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ABSTRACT
Unsupervised semantic hashing has emerged as an indispensable
technique for fast image search, which aims to convert images into
binary hash codes without relying on labels. Recent advancements
in the field demonstrate that employing large-scale backbones (e.g.,
ViT) in unsupervised semantic hashing models can yield substantial
improvements. However, the inference delay has become increas-
ingly difficult to overlook. Knowledge distillation provides a means
for practical model compression to alleviate this delay. Nevertheless,
the prevailing knowledge distillation approaches are not explicitly
designed for semantic hashing. They ignore the unique search para-
digm of semantic hashing, the inherent necessities of the distillation
process, and the property of hash codes. In this paper, we propose
an innovative Bit-mask Robust Contrastive knowledge Distillation
(BRCD) method, specifically devised for the distillation of seman-
tic hashing models. To ensure the effectiveness of two kinds of
search paradigms in the context of semantic hashing, BRCD first
aligns the semantic spaces between the teacher and student models
through a contrastive knowledge distillation objective. Additionally,
to eliminate noisy augmentations and ensure robust optimization,
a cluster-based method within the knowledge distillation process is
introduced. Furthermore, through a bit-level analysis, we uncover
the presence of redundancy bits resulting from the bit indepen-
dence property. To mitigate these effects, we introduce a bit mask
mechanism in our knowledge distillation objective. Finally, exten-
sive experiments not only showcase the noteworthy performance
of our BRCD method in comparison to other knowledge distillation
methods but also substantiate the generality of our methods across
diverse semantic hashing models and backbones.
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1 INTRODUCTION
Content-based image retrieval is a crucial image search problem in
which similar images are retrieved from a database given a query
image [21]. It has been widely applied in many web applications
(e.g., iStock 1). In recent years, we have witnessed a significant
surge in visual data on the Internet. To address the exponential
growth of data volume and expensive annotating requirements
in large-scale databases, unsupervised semantic hashing methods
have played a pivotal role [26]. These methods aim to maintain
the semantic similarity of images by deep convolutional neural
networks (e.g., VGG [40]) without relying on labels, where the
original high-dimensional embedding of the image is converted
into a compact hash code for presentation. Taking advantage of
using hash codes for efficient search, semantic hashing has achieved
impressive results in large-scale image retrieval [50].

1https://www.istockphoto.com/
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Figure 1: Search paradigms for semantic hashing. (a) rep-
resents the Symmetric Semantic Hashing search Paradigm
(SSHP), utilizing a single model for both offline and online
stages. (b) depicts the Asymmetric Semantic Hashing search
paradigm (ASHP), employing distinct models for each stage.

With the emergence of more advanced architectures like Vi-
sion Transformer (ViT) [8], some pioneering studies [10, 19] have
demonstrated their superiority in semantic hashing. For example, a
recent publication [10] reports that by replacing the original back-
bone with ViT, the semantic hashing model CIBHash [34] gains
around 46% improvement. This suggests a promising trend where
semantic hashing approaches increasingly adopt such powerful
backbones to extract meaningful representations. Unfortunately, a
drawback arises when employing large-scale backbones. For exam-
ple, we find that if we employ the large-scale model ViT_L_16 as
the hashing model’s backbone, it takes approximately 657 ms to
process a batch of 64 images and generate hash codes. In contrast,
the subsequent search process requires less than one-tenth of that
time 2. Consequently, the inference time becomes a bottleneck,
adversely affecting the user experience in practical scenarios.

To promote the inference process, Knowledge Distillation (KD)
is a frequently employed method [11], which compresses the large
backbone of the teacher into a small student model for inference.
The teacher tries to transform the necessary knowledge to the stu-
dent for performance guarantee. Using such a technology, we have
summarized two search paradigms for semantic hashing, including
the symmetric and asymmetric search paradigms. First, as shown
in Figure 1 (a), a conventional solution follows a symmetric search
paradigm, and we name such a paradigm the Symmetric Semantic
Hashing search Paradigm (SSHP). In SSHP, a single student model
serves as the hash code extractor for semantically learning both
candidates and queries in the offline and online stages, respectively.
Additionally, another large teacher model takes charge of distill-
ing the required knowledge to the student. Second, as shown in
Figure 1 (b), we synthesize a novel paradigm named Asymmetric

2See Appendix F for details
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Semantic Hashing search Paradigm (ASHP) for semantic hashing.
The ASHP retains a powerful large teacher model offline to gen-
erate better hash codes of candidates for accuracy but leverages a
lightweight student model online to facilitate quick search. This
paradigm draws inspiration from some works [4, 23, 47, 56] that
employ the methodology of firstly generating hash codes, followed
by the learning of a hash function, which means we can deploy
different models for the same hash code. The ASHP improves ac-
curacy by sacrificing offline inference time while ensuring online
inference efficiency for good user experiments.

At this point, we hope to grasp a suitable distillation method that
can be used for both paradigms. However, the current knowledge
distillation methods lack explicit design considerations for semantic
hashing, thereby overlooking crucial factors inherent to semantic
hashing. We identify three critical factors for designing an effective
knowledge distillation strategy that facilitates the semantic hashing
problem. (1) Semantic space alignment. In the symmetric paradigm
(SSHP), the hash codes outputted from different stages are in the
same space naturally because one single model is applied in both
stages. However, in the asymmetric paradigm (ASHP), since we im-
plement different models offline and online, the Hamming semantic
space of both is extremely misaligned, which argues a necessary
distillation way to ensure the space is consistent for effective search.
(2) Robust optimization. Some current works [12, 15, 29, 41] target to
ensure robustness in the hash model because noise significantly im-
pacts the performance of hash codes. When employing a powerful
teacher model, we cannot guarantee the accuracy for all samples,
making some supervision signals noise and leading to incorrect
optimization directions. Hence, we argue that a robust knowledge
distillation process should also be achieved to avoid such situations.
(3) Hash code property. Desirable hash codes have unique proper-
ties in distribution. For example, some semantic hashing models
[7, 22, 34, 60] tend to generate “bit independence” hash codes, re-
sulting in each bit being independent of the others. This property
can better preserve the original locality structure of the data but
may render it unsuitable to calculate the distance between two hash
codes as done in prior knowledge distillation methods, which are
generally designed for real-value representations [46, 51, 61].

To realize the above factors while addressing the related chal-
lenges, we propose a novel Bit-mask Robust Contrastive knowl-
edge Distillation (BRCD) method. First, we achieve the semantic
space alignment for unsupervised semantic hashing by identifying
two learning targets, including individual-space knowledge distil-
lation and structural-semantic knowledge distillation. Specifically,
the former forces the student model to learn embedding position
knowledge from the teacher model for the same image. The latter
ensures the student model acquires structure relation knowledge
between different images from the teacher model. We introduce a
contrastive knowledge distillation method to achieve both targets
and demonstrate its effectiveness through formal analysis. Second,
in our contrastive knowledge distillation, we try to generate pos-
itive samples through data augmentation. However, the teacher
model may assign some augmented images to a distant location
from the anchor images as illustrated in Figure 2 (a), where image
𝐴 and its augmentation𝐴′ may not be close in Hamming space. We
name such samples as “offset positive samples”. This issue arises
because augmented images may represent out-of-distribution data

for the teacher model. Served as noisy data, these offset positive
samples provide wrong optimization directions. Thus, a cluster-
based method is employed in the contrastive knowledge distillation
process to detect and remove offset positive samples explicitly. The
new contrastive method protects the student model from being
influenced by the wrong optimization direction and improves the
robustness of the knowledge distillation. Third, we conduct a quan-
titative analysis of bit independence at the bit level and reveal an
interesting problem of “redundancy bit” presence in hash codes.
This issue indicates that some bits in hash codes are redundant for
a specific relevance set under the assumption of bit independence,
leading to decreased learning effectiveness. Therefore, we present a
bit mask mechanism to revise similarity calculations to mitigate the
effects of redundancy bit. Finally, extensive experiments demon-
strate our BRCD can achieve significant improvements over several
knowledge distillation baselines and also show the generality of
BRCD across diverse semantic hashing models and backbones.

2 RELATEDWORK
2.1 Hashing-based Image Retrieval
Recently, hashing has increasingly gained importance in large-scale
image retrieval. They can be broadly classified into two categories:
supervised [2, 25, 44, 47, 57] and unsupervised [17, 18, 22, 27, 28,
52, 58]. The primary distinction between these two approaches is
the availability of supervised information. In this paper, we focus
on unsupervised hashing methods, as they effectively leverage
unlabeled data and enable practical applications.

Unsupervised hashing methods try to preserve similarities of
original data in the Hamming space. With the development of deep
learning, deep semantic hashing has attracted growing interest in
efficient image search. These methods can be roughly classified
into two categories. Firstly, weak supervised learning-based ap-
proaches aim to reconstruct similar structures using pre-trained
models [17, 38, 58, 59] or cluster methods [27, 28, 52]. These re-
constructed structures or labels guide hash code learning via deep
supervised hashing methods. Some of them [19, 52, 53] incorporate
the idea of knowledge distillation, but their objective is to construct
pseudo labels or signals rather than focusing on reducing the in-
ference time. Secondly, self-supervised learning-based techniques
incorporate popular self-supervised methods such as auto-encoders
[5, 39] and generative adversarial networks (GANs) [6, 42] into deep
unsupervised hashing. Recently, several methods have adopted con-
trastive learning in unsupervised hashing [18, 28, 34, 49]. For ex-
ample, CIBHash [34] applies contrastive learning to unsupervised
hashing from an information bottleneck perspective.

