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Fine-Grained Data Inference via Incomplete Multi-Granularity
Data

Anonymous Author(s)∗

Abstract
Urban fine-grained data map inference, leveraging information
from coarse-grained maps, has emerged as a significant area of
research due to the growing complexity and data heterogeneity in
urban environments. Existing methods have a priori assumption
that a coarse-grained data map, one fixed-size granularity, trans-
forms into a fine-grained data map, also one fixed-size granular-
ity. However, in the actual scenarios, the collected coarse-grained
data maps are often incomplete and have significantly distinct
granularities in various urban areas, which results in incomplete
heterogeneous data, i.e., multi-granularity data maps in terms of
spatial information. Meanwhile, different granularity data maps are
needed for various urban downstream tasks, which is a multi-task
problem. To that end, this paper proposes a novel framework, a
multi-granularity super-resolution data map inference framework
(MGSR), designed to harness spatio-temporal information to trans-
form incomplete coarse-grained multi-granularity data maps into
fine-grained multi-granularity data maps. Specifically, we design a
granularity alignment network to align multi-granularity informa-
tion and address missing data on each granularity map by leverag-
ing the other granularity maps with a well-designed self-supervised
task. Then, we introduce a feature extraction network to capture
spatio-temporal dependencies and extract features. Finally, we de-
vise a recurrent super-resolution network with shared parameters
to infer multi-granularity data maps. We conduct extensive exper-
iments on three real-world benchmark datasets and demonstrate
that MGSR significantly outperforms the state-of-the-art methods
for multi-granularity urban data map inference, and reduces RMSE
andMAE by up to 40.1% and 50.3%, respectively. The source code has
been released at https://anonymous.4open.science/r/MGSR-7E5C.

CCS Concepts
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Inference

Figure 1: The brightness of colors in data maps indicate the
flow value in BJTaxi P1. The above three data maps are avail-
able data maps, where the red and white "×" denote missing
data due to sensor distribution and random, respectively. The
bottom two data maps are the inferred data maps.

1 Introduction
The fine-grained data map inference is crucial for smart city appli-
cations like intelligent transportation management, urban planning,
etc. To sense urban information, numerous sensors with different
models and functions have been employed city-wide for various
purposes by organizations and agencies, resulting in heterogeneous
and spatially disorganized sensor networks. Therefore, it is not pos-
sible to obtain fine-grained and standard urban data maps for the
whole city, especially in terms of constructing sensor grids.

The raw data available is often multi-granularity and incom-
plete due to the following reasons: 1) Sensor Heterogeneity. Different
sensors collect data at varying spatial granularities. This diversity
arises from the use of various sensor models and technologies de-
ployed across the city for distinct purposes, e.g., traffic monitoring,
environmental sensing, etc. The resulting heterogeneous data col-
lection creates a complex dataset that poses challenges for inferring
fine-grained data. 2) Spatial Disorganization. Sensors are deployed
without a unified plan, leading to uneven coverage where some
urban areas are over-monitored while others lack sufficient data.
Consequently, integrating data from these disorganized sensors
is challenging, as the spatial distribution of the collected data is
irregular and further complicating fine-grained data inference. 3)
External Factors. Data collection can be disrupted due to sensor
malfunctions or system breakdowns, leading to gaps in the data.

For the above reasons, we can usually obtain multi-granularity
incomplete data. As shown in Fig. 1, we take incomplete multi-
granularity data maps as input to infer multi-granularity fine-
grained data maps. This process is crucial for enhancing the quality
and usability of data for downstream applications, ensuring com-
prehensive coverage and accuracy.

