FastUMI: A Scalable and Hardware-Independent
Universal Manipulation Interface with Dataset

Zhaxizhuoma'>', Kehui Liu>°", Jeff Guan®, Zhongjie Jia'*", Ziniu Wu?3', Xin Liu'-2",
Tianyu Wang?#*, Shuai Liang'?*, Pengan Chen?>*, Pingrui Zhang?**, Haoming Song'*?, Delin Qu?*,
Dong Wang?, Zhigang Wang?, Nieging Cao’, Yan Ding?8'*, Bin Zhao”>%*, Xuelong Li’

IShanghai Jiao Tong University, 2Shanghai AI Lab, 3University of Bristol,
“Fudan University, >The University of Hong Kong,
®Northwestern Polytechnical University, ’Xi’an Jiaotong-Liverpool University,
8 Suzhou OneStar Robotics Co., Ltd., °Institute of A, China Telecom Corp Ltd.
1 * Equal Contribution, {Project Leader, Project Website: https://fastumi.com/

Abstract: Real-world manipulation datasets for robotic arms remain scarce due
to the high costs, rigid hardware dependencies, and complex setup procedures
associated with existing data collection methods. We introduce FastUMI, a re-
designed Universal Manipulation Interface (UMI) that addresses these challenges,
enabling low-cost, scalable, and rapid deployment across heterogeneous platforms.
FastUMI achieves this through: (i) hardware decoupling via extensive mechani-
cal reengineering, which removes dependence on specialized robotic components
while preserving a consistent visual perspective; (ii) replacement of complex vi-
sual—-inertial odometry with a commercial off-the-shelf tracker, simplifying the
software stack without compromising pose estimation accuracy; and (iii) the provi-
sion of an integrated ecosystem that streamlines data acquisition, automates quality
control, and ensures compatibility with both standard and enhanced imitation-
learning pipelines. To facilitate further research, we release an open-access dataset
comprising over 15,000 real-world demonstrations spanning 24 tasks—constituting
one of the most extensive UMI-like resources to date. Empirical evaluations show
that FastUMI supports rapid deployment, reduces operational overhead, and deliv-
ers robust performance across diverse manipulation scenarios, advancing scalable
data-driven robotic learning.

Keywords: Manipulation, Imitation Learning, Universal Manipulation Interface

1 Introduction

The scarcity of large-scale, high-quality, real-world interaction data remains a major bottleneck to
progress in robotic manipulation, primarily due to challenges associated with efficient and scalable
data collection methods [1, 2, 3, 4]. Current methods can be broadly categorized into teleoperation-
based techniques [5, 6, 7, 8], vision-driven demonstrations [1, 9, 10, 11, 12], and sensor-enhanced
interfaces [13, 14, 15]. While teleoperation enables precise data acquisition, it remains labor-
intensive, costly, and constrained by the challenges of non-intuitive and task-specific human-to-
robot mapping[16, 17, 18]. Vision-driven approaches can provide large-scale, low-cost data but
typically lack the rich, fine-grained interaction dynamics essential for policy learning. In contrast,
sensor-enhanced interfaces—exemplified by systems such as the Universal Manipulation Interface
(UMI) [2]—offer a promising alternative. They directly capture diverse, multimodal signals that
closely align with a robot’s onboard sensory modalities, preserving fidelity and precision, while
enabling human demonstration data to be seamlessly transferred into robotic frameworks. In doing
so, they narrow the gap between human demonstrations and autonomous robotic execution, enabling
rapid and high-quality data collection.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://fastumi.com/

Realsense T2651
(New)

Gopro Robotic Mount®) i
(New) ﬂ

7.5cm_Gopro
Extension Arm(7)
(New)

Sem_Gopro ﬁ:
Extension Arm(8) . &7 1

(New)

Gopro Hero92)
(Same)

FastUMI on Flexiv

Top Cover(3)

(Redesigned)

Fingertip4

(Redesigned)

Flange Plate’9 FastUMI on Franka
(New)

Maker(5) g Plug-in Fingertipd0
(Redesigned) (New)

Data Collection (Human) Policy Execution (Robot Arm) FastUMI on Z1

Figure 1: Physical prototypes of FastUMI. Left: The handheld device, used fo collect demonstration
data from human operators. Middle: A robot-mounted device, used for executing learned policies
on the robotic arm, mirrors the handheld configuration. Right: FastUMI can be easily deployed on
various robotic arms and grippers. Color coding is used to differentiate FastUMI’s hardware from the
original UMI. Component details are provided in Appendix 8.1.

While the UMI system addresses key challenges in human demonstration data collection and supports
action policy learning in diverse scenarios, its current system design and implementation suffers
from two key limitations. First, its tight coupling with specific robotic components (e.g., the Weiss
WSG-50 gripper) restricts adaptability and increases both financial and logistical burdens. The
second limitation arises from the software framework, particularly the reliance on a GoPro-based
VIO (Visual-Inertial Odometry) pipeline in conjunction with open-source SLAM algorithms [19].
Through experimental evaluation, we observe that the UMI system encounters difficulties in tasks that
involve prolonged occlusions, such as hinged operations. As a result, the UMI software configuration
struggles to maintain robust operation when visual signals are intermittently lost, thereby diminishing
data quality and reducing its utility for subsequent learning tasks.

As a key contribution, our proposed FastUMI presents an extensive redesign structured around three
primary objectives: 1) Enhancing adaptability through hardware decoupling. By removing strict
dependencies on specific robotic components, our hardware design can be seamlessly integrated with
a wide range of robotic arms and grippers, facilitating rapid deployment across diverse platforms. 2)
Improving efficiency with software-driven plug-and-play functionality. Our software stack emphasizes
immediate usability, requiring minimal configuration and user training. This design choice facilitates
rapid data collection and significantly reduces operational complexity. 3) Establishing a robust
ecosystem to ensure data quality and algorithmic compatibility. Our ecosystem is designed to support
various imitation learning algorithms (e.g., Action Chunking with Transformers (ACT) [16] and
Diffusion Policy (DP) [20]) by providing essential data types, such as end-effector trajectory and joint
trajectory. To address the distinctive data properties of FastUMI, we further introduce three refined
algorithms—Smooth-ACT, Pose ACT, and Depth-Enhanced DP—which enhance policy smoothness,
cross-platform generalization, and precision under limited perceptual depth perception.

Experimental evaluations demonstrate that the redesigned system delivers an integrated, user-friendly
solution that seamlessly aligns the handheld interface with robot-mounted equipment, effectively
enabling efficient and scalable data acquisition for robotic learning. We open-source over 15,000
demonstration trajectories collected in real-world settings across 24 everyday tasks, establishing
our dataset as one of the most comprehensive UMI-like collections in terms of rask variety.

2 Hardware-Centric Prototype Design

The FastUMI system embodies a hardware-centric redesign based on a decoupled design philosophy.
This section introduces the guiding principles behind this approach and provides an overview of
the hardware components. Aligned with the stated objectives, our hardware design must overcome
several critical challenges. The first involves decoupling the system from specific robotic hardware.
By designing mechanical components that seamlessly integrate with diverse robotic arms and grip-

pers—each varying in size, shape, and mechanical interface—we aim to minimize redesign efforts
and configuration overhead. The second major challenge is maintaining visual consistency between
handheld and robot-mounted devices, which is essential for effective policy transfer in robotic learn-
ing algorithms. Given the wide range of possible gripper dimensions, preserving uniform camera
perspectives across different hardware setups becomes essential.

In addition, our design must accommodate a wider variety of robot-mounted grippers, moving beyond
the parallel-jaw restriction and thereby broadening its applicability across various robotic platforms.
Furthermore, fast deployment is a key requirement, so we strive for a plug-and-play solution that
streamlines user setup, minimizing calibration and configuration efforts to promote widespread
adoption. Finally, ensuring high data quality underlies the entire effort. Reliable hardware is crucial
for obtaining accurate and consistent data, thus mitigating barriers in downstream learning tasks and
enhancing overall system performance. To address these challenges, FastUMI adopts a decoupled
design philosophy that underpins its hardware architecture. The system is systematically decoupled
along three primary dimensions, which are summarized below. Further implementation details are
provided in Appendix 8.2, 8.3, and 8.4.

* Physical Decoupling: Standardized interfaces and modular components enable seamless integra-
tion across robotic platforms, eliminating the need for extensive hardware-specific modifications.

* Visual Consistency: Uniform camera perspectives between handheld and robot-mounted con-
figurations ensure that data acquired in one setting can be readily transferred to another without
requiring extensive recalibration. This consistency allows data from human demonstrations to be
directly applicable to robotic execution.

* Operational Independence: The system incorporates self-contained tracking and sensing modules,
reducing reliance on external computational frameworks and ensuring robust performance across
diverse deployment scenarios.