With the development of large backbones like ViT [8], some
advanced works [10, 19] report a great improvement in semantic
hashing when using such a powerful backbones. Unfortunately, the
computational overhead of large-scale backbones conflicts with the
efficiency requirements of semantic hashing. Therefore, there is a
need to discover ways to reduce inference time in practice.

2.2 Knowledge Distillation in Image Retrieval
The concept of knowledge distillation, which involves transfer-
ring knowledge from one model (teacher) to another (student), has
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gained widespread attention in recent years [11]. The primary chal-
lenge is to determine what knowledge the teacher has learned and
how to distill it to the student [16]. This paper focuses on exploring
knowledge distillation techniques suitable for image retrieval tasks.

Analyzing and exploiting the relation between data samples is
a popular approach in image retrieval. In knowledge distillation,
similarity-preserving knowledge (SP) [48] and relational knowledge
distillation (RKD) [32] aim to transfer knowledge by preserving the
sample relations between input pairs. However, they use shallow
relation modeling between features, which may be suboptimal for
capturing complex inter-sample relations. To address this issue,
some studies have integrated contrastive learning into knowledge
distillation [46, 51, 55, 61]. For example, CRD [46] combines knowl-
edge distillation with contrastive learning to maximize the mutual
information between teacher and student representations. Addition-
ally, SSKD [51] employs contrastive tasks as self-supervised pretext
tasks to enable richer knowledge extraction from the teacher to the
student. CRCD [61] also utilizes contrastive loss but focuses on the
mutual relations of deep representations instead of the represen-
tations themselves. PACKD [55] further considers the correlation
among intra-class samples. These approaches enable more effective
modeling of complex relations for improved knowledge distillation
in image retrieval.

Our proposed knowledge distillation approach differs from ex-
isting methods in several aspects. First, it is reasonable to consider
transferring the relation between data samples in the symmetric
paradigm (SSHP). However, in the asymmetric paradigm (ASHP),
the student model is exclusively utilized in the online stage, while
the teacher model is used in the offline stage. As such, solely trans-
ferring relations may lead to invalid search results because of the
inconsistent output spaces between the two models. To overcome
this limitation, we develop a novel contrastive knowledge distil-
lation method that accounts for the unique characteristics of the
ASHP. Besides, existing knowledge distillation methods are de-
signed for real-value representation, which does not consider some
special problems in semantic hashing or property in hash codes.
We modify our knowledge distillation method to cope with these
special challenges in the semantic hashing domain.

3 PRELIMINARIES
In this section, we will briefly introduce semantic hashing and the
semantic hashing search paradigms SSHP and ASHP.

3.1 Semantic Hashing
Consider a database 𝑋 = {𝑥1, ..., 𝑥𝑁 } comprising 𝑁 images. Seman-
tic hashing targets to learn a hash function 𝑓 : 𝑥 ↦→ ℎ that maps
each image 𝑥 to a low-dimensional binary vector ℎ ∈ {−1, 1}𝑏 ,
referred to as a hash code, where 𝑏 denotes the dimensionality of ℎ.
This mapping aims to preserve the pairwise similarities between
the images 𝑥𝑖 and 𝑥 𝑗 in the Hamming space, characterized by the
Hamming distance 𝐷𝐻 (ℎ𝑖 , ℎ 𝑗 ) for hash codes ℎ𝑖 and ℎ 𝑗 .

Several methods [22, 34, 39, 43, 49] can be used to generate dis-
crete outputs. For example, a popular method is incorporating soft
activation like 𝑡𝑎𝑛ℎ(·) to generate the output 𝑣 = 𝑔(𝑥) ∈ (−1, 1)𝑏
first. In the test process, input 𝑣 to the 𝑠𝑖𝑔𝑛(·) function and get the
final binary codes ℎ = 𝑠𝑖𝑔𝑛(𝑣). Another conventional method is

incorporating a probabilistic binary representation layer into the
model. This involves first computing the output 𝑣 = 𝑔(𝑥) ∈ (0, 1)𝑏
using the feature extractor backbone. Next, we treat 𝑣 as the proba-
bility of a multivariate Bernoulli distribution, from which we can
sample each bit ℎ𝑖 ∼ Bernoulli(𝑣𝑖 ). To estimate the gradient of neu-
ral networks containing discrete stochastic variables, one common
approach is to use the Straight-Through estimator [54]. In addition
to these two primary methods, there are also several alternative
approaches [22, 39, 43]. Our distillation technique holds potential
for application across a broad spectrum of semantic hashing models,
as will be demonstrated in Section 5.5.

3.2 Semantic Hashing Search Paradigm with
Knowledge Distillation

When applying knowledge distillation methods to semantic hash-
ing, we identify two search paradigms, including the Symmetric
Semantic Hashing search Paradigm (SSHP) and the Asymmetric
Semantic Hashing search Paradigm (ASHP).

The search paradigm typically involves online and offline stages.
When using the KD technology, we have a pre-trained large teacher
model 𝑓𝑡 : ↦→ ℎ𝑡 and a lightweight student model 𝑓𝑠 : 𝑥 ↦→ ℎ𝑠 guided
by the teacher model 𝑓𝑡 . In the SSHP, the student model 𝑓𝑠 is used
to precompute hash codes for candidate images, which can be used
to construct the semantic hashing index [31]. In the online stage,
the student model 𝑓𝑠 is also used to extract the hash codes of query
images, and the index is utilized to locate relevant images quickly.
ASHP introduces a modification to the SSHP. ASHP still employs a
lightweight student model 𝑓𝑠 during the online stage but uses the
large teacher model 𝑓𝑡 during the offline stage. Due to this setting,
ASHP can rapidly return results in the online stage while obtaining
more accurate hash codes in the offline stage.

However, to make the SSHP and ASHP effective for semantic
hashing tasks, wemust design an appropriate knowledge distillation
method that achieves semantic space alignment and solves critical
issues in the distillation process and hash codes. We describe our
method in the following section.

4 THE PROPOSED BRCD METHOD
In this section, we present a description of our proposed Bit-mask
Robust Contrastive knowledge Distillation (BRCD).

4.1 Contrastive Knowledge Distillation
To achieve valid results in both SSHP and ASHP, the basic objec-
tive of knowledge distillation is semantic space alignment, which
consists of two targets. Firstly, the student model should learn the
individual-space knowledge from the teacher model 𝑓𝑡 . It targets
to force hash codes of the same image 𝑥𝑖 output in student model
𝑓𝑠 and teacher model 𝑓𝑡 close to each other. This can be formulated
as follows:

𝑓𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑠

∑︁
𝑥𝑖 ∈𝑋

𝐷𝐻 (𝑓𝑠 (𝑥𝑖 ), 𝑓𝑡 (𝑥𝑖 )), (1)

where 𝐷𝐻 (·, ·) represents a Hamming distance measurement, and
the lower the value, the more similar the compared images. Sec-
ondly, the studentmodel should learn the structural-semantic knowl-
edge from the teacher model. The goal is to ensure that image pairs
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Figure 2: Workflow of BRCD. (a) The contrastive knowledge distillation achieves individual-space and structural-semantic
knowledge transfer. (b) Clustering and assigning pseudo labels to images. (c) Cluster-based method eliminates offset positive
and false negative samples. (d) The process to get bit masks. (e) Bit mask mechanism prevents incorrect optimization direction.

(𝑥𝑖 , 𝑥𝑝 ) with similar semantics are mapped closely in the Hamming
space while pairs (𝑥𝑖 , 𝑥𝑛) with dissimilar semantics are far apart
when they are inputted into student model 𝑓𝑠 and teacher model 𝑓𝑡 .
This objective can be expressed as follows:

𝑓𝑠 =𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑠

∑︁
𝑥𝑖 ∈𝑋
(

∑︁
𝑥𝑝 ∈𝑃 (𝑖 )

𝐷𝐻 (𝑓𝑠 (𝑥𝑖 ), 𝑓𝑡 (𝑥𝑝 ))

−
∑︁

𝑥𝑛∈𝑁 (𝑖 )
𝐷𝐻 (𝑓𝑠 (𝑥𝑖 ), 𝑓𝑡 (𝑥𝑛))),

(2)

where 𝑁 (𝑖) denotes the negative set for 𝑥𝑖 , 𝑃 (𝑖) represents the
positive set for 𝑥𝑖 . Considering either of the two objects separately
is not sufficient. If we only consider individual-space knowledge, it
is hard to optimize all 𝑥𝑖 ∈ 𝑋 to achieve the Eq. (1) because of the
capacity gap between student and teacher models [30]. Conversely,
concentrating solely on structural-semantic knowledge, the original
space position is ignored and may lead to suboptimal results.

