters ,
task="classification",
cov_scale_points =.1

)

To ensure reproducibility, we also saved the generated data, which can be found here2.
• CiteSeer, Cora, and PolBlogs are graph datasets, which can be represented in non-Euclidean

spaces using the following code:

import manify

2https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/

28

from manify.utils.dataloaders import load_hf

features , dists , adj , labels = load_hf("polblogs")

pm = manify.ProductManifold(signature =[(1.0 , 4), (-1.0, 4)])

embedder = manify.CoordinateLearning(pm=pm)
X_embedded = embedder.fit_transform(X=None , D=dists ,

burn_in_iterations =200, training_iterations =800)

In fact, the Manify GitHub repository already provides the pre-trained embeddings of these
datasets, which you can access there3, or alternatively obtain from our anonymous GitHub
repository4.

• Olsson, Paul, and PolBooks are also graph datasets, which are embedded in the Poincaré
disk. You can access the data here5, or alternatively obtain it through our anonymous link.

• The datasets CIFAR-100, Lymphoma, and MNIST are obtained using the VAE method
provided in Manify. The reference code is as follows:

encoder = torch.nn.Sequential(
torch.nn.Linear (784, 128),
torch.nn.ReLU(),
torch.nn.Linear (128, 2 * euclidean_manifold.dim), # The

INTRINSIC dimension of the manifold
)
decoder = torch.nn.Sequential(

torch.nn.Linear(euclidean_manifold.ambient_dim , 128), #
The AMBIENT dimension of the manifold

torch.nn.ReLU(),
torch.nn.Linear (128, 784),
torch.nn.Sigmoid (),

)

vae = manify.ProductSpaceVAE(pm=euclidean_manifold , encoder=
encoder , decoder=decoder)

mnist_embeddings = vae.fit_transform(
X=mnist_features.reshape(-1, 784), burn_in_iterations =1,

training_iterations =9, batch_size =128
)

Manify also provides the precomputed embeddings of these datasets, which can be accessed
here6 or through our anonymous link. In particular, MNIST performs poorly under small
learning rates. In the RFK algorithm, its learning rate is set to 3, while in Experiment 2 we
adopt the settings {2.1, 2.3, 2.5, 2.7, 3.0}.

D.2 Experiment 3 Setup

D.2.1 Benchmark Clustering Algorithms

We compare it with 10 benchmark clustering algorithms across 7 toy datasets and 9 real-world
datasets. These algorithms include K-Means-based methods, graph-based methods, and subspace-
based methods. A detailed introduction to each algorithm is provided below.

• NRK, i.e., Naive Riemannian K-Means, is a K-Means-based algorithm that respects the
manifold structure but requires double loops. Our main contribution is to modify it in order
to reduce its complexity.

3https://github.com/pchlenski/manify/tree/Dataset-Generation/data/graphs/embeddings
4https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/
5https://github.com/drewwilimitis/hyperbolic-learning/tree/master/data/ucidata-zachary
6https://github.com/pchlenski/manify/tree/Dataset-Generation/data/mnist/embeddings

29

• KM partitions data into predefined clusters by minimizing the sum of squared distances
between data points and their corresponding cluster centers. It is simple but sensitive to
initial centroids and struggles with non-spherical clusters.

• Ncut improves on Ratio-Cut by normalizing the cut, balancing the partition while considering
the total graph weight. It’s better suited for non-convex and unevenly distributed clusters.

• FCM Fuzzy C-Means (or Fuzzy K-Means), can be regarded as a relaxation of K-Means.
Instead of hard assignments, it computes the similarity between each sample and each cluster
center as the assignment criterion. It is also a well-known clustering algorithm.

• UFCM This is an unconstrained Fuzzy C-Means algorithm, which aims to replace the
constrained alternating optimization in traditional Fuzzy C-Means with an unconstrained
gradient descent approach.

• LRR This is a subspace-based clustering method, which leverages low-rank representations
to obtain robust subspace clustering results.

• SSC This is also a subspace clustering method, characterized by sparse representation.
Through sparse representation, SSC can often identify the core low-rank structure of the
data, achieving excellent clustering performance while simultaneously reducing data dimen-
sionality.

• SBMC is a graph-based balanced clustering method. Being graph-based means it clusters
data by constructing a graph adjacency matrix. Balanced clustering indicates that the
clustering results tend to have roughly equal numbers of samples in each cluster.

• USPEC is one of the representative ensemble clustering algorithms. Ensemble clustering
integrates the information from multiple base clusterers to produce a final result, achieving
performance far superior to any single clusterer.