3 Software-Focused Framework

3.1 Raw Data Acquisition and Quality Assessment

FastUMI employs three core ROS nodes to record multimodal demonstration data. First, a camera
node continuously streams wide-angle images (e.g., 1920x 1080 at 60 fps) from a GoPro Camera.
Second, a tracking node provides pose estimates from the T265 or RoboBaton MINI sensor at a higher
rate (e.g., 200 Hz). Each pose is represented as (X,y,2,¢x, gy, 4z, qw), Where (x,y,z) represents the
translation vector and (gx, qy,¢-,qw) represents orientation in quaternion form. Finally, a storage node
aggregates and synchronizes these streams in an Hierarchical Data Format version 5 (HDFS5) file
for subsequent processing. Because each sensor runs independently, the system is readily extensible
to accommodate additional modalities (e.g., tactile sensors) by adding corresponding ROS nodes.
FastUMTI’s reliance on the T265 not only improves reliability under partial occlusions but also
removes the need for extensive calibrations and VIO parameter tuning, significantly accelerating
deployment. Nonetheless, it introduces more demanding dual-sensor synchronization and drift
management requirements, as discussed in Appendix 8.5 and 8.6. To ensure reliable demonstrations
for downstream learning, we also implement a data quality assessment pipeline based on sensor
confidence checks and trajectory smoothness metrics. Full implementation details and evaluation
criteria are provided in Appendix 8.7.

3.2 Data Preparation for Training

To address the requirements of diverse imitation learning algorithms, we categorize trajectory data
into two main types—TCP trajectories (both absolute and relative), and joint trajectories. At
the software level, FastUMI facilitates seamless integration of various data formats and evolving
algorithmic needs with minimal configuration.

The principal raw inputs are pose estimates from the T265 camera, given by p; (position) and R;
(orientation) in the camera’s local frame. The following additional information is also required: (i)
The known robotic arm’s Unified Robot Description Format (URDF). (ii) The known offset A, from

f
the T265 camera center to the gripper center (expressed in the cam- K
era frame), as shown in Figlfre 2 (Left). (iii) The known pose
(p;,zg,R;,zg) of the gripper center in the robot base frame, as shown
in Figure 2 (Right), where pyy, is the position, and Ry, is the rota-
tion. We assume that the hand-held device motion precisely mirrors Figure 2: Illustration of offset
that of the robot end-effector. Under these conditions, the follow- Ay, from T265 center to the
ing trajectories can be derived: 1) Absolute TCP trajectories, 2) gripper center, and the gripper
Relative TCP trajectories, and 3) Absolute joint trajectories. Full ~center pose (pb2g7Rb2g) in the
computational procedures are presented in Appendix 8.8. robot base frame.

Continuous Gripper Width Computation: We propose a marker-based method that decouples
software from the underlying mechanical structure, thereby facilitating compatibility with diverse
gripper designs. Specifically, we measure the pixel distance between ArUco markers [21] on the
gripper jaws and map it linearly to the gripper’s physical opening width. This approach obviates
rigid hardware dependencies, reducing design constraints and streamlining integration of new or
differently sized grippers. Further implementation details are provided in Appendix 8.9.

4 Algorithmic Adaptations for FastUMI

In earlier sections, we introduce how FastUMI attains hardware decoupling. This design choice
lowers the cost and complexity of system deployment across heterogeneous platforms, including
handheld and robot-mounted configurations. However, while hardware decoupling supports seamless
data acquisition across various setups, it does not by itself address the distinct policy-learning
challenges arising from FastUMI’s data distributions (details in Section 4.1). Hence, hardware
decoupling alone cannot fully realize FastUMI’s potential. By incorporating data-driven refinements
into baseline algorithms to accommodate FastUMI’s unique data characteristics, we enable efficient
multi-platform deployment with consistently high performance while also laying the groundwork for
more advanced methods in the future.

4.1 Data Challenges with FastUMI

Compared to conventional third-person or fixed-base perspectives, FastUMI’s wrist- or handheld-
mounted viewpoints introduce several distinct data characteristics:

* Close-up First-Person Perspective: Cameras positioned near the end-effector capture detailed
manipulation cues but offer limited visibility of the full robotic arm, increasing dependence on
priors to maintain kinematic feasibility.

* Variable Geometry and Scene Layout: FastUMI’s hardware-agnostic design generates hetero-
geneous data across different arm configurations, base frames, and environments, complicating
efforts to achieve consistent policy learning.

* Limited Depth Information: Single-view fisheye images lack explicit three-dimensional spatial
cues, making precise depth estimation difficult. Tasks demanding accurate positioning, including
object alignment and gripper closure, are particularly vulnerable to errors when depth signals are
absent.

To address these challenges, we present adaptations for two primary imitation learning algorithms:
ACT and DP. These enhancements promote robust policy execution, ensure kinematic feasibility, and
integrate depth-awareness for tasks that require higher precision.

4.2 Enhanced ACT for First-Person Perspectives

The standard ACT predicts absolute joint trajectories for the robotic arm, performing effectively
in third-person or fixed-camera scenarios. However, under FastUMI’s first-person wrist-mounted
perspective, large portions of the robotic arm remain unseen, making ACT susceptible to producing
illicit joint configurations during inference. These configurations can exhibit extreme end-effector
orientations that violate kinematic constraints or diverge substantially from demonstration trajectories.
Consequently, we introduce two targeted refinements to the original ACT to address visibility
limitations inherent in first-person data.

| Y

Step=0 Step =20 Step=40 Step=60 Step=80 Step=100 Step=119
Figure 3: Illustration of the depth-mapping process from Step 0 to Step 119. The top row displays
the cropped GoPro frames (rectified from their original circular format), and the bottom row presents
corresponding depth estimations produced by Depth Anything V2.

1) Smooth-ACT: Local Temporal Smoothing. To address abrupt or infeasible joint transitions, we
introduce Smooth-ACT, which enhances action continuity by incorporating a Gated Recurrent Unit
(GRU) layer on top of the Transformer decoder [22, 23]. While the Transformer captures global
spatiotemporal patterns, the GRU refines local continuity, smoothing sudden deviations between
successive frames. During training, two action sequences are produced: a from the Transformer
decoder and dgry from the GRU layer. Both are compared against ground truth actions with the loss
function .Z:

& =|la—all1 + ||agru — a1 + AKL(u,log 6?), 4))
where KL(u,log 0'2) regularizes model outputs for stability. This hierarchical setup preserves
the Transformer’s capacity for global attention while enforcing local smoothing, thereby reducing
kinematically invalid actions.

2) PoseACT: End-Effector Pose Prediction. Beyond mitigating trajectory discontinuities, we
further enhance ACT’s robustness by introducing Pose ACT, a variant that replaces absolute joint
predictions with an end-effector (TCP) pose representation. This formulation incorporates both
absolute and relative motion trajectories, offering two key benefits: 1) Platform Independence:
Expressing actions in terms of local end-effector movement reduces sensitivity to base-frame or
arm-geometry variations, facilitating multi-platform policy transfer. 2) Numerical Stability: Relative
trajectories generally show less variability, mitigating outlier effects and improving generalization to
novel configurations. During inference, the policy outputs relative poses, which are subsequently
mapped back to absolute joint angles via the robot’s kinematic model. Our evaluations suggest
this base-agnostic approach increases policy robustness and minimizes extreme joint commands,
especially under limited first-person observations.

4.3 Depth-Enhanced Diffusion Policy

We apply DP from the original UMI (which includes relative TCP trajectory prediction and latency
matching) to our robotic platform, and observe promising initial results. However, we identify
a limitation: the DP struggle with tasks requiring high precision in depth estimation. For
instance, it occasionally fails to accurately reach the target or prematurely closed the grippers. This
reveals the inadequacy of the current policy when operating without depth information, especially in
scenarios where precise spatial reasoning is essential. To address this issue, we incorporate depth
information and utilize the cross-attention mechanism [23] to fuse features extracted from the depth
and RGB inputs to improve the original DP, resulting in a variant, called Depth-Enhanced DP. While
existing works incorporating depth into DP often rely on dedicated sensors to capture real-time depth
data [24, 25], we aim to explore a more lightweight and efficient approach without adding hardware
complexity or additional costs. Specifically, we adopt a post-processing strategy to generate depth
maps. Using the open-source depth estimation tool Depth Anything V2 [26], we supplement each
frame in our dataset with depth maps, as shown in Figure 3. Details are presented in Appendix 8.10.

4.4 Dynamic Error-Compensation Algorithm

Non-parallel-jaw grippers on robotic arms can shift the TCP as the jaws close. Because the jaws move
inward, the effective TCP often translates along the gripper’s local Z-axis, leading to misalignment

Open Open Open Open Open N
[Container I”'] [Drawer I“”] Ricecooker | 2% Roaster | 499 suitense | 220 Pick Bear | 546 2500
y

_ . & E o

. T TR W S & QT AP

Close 20 Cover Beef | 517 Fold Towel | 313 pourwater [2500 | | cookfoodin {555 TEFTTJFIFF TF
Ricecooker microwave &

Figure 4: Left: Representative GoPro frames from the FastUMI dataset, with orange labels indicating
specific tasks and blue numerals showing demonstration counts. Right: Two distribution plots—the
top plot depicts the proportion of various tasks in the dataset, while the bottom plot shows the
distribution of manipulation skills.

in tasks that require fine precision, such as picking up small objects. To mitigate these shifts, we
propose a dynamic error-compensation algorithm that adjusts the commanded TCP in real time. It is
structured in two principal stages; detailed procedures are provided in Appendix 8.11.