To design a knowledge distillation objective to satisfy both Eq.
(1) and Eq. (2), we still lack information on 𝑁 (𝑖) and 𝑃 (𝑖) in the
unsupervised scenario. Inspired by SimCLR [3], we utilize the aug-
mented images as the positive images of the anchor while including
other images from a given batch as irrelevant images. As illustrated
in Figure 2 (a), given𝑀 randomly sampled images from the training
set𝑋 , our contrastive training mini-batch consists of 2𝑀 images ob-
tained by applying data augmentation on the sampled image. Then
we get original sample set 𝐵 = {𝑥1, ..., 𝑥𝑀 } and augmented sample
set 𝐵′ = {𝑥1′ , ..., 𝑥𝑀 ′ }. The only relevant (positive) image for 𝑥𝑖 is
its augmentation, denoted as 𝑥𝑖′ , while the other 2(𝑀 − 1) images
jointly form the set of negative samples 𝑁 (𝑖). Using the teacher
model, we obtain sample hash code set 𝐻𝑡 = {ℎ𝑡1, ..., ℎ

𝑡
𝑀
} and aug-

mented sample hash code set 𝐻 ′𝑡 = {ℎ𝑡1′ , ..., ℎ
𝑡
𝑀 ′ }. By inputting

training batch 𝐵 into the student model 𝑓𝑠 , we get𝐻𝑠 = {ℎ𝑠1, ..., ℎ
𝑠
𝑀
}.

Subsequently, we propose a contrastive loss function as follows:

𝐿 =
∑︁

𝑖=1,..,𝑀
−𝑙𝑜𝑔

𝑒𝑥𝑝 ((𝛼 · 𝜙 (ℎ𝑠
𝑖
, ℎ𝑡
𝑖
) + (1 − 𝛼) · 𝜙 (ℎ𝑠

𝑖
, ℎ𝑡
𝑖′ ))/𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (𝜙 (ℎ𝑠𝑖 , ℎ
𝑡
𝑟 )/𝜏)

. (3)

Here, 𝜙 (·, ·) is the cosine similarity, 𝑅(𝑖) = {𝑁 (𝑖), 𝑖, 𝑖′} and 𝛼 ∈
[0, 1] is a hyper-parameter that controls whether the hash code ℎ𝑠

𝑖

should be closer to ℎ𝑡
𝑖
or ℎ𝑡

𝑖′ . To explore its behaviors, we derive the
gradients with respect to the hash code ℎ𝑠

𝑖
as:

𝜕𝐿𝑖

𝜕ℎ𝑠
𝑖

=
∑︁

𝑛∈𝑁 (𝑖 )

𝜌1
𝜏
· ℎ𝑡𝑛 −

𝛼𝜌2
𝜏
· ℎ𝑡𝑖 −

(1 − 𝛼)𝜌3
𝜏

· ℎ𝑡𝑖′ , (4)

where 𝜌1, 𝜌2, 𝜌3 are the weighted coefficients. Based on their gra-
dients in Eq. (4), we can find the object of Eq. (3) is the generaliza-
tion of the combination between the knowledge distillation targets
described in Eq. (1) and Eq. (2) with coefficients (detailed proof is
presented in Appendix A). Thus, it can facilitate the student model’s
learning of individual-space knowledge and structural-semantic
knowledge from the teacher model in Hamming space as shown in
Figure 2 (a).

4.2 Cluster-based Robust Optimization
Although we have proposed the contrastive knowledge distilla-
tion Eq. (3) to support the SSHP and ASHP, relying solely on the
proposed contrastive loss can not ensure a robust knowledge dis-
tillation process. For example, the hash code of anchor image 𝑥𝑖
and its augmentation 𝑥𝑖′ should ideally be close in Hamming space.
However, as depicted in the upper-right part of Figure 2 (a), due
to the teacher model may produce inaccurate hash codes for aug-
mentations, the hash codes of image 𝐴 and its augmentation 𝐴′
may not be close in Hamming space. Consequently, these augmen-
tations serve as noisy data, and the optimization may force the
student model in the wrong direction according to Eq. (3). We term
these augmentations as “offset positive samples” and evaluate their
occurrence probability in Appendix D.

To ensure a robust optimization process, we propose a cluster-
based method that explicitly detects and removes offset positive
samples to learn the semantic output space of the teacher model
effectively. As illustrated in Figure 2 (b), we first perform k-means
clustering on the set of hash codes𝐻𝑎𝑙𝑙𝑡 = {ℎ𝑡1, ..., ℎ

𝑡
𝑁
} of all training
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Figure 3: We conduct the analysis using 5000 images with the
same class on the CIFAR-10 dataset. It shows the frequency
histograms of eight randomly chosen dimensions.

images and group them into𝑘 clusters. In the unsupervised scenario,
we can determine the value of 𝑘 by using the elbow method or
silhouette analysis [35]. Subsequently, we assign a pseudo label 𝑦𝑖
to image 𝑥𝑖 based on the closest centroid. In each training batch,
augmentations 𝐵′ = {𝑥1′ , ..., 𝑥𝑀 ′ } are also assigned their respective
pseudo label𝑦𝑖′ based on the closest centroid. If the anchor image 𝑥𝑖
and its augmentation 𝑥𝑖′ have different pseudo labels, we consider
𝑥𝑖′ as an offset positive sample. Thus, we define a dynamic 𝛼 ′

𝑖
to

replace the original 𝛼 in Eq. (3) as follows:

𝛼 ′𝑖 =
{
𝛼, 𝑦𝑖 = 𝑦𝑖′

1, 𝑦𝑖 ≠ 𝑦𝑖′ .
(5)

Additionally, this method can incidentally solve the problem of
false negative samples [37]. The negative sample set 𝑁 (𝑖) is random
and includes semantic content similar to the anchor image 𝑥𝑖 . This
inclusion can cause a significant distance between one image and
its relevant image, thereby adversely affecting the optimization pro-
cess. If two different images 𝑥𝑖 and 𝑥 𝑗 belong to the same centroid
in one training batch, we consider 𝑥 𝑗 a false negative sample of 𝑥𝑖 .
Thus, we modify the set 𝑅 in Eq. (3) as follows:

𝑅′ (𝑖) = {𝑘, 𝑖, 𝑖′ |𝑘 ∈ 𝑁 (𝑖), 𝑦𝑘 ≠ 𝑦𝑖 }. (6)

Finally, the contrastive loss becomes:

𝐿 =
∑︁

𝑖=1,..,𝑀
−𝑙𝑜𝑔

𝑒𝑥𝑝 ((𝛼 ′
𝑖
𝜙 (ℎ𝑠

𝑖
, ℎ𝑡
𝑖
) + (1 − 𝛼 ′

𝑖
)𝜙 (ℎ𝑠

𝑖
, ℎ𝑡
𝑖′ ))/𝜏)∑

𝑟 ∈𝑅′ (𝑖 ) 𝑒𝑥𝑝 (𝜙 (ℎ𝑠𝑖 , ℎ
𝑡
𝑟 )/𝜏)

. (7)

The new contrastive loss is effective in detecting and removing the
offset positive sample and false negative sample issues depicted in
Figure 2 (c), where image 𝐴 eliminates the impact of offset positive
sample 𝐴′ and does not consider its relation with false negative
samples 𝐵 and 𝐵′. Thus Eq. (7) can alleviate the influence of noisy
samples and achieve a robust knowledge distillation process.

4.3 Bit mask mechanism
To achieve semantic space alignment, we need to measure the simi-
larity between two hash codes, where we apply cosine similarity
𝜙 (·, ·) in the learning objective Eq. (7). However, current approaches
may overlook the special distribution property of hash codes re-
ferred to as “bit independence.” Specifically, bit independencemeans
each bit is independent of the others in the output distribution for
all hash codes [13]. It can better preserve the original locality struc-
ture of the data [7] but may render it unsuitable to calculate the
similarity as prior knowledge distillation methods directly. To ad-
dress this property, we first explore the distribution of bits within
one relevance set.

Specifically, we obtain𝐻𝑎𝑙𝑙𝑡 = {ℎ𝑡1, ..., ℎ
𝑡
𝑁
} by using the candidate

set 𝑋 and the trained teacher model 𝑓𝑡 . We then generate relevance
sets {𝐺1, ...,𝐺𝑘 },𝐺𝑚 = {ℎ𝑚1 , ..., ℎ

𝑚
|𝐺𝑚 | }, ℎ

𝑚
𝑖

= [ℎ𝑚
𝑖1, ..., ℎ

𝑚
𝑖𝑏
] based on

their ground truth (e.g., class), where 𝑘 is the number of relevance
sets, |𝐺𝑚 | is the number of elements in𝐺𝑚 and ℎ𝑚

𝑖 𝑗
∈ {−1, 1} is the

j-th bit of hash code ℎ𝑚
𝑖
. We randomly choose a relevance set 𝐺𝑚

and compute the frequency of 1 and -1 in each dimension for all
hash codes in𝐺𝑚 to plot the frequency histograms. Figure 3 shows
the frequency histogram of eight randomly selected dimensions.
We can observe two types of bits: (1) in some dimensions, the
frequency of 1 and -1 is disparate (e.g., 𝑏1, 𝑏3, 𝑏4, 𝑏5, 𝑏8), and (2) in
other dimensions, the frequency of 1 and -1 is slightly disparate (e.g.,
𝑏2, 𝑏6, 𝑏7). Under the bit independence assumption, if 1 and -1 have
an equal probability of occurring in a specific dimension within a
relevance set, this dimension does not provide any useful semantic
information because it tends to express random semantics. Worse
still, these dimensions lead to the wrong optimization direction for
structural knowledge in the learning process. As shown in the left
part of Figure 2 (e), to stay away from images 𝐶 and 𝐶′, image 𝐴
tends to move away from its relevant images 𝐵. We refer to such
bit as “redundancy bit”.