• Fast-CD This is a fast and stable clustering algorithm for solving the Ncut loss function,
which often achieves clustering results with lower loss than the Ncut itself, combining
efficiency and robustness.

To evaluate the clustering performance comprehensively, three metrics are applied, which are clus-
tering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index (ARI). The
calculation of these three metrics are displayed below.

D.2.2 Clustering Accuracy (ACC)

Clustering Accuracy measures the proportion of correctly clustered data points by aligning predicted
cluster labels with ground truth labels. Since clustering algorithms do not inherently assign specific
labels, a permutation mapping is applied, often using the Hungarian algorithm, to maximize alignment.
The formula for ACC is:

ACC =
δ(map(ŷi), yi)

n
(91)

where δ(a, b) is an indicator function defined as:

δ(a, b) =

{
1, if a = b

0, otherwise,
(92)

Here, ŷi is the predicted label, yi is the true label, n is the total number of data points, and map(ŷi) is
the permutation mapping function that aligns predicted labels with ground truth labels. ACC ranges
from 0 to 1, with higher values indicating better clustering performance.

D.2.3 Normalized Mutual Information (NMI)

Normalized Mutual Information quantifies the mutual dependence between clustering results and
ground truth labels, normalized to account for differences in label distributions. It evaluates the
overlap between clusters and true classes using information theory. Given predicted partitions
ˆ{Ci}

c

i=1 and ground truth partitions {Ci}ci=1, NMI is calculated as:

NMI =

∑c
i=1

∑c
j=1

∣∣∣Ĉi ∩ Cj

∣∣∣ log n|Ĉi∩Cj|
|Ĉi||Cj |√(∑c

i=1

∣∣∣Ĉi

∣∣∣ log |Ĉi|
n

)(∑c
j=1 |Cj | log Cj

n

) (93)

30

Here, | · | denotes the size of a set, and Ĉi ∩Cj represents the number of data points belonging to both
the i-th predicted cluster and the j-th ground truth class. NMI ranges from 0 to 1, where 1 indicates
perfect agreement between clustering results and ground truth. It is particularly effective in scenarios
with imbalanced class distributions.

D.2.4 Adjusted Rand Index (ARI)

The Adjusted Rand Index measures the similarity between predicted clustering and ground truth by
comparing all pairs of samples and evaluating whether they are assigned to the same cluster in both
results. A contingency table H is first constructed, where each element hij represents the number of
samples in both predicted cluster Ĉi and ground truth cluster Cj . The formula for ARI is:

ARI(C̄, C) =

∑
ij

(
nij

2

)
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

)
1
2

[∑
i

(
ni

2

)
+
∑

j

(
nj

2

)]
−
[∑

i

(
ni

2

)∑
j

(
nj

2

)]
/
(
n
2

) (94)

where
(
nij

2

)
=

nij(nij−1)
2 . ARI ranges from -1 to 1, where 1 indicates perfect clustering, 0 represents

random assignments, and negative values indicate worse-than-random clustering. ARI is robust to
differences in cluster sizes and does not favor a large number of clusters.

D.2.5 F1 Score

The F1 Score evaluates the balance between clustering precision and recall, capturing both the
completeness and exactness of the clustering results. It is computed based on pairwise precision and
recall between predicted clusters and ground truth classes. The F1 Score is defined as:

F1 =
2 · Precision · Recall
Precision + Recall

(95)

where Precision and Recall are given by:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(96)

Here, TP (true positives) is the number of data point pairs correctly assigned to the same cluster,
FP (false positives) is the number of pairs incorrectly assigned to the same cluster, and FN (false
negatives) is the number of pairs that belong to the same ground truth cluster but are assigned to
different clusters. F1 Score ranges from 0 to 1, with higher values indicating better clustering quality.

D.2.6 Purity

Purity measures the extent to which clusters contain data points from a single ground truth class. For
each cluster, the class with the maximum frequency is identified, and the sum of these maximum
frequencies over all clusters is normalized by the total number of data points. Purity is defined as:

Purity =
1

n

∑
k

max
j

|Ck ∩ Lj | (97)

where Ck denotes the set of data points in cluster k, Lj denotes the set of data points in ground
truth class j, and n is the total number of data points. Purity ranges from 0 to 1, with higher values
indicating that clusters are more homogeneous with respect to the true labels.