5 Open-Source Dataset

We present the FastUMI Dataset, consisting of 15,000 demonstration sequences, each containing syn-
chronized GoPro video and end-effector trajectories captured in domestic settings. The dataset covers
24 tasks, 21 object categories, and 13 distinct manipulation skills. Each demonstration comprises
approximately 120 ~ 400 frames with most sequences spanning around 400 frames. Owing to its
high frame rate and tightly coupled multi-sensor setup, FastUMI captures substantially denser and
more informative trajectories than typical teleoperation systems—yielding data that, within a few
seconds, encapsulates the equivalent manipulation richness of much longer conventional demonstra-
tions. Figure 4 (Left) illustrates representative frames from selected collection environments; orange
text boxes denote specific tasks, while blue numerals indicate corresponding demonstration counts.
Figure 4 (Right) provides two distribution plots: the upper plot details task-level proportions, whereas
the lower plot illustrates the breakdown of manipulation skills (e.g., pick, open, etc.). Details on data
acquisition and storage format are provided in Appendix 8.12 and 8.13, respectively.

6 System Evaluation

We assess our system across four primary dimensions: 1) Baseline Performance, 2) Algorithmic
Enhancements, 3) Data Quality, and 4) Further Analyses. We present the results for Baseline
Performance and Algorithmic Enhancements in Sections 6.1 and 6.2, while the evaluations of Data
Quality and Further Analyses are provided in Appendix 8.14 and 8.15, respectively.

We begin by demonstrating the system’s effectiveness across a diverse set of manipulation tasks, estab-
lishing baseline performance through comprehensive experiments with ACT and DP methodologies.
We then quantify the performance gains achieved via our algorithmic enhancements, which address
challenges such as trajectory smoothness, perceptual robustness, and cross-platform generalization.
To validate data quality, we conduct a reliability assessment of the T265 and MINI tracking modules,
ensuring that the collected datasets meet accuracy and consistency requirements for downstream
applications. Finally, we present further analyses that evaluate additional factors—including the
impact of fisheye camera utilization, training dataset scale, and a quantitative performance compared
with the original UMI—thereby providing a holistic benchmark of system improvements.

Prior to presenting the experimental results, we introduce the 12 tasks employed for policy inference
evaluation, as illustrated in Figure 5. These tasks are designed to encompass a broad spectrum
of real-world manipulation challenges, including hinged operations and pick-and-place activities,

(9) Pick Lid (10) Pick Pen (11) Sweep Trash (12) Open Ricecooker ‘

Figure 5: Twelve tasks used for policy inference evaluation, covering a broad range of real-world
manipulation challenges. These include hinged operations (Tasks 1-4), pick-and-place activities
(Tasks 5-10), pick-push manipulation (Task 11), and button press actions (Task 12), providing a
comprehensive benchmark for the proposed system.

thereby providing a comprehensive benchmark for assessing the proposed system. Unless otherwise
specified, all experiments are conducted using an xArm 6 robotic platform.

6.1 Baseline Performance

Table 1: Success rates for DP and ACT in different tasks, sorted by manipulation type.

Index Task Manipulation Type Success Rate (%) of DP Success Rate (%) of ACT

(Relative TCP) (Absolute Joint)
1 Open Container Hinged 93.33 86.67
2 Open Roaster Hinged 80.00 86.67
3 Open Drawer Hinged 53.33 80.00
4 Open Suitcase Hinged 40.00 86.67
5 Rearrange Coke Pick-Place 80.00 86.67
6 Fold Towel Pick-Place 93.33 73.33
7 Pick Bear Pick-Place 80.00 20.00
8 Unplug Charger Pick-Place 86.67 86.67
9 Pick Lid Pick-Place 53.33 93.33
10 Pick Pen Pick-Place 53.33 20.00
11 Sweep Trash Pick-Push 46.67 6.67
12 Open Ricecooker Button Press 20.00 80.00

We conduct a comparative study of two baseline approaches for policy inference—ACT with absolute
joint-space outputs and DP with relative TCP-based outputs—across 12 diverse manipulation tasks.
Each task is trained on 200 demonstrations, randomly selected from our open-source dataset.
Among the 200 pieces of data, every 50 pieces are a group. The robotic arm’s initial configuration
and environment in one group are fixed, while the target object’s position varies within a predefined
range. Across groups, both the arm’s starting pose and the scene arrangement are altered. Each
algorithm is trained on the same training data. During testing, we use object poses that appear in the
training set but place them in new scene contexts. Each task is attempted 15 times, and success
rates are recorded.

The results are shown in Table 1. Both ACT and DP achieve relatively high success rates on most
tasks, indicating that the collected dataset is sufficiently diverse and general to support different policy
representations. Notably, tasks involving substantial occlusion (e.g., “Rearrange Coke” and “Open
Container”) can still be effectively handled, suggesting that our data collection strategy is robust to
partial visibility.

In tasks requiring precise depth estimation —such as “Open Drawer,” “Pick Lid,” and “Open
Ricecooker”—the baseline DP algorithm’s limitations become evident. In particular, DP struggled
with pressing actions in “Open Ricecooker,” where small deviations in relative motion can prevent
successful button presses. By contrast, in the baseline ACT algorithm, tasks like “Open Suitcase,”
exhibit more accurate depth reasoning but less sensitivity to specific trajectory requirements. In “Pick
Bear,” ACT occasionally generates joint configurations unseen during training (e.g., producing a
fully inverted gripper posture when the dataset predominantly showed a downward TCP orientation),
which highlights a known limitation of the original ACT approach, typically reliant on third-person
viewpoints for global state estimation. Similar issues arise in “Pick Pen” and “Sweep Trash,” with
the latter also revealing a workspace mismatch: ACT’s absolute joint predictions sometimes yield
unreachable targets if training data contained trajectories that exceeded the xArm’s operational
envelope. By contrast, DP’s incremental relative-position strategy partly alleviated this problem,
although multi-step tasks like “Sweep Trash” remain challenging for both models.

We also investigate FastUMI’s compatibility with multiple robotic platforms: Flexiv Rizon, Z1 and
Robotiq. The results are shown in Appendix 8.15.

6.2 Algorithmic Enhancements

We evaluate our algorithmic refinements on two tasks—*“Pick Lid” and “Open Ricecooker”—where
the baseline DP approach most struggles with depth estimation. We retain the same training data and
parameters as in the previous experiment for both ACT and DP and employ the same testing protocol.

In the Depth-Enhanced DP, we incorporate depth information into the original DP algorithm. As
shown in Table 2, success rates increase by 26.67% on “Pick Lid” and 73.33% on “Open Ricecooker.’
These results highlight the importance of depth cues for precise object manipulation tasks, particularly
those requiring accurate vertical alignment or force application. For ACT, we introduce two variants
called Smooth-ACT and PoseACT, which incorporate GRU-based temporal modeling and integrates
TCP (end-effector state) inputs. We demonstrate that these two variants yield substantial improve-
ments in success rate compared to the original ACT, as shown in Table 3. Furthermore, we explore
relative TCP to reduce dependence on absolute coordinates, aiming to capture the shape and dynamics
of the trajectory more robustly. As the table indicates, this enhancement performs well on tasks with
extended or repetitive trajectories (e.g., “Sweep Trash”). However, for tasks requiring precise height
estimation (e.g., “Pick Bear”), removing absolute pose information can degrade vertical positioning
accuracy, underscoring a trade-off between relative and absolute coordinate representations.

l

Table 2: Comparison of success rates for DP Table 3: Comparison of success rates for different
and DP + Depth in tasks with significant depth- ACT variants across representative tasks.

estimation challenges. Joint TCP

Success Rate (%) of Success Rate (%) of PoseACT PoseACT
Task Original DP Depth-Enhanced DP Task ACT Smooth-ACT (Absolute) (Relative)
Pick Lid 53.33% 80.00% Pick Bear 20.00% 60.00% 80.00% 73.33%
Open Ricecooker 20.00% 93.33% Sweep Trash 6.67% 26.67% 53.33% 60.00%

7 Conclusion

In this work, we introduce FastUMI, a redesigned system built on the original UMI to streamline real-
world data collection for robotic manipulation. Our hardware modifications enable quick deployment
across diverse arms and grippers, removing dependencies on specialized components. By replacing
complex SLAM with a modular tracking system (e.g., T265 and MINI), FastUMI reduces calibration
overhead and maintains robust performance despite occlusions. We also open-source a dataset of
15,000 real-world demonstrations spanning 24 daily tasks. Experiments confirm that FastUMI lowers
costs, simplifies deployment, and supports large-scale data-driven policy learning. Future work will
focus on integrating richer sensing modalities and extending FastUMI to more complex platforms.

Limitations. While FastUMI demonstrates effective policy execution across diverse tasks, several
limitations remain: 1) Limited Sensing Modalities. FastUMI currently relies on visual data, which
may prove insufficient for tasks requiring precise force or tactile feedback—such as handling fragile
objects. Integrating tactile or force sensors could enable richer environmental representations and
more robust policy learning, particularly for tasks necessitating delicate or high-precision interactions.
2) Restricted Robot Compatibility. Although FastUMI accommodates single-arm or dual-arm
platforms, it is not yet adapted for more complex morphologies, including mobile manipulators
requiring whole-body control. Future endeavors could focus on expanding the hardware and software
ecosystem to support advanced platforms with larger workspaces and non-static bases.

Acknowledgments

This work is supported by the Shanghai Al Laboratory, the National Natural Science Foundation of
China (62376222), and Young Elite Scientists Sponsorship Program by CAST (2023QNRC001).