1
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Numerous approaches have been developed to transform coarse-
grained data maps into fine-grained data maps, addressing the
challenges of spatial granularity and data completeness. Traditional
methods, such as statistical techniques [26] and tensor decom-
position [4], have been extensively applied to fine-grained data.
However, these methods often fall short in handling large-scale
urban data due to their inherent limitations in capturing complex
spatial correlations. With advancements in computer vision, super-
resolution techniques have been applied to fine-grained data map
inference. These methods utilize stacked convolutional layers and
super-resolution layers to effectively capture spatio-temporal de-
pendencies and infer fine-grained datamaps. UrbanFM [18], the first
to introduce super-resolution networks into this task, addresses two
primary challenges: (1) the spatial correlations between coarse- and
fine-grained urban data maps and (2) the complexities of external
impacts. UrbanPy [23] improves upon this by designing a cascading
model for progressive inference and decomposing the original task
into multiple subtasks to enhance accuracy. MT-CSR [17] specifi-
cally targets fine-grained data inference from incomplete coarse-
grained data. UrbanSTC [24] uses a contrastive self-supervision
method to account for all correlated spatial and temporal patterns,
training massive learnable parameters effectively.

While existing methods address various factors for inferring
fine-grained data from coarse-grained data, they assume uniform
granularity, which is less realistic compared to the complexities
of multi-granularity data scenarios. In real-world scenarios, the
challenge of inferring various granularities from incomplete multi-
granularity data is more pertinent yet complex compared to tradi-
tional single-granularity inference problems. Transforming incom-
plete multi-granularity data into fine-grained data maps involves
several challenges: 1) Spatia-temporal Dependencies. The relation-
ships between data maps at input and output various granularities
are diverse and complex. 2) Incomplete Multi-granularity Data. The
collected multi-granularity data often contains gaps due to various
missing patterns and presents distinct views that must be aligned
and integrated for accurate inference. 3) Multi-task Inference. In-
ferring data across different granularities inherently constitutes a
multi-task problem. Each granularity represents a distinct task, and
effectively balancing these tasks is critical.

To bridge the gap between real-world scenarios and existing
methods, we propose MGSR, a multi-granularity super-resolution
data map inference framework designed to align incomplete multi-
granularity data and infer fine-grained multi-granularity data maps.
Specifically, we first introduce the Granularity Alignment Net-
work to align incomplete multi-granularity data maps and impute
missing data at each granularity based on the others using a well-
designed self-supervised task. Next, we present the Feature Ex-
traction Network, capturing spatio-temporal dependencies across
multiple granularities and extracting feature maps. Finally, a Re-
current Super-Resolution Network employs shared parameters to
infer fine-grained multi-granularity data maps, enhancing paramet-
ric efficiency and the framework’s generalization capabilities. The
contributions of this paper are summarized as follows:

• We design an innovative multi-granularity super-resolution
data map inference framework that infers fine-grained
multi-granularity data based on incomplete coarse-grained

multi-granularity data in an end-to-end way. MGSR effec-
tively harmonizes data of varying granularities, leveraging
their interdependencies to enhance the accuracy and com-
pleteness of fine-grained data. It addresses the complexity
of real-world data scenarios.

• We propose GLAN and FEN to align and impute multi-
granularity information and to extract and integrate multi-
granularity features using a well-designed self-supervised
task, enhancing representation ability and generalization.

• We devise RSRN to infer fine-grained multi-granularity
data, thereby improving scalability and parameter efficiency.
The recursive structure of RSRN leverages outputs from
previous steps to progressively infer more fine-grained data
to handle complex multi-task scenarios.

• We evaluateMGSR by extensive experiments on six datasets
under various settings. The results demonstrate that MGSR
significantly outperforms state-of-the-art methods, reduc-
ing RMSE and MAE by up to 42.3% and 52.3%, respectively.

2 Notions and Problem Definition
In this section, we give the mathematical definitions and problem
statements discussed in this paper for convenience.

Region. As shown in Fig. 1, a city is partitioned into 𝐼𝑔 × 𝐽𝑔 grid
map based on longitude and latitude at a granularity 𝑔, where each
grid element represents a region. The region set is denoted as 𝑅𝑔 ,
where 𝑅𝑔

𝑖 𝑗
correspond to the i-th row and the j-th column grid map.