31

Table 6: NMI for all benchmarks. OM means out-of-memory
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 88.49 88.37 88.39 95.87 88.36 88.54 69.01 0.51 52.81 62.61 91.18
H4 98.89 98.24 3.82 96.02 20.88 6.37 98.87 7.71 29.22 80.41 38.75

S2H2 84.16 84.16 69.67 73.00 71.90 71.58 89.96 0.35 42.12 62.28 72.39
R2S2H2 84.27 83.95 39.94 96.22 45.06 39.84 74.79 0.25 61.67 1.27 60.58
S2(H2)2 90.37 89.25 0.53 58.31 8.44 4.50 85.62 3.99 40.49 42.56 29.40
R4S4H4 95.70 95.42 7.13 57.73 57.58 8.97 87.58 5.46 68.57 45.00 86.70

R16S16H16 91.98 73.62 0.53 55.95 1.99 0.52 0.43 1.12 20.02 29.85 23.68

G
ra

ph

CiteSeer (H2)2 0.28 0.54 0.63 0.57 0.48 0.58 0.60 0.29 0.53 0.59 0.66
Cora H4 0.00 0.74 0.70 0.65 0.71 0.60 0.70 0.24 0.48 0.70 0.74

PolBlogs (S2)2 68.76 65.77 66.94 4.02 65.41 67.26 18.61 0.08 1.41 3.79 66.09
Olsson D 70.34 70.26 67.35 66.44 66.93 66.77 37.73 58.29 54.92 51.96 65.77

Paul D 61.70 59.78 58.28 55.95 58.11 58.24 27.25 0.67 32.06 58.59 56.41
PolBooks D 45.48 41.59 36.83 34.71 34.36 36.17 7.34 7.34 30.13 29.50 39.34

VA
E CIFAR-100 (H2)4 88.24 OM 0.52 OM 0.62 0.24 OM OM OM 0.17 OM

Lymphoma (S2)2 100.00 OM 0.00 OM 0.00 OM OM OM OM 0.00 OM
MNIST S2E2H2 93.00 OM 0.56 OM 2.76 0.99 OM OM OM 0.20 OM

Table 7: ARI for all benchmarks. OM means out-of-memory
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 90.12 89.63 90.17 97.42 90.12 90.35 72.99 0.46 52.68 65.73 95.09
H4 99.47 99.07 -0.27 97.35 17.68 -0.55 99.48 2.50 27.41 83.48 62.88

S2H2 87.70 85.45 70.89 74.88 74.24 73.64 93.58 0.16 41.03 65.74 82.90
R2S2H2 88.04 87.56 33.34 98.15 38.76 32.77 83.47 0.09 60.88 0.02 74.92
S2(H2)2 92.48 92.12 -1.55 42.72 -1.06 -1.27 88.69 -1.50 39.29 36.48 60.84
R4S4H4 97.34 96.25 0.99 55.54 53.28 2.07 91.78 0.32 68.88 44.29 92.57

R16S16H16 94.62 64.65 -0.09 52.69 0.08 -0.07 0.05 -0.30 18.54 29.25 50.03

G
ra

ph

CiteSeer (H2)2 0.04 0.20 0.33 -0.09 0.18 0.31 0.30 0.07 0.15 0.50 0.19
Cora H4 0.00 0.20 0.15 -0.30 0.20 0.15 0.18 0.00 0.07 -0.29 0.14

PolBlogs (S2)2 78.67 76.08 77.09 1.17 75.79 77.46 13.82 -0.01 1.83 4.84 88.67
Olsson D 51.10 50.88 49.34 47.10 48.02 48.74 22.86 44.50 33.58 44.06 45.33

Paul D 37.36 33.48 35.26 31.71 34.84 35.76 10.34 -0.02 12.19 35.24 30.90
PolBooks D 55.38 44.87 46.47 43.99 44.66 46.01 8.58 53.34 35.74 36.40 51.02

VA
E CIFAR-100 (H2)4 78.67 OM 0.05 OM 0.10 0.01 OM OM OM 0.01 OM

Lymphoma (S2)2 100.00 OM 0.00 OM 0.00 OM OM OM OM 0.00 OM
MNIST S2E2H2 91.52 OM 0.06 OM 1.20 0.42 OM OM OM 4.84 OM

Table 8: F1 for all benchmarks. OM means out-of-memory
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 95.49 95.35 93.53 98.30 93.50 93.65 82.33 41.26 68.74 79.84 95.39
H4 99.77 98.42 48.25 98.26 51.35 46.87 99.66 50.51 52.04 90.09 60.52