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild, 2022. URL https:
//arxiv.org/abs/2207.09450.

C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. arXiv preprint
arXiv:2402.10329, 2024.

Zhaxizhuoma, P. Chen, Z. Wu, J. Sun, D. Wang, P. Zhou, N. Cao, Y. Ding, B. Zhao, and
X. Li. Alignbot: Aligning vim-powered customized task planning with user reminders through
fine-tuning for household robots, 2024. URL https://arxiv.org/abs/2409.11905.

A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta,
A. Mandlekar, A. Jain, et al. Open x-embodiment: Robotic learning datasets and rt-x models:
Open x-embodiment collaboration 0. In 2024 IEEFE International Conference on Robotics and
Automation (ICRA), pages 6892-6903. IEEE, 2024.

Y. Zhu, A. Joshi, P. Stone, and Y. Zhu. Viola: Imitation learning for vision-based manipulation
with object proposal priors. In Conference on Robot Learning, pages 1199-1210. PMLR, 2023.

W. Fan, X. Guo, E. Feng, J. Lin, Y. Wang, J. Liang, M. Garrad, J. Rossiter, Z. Zhang, N. Lepora,
L. Wei, and D. Zhang. Digital twin-driven mixed reality framework for immersive teleoperation
with haptic rendering. IEEE Robotics and Automation Letters, 8(12):8494-8501, 2023. doi:
10.1109/LRA.2023.3325784.

D. Zhang, Z. Wu, J. Zheng, Y. Li, Z. Dong, and J. Lin. Hubotverse: Toward internet of human
and intelligent robotic things with a digital twin-based mixed reality framework. IEEE Robotics
Automation Magazine, pages 2—12, 2024. doi:10.1109/MRA.2024.3417090.

P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. In 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 12156-12163. IEEE, 2024.

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data collection, 2016. URL https:
//arxiv.org/abs/1603.02199.

H. Song, D. Qu, Y. Yao, Q. Chen, Q. Lv, Y. Tang, M. Shi, G. Ren, M. Yao, B. Zhao, D. Wang,
and X. Li. Hume: Introducing system-2 thinking in visual-language-action model, 2025. URL
https://arxiv.org/abs/2505.21432.

J. Hou, T. Wang, T. Pan, S. Wang, X. Xue, and Y. Fu. Tamma: Target-driven multi-subscene
mobile manipulation. In 8th Annual Conference on Robot Learning, 2024.

J. Zhang, Y. Gu, J. Gao, H. Lin, Q. Sun, X. Sun, X. Xue, and Y. Fu. Lac-net: Linear-fusion
attention-guided convolutional network for accurate robotic grasping under the occlusion. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
10059-10065. IEEE, 2024.

S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed, R. Jeong, K. Zolna, Y. Aytar,
D. Budden, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. de Freitas, and Z. Wang.
Scaling data-driven robotics with reward sketching and batch reinforcement learning, 2020.
URL https://arxiv.org/abs/1909.12200.

10

https://arxiv.org/abs/2207.09450
https://arxiv.org/abs/2207.09450
https://arxiv.org/abs/2409.11905
http://dx.doi.org/10.1109/LRA.2023.3325784
http://dx.doi.org/10.1109/LRA.2023.3325784
http://dx.doi.org/10.1109/MRA.2024.3417090
https://arxiv.org/abs/1603.02199
https://arxiv.org/abs/1603.02199
https://arxiv.org/abs/2505.21432
https://arxiv.org/abs/1909.12200

[14] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play, 2023. URL https://arxiv.
org/abs/2302.12422.

[15] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imitation
learning for complex manipulation tasks from virtual reality teleoperation, 2018. URL https:
//arxiv.org/abs/1710.04615.

[16] T.Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[17] L. X. Shi, Z. Hu, T. Z. Zhao, A. Sharma, K. Pertsch, J. Luo, S. Levine, and C. Finn. Yell at your
robot: Improving on-the-fly from language corrections. arXiv preprint arXiv:2403.12910, 2024.

[18] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[19] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel, and J. D. Tardés. Orb-slam3: An
accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Transactions
on Robotics, 37(6):1874-1890, 2021.

[20] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[21] S. Garrido-Jurado, R. Muiioz-Salinas, F. Madrid-Cuevas, and M. Marin-Jiménez. Auto-
matic generation and detection of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280-2292, 2014. ISSN 0031-3203. doi:https://doi.org/10.1016/j.patcog.
2014.01.005. URL https://www.sciencedirect.com/science/article/pii/
S0031320314000235.

[22] R. Dey and F. M. Salem. Gate-variants of gated recurrent unit (gru) neural networks. In
2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pages
1597-1600. IEEE, 2017.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.
03762.

[24] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint
arXiv:2403.03954, 2024.

[25] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene
representations. arXiv preprint arXiv:2402.10885, 2024.

[26] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao. Depth anything v2, 2024.
URL https://arxiv.org/abs/2406.09414.

[27] M. Grupp. evo: Python package for the evaluation of odometry and slam. https://github.
com/MichaelGrupp/evo, 2017.

[28] S. Belkhale, Y. Cui, and D. Sadigh. Data Quality in Imitation Learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Infor-
mation Processing Systems, volume 36, pages 80375-80395. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
£e692980c5d9732cf153ce27947653a7-Paper—-Conference.pdf.

[29] Y. Park, J. S. Bhatia, L. Ankile, and P. Agrawal. DexHub and DART: Towards Internet
Scale Robot Data Collection, Nov. 2024. URL http://arxiv.org/abs/2411.02214.
arXiv:2411.02214 [cs].

11

https://arxiv.org/abs/2302.12422
https://arxiv.org/abs/2302.12422
https://arxiv.org/abs/1710.04615
https://arxiv.org/abs/1710.04615
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2406.09414
https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe692980c5d9732cf153ce27947653a7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/fe692980c5d9732cf153ce27947653a7-Paper-Conference.pdf
http://arxiv.org/abs/2411.02214

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. Chen, C. Wang, K. Nguyen, L. Fei-Fei, and C. K. Liu. Arcap: Collecting high-quality
human demonstrations for robot learning with augmented reality feedback. arXiv preprint
arXiv:2410.08464, 2024.

P. Owan, J. Garbini, and S. Devasia. Faster Confined Space Manufacturing Teleop-
eration Through Dynamic Autonomy With Task Dynamics Imitation Learning. I[EEE
Robotics and Automation Letters, 5(2):2357-2364, Apr. 2020. ISSN 2377-3766. doi:
10.1109/LRA.2020.2970653. URL https://ieeexplore.ieee.org/abstract/
document /8976114. Conference Name: IEEE Robotics and Automation Letters.

R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi, and X. Wang. Bunny-VisionPro:
Real-Time Bimanual Dexterous Teleoperation for Imitation Learning, July 2024. URL http:
//arxiv.org/abs/2407.03162. arXiv:2407.03162 [cs].

H. Liu, S. Nasiriany, L. Zhang, Z. Bao, and Y. Zhu. Robot learning on the job: Human-in-the-
loop autonomy and learning during deployment. The International Journal of Robotics Research,
page 02783649241273901, Oct. 2024. ISSN 0278-3649. doi:10.1177/02783649241273901.
URL https://doi.org/10.1177/02783649241273901. Publisher: SAGE Publica-
tions Ltd STM.

O. Mees, M. Merklinger, G. Kalweit, and W. Burgard. Adversarial Skill Networks: Unsuper-
vised Robot Skill Learning from Video. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 4188—4194, May 2020. doi:10.1109/ICRA40945.2020.9196582.
URL https://ieeexplore.ieee.org/abstract/document/9196582. ISSN:
2577-087X.

S. Sontakke, J. Zhang, S. Arnold, K. Pertsch, E. B1 y1 k, D. Sadigh, C. Finn, and L. Itti.
RoboCLIP: One Demonstration is Enough to Learn Robot Policies. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Informa-
tion Processing Systems, volume 36, pages 55681-55693. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
aeb4ce310476218£26dd48cl626d5187-Paper—Conference.pdf.

T. Wang, Y. Li, H. Lin, X. Xue, and Y. Fu. Wall-e: Embodied robotic waiter load lifting with
large language model. arXiv preprint arXiv:2308.15962, 2023.

Y. Yang, Y. Li, C. Fermuller, and Y. Aloimonos. Robot Learning Manipulation Action Plans by
”Watching” Unconstrained Videos from the World Wide Web. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 29(1), Mar. 2015. ISSN 2374-3468. doi:10.1609/aaai.v29i11.9671.
URL https://ojs.aaai.org/index.php/AAAI/article/view/9671. Num-
ber: 1.

S. Wang, P. Chen, J. Zhou, Q. Li, J. Dong, J. Gao, B. Xue, J. Jiang, L. Kong, and C. Wu.
Treesynth: Synthesizing diverse data from scratch via tree-guided subspace partitioning, 2025.
URL https://arxiv.org/abs/2503.17195.

C. Eze and C. Crick. Learning by Watching: A Review of Video-based Learning Approaches
for Robot Manipulation, Sept. 2024. URL http://arxiv.org/abs/2402.07127.
arXiv:2402.07127 [cs].