To mitigate the bad effect of redundancy bits, we propose a
bit mask mechanism that excludes redundancy bits in similarity
calculation, as shown in Figure 2 (d). In the unsupervised scenario,
we use the cluster results of all training hash codes𝐻𝑎𝑙𝑙𝑡 obtained in
Section 4.2 to get 𝑘 cluster sets {C1, ..., C𝑘 } as relevance sets. Here,
C𝑖 = {ℎ𝑖1, ..., ℎ

𝑖
| C𝑖 | } and |C𝑖 | is the number of elements in C𝑖 . Next,

we calculate the expectation 𝑒𝑖𝑟 of each bit for each relevance set
C𝑖 as follows:

𝑒𝑖𝑟 =
1
|C𝑖 |
|
| C𝑖 |∑︁
𝑗=1

ℎ𝑖𝑗𝑟 |, (8)

where ℎ𝑖
𝑗𝑟

is the r-th dimension of ℎ𝑖
𝑗
. Then, we can define the i-th

cluster’s bit mask as 𝑒𝑚
𝑖

= [𝑒𝑚
𝑖1 , ..., 𝑒

𝑚
𝑖𝑏
], where the r-th bit mask 𝑒𝑚

𝑖𝑟
for relevance set C𝑖 is defined as:

𝑒𝑚𝑖𝑟 =

{
1, 𝑒𝑖𝑟 ≥ 𝛿
0, 𝑒𝑖𝑟 < 𝛿.

(9)

Here, 𝛿 is a threshold. Then, we propose the Bit-mask Robust Con-
trastive knowledge Distillation (BRCD) as follows:

𝐿 =
∑︁

𝑖=1,..,𝑀
−𝑙𝑜𝑔

𝑒𝑥𝑝 ((𝛼 ′
𝑖
𝜙 (ℎ𝑠

𝑖
, ℎ𝑡
𝑖
) + (1 − 𝛼 ′

𝑖
)𝜑 (ℎ𝑠

𝑖
, ℎ𝑡
𝑖′ ))/𝜏)

𝑒𝑥𝑝 (𝜙 (ℎ𝑠
𝑖
, ℎ𝑡
𝑖
)) +∑

𝑟 ∈�̂� (𝑖 ) 𝑒𝑥𝑝 (𝜑 (ℎ
𝑠
𝑖
, ℎ𝑡𝑟 )/𝜏)

, (10)

where 𝑅(𝑖) = {𝑘, 𝑖′ |𝑘 ∈ 𝑁 (𝑖), 𝑦𝑘 ≠ 𝑦𝑖 } and 𝜑 (·, ·) represents the
revised similarity function, which is defined as:

𝜑 (𝑎, 𝑏) = 𝜙 (𝑒𝑚
𝑐 (𝑎) · 𝑎, 𝑒

𝑚
𝑐 (𝑏 ) · 𝑏). (11)

Here, 𝑒𝑚
𝑐 (𝑎) is the bit mask of the relevance set corresponding to

image 𝑎. The motivation behind it is that if the expectation of one di-
mension in a relevance set is lower than the threshold 𝛿 , it should be
the redundancy bit. In Eq. (10), whenmeasuring structural-semantic
knowledge, the dimensions of redundancy bits are ignored. This
setting prevents the optimization process from the suboptimal re-
sults. For instance, in the right part of Figure 2 (e), image 𝐴 avoids
choosing the wrong optimization direction after eliminating the re-
dundancy bit. Certainly, the assumption of “each bit is independent
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of the other” is a relative concept. Many semantic hashing models
[22, 34, 60] approach this target, but the complete bit independence
is hard to grasp. Therefore, the hyper-parameter 𝛿 in Eq. (9) can be
considered a reflection of bit independence. If a semantic hashing
model can achieve bit independence well, a high value should be
given to 𝛿 ; otherwise, a small value is appropriate. We summarize
the training algorithm of BRCD in Appendix C

5 EXPERIMENTS
5.1 Dataset
We conduct experiments on three datasets to evaluate the perfor-
mance of our proposed hashing method. CIFAR-10 [20] consists of
60,000 images from 10 classes. We randomly select 1,000 images per
class as the query set, 500 images per class as the training set, and
use all remaining images except queries as the database.MSCOCO
[24] is a large-scale dataset for object detection, segmentation, and
captioning. We consider a subset of 122,218 images from 80 cate-
gories, as in previous works [34]. We randomly select 5,000 images
from the subset as the query set and use the remaining images
as the database. For training, we randomly select 10,000 images
from the database. ImageNet100 is a subset of ImageNet with 100
classes. We follow the settings from [1, 9] and randomly select 100
categories. Then, we use all the images of these categories in the
training set as the database and the images in the validation set as
the queries. Furthermore, we randomly select 13,000 as the training
images from the database.

5.2 Evaluation Metric
We use the mean Average Precision (mAP) at the top K as the evalu-
ation metric in our experiments. Specifically, we adopt mAP@5000
for MSCOCO, mAP@1000 for CIFAR-10, and ImageNet100, follow-
ing the settings used in previous work [9, 34].

5.3 Training Details
We implement models using Pytorch and conduct experiments on
two Intel Xeon Gold 5218 CPUs and one NVIDIA Tesla V100. Model
training consists of two parts: the training loss in the semantic
hashing model itself and the knowledge distillation loss. In our
knowledge distillation part, we implement the optimizer Adam
for optimization, in which the default parameters are used, and
the learning rate is set to 0.001. The temperature 𝜏 is set to 0.3,
and we consider the hyper-parameters 𝛼 in {0.6, 0.7, 0.8, 0.9} and
𝛿 in {0.2, 0.3, 0.4, 0.5, 0.6}. We perform the grid search method on
different cases for the best combination.

5.4 Knowledge Distillation Methods
Comparison

In this experiment, we compare the mAP@K of different knowledge
distillation methods on three datasets.

5.4.1 Setting. We consider the following knowledge distillation
methods for comparison: KL [16], SP [48], RKD [32], PKT [33],
CRD [46], SSKD [51], CRCD [61] and PACKD 3 [55]. These meth-
ods, including BRCD, are applied to the final output of the semantic
3PACKD requires the availability of supervised signals to construct positive data, and
we have applied this setting in our experiments.

hashing model, i.e., the hash code layer for practicability. We choose
CIBHash [34] as the semantic hashing model to train the teacher
and student models. We use ViT_B_16 [8] as the teacher model’s
backbone and use EfficientNetB0 [45] as the student model’s back-
bone. The code length 𝑏 is set to 32 and 64. To explore the effect of
different components in the BRCD method, we design variants of
BRCD, including BRCD w/o NP (BRCD without removing false neg-
ative and offset positive samples), BRCD w/o BM (BRCD without
bit mask mechanism) and BRCD w/o P (BRCD without removing
offset positive samples).

5.4.2 Results. Table 1 summarizes the results, where we make the
following observations:

1) Our proposed BRCD method outperforms other baselines. In
the SSHP, BRCDperforms competitivelywith other baselines. These
results demonstrate that our BRCD method effectively captures
and transfers valuable knowledge to enhance search performance.
Furthermore, in the ASHP, BRCD shows significant performance,
surpassing the second-best result by 9.6%, 4.3%, and 3.1% on the
CIFAR-10, ImageNet100, and MSCOCO datasets, respectively, aver-
aged across two code length.We attribute this success to the specific
considerations made by BRCD, such as semantic space alignment
between the student and teacher models, a robust optimization
procedure, and the incorporation of hash code properties.

2) Certain baselines exhibit better performance in the ASHP
compared to the SSHP, while others fail to reach the same level of
effectiveness. For instance, KL is effective in the ASHP because it
promotes semantic space alignment by reducing the distributional
discrepancies between binary representations. Conversely, meth-
ods like RKD, PKT, CRD, SSKD, CRCD, and PACKD do not achieve
semantic space alignment as they primarily focus on transferring
relations between images, resulting in their inability to yield valid
results in the ASHP. Interestingly, in ASHP, SP performs well in
some situations but fails in others. Through formal analysis pre-
sented in Appendix B, we have discovered that the optimization
of the SP method exhibits two directions in the Hamming space:
one direction aims to achieve individual-space alignment, while the
other does not. This observation explains the divergent outcomes
achieved by the SP method in the ASHP.