S2H2 94.60 94.55 81.35 83.48 83.06 82.66 93.81 51.11 61.03 79.84 83.17
R2S2H2 96.27 96.27 62.32 98.85 61.73 62.31 89.57 54.79 74.80 54.41 74.35
S2(H2)2 98.17 98.05 52.07 66.03 51.15 52.51 92.97 52.41 60.87 67.71 55.66
R4S4H4 99.09 98.25 48.18 74.07 72.15 48.17 94.52 48.71 79.31 69.17 92.48

R16S16H16 97.75 64.93 50.26 70.18 48.14 50.46 50.90 50.46 46.16 54.03 46.08

G
ra

ph

CiteSeer (H2)2 0.07 18.47 19.21 31.32 18.29 20.22 18.23 31.98 18.00 23.74 19.31
Cora H4 0.06 16.89 16.52 20.77 16.17 17.72 16.28 30.12 16.08 20.64 16.15

PolBlogs (S2)2 94.33 93.60 88.56 64.80 87.92 88.74 64.53 66.66 50.99 53.83 88.21
Olsson D 64.74 64.45 56.54 54.59 54.90 56.59 32.96 53.55 42.44 55.14 52.51

Paul D 47.75 46.08 40.14 36.40 39.36 41.22 16.01 14.95 17.98 40.74 35.41
PolBooks D 72.60 57.23 66.96 67.24 66.20 66.85 43.29 71.12 50.09 63.27 70.79

VA
E CIFAR-100 (H2)4 69.08 OM 6.83 OM 6.01 8.71 OM OM OM 6.57 OM

Lymphoma (S2)2 100.00 OM 79.51 OM 79.51 OM OM OM OM 79.51 OM
MNIST S2E2H2 96.18 OM 18.17 OM 18.13 18.18 OM OM OM 18.21 OM

E Additional Experimental Results

E.1 Experimental 3 Results

In this section, we present the experimental results of NMI, ARI, F1, and Purity from Experiment 3.
Tables 6, 7, 8, and 9 respectively present the NMI, ARI, F1, and Purity metrics of different algorithms
across various datasets. It can be observed that, except for the first dataset, RFK consistently and
significantly outperforms the other methods on all metrics. This is because the Gauss R4 dataset
lies in Euclidean space, where RFK degenerates to Fuzzy K-Means, thus yielding results similar
to K-Means and other implementations of Fuzzy K-Means. Moreover, it is worth noting that for
large-scale datasets, RFK is always able to complete execution while achieving highly competitive
results.

32

Table 9: Purity for all benchmarks. OM means out-of-memory
Dataset Signature RFK NRK K-Means Ncut FCM UFCM LRR SSC SBMC USPEC Fast-CD

Sy
nt

he
tic

Gaussian R4 96.00 95.84 93.80 98.47 93.77 93.92 81.75 34.58 69.47 66.61 97.20
H4 99.80 99.00 34.25 98.62 43.13 34.14 99.62 35.24 52.68 86.04 66.50

S2H2 95.20 94.80 79.31 83.73 83.36 82.93 95.02 34.40 61.78 66.63 87.70
R2S2H2 96.20 95.80 54.55 98.76 62.12 53.89 91.64 37.77 79.25 37.75 86.00
S2(H2)2 97.80 97.80 37.22 61.24 37.37 37.32 92.65 37.25 64.56 51.98 68.50
R4S4H4 99.10 98.90 33.81 59.43 59.73 34.22 94.64 33.55 79.18 54.16 95.90

R16S16H16 98.00 77.10 34.17 66.26 34.23 34.18 34.22 34.10 46.59 52.82 57.20

G
ra

ph

CiteSeer (H2)2 25.36 20.09 19.29 18.98 19.17 19.26 19.28 19.05 19.15 19.33 25.31
Cora H4 29.22 18.19 17.89 17.55 17.93 17.87 17.91 17.75 17.81 17.56 29.22

PolBlogs (S2)2 94.36 93.62 88.49 50.38 87.85 88.70 54.88 50.04 50.96 52.37 93.70
Olsson D 76.38 76.38 73.69 68.40 74.45 71.36 50.10 65.71 61.15 58.85 71.20

Paul D 58.78 59.51 58.21 57.57 59.82 54.04 35.78 14.32 35.19 51.19 56.30
PolBooks D 81.90 77.14 78.80 78.10 77.14 77.62 55.24 79.05 76.48 75.05 80.95

VA
E CIFAR-100 (H2)4 79.57 OM 5.04 OM 5.08 5.01 OM OM OM 5.00 OM

Lymphoma (S2)2 100.00 OM 65.99 OM 65.99 OM OM OM OM 65.99 OM
MNIST S2E2H2 96.09 OM 10.06 OM 10.61 10.23 OM OM OM 10.03 OM