Data Map. Given a particular time and a granularity 𝑔, 𝑋𝑔 de-
notes the data map formed by the data collected from the corre-
sponding sensors. 𝑋𝑔

𝑖 𝑗
is a 𝑑-dimensional vector representing data

observed in 𝑅
𝑔

𝑖 𝑗
, e.g., temperature and air quality.

Multi-Granularity Data Map. A city can be partitioned into
multiple data maps under distinct granularities (Sensor Hetero-
geneity). We define coarse- and fine-grained granularity sets are
G𝑐 = {𝜈 |𝜈 = 𝑔0, . . . , 𝑔(𝑁𝑐−1) } and G𝑓 = {𝜇 |𝜇 = 𝑔0, . . . , 𝑔(𝑁𝑓 −1) }.
For example, in Fig. 1, the coarse- and fine-grained granularity sets
are {8, 16, 32} and {64, 128}, respectively.

Structural Constraint. Structural Constraint typically refers to
the rule that ensures consistency between coarse- and fine-grained
data. Specifically, It can be defined as:

𝑋 𝜈
𝑖′ 𝑗 ′ =

∑︁
𝑖 𝑗

𝑋
𝜇

𝑖 𝑗
𝑠 .𝑡 .⌊ 𝑖

𝑢
𝜇
𝜈

⌋ = 𝑖′, ⌊ 𝑗

𝑢
𝜇
𝜈

⌋ = 𝑗 ′, (1)

where 𝜇 = 𝑢
𝜇
𝜈𝜈 , where𝑢

𝜇
𝜈 is an upscaling factor, for example,𝑢𝜇𝜈 = 2

when 𝜈 = 16 and 𝜇 = 32.
Missing Pattern. The missing pattern is determined by two

factors, as follows: (1) Sensor Spatial Distribution. It makes fixed-
position regions miss data at all times due to the disorganization of
sensor positions. (2)Missing at Random [3]. When data is missing
at random, the probability of a data point being missing is related to
the observed data but not to the missing data itself due to External
Factors. In conclusion, we formulate the mask operation as follows:

𝑋 𝜈
𝑖 𝑗 =

{
0, 𝑀𝜈

𝑖 𝑗
= 0

𝑋 𝜈
𝑖 𝑗
, 𝑀𝜈

𝑖 𝑗
= 1 , (2)

where the 𝑋 𝜈
𝑖 𝑗
is the collected available data as the input.
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Figure 2: An overall architecture of MGSR.

Problem Statement. Given incomplete multi-granularity data
maps {𝑋 𝜈 |𝜈 ∈ G𝑐 } and inferred granularities G𝑓 , our objective is to
infer the multi-granularity data maps {𝑌 𝜇 |𝜇 ∈ G𝑓 } with maximum
accuracy. This process must adhere to the ground truth {𝑋 𝜇 |𝜇 ∈
G𝑓 } as possible subject to the structural constraints.

3 Methodology
This section details the proposed overall framework, as illustrated in
Fig. 2, consisting of three main components: (a) Granularity Align-
ment Network (GLAN), (b) Feature Extraction Network (FEN), and
(c) Recurrent Super-Resolution Network (RSRN). Additionally, we
incorporate three loss functions according to the problem definition
to optimize MGSR, ensuring its robustness and accuracy.

3.1 Granularity Alignment Network
Inspired by U-net [1, 25], GLAN aligns and integrates incomplete
multi-granularity data maps by facilitating cross-granularity in-
formation passing, thus completing missing data in each map. As
illustrated in Fig. 2(a), the GLAN mainly consists of three steps:
downsampling, upsampling, and self-supervised step. While archi-
tectures like Swin Transformer [21] could have been chosen for
cutting-edge performances, we opted for convolutional networks
to maintain the simplicity and efficiency of the framework without
compromising effectiveness.