3) Compared to BRCD, BRCD w/o NP, BRCD w/o P, and BRCD
w/o BM have poor performance, indicating that the consideration
of false negative and offset positive samples, as well as the bit
mask mechanism, is necessary to improve the performance for our
knowledge distillation methods. Besides, compared to BRCD w/o
NP, BRCD w/o P achieves significant improvement. These results
confirm the importance of considering offset positive samples for
effective knowledge distillation. It is worth noting that the issue
of offset positive samples has been largely overlooked in previous
studies. In Appendix D, we conducted further analysis on offset
positive samples to validate the prevalence of this phenomenon.

5.5 Performance on Different Hashing Models
In this experiment, we further validate BRCD on different hashing
models by using mAP@1000 on the CIFAR-10 dataset.
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Table 1: The mAP@K comparison results on CIFAR-10, MSCOCO, and IMAGENET100 when using different knowledge
distillation methods. The best result in each column is marked with bold. The second-best result in each column is underlined.

KD Methods
CIFAR-10 (mAP@1000) MSCOCO (mAP@5000) IMAGENET100 (mAP@1000)
32 bit 64 bit 32 bit 64 bit 32 bit 64 bit

SSHP ASHP SSHP ASHP SSHP ASHP SSHP ASHP SSHP ASHP SSHP ASHP
NO KD 0.4935 - 0.5111 - 0.7459 - 0.7609 - 0.7097 - 0.7613 -
KL [16] 0.6300 0.6612 0.6460 0.6767 0.7956 0.8013 0.8087 0.8120 0.8463 0.8568 0.8576 0.8671
SP [48] 0.6208 0.4728 0.6273 0.6765 0.7984 0.8123 0.8129 0.7320 0.8524 0.7473 0.8641 0.4031
PKT [33] 0.5939 0.1075 0.6035 0.1101 0.7532 0.3499 0.7602 0.3376 0.8241 0.0134 0.8365 0.0129
RKD [32] 0.4059 0.1089 0.6171 0.0969 0.7813 0.3785 0.7951 0.3843 0.8319 0.0164 0.8496 0.0155
CRD [46] 0.6366 0.0982 0.6549 0.1117 0.7934 0.3395 0.8013 0.3356 0.8346 0.0126 0.8479 0.0145
SSDK [51] 0.6086 0.0986 0.6268 0.1457 0.7846 0.3596 0.7967 0.3583 0.8158 0.0156 0.8328 0.0164
CRCD [61] 0.6382 0.0922 0.6576 0.0927 0.7986 0.3256 0.8059 0.3285 0.8394 0.0124 0.8589 0.0126
PACKD [55] 0.6453 0.1009 0.6699 0.0657 0.8089 0.0343 0.8204 0.0341 0.8574 0.0138 0.8693 0.0129

BRCD 0.6787 0.7285 0.6900 0.7378 0.8208 0.8336 0.8349 0.8407 0.8866 0.8955 0.8966 0.9020
BRCD w/o BM 0.6612 0.7100 0.6721 0.7216 0.8087 0.8233 0.8251 0.8306 0.8761 0.8843 0.8860 0.8919
BRCD w/o NP 0.6564 0.7068 0.6659 0.7178 0.8074 0.8219 0.8239 0.8287 0.8715 0.8804 0.8818 0.8821
BRCD w/o P 0.6650 0.7144 0.6756 0.7259 0.8156 0.8253 0.8274 0.8329 0.8789 0.8872 0.8885 0.8945

Table 2: The mAP@1000 comparison results on CIFAR-10 when using different hashing models and knowledge distillation
methods. The best result in each column is marked with bold. The second-best result in each column is underlined.

Hashing Model Paradigm NO KD KL SP PKT RKD CRD SSDK CRCD PACKD BRCD

GreedyHash [43] SSHP 0.3084 0.6128 0.6284 0.5784 0.6013 0.6295 0.6005 0.6453 0.6481 0.6687
ASHP - 0.6651 0.6525 0.1204 0.1123 0.1142 0.1347 0.1023 0.0924 0.7023

Bi-half Net [22] SSHP 0.3254 0.5680 0.6414 0.5481 0.6171 0.6601 0.6125 0.6669 0.6721 0.6703
ASHP - 0.6189 0.4199 0.1252 0.0978 0.0940 0.1274 0.0936 0.1162 0.7085

TBH [39] SSHP 0.4383 0.6215 0.6337 0.5794 0.6326 0.6403 0.6052 0.6475 0.6518 0.6755
ASHP - 0.6536 0.6635 0.1217 0.1126 0.1278 0.1336 0.0974 0.0837 0.7153

CIBHash [34] SSHP 0.5111 0.6460 0.6273 0.6035 0.6171 0.6549 0.6268 0.6576 0.6699 0.6900
ASHP - 0.6767 0.6765 0.1101 0.0969 0.1117 0.1457 0.0927 0.0657 0.7378

MeCoQ [49] SSHP 0.5483 0.6693 0.6536 0.6398 0.6534 0.6873 0.6431 0.6882 0.7045 0.7228
ASHP - 0.6912 0.6935 0.1085 0.1027 0.1075 0.1367 0.0988 0.0894 0.7504

5.5.1 Setting. We still use the previous knowledge distillation
methods for comparison and consider the following representa-
tive semantic hashing models: GreedyHash [43], TBH [39], Bi-half
Net [22], CIBHash [34], and MeCoQ [49]. These methods utilize
distinct binarization techniques. GreedyHash applies a hash layer
with a sign function and uses a greedy algorithm for fast discrete
optimization. Bi-half Net adopts a bi-half layer to generate balanced
and discrete hash codes. TBH utilizes element-wise discrete sto-
chastic neuron activation [5]. CIBHash samples discrete hash codes
from the Bernoulli distribution. MeCoQ uses a soft activation to
get the binary-like representation in the training stage. We still use
ViT_B_16 as the teacher model’s backbone and EfficientNetB0 as
the student model’s backbone. The code length 𝑏 is set to be 64.

5.5.2 Results. Table 2 summarizes the results. We can find the
following observations:

1) In most cases, our proposed BRCD method is better than other
baselines when using different hashing models. In SSHP, the BRCD
is superior to all KD methods except for PACKD when using the
Bi-harf Net model. However, PACKD applies supervised signals to
create positive data, whereas our proposed BRCD does not require
any supervised signal at all. In ASHP, BRCD is better than the other

methods in these five hash models. This result demonstrates the
generality of our method across different semantic hash models.

2) Despite our initial intention to use distillation for accelerating
the inference process, the results indicate that employing distil-
lation methods can effectively improve the performance of most
semantic hashing models. We can observe that even when using
the traditional KL method, there is a minimum improvement of 22%
(this is also due to ViT serving as the teacher model backbone). The
phenomenon highlights the importance of distillation techniques
in unsupervised semantic hashing methods.

5.6 Performance on Different Backbones
In this experiment, we validate our methods when using different
backbones on the CIFAR-10 dataset. Specifically, we adopt several
representative knowledge distillation methods that have been used
earlier for comparison. The teacher model uses ViT_B_16 [8] or
ViT_L_16 as backbone, and the student model uses EfficientNetB0
[45], ResNet18 [14], or MobileNetV2 [36] as backbone. In prior
experiments, our proposed BRCD achieves a significant advantage
within the ASHP and most KD methods can’t get valid performance
in this paradigm. Consequently, we select some representative KD
methods for comparison under the SSHP in this experiment. We
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Figure 4: The mAP@1000 results on the CIFAR-10 dataset
when using different knowledge methods and backbones.

perform this setting in the CIFAR-10 dataset, use CIBHash as the
hashing model, and set the code length to 64. Figure 4 shows the
performance, from which we can find that BRCD is still better than
other KD methods when using different backbones in the teacher
model or student model. This outcome validates the generality of
our method across diverse backbone scenarios.

5.7 Model Analysis
5.7.1 Analysis on semantic space alignment. Semantic space align-
ment is a prerequisite in the ASHP and a crucial factor for SSHP.
To verify the ability of the BRCD from the perspective of semantic
space alignment, we analyze the distribution of hash codes from the
metric calculation. We propose two metrics to evaluate semantic
space alignment from two perspectives. Moreover, a visualization
analysis is shown in Appendix E.

First, to assess the transfer of individual-space knowledge, we
introduce the Individual Sample Distance (ISD) metric, which mea-
sures whether the same image is assigned to a nearby space from
different models. The formula for ISD is as follows:

𝐼𝑆𝐷 =

∑
𝑖=1,2,...,𝑁 (𝑏 − 𝑓𝑠 (𝑥𝑖 ) · 𝑓𝑡 (𝑥𝑖 ))

2𝑁
, (12)

where the lower the value of 𝐼𝑆𝐷 , the closer the student’s hash code
and the teacher’s hash code for the same image. Second, to evaluate
structural knowledge transfer, we define the Neighbor Relevance
Accuracy (NRA@K) metric as follows:

𝑁𝑅𝐴@𝐾 =
∑︁

𝑖=1,...,𝑁
|{𝑥 𝑗 |𝑥 𝑗 ∈ N𝐾 (𝑓𝑠 (𝑥𝑖 )), 𝑦 𝑗 = 𝑦𝑖 }|, (13)

whereN𝐾 (𝑎) means choosing the 𝐾 nearest neighbor of hash code
𝑎 among the set 𝐻𝑎𝑙𝑙𝑡 = {ℎ𝑡1, ℎ

𝑡
2, ..., ℎ

𝑡
𝑁
} in Hamming space. This

metric measures the percentage of relevant images’ codes from
the teacher model around the hash codes produced by the student
model, with a higher value indicating better structural-semantic
knowledge transfer. We set 𝐾 to 100, perform this experiment on
the CIFAR-10 dataset, and use ViT_B_16 as the teacher model’s
backbone and EfficientNetB0 as the student’s backbone.