E.2 Sensitivity Analysis

In addition, we conducted a sensitivity analysis on the parameter m in RFK. The parameter m repre-
sents the fuzziness, reflecting the degree of uncertainty in the assignment. In typical implementations
of Fuzzy K-Means, m is usually set to the default value of 2. Similarly, in the RFK algorithm, we
consistently use the default m = 2. This choice is justified because within a sufficiently wide range,
the influence of m on the final results is minimal, as illustrated in Figure 5. Specifically, we set
m = {1.5, 1.75, 2, 2.25, 2.5} and computed the evaluation metrics. It can be observed that m = 2
consistently achieves good performance, and the metrics vary only slightly with changes in m.

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(a) Gauss R4

1.5 1.75 2 2.25 2.5

Parameter m

99

99.25

99.5

99.75

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(b) Gauss H4

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(c) Gauss S2H2

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(d) Gauss R2S2H2

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(e) Gauss S2(H2)2

1.5 1.75 2 2.25 2.5

Parameter m

95

96

98

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(f) Gauss R4S4H4

1.5 1.75 2 2.25 2.5

Parameter m

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(g) Gauss R16S16H16

1.5 1.75 2 2.25 2.5

Parameter m

5

10

15

20

25

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(h) CiteSeer

1.5 1.75 2 2.25 2.5

Parameter m

5

10

15

20

25

30

35

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(i) Cora

1.5 1.75 2 2.25 2.5

Parameter m

60

65

70

75

80

85

90

95

100

M
et

ric
 V

al
ue

ACC NMI ARI F1 Purity

(j) PolBlogs

Figure 5: Sensitivity Analysis of m

33

F Run and Reference Code

F.1 Run the Code

The simplest way to run the code is by using the Manify [48] library. First, install it with

pip install Manify

You can simply perform clustering with the following code.

pm = manify.ProductManifold(signature =[(0, 16), (1, 16), (-1, 16)])

Use classification labels , which identify clusters by their center
X_clustering , y_clustering = pm.gaussian_mixture(

num_points =1000, num_classes =4, seed =2025 , task="classification",
cov_scale_points =0.1

)

The RFK algorithm is essentially a sklearn -styled clustering
algorithm , so we call it like this:

rfk = manify.RiemannianFuzzyKMeans(pm=pm , n_clusters =4, random_state
=2025)

rfk.fit(X_clustering)
y_pred = rfk.predict(X_clustering)

from sklearn.metrics import normalized_mutual_info_score
nmi = normalized_mutual_info_score(y_clustering , y_pred)
print(f"Riemannian Fuzzy K-Means nmi: {nmi :.2f}")

F.2 Replication Statement

We fully understand the astonishment when seeing the experimental results, especially the clustering
outcomes in Experiment 3. On some datasets, traditional K-Means achieves only 12% accuracy,
while RFK reaches 96%. Reporting such a striking gap obliges the authors to provide code during
the review stage. We are not only willing to provide the source code of RFK but also offer a DEMO
that can reproduce the experimental results with a single command, with parameters and random
seeds fixed for verification. Our code is available here7, and our datasets are available here8.

F.3 Acknowledgments

We thank the authors of Manify, especially Philippe Chlenski, for making Riemannian Fuzzy K-Means
more convenient to use.

7https://anonymous.4open.science/r/Demo-of-RFK-243B/
8https://anonymous.4open.science/r/Manifold-Clustering-Data-3C53/

34

F.4 Code of Riemannian Fuzzy K-Means

from __future__ import annotations

from typing import TYPE_CHECKING

import numpy as np
import torch
from geoopt import ManifoldParameter
from geoopt.optim import RiemannianAdam
from sklearn.base import BaseEstimator , ClusterMixin

if TYPE_CHECKING:
from beartype.typing import Literal
from jaxtyping import Float , Int

from .. manifolds import Manifold , ProductManifold
from .. optimizers.radan import RiemannianAdan

class RiemannianFuzzyKMeans(BaseEstimator , ClusterMixin):
""" Riemannian Fuzzy K-Means.

Attributes:
n_clusters: The number of clusters to form.
pm: An initialized manifold object (from manifolds.py) on

which clustering will be performed.
m: Fuzzifier parameter. Controls the softness of the partition

.
lr: Learning rate for the optimizer.
max_iter: Maximum number of iterations for the optimization.
tol: Tolerance for convergence. If the change in loss is less

than tol , iteration stops.
optimizer: The optimizer to use for updating cluster centers.
random_state: Seed for random number generation for

reproducibility.
verbose: Whether to print loss information during iterations.
losses_: List of loss values during training.
u_: Final fuzzy partition matrix.
labels_: Cluster labels for each sample.
cluster_centers_: Final cluster centers.