S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the Wild: Learning 6DoF Closed-
Loop Grasping From Low-Cost Demonstrations. IEEE Robotics and Automation Letters, 5(3):
4978-4985, July 2020. ISSN 2377-3766. doi:10.1109/LRA.2020.3004787. URL https://
ieeexplore.ieee.org/abstract/document/9126187. Conference Name: IEEE
Robotics and Automation Letters.

C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso, D. Weld,
D. W. Sri, A. Barrett, D. Christianson, et al. Pddl— the planning domain definition language.
Technical Report, Tech. Rep., 1998.

12

http://dx.doi.org/10.1109/LRA.2020.2970653
http://dx.doi.org/10.1109/LRA.2020.2970653
https://ieeexplore.ieee.org/abstract/document/8976114
https://ieeexplore.ieee.org/abstract/document/8976114
http://arxiv.org/abs/2407.03162
http://arxiv.org/abs/2407.03162
http://dx.doi.org/10.1177/02783649241273901
https://doi.org/10.1177/02783649241273901
http://dx.doi.org/10.1109/ICRA40945.2020.9196582
https://ieeexplore.ieee.org/abstract/document/9196582
https://proceedings.neurips.cc/paper_files/paper/2023/file/ae54ce310476218f26dd48c1626d5187-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ae54ce310476218f26dd48c1626d5187-Paper-Conference.pdf
http://dx.doi.org/10.1609/aaai.v29i1.9671
https://ojs.aaai.org/index.php/AAAI/article/view/9671
https://arxiv.org/abs/2503.17195
http://arxiv.org/abs/2402.07127
http://dx.doi.org/10.1109/LRA.2020.3004787
https://ieeexplore.ieee.org/abstract/document/9126187
https://ieeexplore.ieee.org/abstract/document/9126187

[42] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26-38, 2017.

[43] C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters. Active reward learning. In Robotics:
Science and systems, volume 98, 2014.

[44] S. Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3
(6):233-242, 1999.

[45] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

[46] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun. Survey of imitation learning for robotic
manipulation. International Journal of Intelligent Robotics and Applications, 3:362-369, 2019.

[47] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139-13150, 2020.

[48] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi. A survey of imitation learning:
Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics, 2024.

[49] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-Estruch, A. W. He, V. Myers,
M. J. Kim, M. Du, et al. Bridgedata v2: A dataset for robot learning at scale. In Conference on
Robot Learning, pages 1723-1736. PMLR, 2023.

[50] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[51] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.
arXiv preprint arXiv:2403.12945, 2024.

[52] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic
manipulation. In Conference on robot learning, pages 651-673. PMLR, 2018.

[53] H.-S. Fang, H. Fang, Z. Tang, J. Liu, C. Wang, J. Wang, H. Zhu, and C. Lu. Rh20t: A
comprehensive robotic dataset for learning diverse skills in one-shot. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 653-660. IEEE, 2024.

[54] K. Doshi, Y. Huang, and S. Coros. On hand-held grippers and the morphological gap in human
manipulation demonstration. arXiv preprint arXiv:2311.01832, 2023.

[55] F. Sanches, G. Gao, N. Elangovan, R. V. Godoy, J. Chapman, K. Wang, P. Jarvis, and
M. Liarokapis. Scalable. intuitive human to robot skill transfer with wearable human ma-
chine interfaces: On complex, dexterous tasks. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6318-6325. IEEE, 2023.

[56] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation. arXiv preprint arXiv:2403.07788,
2024.

13

8 Appendix

8.1 Component Details

Figure 6 presents an expanded view of the FastUMI hardware, with each component labeled and
annotated to clarify its specific role within the system.

Realsense T265(1) Gopro Robotic Mount(®)
(New) (New)

Gopro Hero92) B
(Same) 7.5cm_Gopro
Extension Arm(7)
xtension Arm(z FastUMI on Flexiv
(New)
Top Cover(3)

(Redesigned)

Sem_Gopro # .
Extension Arm(@)] _&
[5

(New)

Fingertip@)

(Redesigned)

Flange Plate(Q) FastUMI on Franka
(New)

Maker(5) & Plug-in Fingertipd0

(Redesigned) (New)

Data Collection (Human) Policy Execution (Robot Arm) FastUMI on Z1

Figure 6: Physical prototypes of FastUMI. Left: The handheld device, used to collect demonstration
data from human operators, includes a GoPro® for visual feedback, a RealSense T265® for end-
effector pose tracking, fingertip markers@® to measure the gripper aperture, and a top cover® to
secure both the GoPro and T265. Middle: A robot-mounted device, used for executing learned poli-
cies on the robotic arm, mirrors the handheld configuration. It features an ISO-standard-compatible
camera mounting solution (including gopro mount®, extension arms@®, and flange plate®) that
adapts to varying arm and gripper geometries. This design maintains consistent GoPro perspectives
across different setups, enabling direct transfer of human demonstration views to autonomous robotic
executions. Right: FastUMI can be easily deployed on various robotic arms and grippers.

8.2 Handheld Device Design

The handheld device (see the left subfigure in Figure 6) enables manual data collection for training
action policies. It comprises three primary components:

* Fisheye Camera Module@: A GoPro camera with a fisheye extension captures wide-angle images
with a 169-degree field of view (FOV), significantly reducing occlusions and providing a broad
perspective for robotic tasks. This FOV is substantially larger than that of commonly used cameras
such as the RealSense D435i, whose narrower field of view has proven suboptimal for first-person
view (FPV) data collection in our tests. In contrast, the wider coverage of a fisheye camera
effectively captures more environmental context and enhances visual feature extraction, thereby
improving policy learning outcomes.

Figure 7: Left: D435i camera with a narrower field of view. Right: GoPro with a 155-degree
wide-angle view.

14

* Pose Tracking Module®: The handheld interface lacks intrinsic joint feedback or an external
motion-capture system, so we incorporate a RealSense T265 for robust tracking. The T265, fea-
turing a high-performance integrated IMU, replaces UMI’s visual odometry solution, eliminating
complex calibration steps and enhancing usability. In our experiments, this module consistently
delivers stable pose estimation across a wide range of scenarios, including those involving partial
visual occlusions (e.g., opening cabinets and drawers). This improved hardware design accom-
modates a broader set of conditions, which is crucial for data collection. Moreover, our system
is robust to different camera models, allowing smooth integration of alternative sensors without
major modifications to the existing pipeline. For instance, we have verified that the RoboBaton
MINI provides performance comparable to the T265 while maintaining a fully compatible data
interface, ensuring high-quality data collection and continued availability. A comparison of the
T265 and MINI is presented in Section 8.16.

» Top Cover, Fingertip, and Marker®@®: In the original UMI design, the top cover often appears
in the GoPro’s field of view, preventing complete hardware decoupling. To address this limitation,
we reposition the GoPro closer to the fingertips and ensure the top cover remains outside the
fisheye lens range, thereby accommodating setups where the cover may be absent (e.g., when
mounted on a robot). Although moving the camera closer to the fingertips naturally introduces
greater image distortion, we tackle this challenge by optimizing both the size and placement of the
markers. These refinements minimize lens distortion effects, improve marker detection accuracy,
and enhance durability and ease of attachment. This redesign increases system flexibility and
reliability.

In this configuration, the camera is factory-calibrated and aligned with the fingertips, requiring
no further user adjustment and enabling a straightforward plug-and-play experience. We employ
two camera modules in FastUMI, each serving a distinct function: the T265 provides accurate
pose tracking even under partial occlusions, while the GoPro delivers an expansive view crucial for
environmental context capture, demonstration verification, and learning algorithm support. Because
the GoPro is not responsible for pose tracking, it can be mounted more flexibly to maintain consistent
viewpoints across both handheld and robot-mounted devices, whereas the T265 is placed in a more
protected location to ensure stable pose tracking performance.

8.3 Robot-Mounted Device Design

The robot-mounted device (see the middle subfigure in Figure 6) follows the same design principles
as its handheld counterpart but is engineered for broad compatibility with a wide range of robotic
arms and grippers. Unlike the handheld configuration, the robot-mounted device does not include a
T265 camera. Its main components include:

* Flange Plate®: Designed in compliance with ISO standards, the flange plate is compatible with a
wide range of robotic arms, ensuring seamless integration and significantly reducing setup time.

* Plug-in Fingertip®: Outwardly identical to the attachments used in the handheld device, these
modules are internally contoured to accommodate varying gripper shapes while preserving uniform
external interaction points, thereby facilitating effective policy transfer. Interchangeable fingertip
modules establish standardized physical interaction points, supporting compatibility with various
robotic and handheld grippers. To accommodate a wide range of robotic grippers, we design five
customized fingertip attachments (e.g., the xArm gripper and Robotiq 2f-85) based on commonly
used grippers in open-source datasets such as Open X-Embodiment [4], covering over 90% of
the grippers in these datasets. Although not all gripper types are yet supported, our design can
be readily adapted as needed. Figure 9 illustrates our fingertip design integrated with the xArm
Gripper.