Figure 5(a) shows the results. We can find that KL, SP, and BRCD
methods achieve lower 𝐼𝑆𝐷 than other distillation methods, with
the BRCD achieving the lowest value. These findings suggest that
our distillation method effectively achieves individual space knowl-
edge transfer. Besides, our proposed BRCD also achieves the high-
est 𝑁𝑅𝐴@𝐾 . Thus, we have confidence that our proposed distil-
lation method can effectively transfer structural-semantic knowl-
edge. Moreover, the KL method achieves high 𝑁𝑅𝐴@𝐾 without a
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Figure 5: (a) The ISD and NRA@K on CIFAR-10 dataset for
semantic space alignment analysis. (b) Hyper-parameters
analysis on 𝛼 and 𝛿 .

structural-semantic knowledge distillation objective. The phenom-
enon shows that individual space knowledge distillation can also
partially achieve the goal of structural-semantic knowledge distilla-
tion. However, as discussed in Section 4.1, due to the capacity gap
between student and teacher models, it is challenging to optimize all
samples to achieve the ideal results of individual-space knowledge
distillation. Therefore, we think the goal of structural-semantic
knowledge distillation can also be regarded as a regularization term
that prevents suboptimal cases during the optimization process of
individual-space knowledge distillation.

5.7.2 Parameter analysis. To examine the impact of the key hyper-
parameters 𝛼 and 𝛿 on performance, we evaluate the model under
different 𝛼 and 𝛿 values. The parameter 𝛼 in the Eq. (10) (specif-
ically, the Eq. (10) is influenced by 𝛼 through Eq. (5)) can adjust
the objective function to prioritize either individual-space knowl-
edge or structural-semantic knowledge. As shown in Figure 5 (b),
𝛼 plays an important role in obtaining optimal performance. Set-
ting 𝛼 to values that are too small or too large fails to yield the
best performance in either case. This observation underscores the
importance of simultaneously considering both individual-space
knowledge transfer and structural-semantic knowledge transfer.
Besides, the parameter 𝛿 in Eq. (9) serves as the threshold for the
bit mask. As parameter 𝛿 increases, more dimensions of the binary
vector are masked. Similar to parameter 𝛼 , the parameter 𝛿 should
not be set excessively large or small. When 𝛿 is set to a smaller
value, it becomes insufficient to eliminate most of the redundancy
bits. Conversely, if parameter 𝛿 is too large, it risks removing non-
redundancy bits, resulting in the loss of valuable information.

6 CONCLUSION
In this paper, we investigated the practical problem of inference
delay in semantic hashing and proposed a novel distillation method
Bit-mask Robust Contrastive knowledge Distillation (BRCD). Our
method introduces a contrastive knowledge distillation to ensure
the effectiveness of the symmetric paradigm (SSHP) and the asym-
metric paradigm (ASHP) in semantic hashing. Our method also
provides a robust knowledge distillation process and eliminates the
effect of redundancy bits. Extensive experiments on three datasets
demonstrated the effectiveness of the BRCD methods. More impor-
tantly, we analyzed and discovered the “redundancy bit” property
that exists in hash codes. Further studies on this property can be
explored in the future.
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A THEORETICAL ANALYSIS FOR
CONTRASTIVE KNOWLEDGE
DISTILLATION LOSS

In Section 4.1, we have proposed a contrastive knowledge distilla-
tion objective in Eq.(3). In this section, we show the derivation of
the gradients of this contrastive knowledge distillation objective
and demonstrate it is the generalization of our two knowledge dis-
tillation targets. Without loss of generality, we use 𝑖 to represent
an arbitrary anchor image and rewrite the loss function Eq.(3) as:

𝐿𝑖 = −𝑙𝑜𝑔
𝑒𝑥𝑝 ((𝛼ℎ𝑠

𝑖
· ℎ𝑡
𝑖
+ (1 − 𝛼) (ℎ𝑠

𝑖
· ℎ𝑡
𝑖′ ))/𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ
𝑡
𝑟 /𝜏)

, 𝑅(𝑖) = {𝑁 (𝑖), 𝑖, 𝑖′}.

(14)
Next, we derive the gradient of 𝐿𝑖 with respect to the student hash
codes of the anchor image ℎ𝑠

𝑖
:

𝜕𝐿𝑖

𝜕ℎ𝑠
𝑖

=
𝜕

𝜕ℎ𝑠
𝑖

− 𝑙𝑜𝑔
𝑒𝑥𝑝 ((𝛼ℎ𝑠

𝑖
· ℎ𝑡
𝑖
+ (1 − 𝛼) (ℎ𝑠

𝑖
· ℎ𝑡
𝑖′ ))/𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ
𝑡
𝑟 /𝜏)

=
𝜕

𝜕ℎ𝑠
𝑖

𝑙𝑜𝑔(
∑︁

𝑟 ∈𝑅 (𝑖 )
𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ

𝑡
𝑟 /𝜏))

− 𝜕

𝜕ℎ𝑠
𝑖

(𝛼ℎ𝑠𝑖 · ℎ
𝑡
𝑖 + (1 − 𝛼) (ℎ

𝑠
𝑖 · ℎ

𝑡
𝑖′ ))/𝜏

=
∑︁

𝑟 ∈𝑅 (𝑖 )

𝑒𝑥𝑝 (ℎ𝑠
𝑖
· ℎ𝑡𝑟 /𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ
𝑡
𝑟 /𝜏))

· ℎ
𝑡
𝑟

𝜏
− 𝛼 ·

ℎ𝑡
𝑖

𝜏
− (1 − 𝛼) ·

ℎ𝑡
𝑖′

𝜏

=
∑︁

𝑛∈𝑁 (𝑖 )

𝑒𝑥𝑝 (ℎ𝑠
𝑖
· ℎ𝑡𝑛/𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ
𝑡
𝑟 /𝜏))

· ℎ
𝑡
𝑛

𝜏

− (𝛼 −
𝑒𝑥𝑝 (ℎ𝑠

𝑖
· ℎ𝑡
𝑖
/𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ
𝑡
𝑟 /𝜏))

) ·
ℎ𝑡
𝑖

𝜏

− ((1 − 𝛼) −
𝑒𝑥𝑝 (ℎ𝑠

𝑖
· ℎ𝑡
𝑖′/𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ
𝑡
𝑠/𝜏))

) ·
ℎ𝑡
𝑖′

𝜏

=
∑︁

𝑛∈𝑁 (𝑖 )

𝜌1
𝜏
· ℎ𝑡𝑛 −

𝛼𝜌2
𝜏
· ℎ𝑡𝑖 −

(1 − 𝛼)𝜌3
𝜏

· ℎ𝑡𝑖′ ,

(15)
where 𝜌1, 𝜌2, and 𝜌3 represent the coefficient terms defined as:

𝜌1 =
𝑒𝑥𝑝 (ℎ𝑠

𝑖
· ℎ𝑡𝑛/𝜏)∑

𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ
𝑡
𝑟 /𝜏))

, (16)

𝜌2 = 1 −
𝑒𝑥𝑝 (ℎ𝑠

𝑖
· ℎ𝑡
𝑖
/𝜏)

𝛼
∑
𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ

𝑡
𝑟 /𝜏))

, (17)

𝜌3 = 1 −
𝑒𝑥𝑝 (ℎ𝑠

𝑖
· ℎ𝑡
𝑖′/𝜏)

(1 − 𝛼)∑𝑟 ∈𝑅 (𝑖 ) 𝑒𝑥𝑝 (ℎ𝑠𝑖 · ℎ𝑡𝑠/𝜏)) . (18)

Please notice that the Hamming distance between two hash codes
ℎ𝑎 ∈ {−1, 1}𝑏 and ℎ𝑏 ∈ {−1, 1}𝑏 can be described as:

𝐷𝐻 (ℎ𝑎, ℎ𝑏 ) =
(𝑏 − ℎ𝑎 · ℎ𝑏 )

2
. (19)

We then apply 𝛼 and (1 − 𝛼) weights to individual-space knowl-
edge and structural-semantic knowledge in Eqs. (1) and (2) of the
manuscript, respectively. Consequently, we obtain the following

equation:

𝐻𝑖 =
𝛼

2
(𝑏 − ℎ𝑠𝑖 · ℎ

𝑡
𝑖 ) +
(1 − 𝛼)

2

∑︁
𝑝∈𝑃 (𝑖 )

(𝑏 − ℎ𝑠𝑖 · ℎ
𝑡
𝑝 )

− 1
2

∑︁
𝑛∈𝑁 (𝑖 )

(𝑏 − ℎ𝑠𝑖 · ℎ
𝑡
𝑛).