Args:
n_clusters: The number of clusters to form.
manifold: An initialized manifold object (from manifolds.py)

on which clustering will be performed.
m: Fuzzifier parameter. Controls the softness of the partition

.
lr: Learning rate for the optimizer.
max_iter: Maximum number of iterations for the optimization.
tol: Tolerance for convergence. If the change in loss is less

than tol , iteration stops.
optimizer: The optimizer to use for updating cluster centers.
random_state: Seed for random number generation for

reproducibility.
verbose: Whether to print loss information during iterations.

"""

def __init__(
self ,
n_clusters: int ,
pm: Manifold | ProductManifold ,
m: float = 2.0,
lr: float = 0.1,
max_iter: int = 100,

35

tol: float = 1e-4,
optimizer: Literal["adan", "adam"] = "adan",
random_state: int | None = None ,
verbose: bool = False ,

):
self.n_clusters = n_clusters
self.pm = pm
self.m = m
self.lr = lr
self.max_iter = max_iter
self.tol = tol
if optimizer not in ("adan", "adam"):

raise ValueError("optimizer must be 'adan' or 'adam'")
self.optimizer = optimizer
self.random_state = random_state
self.verbose = verbose

def _init_centers(self , X: Float[torch.Tensor , "n_points
n_features"]) -> None:
if self.random_state is not None:

torch.manual_seed(self.random_state)
np.random.seed(self.random_state)

Input data X's second dimension should match the pm's
ambient dimension

if X.shape [1] != self.pm.ambient_dim:
raise ValueError(

f"Input data X's dimension ({X.shape [1]}) does not
match "

f"the manifold 's ambient dimension ({self.pm.
ambient_dim })."

)

Generate initial centers using the manifold 's sample method
We want n_clusters points , each sampled around the manifold '

s origin (mu0)
The .sample () method in manifolds.py handles z_mean and

sigma/sigma_factorized
defaulting to mu0 and identity covariances if z_mean or

sigma are not fully specified
or are set to None in a way that triggers this default.

For sampling initial centers , we want n_clusters distinct
points.

The .sample () method typically takes a z_mean of shape (
num_points_to_sample , ambient_dim).

If we provide self.pm.mu0 repeated n_clusters times ,
it samples n_clusters points , each around mu0.
centers = self.pm.sample(self.n_clusters)

IMPORTANT: Use self.manifold.manifold for ManifoldParameter ,
as self.manifold is our wrapper and self.manifold.manifold

is the geoopt object.
self.mu_ = ManifoldParameter(

centers.clone().detach (), # type: ignore
manifold=self.pm.manifold ,

) # Ensure centers are detached
self.mu_.requires_grad_(True)

if self.optimizer == "adan":
self.opt_ = RiemannianAdan ([self.mu_], lr=self.lr , betas

=[0.7, 0.999 , 0.999])
else:

self.opt_ = RiemannianAdam ([self.mu_], lr=self.lr , betas
=[0.99 , 0.999])

36

def fit(self , X: Float[torch.Tensor , "n_points n_features"], y:
None = None) -> "RiemannianFuzzyKMeans":
""" Fit the Riemannian Fuzzy K-Means model to the data X.

Args:
X: Input data. Features should match the manifold 's

geometry.
y: Ignored , present for compatibility with scikit -learn's

API.

Returns:
self: Fitted RiemannianFuzzyKMeans instance.

Raises:
ValueError: If the input data's dimension does not match

the manifold 's ambient dimension.
RuntimeError: If the optimizer is not set correctly or if

the model has not been initialized properly.
"""
if isinstance(X, np.ndarray):

X = torch.from_numpy(X).type(torch.get_default_dtype ())
elif not isinstance(X, torch.Tensor):

X = torch.tensor(X, dtype=torch.get_default_dtype ())

Ensure X is on the same device as the manifold
X = X.to(self.pm.device)

if X.shape [1] != self.pm.ambient_dim:
raise ValueError(

f"Input data X's dimension ({X.shape [1]}) in fit()
does not match "

f"the manifold 's ambient dimension ({self.pm.
ambient_dim })."