* Adjustable Camera Mounting Structure®@®: Modular extension arms facilitate precise align-
ment of the GoPro with the gripper’s fingertips, ensuring consistent viewpoints across different
robot setups. This structure comprises two key parts: 1) GoPro Robotic Mount® serves as the
primary attachment point for the GoPro. 2) GoPro Extension Arm@® enable both lateral position-
ing (indicated by the blue arrow) and vertical positioning (indicated by the red arrow) to align the

15

camera with the robot gripper, as demonstrated in Figure 6. Standardized male-female interfaces
allow sequential connections of extension arms, providing adjustable length with minimal vibration
(tested up to three extensions). By adjusting the extension arm, users can replicate the handheld
device’s camera perspective, even when grippers vary widely in size or shape. Insertable fingertip
extensions further ensure consistent viewpoints across heterogeneous hardware configurations.

Visual Alignment: To ensure visual consistency between the handheld and robot-mounted devices,
we adopt a straightforward rule: “The bottom of the GoPro’s fisheye lens image aligns with the
bottom of the gripper’s fingertips.”, as illustrated in Figure 8. This standard viewpoint ensures that all
users capture nearly identical observations, enhancing interoperability across different deployments.
Although alternative standards could be defined, deviating from this alignment would reduce the
utility of shared datasets for broader applications. If gripper sizes vary, our adjustable mechanical
design accommodates fine-grained arm adjustments to maintain visual alignment. In practice, the
handheld device employs a fixed camera configuration, whereas the robot-mounted device requires
an adjustable setup due to variations in arm geometries and end-effector designs.

—— Observation Space —|

Continuous Gripper Tracking

Figure 8: Visual alignment between the handheld device (Left) and the robot-mounted device (Right).
The two views demonstrate the consistent positioning of the GoPro’s fisheye lens image, with the
bottom of the gripper’s fingertips aligned to the red dashed lines.

Although our handheld device is a parallel-motion gripper, many robot-mounted grippers, such as
the xArm Gripper or Robotiq Gripper, do not strictly maintain parallel motion. For example, the
xArm Gripper’s effective length changes by approximately 1 centimeter as it moves between fully
open and closed positions (see Figure 9). This discrepancy in gripper motion can create mismatches
in the observed camera view, especially when transferring demonstrations collected on the handheld
device to different robot-mounted setups. To resolve this challenge, we develop a dynamic error-
compensation algorithm that compensates for gripper-specific motion differences during inference,
thereby preserving consistent visual alignment between human demonstrations and robotic executions
(see Section 4.4 for details).

Fingertip

§0°092

Xarm Gripper

Figure 9: Our plug-in fingertip design integrated with the xArm Gripper; The effective length of
the xArm Gripper changes by approximately 1 centimeter between fully closed and open positions,
potentially causing misalignment when transferring demonstrations.

16

8.4 Other Design Optimizations

To improve the stability and durability of FastUMI, we introduce three structural enhancements:
* Reinforced Key Mount Structure: Increased structural integrity to reduce vibration.
* Carbon Fiber Components: Strengthened material properties while minimizing weight.

* Standardized Male-Female Interface Design: Allowed sequential connection of extension arms to
adjust length without significant vibration.

Overall, the extensive hardware-related designs ensure reliable performance during data collection
and simplify hardware adjustments for users. Additionally, our system configuration allows for a
single standardized handheld device to be shared among multiple users, while the robot-mounted
device can be adapted to various grippers or robotic arms. This decoupled arrangement preserves
uniform data collection workflows and advances our goal of making FastUMI accessible to a broader
user community.

8.5 Data Sub-Sampling and Synchronization

In multisensor data fusion, differing sampling rates and data patterns often hinder precise alignment.

To address these challenges, we employ a unified ROS clock for consistent timestamping, a multi-
threaded buffering mechanism to handle each sensor stream independently, and synchronized sub-
sampling at the greatest common frequency. This integrated strategy ensures robust multi-modal
alignment without compromising data integrity. Such measures are necessary because certain sensors
(e.g., the T265 at 200 Hz and the GoPro at 60 Hz) exhibit mismatched rates, increasing the risk of
misalignment and overload. In practice, each sensor’s data is tagged with the unified clock and routed
into a dedicated thread-safe queue to prevent data loss under high throughput. Before each recording
session, these queues are reset to maintain orderly buffers. We then sub-sample both streams at 20
Hz—identified as the greatest common frequency between 200 Hz and 60 Hz—by retaining one
in every three camera frames and pairing each retained frame with the temporally nearest T265
pose. This approach achieves sub-millisecond offsets, well within half the T265’s 1/200 s interval,
minimizing interpolation errors and ensuring consistently synchronized data for downstream learning
tasks.

8.6 Accumulated Drift Correction for T265

Although the T265 provides robust pose estimates, it can accumulate drift during substantial motion
(e.g., sudden accelerations). To address this, we employ two main strategies: /) Reinitialization. The
simplest remedy is to restart the T265 in a stationary, predefined reference pose. This action resets
the device’s internal state and restores accurate pose tracking. 2) Loop Closure. Another strategy
leverages a visually distinct reference region—a blue 3D-printed groove on the table (Figure 10
Left)—to facilitate loop closure. When the T265 revisits this area, it re-encounters previously mapped
visual features, typically realigning the estimated trajectory with the initial reference (highlighted as a
green dashed box in Figure 10 Right) in RVIZ under minor drift. However, if significant misalignment
persists even after returning to the marked area, loop closure is deemed ineffective, and the T265
must be reinitialized to restore accurate pose tracking.

8.7 Raw Data Quality Assessment

Ensuring reliable demonstrations is crucial for downstream learning tasks; however, to our knowledge,
no existing work fully quantifies what constitutes “ideal” data quality. In practice, we enforce
consistency through sensor confidence and trajectory smoothness checks. The T265 provides four
discrete confidence levels—Failed, Low, Medium, and High; to avoid prolonged low-confidence
data, we first validate the environment by confirming that at least 95% of sample poses achieve High
confidence. Our tests indicate that lighting conditions notably affect the T265’s performance, with
dim or low-light environments often leading to reduced confidence levels and increased drift. During
actual recordings, any low-confidence pose is excluded and interpolated from neighboring frames
to maintain continuity. Meanwhile, user-defined thresholds on velocity, acceleration, and relative
orientation identify abrupt transitions, further refining data fidelity. Although these strategies cannot

17

Figure 10: Left: The blue 3D-printed groove on the table, serving as a clear visual reference to aid
loop closure. Right: The T265’s trajectory in RVIZ, illustrating alignment with the initial reference,
highlighted as a green dashed box, after revisiting the blue groove.

guarantee an absolute benchmark for data quality, they help establish rigorous collection standards
and minimize errors that could propagate into subsequent modeling and inference.

8.8 Trajectory Computation

Absolute TCP Trajectory: To calculate the absolute TCP trajectory, we first computed the pose
of the T265 camera in the robot base frame, and then used this pose to calculate the TCP pose in
the robot base frame. Specifically, at each timestamp i, the T265 provides (pi,Ri) , describing the
camera’s motion relative to its initial pose. The camera’s absolute pose in the robot base frame is
given by:

pga)m = Pb2g +pi — Rb2g AcZga (2)
R, =Ry, - Ry, 3)

The absolute TCP pose (pé’e),RgQ) is then obtained by incorporating the camera-to-gripper offset
Aczg:

PL = plim + Rt Acag, “
RY =R,)
The resulting sequence {(pge) , Ré’e))} yields the absolute TCP trajectory in the robot base frame.

Relative TCP Trajectory: This trajectory is formed from consecutive absolute TCP frames. For

adjacent frames i and i 4 1, with absolute poses (péle) , RQQ) and (pgjl), jol)), the relative transforms
are:
pl) =pl — pll, ©)
R(= (RY)" - REY. ™)

This formulation removes dependence on a global reference, facilitating more uniform data distribu-
tions and improving generalization when the base pose varies.

Absolute Joint Trajectory: To obtain it, inverse kinematics (IK) is solved for each absolute TCP
pose (péQ Rge)) using the robot’s URDF, typically via an iterative solver. To maintain continuity, the
solution at frame i serves as the initial guess for frame i + 1. If the URDF only extends to the flange,

the flange-to-gripper offset is accounted for in the IK computations to ensure accurate joint solutions.

8.9 Details of Dynamic Error-Compensation Algorithm

In our setup, we attach two ArUco markers to the gripper and define two hyperparameters: dp,x and
dmin- These values represent the pixel distances between the markers at the gripper’s maximum and
minimum openings, respectively. For each image frame, we detect the markers and compute the pixel
distance d. If only one marker is identified, we estimate d by mirroring the known marker about the

18

gripper’s central axis; if no markers are detected, an imputed value is inserted to maintain continuity.
Consequently, each frame is guaranteed a valid marker distance. Finally, the physical gripper width,
denoted as W, is determined by normalizing the measured distance with respect to dmax and dpin,
then scaling by Gax, which denotes the jaws’ maximum physical opening:

d—dy;
W=—""1 % Gmax. 8)

Figure 11: Generation of cropped Depth and RGB Images in FastUMI. (a) is the original image, (b)
left is the cropped image for depth map generation, (b) right is the resulting depth map, and (c) is the
cropped RGB input.