(20)

Similarly, the gradient of 𝐻𝑖 with respect to ℎ𝑠
𝑖
is given by:

𝜕𝐻𝑖

𝜕ℎ𝑠
𝑖

=
∑︁

𝑛∈𝑁 (𝑖 )

1
2
ℎ𝑡𝑛 −

𝛼

2
· ℎ𝑡𝑖 −

∑︁
𝑝∈𝑃 (𝑖 )

(1 − 𝛼)
2

· ℎ𝑡𝑝 . (21)

It is worth noting that 𝑃 (𝑖) = {𝑖′} in our data augmentation setting.
Thus, we can rewrite Eq.(21) as:

𝜕𝐻𝑖

𝜕ℎ𝑠
𝑖

=
∑︁

𝑛∈𝑁 (𝑖 )

1
2
ℎ𝑡𝑛 −

𝛼

2
· ℎ𝑡𝑖 −

(1 − 𝛼)
2

· ℎ𝑡𝑖′ . (22)

We can find Eq. (15) generalizes Eq. (22). Therefore, our objec-
tive functions possess implicit capabilities to facilitate the student
model’s learning of individual-space knowledge and structural-
semantic knowledge from the teacher model in the Hamming space.

B THEORETICAL ANALYSIS FOR SIMILARITY
PRESERVE KNOWLEDGE DISTILLATION

In Section 5.4, we have found that in the asymmetric paradigm
(ASHP), the results of the Similarity-Preserving knowledge distil-
lation (SP) [48] method on different cases are vastly different. In
this section, we present a formal analysis to explore why this phe-
nomenon occurs. We represent the output of the student model
and teacher model as binary hash codes 𝐻𝑠 = {ℎ𝑠1, ℎ

𝑠
2, ..., ℎ

𝑠
𝑛} ∈

{−1, 1}𝑛×𝑏 and 𝐻𝑡 = {ℎ𝑡1, ℎ
𝑡
2, ..., ℎ

𝑡
𝑛} ∈ {−1, 1}𝑛×𝑏 , respectively,

where 𝑏 denotes the length of the hash code. The objective of the
SP method is defined as:

𝐿𝑠𝑝 =
1
𝑏2
| |𝐻𝑠𝐻𝑇𝑠 − 𝐻𝑡𝐻𝑇𝑡 | |2𝐹 , (23)

where | | · | |𝐹 denotes the Frobenius norm. To simplify the analysis,
we consider the relationship between hash codes of arbitrary two
images’ hash codes ℎ𝑖 and ℎ 𝑗 and express the corresponding loss
function as:

𝐿
𝑖 𝑗
𝑠𝑝 = (ℎ𝑠𝑖ℎ

𝑠
𝑗 − ℎ

𝑡
𝑖ℎ
𝑡
𝑗 )
2 . (24)

We assume that ℎ𝑖 = [ℎ𝑖1, ℎ𝑖2, ..., ℎ𝑖𝑏 ], where ℎ𝑖𝑘 represents the
k-th bit of ℎ𝑖 . Expanding Eq. (24), we obtain:

𝐿
𝑖 𝑗
𝑠𝑝 = (ℎ𝑠𝑖ℎ

𝑠
𝑗 )
2 − 2(ℎ𝑠𝑖ℎ

𝑠
𝑗 ) (ℎ

𝑡
𝑖ℎ
𝑡
𝑗 ) + (ℎ

𝑡
𝑖ℎ
𝑡
𝑗 )
2

= (ℎ𝑠𝑖1ℎ
𝑠
𝑗1 + ... + ℎ

𝑠
𝑖𝑏
ℎ𝑠
𝑗𝑏
)2 + (ℎ𝑡𝑖1ℎ

𝑡
𝑗1 + ... + ℎ

𝑡
𝑖𝑏
ℎ𝑡
𝑗𝑏
)2

− 2(ℎ𝑠𝑖1ℎ
𝑠
𝑗1 + ... + ℎ

𝑠
𝑖𝑏
ℎ𝑠
𝑗𝑏
) (ℎ𝑡𝑖1ℎ

𝑡
𝑗1 + ... + ℎ

𝑡
𝑖𝑏
ℎ𝑡
𝑗𝑏
)

= (ℎ𝑠𝑖1ℎ
𝑠
𝑗1)

2 + ... + (ℎ𝑠
𝑖𝑏
ℎ𝑠
𝑗𝑏
)2 + (ℎ𝑡𝑖1ℎ

𝑡
𝑗1)

2 + ... + (ℎ𝑡
𝑖𝑏
ℎ𝑡
𝑗𝑏
)2

− 2(ℎ𝑠𝑖1ℎ
𝑠
𝑗1ℎ

𝑡
𝑖1ℎ

𝑡
𝑗1 + ... + ℎ

𝑠
𝑖𝑏
ℎ𝑠
𝑗𝑏
ℎ𝑡
𝑖𝑏
ℎ𝑡
𝑗𝑏
)

+ 2
∑︁

𝑘≠𝑟 ;𝑘,𝑟=1,...,𝑏
(ℎ𝑠
𝑖𝑘
ℎ𝑠
𝑗𝑘
ℎ𝑠𝑖𝑟ℎ

𝑠
𝑗𝑟 − ℎ

𝑠
𝑖𝑘
ℎ𝑠
𝑗𝑘
ℎ𝑡𝑖𝑟ℎ

𝑡
𝑗𝑟

− ℎ𝑡
𝑖𝑘
ℎ𝑡
𝑗𝑘
ℎ𝑠𝑖𝑟ℎ

𝑠
𝑗𝑟 + ℎ

𝑡
𝑖𝑘
ℎ𝑡
𝑗𝑘
ℎ𝑡𝑖𝑟ℎ

𝑡
𝑗𝑟 ).

(25)
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Figure 6: The OPR in the CIFAR-10 dataset when using Effi-
cientNetB0 or ViT_b_16 as the model’s backbone. A higher
OPR indicates a greater occurrence of offset positive samples.

Notice that for 𝑟 = 1, 2..., 𝑏, we have (ℎ𝑠
𝑖𝑟
ℎ𝑠
𝑗𝑟
)2 = 1, (ℎ𝑡

𝑖𝑟
ℎ𝑡
𝑗𝑟
)2 = 1,

then we get:

𝐿
𝑖 𝑗
𝑠𝑝 = 2𝑏 − 2(ℎ𝑠𝑖1ℎ

𝑠
𝑗1ℎ

𝑡
𝑖1ℎ

𝑡
𝑗1 + ... + ℎ

𝑠
𝑖𝑏
ℎ𝑠
𝑗𝑏
ℎ𝑡
𝑖𝑏
ℎ𝑡
𝑗𝑏
)

+ 2
∑︁

𝑘≠𝑟 ;𝑘,𝑟=1,...,𝑏
(ℎ𝑠
𝑖𝑘
ℎ𝑠
𝑗𝑘
− ℎ𝑡

𝑖𝑘
ℎ𝑡
𝑗𝑘
) (ℎ𝑠𝑖𝑟ℎ

𝑠
𝑗𝑟 − ℎ

𝑡
𝑖𝑟ℎ

𝑡
𝑗𝑟 ).

(26)

To minimize 𝐿𝑖 𝑗𝑠𝑝 , we need to maximize the second term and mini-
mize the third term. We observe that if any 𝑘 = 1, .., 𝑏 satisfies the
following condition:

ℎ𝑠
𝑖𝑘
ℎ𝑠
𝑗𝑘

= ℎ𝑡
𝑖𝑘
ℎ𝑡
𝑗𝑘
, (27)

then 𝐿𝑖 𝑗𝑠𝑝 can be minimized to 0 because the second term is 2𝑏 and
the third term is 0. Based on Eq. (27), we identify two optimization
directions: (1) for any 𝑖 = 1, .., 𝑛 and 𝑘 = 1, .., 𝑏, ℎ𝑠

𝑖𝑘
= ℎ𝑡

𝑖𝑘
, which

make the student model learn the individual-space knowledge from
teacher model to achieve semantic space alignment; (2) there exist
𝑖 = 1, .., 𝑛 and 𝑘 = 1, .., 𝑏 such that ℎ𝑠

𝑖𝑘
≠ ℎ𝑡

𝑖𝑘
, which can not ensure

semantic space alignment. That is why the SP method on the ASHP
works in some cases but not in others. The SP method works well in
some cases where the model tends to achieve direction (1) more, en-
abling the student model to achieve semantic space alignment with
the teacher model. Conversely, if the optimization tends to achieve
direction (2) more, it cannot achieve semantic space alignment and
cannot to ensure that the hash codes from different models for one
image are mapped to a close position in Hamming space.

C THE TRAINING ALGORITHM OF BRCD
In this section, we present the training algorithm of our proposed
BRCD in Algorithm 1. This method can be used in both the ASHP
and the SSHP.