)

self._init_centers(X)
m, tol = self.m, self.tol
losses = []
for i in range(self.max_iter):

self.opt_.zero_grad ()
self.pm.dist is implemented in manifolds.py and handles

broadcasting
d = self.pm.dist(X, self.mu_) # X is (N,D), mu_ is (K,D)

-> d is (N,K)
Original RFK: d = self.pm.dist(X.unsqueeze (1), self.mu_.

unsqueeze (0))
The .dist in manifolds.py uses X[:, None] and Y[None ,

:], so direct call should work if mu_ is (K,D)

S = torch.sum(d.pow(-2 / (m - 1)) + 1e-8, dim=1) # Add
epsilon for stability

loss = torch.sum(S.pow(1 - m))
loss.backward ()
losses.append(loss.item())
self.opt_.step()
if self.verbose:

print(f"RFK iter {i + 1}, loss={loss.item():.4f}")
if i > 0 and abs(losses [-1] - losses [-2]) < tol:

break

save the result
self.losses_ = np.array(losses)
with torch.no_grad (): # Ensure no gradients are computed for

final calculations

37

dfin = self.pm.dist(X, self.mu_) # Re-calculate dist to
final centers

inv = dfin.pow(-2 / (m - 1)) + 1e-8 # Add epsilon
u_final = inv / (inv.sum(dim=1, keepdim=True) + 1e-8) #

Add epsilon
self.u_ = u_final.detach ().cpu().numpy()
self.labels_ = np.argmax(self.u_ , axis =1)
self.cluster_centers_ = self.mu_.data.clone ().detach ().cpu().

numpy()
return self

def predict(self , X: Float[torch.Tensor , "n_points n_features"])
-> Int[torch.Tensor , "n_points"]:
""" Predict the closest cluster each sample in X belongs to.

Args:
X: Input data. Features should match the manifold 's

geometry.

Returns:
labels: Cluster labels for each sample in X.

Raises:
ValueError: If the input data's dimension does not match

the manifold 's ambient dimension.
RuntimeError: If the model has not been fitted yet.

"""
if isinstance(X, np.ndarray):

X = torch.from_numpy(X).type(torch.get_default_dtype ())
elif not isinstance(X, torch.Tensor):

X = torch.tensor(X, dtype=torch.get_default_dtype ())

Ensure X is on the same device as the manifold
X = X.to(self.pm.device)

if X.shape [1] != self.pm.ambient_dim:
raise ValueError(

f"Input data X's dimension ({X.shape [1]}) in predict ()
does not match "

f"the manifold 's ambient dimension ({self.pm.
ambient_dim })."

)

if not hasattr(self , "mu_") or self.mu_ is None:
raise RuntimeError("The RFK model has not been fitted yet.

Call 'fit' before 'predict '.")

with torch.no_grad ():
dmat = self.pm.dist(X, self.mu_) # X is (N,D), mu_ is (K,

D) -> dmat is (N,K)
inv = dmat.pow(-2 / (self.m - 1)) + 1e-8 # Add epsilon
u = inv / (inv.sum(dim=1, keepdim=True) + 1e-8) # Add

epsilon
labels = torch.argmax(u, dim=1).cpu().numpy ()

return labels

38

F.5 Code of Riemannian Adan

from __future__ import annotations

from typing import TYPE_CHECKING

import torch
from geoopt import ManifoldParameter , ManifoldTensor
from geoopt.optim.mixin import OptimMixin

if TYPE_CHECKING:
from beartype.typing import Any , Callable
from jaxtyping import Float

from . import _adan

class RiemannianAdan(OptimMixin , _adan.Adan):
""" Riemannian Adan with the same API as :class:adan.Adan.

Attributes:
param_groups: iterable of parameter groups , each containing

parameters to optimize and optimization options
_default_manifold: the default manifold used for optimization

if not specified in parameters

Args:
params: iterable of parameters to optimize or dicts defining

parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing (default: (0.98 , 0.92,

0.99))
eps: term added to the denominator to improve numerical

stability (default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)

"""

def step(self , closure: Callable | None = None) -> Float[torch.
Tensor , ""] | None:
""" Performs a single optimization step.

Args:
closure: A closure that reevaluates the model and returns

the loss.

Returns:
The loss value if closure is provided , otherwise None.