However, our images contain significant black margins due to the fisheye lens, which negatively im-
pact the performance of Depth Anything V2 [26]. To address this, we preprocess the images by crop-
ping them to retain only the rectangular regions inscribed within the circular area. Specifically, before
generating depth maps, we tightly crop the 1920x1080 image to its inscribed rectangle—removing
22% from the left and right, and 17% from the top and bottom—to eliminate high-contrast black
margins that could cause estimation errors, as shown in Figure 11(b). Although this cropping reduces
the range observable by the fisheye camera, we focus more on the depth information in the areas
related to the gripper’s contact operations. For the input of RGB images, to keep the field of view
as consistent as possible with the depth map while preserving the full fisheye content, we crop 13%
from the left and right edges—keeping the top and bottom intact—to produce a rectangular image
that fully encompasses the circular region, as shown in Figure 11(c). This dual-cropping approach
ensures both high-quality depth maps and alignment with the relevant operational workspace.

During training, we employ cross-attention[23] to fuse features from the metric estimated depth
and the RGB image. Specifically, the metric estimated depth serves as the query tokens, while the
RGB image provides the key and value tokens. This design allows the depth information to guide
attention over the RGB features, enriching them with geometric structure and spatial cues. The
fused representations are then concatenated and passed to the downstream policy network for action
prediction.

For real-time inference during the diffusion policy rollout, we implement Depth Anything V2 with
its large pre-trained model [26], achieving an inference frequency of 20 Hz on an RTX 4090 GPU.
This improvement is achieved without the need for additional sensors or multi-view camera setups,
providing a practical and efficient solution to enhance policy performance in precision-critical
applications.

8.11 Implementation of Dynamic Error-Compensation Algorithm

Stage 1: Compensation Distance. Let W (i) be the measured gripper width at frame i, and denote
the gripper’s maximum width by Wp,x. We define a compensation distance d(i) to counteract TCP
displacement caused by non-parallel jaws. Let d;josc be the maximum compensation distance when
the gripper is fully closed, and dopen be the minimum distance when it is fully open. We then compute

d —d
d(i) = d¢lose — ww(i)' 9
max

As W (i) decreases, the end-effector is shifted further along the negative Z-axis of TCP frame, thereby
offsetting the forward motion introduced by closing gripper jaws.

19

Stage 2: Pose Correction. Let pgg and Rg? be the desired TCP position and orientation at frame i,
respectively. The rotation matrix Réle) defines the TCP coordinate frame’s orientation relative to the
robot’s base frame. To determine the direction of displacement, we first extract the TCP frame’s local
Z-axis, expressed in the base coordinate frame:

7, = RUE, (10)

axis

where &, = [0, 0, 1]T is the local Z-axis of the TCP coordinate frame. The corrected TCP position
p/e(e') in the base coordinate frame is then computed as:

ped) = pld — d(i)2l), (1)
Finally, inverse kinematics (IK) is solved using the corrected TCP position pé(ci) , while maintaining

the original orientation Ré?, yielding the joint vector 00

60 = 1K (pi, RY). (12)

8.12 Dataset Acquisition Process

The dataset is collected by five operators using three FastUMI devices, ensuring diversity in user

interactions and environmental contexts. Each recorded task involves a fixed target object (e.g.,
a specific drawer or container), while the surrounding background (e.g., table clutter, lighting) is
randomized to introduce variability. During acquisition, operators utilize RVIZ for real-time visual-
ization, enabling verification of the T265 sensor output and ensuring high-quality demonstrations. We
enforce a quality-assurance protocol by continuously monitoring critical metrics (e.g., T265 tracking
confidence) and discarding or re-recording sequences affected by sensor drift.

8.13 Dataset Storage and Format

All raw sensor data are initially recorded locally before undergoing post-processing. To support
various imitation learning and control paradigms, we provide multiple data representations—most
notably, joint trajectories and TCP trajectories. Each demonstration is stored in a dedicated HDFS file,
encapsulating both observations (e.g., images, tracked poses) and actions (e.g., gripper commands)
within a unified dataset. For broader compatibility, we also provide scripts to convert HDFS5 files
into Zarr format, which maintains a hierarchical structure while offering greater flexibility in storage
backends, chunking, compression, and parallel access. Detailed specifications of the dataset schema
and file organization are provided in Section 8.17.

8.14 Data Quality

Table 4: Error analysis of trajectories for different tasks (values in mm).

Pose Tracking Module Task Trajl Traj2 Traj3 Traj4 Traj5 Traj6 Traj7 Traj8 Traj9 Trajl0

RealSense T265 Pick Cup 11 10 12 11 11 12 11 10 7 10
Open Container 19 16 18 17 19 17 17 17 18 19
Rearrange Coke 36 21 21 20 19 22 21 25 22 26

RoboBaton MINI Pick Cup 17 15 16 14 13 15 15 14 16 17
Open Container 10 11 10 11 11 12 11 12 12 12

In Table 4, we summarize the pose estimation errors of both T265 and MINI across three representative
tasks: “Pick Cup,” a straightforward pick-and-place action (as shown in Figure 12 Right); “Open
container,” which involves hinged motion and partial occlusion; and ‘“Rearrange Coke,” a more
complex scenario with substantial occlusion. To establish ground-truth trajectories, four reflective
markers are affixed to the handheld device and tracked by an optical motion-capture system (Figure 12
Left). Simultaneously, the device poses are recorded through our data collection pipeline. All data
streams are synchronized within ROS via unified timestamps, and ten trajectories per sensor are
collected for each task. The evo toolkit is used to compute all reported errors [27].

20

—— APE (unit-less)
— mse

—— median

— mean

Motion Capture 0.08 s

APE (unit-less)

005 ﬂr ------------ -!ﬂ

Pick Cup

Figure 12: Left: Four reflective markers attached Figure 13: Representative T265 VIO error over
to the FastUMI handheld device, tracked by an time during the “Pick Cup” task. Error peaks ap-
optical motion-capture system for ground-truth pear when the gripper nears the table and occludes
trajectory collection. Right: Example scenarios visual features, then recover once it returns to the
from the “Pick Cup” task. original viewpoint.

In the “Pick Cup” scenario, where occlusion is minimal, T265 achieves an average positioning error
of 10.5 mm, while MINT’s error averages 15.2 mm. In the “Open Container,” T265’s error increases to
17.7 mm, reflecting the partial obstruction of its field of view, whereas MINI’s error decreases to 11.2
mm. T265’s performance degrades further in the “Rearrange Coke,” where placing an object inside a
cabinet induces significant occlusion. These findings indicate that T265 is particularly susceptible to
severe visual obstruction at close range. In contrast, MINI demonstrates relatively stable cross-task
performance—albeit with slightly reduced accuracy in low-occlusion scenarios. T265 offers superior
localization when visual inputs are largely unobstructed, whereas MINI exhibits more consistent
performance under varying levels of occlusion. We also observe that the VIO error typically remains
low at the beginning and end of each trajectory but grows noticeably in the middle. Figure 13
illustrates this pattern for T265 during the “Pick Cup” task: as the gripper moves closer to the table,
occlusion reduces visible features and causes two pronounced error peaks. During intermediate
movement, partial visibility leads to moderate errors, though still higher than at the outset. By the final
stage, returning to the original viewpoint restores abundant features, and loop-closure mechanisms
recover tracking accuracy to near-initial levels.

Table 5 compares the orientation errors (in degrees) for both T265 and MINI. The Intel T265 achieves
a lower mean orientation error (2.64°, max 3.69°) than the RoboBaton MINI (3.18°, max 4.42°) over
ten pick-cup trials. Although the MINI slightly outperforms the T265 on Trajectories 3 and 7, the
T265 demonstrates greater overall consistency.

Table 5: Orientation Estimation Errors (in degrees)

Sensor Task Trajl Traj2 Traj3 Traj4 Traj5 Traj6 Traj7 Traj8 Traj9 Trajl0
T265 Pick Cup 2.48 2.17 2.78 3.69 2.87 2.80 3.31 2.12 2.14 2.02
RoboBaton MINI Pick Cup 2.77 3.33 2.47 4.42 4.11 3.34 2.39 245 3.32 3.22

8.15 Further Analyses

We further investigate the influence of camera configurations and training data size on policy inference
performance. Table 6 compares different camera setups for both pick-and-place and hinged operations.
For each configuration (i.e., camera model and lens type), we collected 50 demonstrations under
identical scene settings, with only the target object’s position randomly varied within a small range.
All trajectories were obtained via direct teleoperation. The original ACT algorithm is then evaluated
on object positions seen during training but under new trials, each repeated 15 times to compute
the success rate. Notably, a fisheye lens at the end-effector achieves performance comparable to
multi-view setups, potentially because its wide field of view captures richer contextual information
for decision-making.

21

Next, to assess how the amount of training data affects generalization, we conducted an experiment
on a “Pick Cup” task with 200, 400, and 800 demonstrations (Table 7). In this scenario, the cup
and coaster were each placed in five distinct positions, repeated three times with different handle
orientations. The original ACT model must learn not only positional information but also handle
orientation to generate an appropriate grasp trajectory. As the dataset grew larger, success rates
significantly improved, indicating that data abundance bolsters the model’s capacity to generalize
across varied object placements and orientations.

Table 6: Comparison of task performance under varying camera setups (lens type and viewpoint).