3.1.1 Downsampling step. The downsampling step is a process in
which high-granularity featuremaps transform into low-granularity
feature maps, which aims to align high- to low-granularity feature
maps. It stacks downsampling (DS) blocks with each DS block re-
ducing the feature map by 2×. As the feature map’s granularity
decreases, the amount of spatial information it can represent di-
minishes. To counteract this, we increase the number of channels,
enhancing the feature map’s capacity to represent detailed infor-
mation. The DS block consists of three layers: input block, fusion
and extraction information (FE) block, and downsampling.

Input Block. The input block transforms input data maps into
multi-channel feature maps using stacked convolution layers, en-
hancing representation capacity. It is expressed as:

𝐻 𝜈
𝑖𝑛 = 𝜓𝑖 (𝑋 𝜈 ) 𝑠 .𝑡 . 𝜈 ∈ G𝑐 , (3)

where 𝑋 𝜈 ∈ R𝑐×𝜈×𝜈 is the input data map and 𝐻 𝜈
𝑖𝑛

∈ R𝑑×𝜈×𝜈 is
the output of the input block.

Fusion and Extraction Information (FE) Block. The first
layer of the FE block is a 1 × 1 convolution that aligns the feature
maps and reduces their dimensionality. If high-granularity feature
maps exist, the FE block concatenates a d-channel high-granularity
feature map with a d-channel low-granularity feature map to form
a 2d-channel input, which is then processed to output a d-channel
feature map, completing the low-granularity information. The rest
layers of FE block are stacked residual blocks that capture spatial

3
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relationships between regions. It is formulated as:

𝐻 𝜈
𝑓
= 𝜙 ( [𝐻 𝜈

𝑖𝑛, 𝐻
𝜈+1
𝑑

]), (4)

where 𝐻 𝜈
𝑓
, 𝐻 𝜈+1

𝑑
∈ R𝑑×𝜈×𝜈 and [] is the concatenated operation.

𝐻 𝜈+1
𝑑

is the output of the previous downsampling.
Downsampling. The Downsampling is to down-sample the

feature maps using a max-pooling layer, which is expressed as:

𝐻 𝜈
𝑑
= 𝜑𝑑 (𝐻 𝜈

𝑓
), (5)

where 𝐻 𝜈
𝑑
∈ R𝑑×𝜈/2×𝜈/2.

This process allows information to pass from high to low gran-
ularities, enabling low-granularity feature maps to utilize higher-
granularity information to fill in missing data. Meanwhile, an in-
verse architecture is similarly designed for upsampling.

3.1.2 Upsampling step. The upsampling step reverses the down-
sampling process, passing the low-granularity information to the
high-granularity feature maps. To that end, the upsampling step
that stacks upsampling (US) blocks is employed to expand the low-
granularity feature maps. The US block increases feature maps by
2×, consisting of upsampling, FE block, and output block.

Upsampling. The upsampling that transforms a low-granularity
feature map into a high-granularity feature map is realized by a
super-resolution convolution, which is expressed as:

𝐻 𝜈
𝑢 = 𝜑𝑢 (𝐻 𝜈

𝑓
), (6)

where 𝐻 𝜈
𝑢 ∈ R𝑑×2𝜈×2𝜈 . The input of the first upsampling is the

output of the individual FE block.
Meanwhile, we design skip connections to introduce correspond-

ing granularity information from the downsampling step, allowing
shallow layer features to be directly passed to deeper layers. This
preserves original information, retaining more details in deep net-
works. To integrate low-granularity feature maps, the FE blocks
are similar to the downsampling step, but align the low-granularity
feature map to the high-granularity feature map in upsampling
step, expressed as:

𝐻 𝜈
𝑓
= 𝜙 ( [𝐻 𝜈−1

𝑢 , 𝐻 𝜈
𝑓
]), (7)

where 𝐻 𝜈−1
𝑢 , 𝐻 𝜈

𝑓
, 𝐻 𝜈

𝑓
∈ R𝑑×𝜈×𝜈 . We assume the 𝐻 𝜈

𝑓
is the com-

pleted granularity 𝜈 feature map under available data, which is
because 𝐻 𝜈−1

𝑢 , 𝐻 𝜈
𝑓
contain 𝑋𝑔0 , . . . , 𝑋 𝜈/2 and 𝑋 𝜈 , . . . , 𝑋𝑔(𝑁𝑐 −1) , re-

spectively. Therefore, we take 𝐻 𝜈
𝑓
as the upsampling block and the

self-supervised task input.
Output Block. It projects feature maps into a data maps for self-

supervised tasks, typically consisting of one or more convolution
layers. It enhances self-supervised task performance by learning
better feature representations, which can be expressed as:

𝑋 𝜈 = 𝜓𝑜 (𝐻 𝜈
𝑓
), (8)

where 𝑋 𝜈 ∈ R𝑐×𝜈×𝜈 .
With the downsampling and upsampling steps, every granularity

feature map obtains the other granularity information to complete
its missing values. Compared to all granularity feature maps, the
information in granularity 𝑔𝑁𝑐−1 is the most abundant and highest,
which integrates all granularity information and retains details.

Therefore, the final output 𝐻𝑔(𝑁𝑐 −1)
𝑓

serves as the input to infer
fine-grained data maps.

3.1.3 Self-supervised step. Self-supervised learning is a form of
unsupervised learning. Integrating self-supervised learning into
GLAN is beneficial for the following reasons: 1) Improved Repre-
sentation Learning. Self-supervised task makes the representa-
tions capture underlying structures and patterns, which guides the
component to learn corresponding granularity representations. 2)
Regularization and Robustness. Self-supervised tasks can act as
a form of regularization, which leads to more robust models that
perform better on downstream tasks. 3) ImprovedData Efficiency.
This efficient use of data resources leads to better performance and
faster convergence during training.

We design the self-supervised task based on the coarse-grained
data map inference task. Meanwhile, the Mean Squared Error (MSE)
is applied to measure the discrepancy between predicted values 𝑋 𝜈

and ground truths 𝑋 𝜈 , where𝑀𝜈
𝑖 𝑗

= 1, 𝜈 ∈ G𝑐 . The self-supervised
loss is defined as:

L𝑠𝑒𝑙 𝑓 =
∑︁G𝑐

𝜈

∑𝜈
𝑖=0

∑𝜈
𝑗=0 𝑀

𝜈
𝑖 𝑗
∥𝑋 𝜈

𝑖 𝑗
− 𝑋 𝜈

𝑖 𝑗
∥2
𝐹∑𝜈

𝑖=0
∑𝜈

𝑗=0 𝑀
𝜈
𝑖 𝑗

, (9)

where ∥ · ∥𝐹 is the Frobenius norm.

3.2 Feature Extraction Network
The FEN is a critical component within our framework for super-
resolution inference. Its primary role is to capture the spatio-temporal
features required to infer fine-grained data maps from coarse-
grained inputs. The introduction of FEN is driven by several key
reasons inherent in working with incomplete coarse-grained data
maps: (1) Preservation of Fine Details. Coarse-grained data maps
often lack the detailed information necessary for fine-grained data
maps. FEN is designed to extract these fine details from the input
data, enabling the reconstruction of fine-grained maps. (2) Com-
plex Spatial Relationships. The relationships within the data
across granularities can be complex and nuanced. FEN helps to
capture and model these intricate interactions, providing a robust
feature set for further processing.

The FEN, implemented by stacking residual blocks, effectively
captures deep spatio-temporal features while mitigating the com-
monly encountered vanishing gradient problem, expressed as

𝑍 = 𝐹𝐸𝑁 (𝐻𝑔(𝑁𝑐 −1)
𝑓

), (10)

where 𝑍 ∈ R𝑑×𝑔(𝑁𝑐 −1)×𝑔(𝑁𝑐 −1) .