"""
loss = None
if closure is not None:

loss = closure ()

with torch.no_grad ():
for group in self.param_groups:

betas = group["betas"]
weight_decay = group["weight_decay"]
eps = group["eps"]
learning_rate = group["lr"]
stablilize = False
for point in group["params"]:

grad = point.grad
if grad is None:

continue
if isinstance(point , ManifoldParameter |

ManifoldTensor):

39

manifold = point.manifold
else:

manifold = self._default_manifold

if grad.is_sparse:
raise RuntimeError("RiemannianAdan does not

support sparse gradients")

state = self.state[point]

State initialization
if len(state) == 0:

state["step"] = 0
Exponential moving average of gradient

values
state["exp_avg"] = torch.zeros_like(point)
Exponential moving average of squared

gradient values
state["exp_avg_sq"] = torch.zeros_like(point)
new param
state["exp_avg_diff"] = torch.zeros_like(point

)
last step grad
state["last_grad"] = torch.zeros_like(point)

state["step"] += 1
make local variables for easy access
exp_avg = state["exp_avg"]
exp_avg_diff = state["exp_avg_diff"]
exp_avg_sq = state["exp_avg_sq"]
last_grad = state["last_grad"]
actual step

grad.add_(point , alpha=weight_decay)
grad = manifold.egrad2rgrad(point , grad)
grad_last_diff
grad_last_diff = grad - last_grad
exp_avg.mul_(betas [0]).add_(grad , alpha=1 - betas

[0])
grad_last_diff
exp_avg_diff.mul_(betas [1]).add_(grad_last_diff ,

alpha=1 - betas [1])
z_t
zt = grad_last_diff.mul(betas [1]).add_(grad)
z_t^2
exp_avg_sq.mul_(betas [2]).add_(manifold.

component_inner(point , zt), alpha =1 - betas
[2])

bias_correction1 = 1 - betas [0] ** state["step"]
bias_correction2 = 1 - betas [1] ** state["step"]
bias_correction3 = 1 - betas [2] ** state["step"]

denom = exp_avg_sq.div(bias_correction3).sqrt_()

copy the state , we need it for retraction
get the direction for ascend
direction = (

(exp_avg.div(bias_correction1)).add_((
exp_avg_diff.div(bias_correction2)), alpha
=betas [1])

) / denom.add_(eps)

transport the exponential averaging to the new
point

40

new_point , exp_avg_new = manifold.retr_transp(
point , -learning_rate * direction , exp_avg)

last_grad.copy_(manifold.transp(point , new_point ,
grad))

transport v_t
exp_avg_diff.copy_(manifold.transp(point ,

new_point , exp_avg_diff))
exp_avg.copy_(exp_avg_new)
point.copy_(new_point)

if group["stabilize"] is not None and state["step"
] % group["stabilize"] == 0:
stablilize = True

if stablilize:
self.stabilize_group(group)

return loss

@torch.no_grad () # type: ignore
def stabilize_group(self , group: dict[str , Any]) -> None:

""" Stabilizes the parameters in the group by projecting them
onto their respective manifolds.

Args:
group: A dictionary containing the parameters and their

states.

Returns:
None

"""
for p in group["params"]:

if not isinstance(p, ManifoldParameter | ManifoldTensor):
continue

state = self.state[p]
if not state: # due to None grads

continue
manifold = p.manifold
exp_avg = state["exp_avg"]
exp_avg_diff = state["exp_avg_diff"]
last_grad = state["last_grad"]
p.copy_(manifold.projx(p))
exp_avg.copy_(manifold.proju(p, exp_avg))
exp_avg_diff.copy_(manifold.proju(p, exp_avg_diff))
last_grad.copy_(manifold.proju(p, last

41

	Introduction
	Preliminaries
	Notations
	Constant-curvature Spaces and Product Manifolds
	K-Means and Fuzzy K-Means

	Our proposed method
	Naive Extension of K-Means
	Riemannian Fuzzy K-Means
	Radan on Product Manifolds
	Calculate Riemannian Gradient

	Experiments
	Datasets
	Experiments Setup
	Experiment Setup for Q1
	Experiment Setup for Q2
	Experiment Setup for Q3

	Experiments Result
	Experiment Result for Q1
	Experiment Result for Q2
	Experiment Result for Q3

	Conclusion
	Limitation
	Appendices
	Proofs of Theorems
	Proof of Theorem 3.1
	Assumptions
	Proof Details
	Proof of Lemma

	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof Details
	Proof of Lemma

	Notations
	Related Work about Clustering on Manifold
	Details of the Experimental Setup
	Datasets Description
	Experiment 3 Setup
	Benchmark Clustering Algorithms
	Clustering Accuracy (ACC)
	Normalized Mutual Information (NMI)
	Adjusted Rand Index (ARI)
	F1 Score
	Purity

	Additional Experimental Results
	Experimental 3 Results
	Sensitivity Analysis

	Run and Reference Code
	Run the Code
	Replication Statement
	Acknowledgments
	Code of Riemannian Fuzzy K-Means
	Code of Riemannian Adan