D435i GoPro with Flat Lens
(First-Person) (First-Person)
Pick Bear 0% 6.67%
Open Container 0% 93.33%
D435i GoPro with Fisheye Lens
(First-Person&Third-person) (First-Person)
Pick Bear 86.67% 80.00%
Open Container 100.00% 100.00%

Table 7: Success rates in the “Pick Cup” task using different training dataset sizes.
Task Data Size (200) Data Size (400) Data Size (800)
Pick Cup 20.00% 26.67% 53.33%

We further provide a quantitative comparison of FastUMI and UMI. FastUMI weighs 732¢g, a modest
10% increase over UMI’s 663g. Despite this, handling remains comparable, with both systems
maintaining a data collection rate of 9s per task. In practice, our recent work shows that FastUMI
supports prolonged and large-scale use: for instance, 10 operators continuously collected about
3000 long-horizon tasks (~20s each) over an 8-hour shift without reported fatigue or performance
degradation. Table 8§ outlines the pipeline of FastUMI, effectively eliminating several time-intensive
steps required by UMI. Table 9 compares the SLAM success rates between UMI (using GoPro) and
FastUMI (using T265) across several tasks. UMI exhibits substantially lower performance, with
many trajectories either not generated or of poor quality with missing key points, whereas FastUMI
consistently achieves a 100% success rate.

Table 8: Comparisons of Pipeline Between FastUMI and UMI

Collection Pipeline FastUMI UMI

1. Camera Intrinsic Calibration 0 Over 1200s

2. Prepare Scene 120s 120s

3. Mapping and Gripper Calibration 0 80s

4. SLAM Trajectory Generation 0 639s / 20 Trajectories.

Table 9: Comparisons of SLAM Success Rate (SR)

Task Open Container Rearrange Coke Unplug Charger Open Drawer
SLAM SR (FastUMI) 100% 100% 100% 100%
SLAM SR (UMI) 46% 46% 38% 38%

FastUMI has been deployed across a range of robots with diverse gripper configurations, with the
results summarized in Table 10.

22

Table 10: Performance of FastUMI on Different Platforms

Platf XArmé6 Flexiv Rizon XArmé6 71

atlorm + xArm Gripper + Robotiq 2F-85 + Robotiq 2F-85 + Custom Gripper
Algorithm DP/ACT DP/ACT DP/ACT DP/ACT
Open Container 93.3% / 80.0% 86.7% / 86.7% 93.3% / 86.7% 86.7% / 80.0%
Unplug Charger 86.7% / 80.0% 93.3% /1 80.0% 86.7% 1 86.7% 73.3% 1 66.7%

8.16 RealSense T265 vs. RoboBaton MINI

We present a comparative overview of the key specifications of the T265 and MINI devices. Figure 14
shows the product image of the MINI.

Table 11: Device Specifications Comparison

T265 MINI
Output Frequency (Hz) 200 20
Accuracy (mm) 10 10
164.7°(D)
FOV 163°(D) 164.7°(H)
123.8°(V)
Resolution 848x800 640x480
Weight (g) 55 68 Figure 14: The RoboBaton MINI
Dimensions (mm) 108x24.5x12.5 101.6x32.25x17.70 ~ Productimage.
SDK Windows/Linux Windows/Linux
ROS1 HTTP/ROS2

8.17 FastUMI Dataset

Our dataset is composed of more than 10000 demonstrations from 22 daily tasks. The dataset has
been split into smaller parts. Users need to merge the files after downloading to reconstruct the
original dataset. Each file is named with its corresponding task name and contains no more than 50
HDFS5 files. Each HDFS5 file corresponds to a single episode and encapsulates both observational data
and actions. Below is the hierarchical structure of the HDFS5 file:
episode_<idx>.hdf5
observations/
images/
<camera.-name_l1> (Dataset)
gpos (Dataset)
action (Dataset)
attributes/
sim = False

The variable “sim” indicates whether the data was recorded in simulation (True) or real-world (False).
The “images” stores image data from cameras as uint8 and has a shape of (num_frames, height=1920,
width=1080, channels=3). The “qpos” stores position and orientation data for each timestep and has
a shape of (num_timesteps, 7), where the 7 columns correspond to [Pos X, Pos Y, Pos Z, Q_X, Q_Y,
Q_Z, Q_W]. The “actions” stores action data corresponding to each timestep. In this script, actions
mirror the qpos data.

23

8.18 Related Work
8.18.1 Data Collection Methods

High-quality data is fundamental to the success of learning algorithms [28]. Here, we introduce
several data collection systems and compare them to our Fast-UMI. Teleoperated systems represent
one of the most widely adopted methodologies for data collection in imitation learning. This approach
enables researchers to intuitively gather demonstration data, establishing a direct correspondence
between observed visual inputs and associated actions [15]. Various control interfaces, including AR
controllers [29, 30], haptic controllers [31, 32], 3D spacemouses [33], and newly explored leader-
follower systems [8] are developed to build teleoperated systems. However, these systems inherently
depend on real robotic arms during data collection. Additionally, hardware-specific constraints often
necessitate modifications to enable cross-platform compatibility, significantly reducing efficiency. In
contrast, Fast-UMI requires only a handheld device, enabling portable and flexible data collection.

An alternative data collection paradigm involves capturing multi-view human demonstration videos.
Robots can extract actionable knowledge from these recordings by leveraging adversarial learning
objectives [34], contextualized annotations [35, 36], and hybrid CNN-probabilistic parsing tech-
niques [37, 38]. This approach circumvents the need for physical robotic platforms and facilitates the
construction of reusable datasets. However, it presents several inherent limitations. Since the action
data are inferred from raw videos, these actions sometimes may not precisely reflect the true actions,
which hinders the formation of generalizable policies. Furthermore, the embodiment mismatch
remains a persistent challenge, as discrepancies between the domain in which data is collected and
the deployment environment can lead to policy failures [39]. In contrast, Fast-UMI directly collects
precise action information during demonstrations and minimizes domain shift by aligning video
observation of wrist-mounted cameras on both the hand-held device and the on-robot device.

Sensor-enhanced interfaces (i.e., handheld grippers) offer a promising alternative for data collection,
addressing some of the aforementioned challenges. However, obtaining precise TCP pose information
remains nontrivial. Existing solutions incorporate SLAM-based estimation from video streams [2],
motion capture systems [14], and vision-based tracking algorithms [40]. These techniques, however,
often necessitate extensive post-processing or rely on fixed infrastructure, reducing overall efficiency.
In contrast, Fast-UMI employs the T265 to directly capture accurate pose data, eliminating the need
for cuambersome SLAM pipelines or motion capture systems. Additionally, its wrist-mounted gopro
camera records high-resolution visual data at variable frame rates, providing a rich observational
dataset to support policy learning.

8.18.2 Imitation Learning

Unlike methods that heavily rely on human programming [41] and task-specific reward functions [42,
43], Imitation Learning (IL) enables robots to autonomously perform tasks by learning from expert
demonstrations [44, 45, 46, 47, 48]. With the large-scale collection of robotic manipulation datasets in
recent years [4, 49, 50, 51, 52, 53], IL has been widely adopted in robotic manipulation, demonstrating
remarkable performance across diverse task domains. Depending on the nature of the collected data,
IL algorithms can leverage real-robot demonstrations [16, 18, 17], video-based observations without
explicit action labels [14, 1], or data obtained from decoupled handheld tracking devices [2, 54, 55].
Furthermore, in dexterous hand manipulation tasks, IL has been extended to learn from human hand
motion demonstrations [56, 30]. The ACT algorithm applies imitation learning to absolute joint
pose data collected from robotic arms and utilizes temporal ensemble techniques over fixed-length
action sequences to enable smooth and autonomous dual-arm control [16]. The work [17] integrates a
language modality into the ACT algorithm, fine-tuning a vision-language model to facilitate language-
based interaction with dual-arm robots. DP generates actions in the robotic action space through a
conditional denoising process, offering advantages such as expressing multimodal action distributions,
handling high-dimensional output spaces, and providing stable training [20]. UMI demonstrates that
UMI-like data can be effectively used to train diffusion policy, and yield promising results [2]. In
our work, we validate our system’s performance using data collected through ACT [16] and DP [20].
We further analyze the characteristics of the data collected by Fast-UMI and evaluate its impact on

24

these algorithms. Based on this analysis, we implement a series of optimizations and adaptations,
enhancing the performance of these algorithms when applied to Fast-UMI data.

25

	Introduction
	Hardware-Centric Prototype Design
	Software-Focused Framework
	Raw Data Acquisition and Quality Assessment
	Data Preparation for Training

	Algorithmic Adaptations for FastUMI
	Data Challenges with FastUMI
	Enhanced ACT for First-Person Perspectives
	Depth-Enhanced Diffusion Policy
	Dynamic Error-Compensation Algorithm

	Open-Source Dataset
	System Evaluation
	Baseline Performance
	Algorithmic Enhancements

	Conclusion
	Appendix
	Component Details
	Handheld Device Design
	Robot-Mounted Device Design
	Other Design Optimizations
	Data Sub-Sampling and Synchronization
	Accumulated Drift Correction for T265
	Raw Data Quality Assessment
	Trajectory Computation
	Details of Dynamic Error-Compensation Algorithm
	Implementation of Depth-Enhanced Diffusion Policy
	Implementation of Dynamic Error-Compensation Algorithm
	Dataset Acquisition Process
	Dataset Storage and Format
	Data Quality
	Further Analyses
	RealSense T265 vs. RoboBaton MINI
	FastUMI Dataset
	Related Work
	Data Collection Methods
	Imitation Learning