D ANALYSIS OF OFFSET POSITIVE SAMPLE
In this experiment, we explored the occurrence probability of off-
set positive samples in CIFAR-10 when using EfficientNetB0 or
ViT_B_16 as the CIBHash model’s backbone. We inputted the train-
ing images 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 } into the trained teacher model to
obtain hash codes 𝐻𝑎𝑙𝑙𝑡 = {ℎ𝑡1, ℎ

𝑡
2, ..., ℎ

𝑡
𝑁
} and conducted k-means

clustering on the 𝐻𝑎𝑙𝑙𝑡 to assign pseudo label 𝑦𝑖 for each image. We
then created augmented images 𝑋 ′ = {𝑥1′ , 𝑥2′ , ..., 𝑥𝑁 ′ } using the
same augmentation techniques as in CIBHash [34]. By inputting
𝑋 ′ into the same model, we assigned the centroid as the pseudo

Algorithm 1 The training algorithm of BRCD
Input: a trained teacher model 𝑓𝑡 , training samples 𝑋 =

{𝑥1, 𝑥2, ...𝑥𝑁 }, number of cluster 𝑘 and the hyper-parameters
𝛼 and 𝛿 .

1: Initialization: the parameter of student model 𝑓𝑠 .
2: 𝐻𝑎𝑙𝑙𝑡 = 𝑓𝑡 (𝑥 ∼ 𝑋 )
3: {𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑1,𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑2, ...,𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘 }, {𝑦1, 𝑦2, ..., 𝑦𝑁 } = k-

means(𝐻𝑎𝑙𝑙𝑡 ) {𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑖 means the centroid of cluster 𝐶𝑖 }
4: calculate the bit matrix {𝑒𝑚1 , 𝑒

𝑚
2 , ..., 𝑒

𝑚
𝑘
} according to Eqs. (8)

and (9)
5: repeat
6: draw a mini-batch 𝐵 = {𝑥1, 𝑥2, ..., 𝑥𝑀 } from 𝑋

7: apply data augmentation on 𝐵 to create augmented images
𝐵′ = {𝑥1′ , 𝑥2′ , ..., 𝑥𝑀 ′ }

8: for each 𝑖 ∈ {1, 2, ...., 𝑀} do
9: ℎ𝑖′ = 𝑦𝑡 (𝑥𝑖′ )
10: set 𝑦𝑖′ to 𝑥𝑖′ according to the distance of ℎ𝑖′ and

{𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑1,𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑2, ...,𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑘 }
11: end for
12: for each 𝑖 ∈ {1, 2, ...., 𝑀} do
13: 𝑅′ (𝑖) ← {1, 2, ..., 𝑀, 1′, 2′ ..., 𝑀′}
14: 𝑁 (𝑖) ← 𝑅′ (𝑖) − {𝑖, 𝑖′}
15: if 𝑦𝑖 = 𝑦𝑖′ then
16: 𝛼𝑖′ ← 𝛼

17: else
18: 𝛼𝑖′ ← 1
19: end if
20: for each 𝑘 ∈ 𝑁 (𝑖) do
21: if 𝑦𝑖 = 𝑦𝑘 then
22: 𝑅′ (𝑖) ← 𝑅′ (𝑖) − {𝑘}
23: end if
24: end for
25: end for
26: 𝑅(𝑖) ← 𝑅′ (𝑖) − {𝑖}
27: update parameters of the student model by minimizing Eq.

(10) and the loss of the semantic hashing model itself
28: until converged
Output: parameters of the student model 𝑓𝑠

label 𝑦𝑖′ for each augmentation 𝑥𝑖′ based on the Hamming distance.
We defined the offset positive rate (𝑂𝑃𝑅) as:

𝑂𝑃𝑅 =

∑
𝑖=1,2,...,𝑁 𝐼 (𝑦𝑖 ≠ 𝑦𝑖′ )

𝑁
, (28)

where 𝐼 is the indicator function. A higher 𝑂𝑃𝑅 indicates a greater
occurrence of offset positive samples. We set various cluster num-
bers and conducted repeated experiments to increase the credibility
of the results. The box plots in Figure 6 show that the 𝑂𝑃𝑅 is sig-
nificant, and with an increasing number of clusters, the 𝑂𝑃𝑅 also
increases. This outcome demonstrates that regardless of whether
a lightweight backbone EfficientNetB0 or a more powerful model
ViT_B_16 is employed, the “offset positive sample” is present. Be-
sides, these findings support our consideration that removing offset
positive samples is necessary for effective knowledge distillation.
Intuitively, reducing the degree of image augmentation can de-
crease 𝑂𝑃𝑅, but this may also reduce the number of hard positive
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Figure 7: Visualization of the teacher and student models’ hash codes on the CIFAR-10 dataset.

Table 3: The average inference time for different batches of image data on various backbones (ms).

Backbone/Settings
Batch Size 4 8 16 32 64 128 256 512 Params GFlops

ViT_B_16 14.32 27.21 52.35 104.16 205.53 415.55 814.24 1796.03 86.6M 17.56
ViT_L_16 46.34 88.61 169.04 344.96 657.67 1354.89 2673.72 5454.58 304.3M 61.55
ResNet18 6.58 10.48 19.58 35.83 68.22 164.84 333.79 648.53 11.7M 1.81

MobileNetV2 9.35 12.98 20.85 36.91 69.67 162.54 323.27 642.99 3.5M 0.3
EfficientNetB0 12.75 15.81 24.36 40.98 89.20 175.33 313.07 637.89 5.3M 0.39

n=10,000,000; k=100 2.47 2.61 2.75 2.85 4.70 6.67 12.16 24.13 - -
n=10,000,000; k=1000 5.25 5.87 7.97 8.46 13.38 17.36 28.47 65.26 - -
n=30,000,000; k=100 5.52 7.59 10.11 13.39 14.54 22.28 36.68 65.61 - -
n=30,000,000; k=1000 12.38 18.54 26.64 37.84 45.36 68.16 106.63 174.84 - -
n=50,000,000; k=100 8.96 11.7 14.02 16.17 20.7 32.91 61.51 109.77 - -
n=50,000,000; k=1000 20.15 27.34 37.63 47.73 61.36 99.62 196.35 347.72 - -

samples in the augmentations, leading to performance degradation.
Therefore, there could be a trade-off in this process, which requires
further research in the future.

E VISUALIZATION ANALYSIS
To assess whether the learned semantic distribution from the stu-
dent model is aligned with the teacher model from a visual per-
spective, we plot the embedding of images in the Hamming space
using 2-D t-SNE projection. Specifically, we compare the BRCD
method with the SP and RKD methods, using a bit length of 32 on
the CIFAR-10 dataset. Figure 7 showcases this comparison. Each
point in the plot corresponds to an image, with images of the same
class being depicted in the same color. To ensure clarity, we have
chosen to display the first five categories. In this visualization, the
color red represents airplanes, orange represents automobiles, gray
represents birds, blue represents cats, and dark blue represents deer.
Circles represent hash codes generated by the student model, while
pentagrams represent hash codes generated by the teacher model.

Figure 7 (c) shows that our proposed BRCD method makes hash
codes from different models with the same class close in the space.
In contrast, as illustrated in Figure 7 (b), RKD can preserve the
relation between student and teacher model images but cannot
ensure semantic space alignment. On the other hand, as shown in
Figure 7 (a), the SP method produces distinct distillation outcomes
for different categories. Except for the dark blue category (deer),

which does not align, the remaining categories exhibit alignment,
further validating the conclusion drawn in section B. This visualiza-
tion analysis serves as an intuitive verification of the effectiveness
of our approach in achieving semantic space alignment.

F INFERENCE AND SEARCH TIME ANALYSIS
This section presents an analysis of the time required for model
inference and hash code search. We provide a detailed examina-
tion of key factors that significantly impact these processes. We
explore different backbones and batch sizes to assess their influ-
ence on inference time. Additionally, we investigate the impact
of varying candidate sizes, the number of relevant images to re-
trieve, and batch sizes on search time. It is worth noting that the
inference and search time can also be affected by various factors,
including code implementation, used libraries, software versions,
and other hardware-related factors in practice. We implement our
experiments on our server as described in Section 5.3. To construct
the index, we utilized the faiss library 4.

Table 3 provides an overview of the inference time overhead and
search time overhead. The upper part of the table shows the infer-
ence time of the CIBHash [34] with different backbones and batch
sizes. Although large-scale backbones provide better performance
for semantic hashing models, it is noteworthy that the inference
time of ViT_L_16 is approximately seven times higher than that of
4https://github.com/facebookresearch/faiss
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smaller models such as ResNet18. The lower part of the table shows
the search time required to locate relevant images after obtaining
the hash codes from the CIBHash model, where 𝑛 denotes the size
of the candidate set, and 𝑘 represents the retrieval of the top 𝑘 most
relevant images. As expected, a larger candidate set size and a larger

value of 𝑘 will take more time to find relevant images. Moreover, we
can find that the search time overhead is higher than the inference
time when considering the same batch size. When using a large
batch size, the inference time becomes the dominant factor in the
overall time consumption of the retrieval procedure.
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