3.3 Recurrent Super-resolution Network
The RSRN aims to infer fine-grained multi-granularity data maps
based on the above components. Inspired by Recurrent Neural
Networks (RNNs) [22], RSRN is designed with a recurrent structure
to address this multi-task problem.

RNN-like structures excel at capturing sequential dependencies,
crucial for progressively refining data maps from coarse to fine. This
fashion ensures that each fine-grained map benefits from the con-
textual information provided by previous inferences. Specifically,
by incorporating hidden states, outputs and labels from previous
iterations, RNN-like structures ensure that the network integrates

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fine-Grained Data Inference via Incomplete Multi-Granularity Data Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

robust features for subsequent inferences. This continuous inte-
gration helps maintain consistency and accuracy across different
levels of granularity.

The RSRN operates iteratively inferring fine-grained data maps
at increasingly higher granularity levels. At each iteration, it utilizes
the output and hidden state from the previous step to guide the
inference of higher-granularity data map, described as follows:

z = 𝜎𝑠 (𝐶𝑜𝑛𝑣𝑧 ( [s𝜇 , 𝑌 𝜇 ])), (11)
r = 𝜎𝑠 (𝐶𝑜𝑛𝑣𝑟 ( [s𝜇 , 𝑌 𝜇 ])), (12)
h = 𝜎𝑡 (𝐶𝑜𝑛𝑣ℎ ( [(r ⊙ s𝜇 ), 𝑌 𝜇 ])), (13)

s2𝜇 = (1 − z) ⊙ s𝜇 + z ⊙ h, (14)
𝑌 2𝜇 = 𝑆𝐶𝑜𝑛𝑣 (s2𝜇 ), (15)

where𝐶𝑜𝑛𝑣 and 𝑆𝐶𝑜𝑛𝑣 represent convolution and super-resolution
convolution operations, respectively. 𝜎𝑠 and 𝜎𝑡 denote the sigmoid
and tanh activation functions, respectively. ⊙ indicates the element-
wise multiplication. The s is assigned 𝑍 in the first step.

This iterative process enables the RSRN to effectively utilize the
hierarchical dependencies within the data, ensuring accurate and
detailed reconstruction of fine-grained data maps.

3.4 Training
This subsection details the training procedure of our framework,
which leverages a combination of self-supervised loss, task loss,
and structural constraint loss. The self-supervised loss focuses on
parameter optimization of the GLAN, while the task and structural
constraint losses contribute to the overall training of the framework.

The self-supervised loss function is described in the above dis-
cussion. In addition to the self-supervised loss, our framework is
trained using the task loss function and the structural constraint
loss function. The overall loss function is expressed as:

L = L𝑡𝑎𝑠𝑘 + 𝛼L𝑐𝑜𝑛 + 𝛽L𝑠𝑒𝑙 𝑓 , (16)

where 𝛼 and 𝛽 are hyper-parameters used to balance the contri-
butions of the loss functions. L𝑡𝑎𝑠𝑘 and L𝑐𝑜𝑛 denote the task and
structural constraint, respectively.

L𝑡𝑎𝑠𝑘 ensures that the predicted fine-grained data maps closely
match the ground truths. Mathematically, the task loss function
can be defined as:

L𝑡𝑎𝑠𝑘 =
∑︁

𝜇∈G𝑓

∥𝑋 𝜇 − 𝑌 𝜇 ∥2
𝐹 . (17)

L𝑐𝑜𝑛 is incorporated to maintain structural consistency across
different granularity levels. This loss ensures that the inferred fine-
grained data maps adhere to the known structural relationships
inherent in the coarse-grained data. To avoid repetitive computa-
tion, we design a chained structural constraint loss function. It can
be expressed as:

L𝑐𝑜𝑛 =
∑︁G𝑐

𝜈
𝛿 (𝑋 𝜈 , 𝑌

𝑔0
𝑓 ) +

∑︁G𝑓

𝜇
𝛿 (𝑋 𝜇 , 𝑌 𝜇+1), (18)

𝛿 (X𝑚,Y𝑛) =
∑︁

𝑖′ 𝑗 ′
(X𝑚

𝑖′ 𝑗 ′ −
∑︁

𝑖 𝑗
Y𝑛𝑖 𝑗 ), 𝑠 .𝑡 .⌊

𝑖

𝑢𝑛𝑚
⌋ = 𝑖′, ⌊ 𝑗

𝑢𝑛𝑚
⌋ = 𝑗 ′, (19)

where the first term formulates the structural constraints between
the inputted and inferred data maps and the other term formulates
the structural constraints between the inferred data maps.

Table 1: Dataset Description.

Dataset BJTaxi P1 NYCTaxi MHK
Time span 7/1-10/31, 2013 1/1-1/7, 2015 1/21-1/27, 2023

Time interval 30 minutes 1 hour 30 minutes
Input 8, 16, 32 8, 16 8, 16
Output 64, 128 32, 64 32

4 Experiments
In this section, we conduct extensive experiments to benchmark
the effectiveness and generalization ability of our MGSR across
real-world datasets. Our experiments are designed to answer the
following research questions:RQ1.Can ourMGSR provide superior
performance compared to several state-of-the-art baselines? RQ2.
Can the GLAN effectively align and integrate information in multi-
granularity data maps? RQ3. Can the RSRN address the multi-task
problem and have better generalization in multi-granularity data
map inference? RQ4.What is the impact of various components
in the MGSR on different datasets? RQ5. How well does MGSR
perform for missing values generated by different missing patterns?

4.1 Datasets
In this subsection, we conduct experiments on three real-world
datasets. The details of the datasets are introduced as follows:

BJTaxi [33]. It consists of trajectory data from taxicab GPS data
in Beijing from four different periods: P1 to P4, where the values
denote the number of taxis in each grid. We select P1 to evaluate
our method (the other in Appendix B).

NYCTaxi 1. The dataset provides detailed trip records of yellow
taxis within New York City. We construct the dataset using inflow
and outflow data of grids as data maps.

MHK. This dataset contains 108.1 GB of cellular signaling data
collected in Meihekou, Jilin Province, China. A record denotes that
a user was present in a base station’s coverage area at a specific
time. The cover areas of different base stations are distinct, which
results in multi-granularity data maps. We consider the number of
users in each grid as a value for data maps.

The specifications of the datasets are summarized in Table 1.

4.2 Experimental Settings
4.2.1 EvalutaionMetrics. In linewith existingworks on fine-grained
data map inference, we employ two widely used metrics: Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE).

4.2.2 Baselines. We compare with two categories of methods, as
detailed below: (1)HeuristicMethods:MeanPartition (Mean) [18]
evenly distributes each coarse-grained value across the correspond-
ing fine-grained positions under structural constraints. Historical
Average (HA) [18] allocates the coarse-grained flow to fine-grained
flow by historical proportions. (2) Fine-grained Inference Meth-
ods: UrbanFM [18] formalizes the fine-grained inference prob-
lem and introduces super-resolution into the field. UrbanPy [23]
identifies the limitation of this preliminary work for large-scale

1https://www.nyc.gov/site/tlc/index.page
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Table 2: Aligned missing rates of datasets.

Missing Rate 20% 40% 60% 80%
BJTaxi P1 98.86% 94.28% 78.47% 50.24%
NYCTaxi 95.50% 84.96% 65.08% 38.08%
MHK 96.14% 85.03% 64.88% 37.67%

upsampling and presents the improved method. UrbanSG [35] em-
ploys a conditional GAN [10] as the backbone, considering external
factors as the specified condition. MT-CSR [17] makes the first
attempt to infer fine-grained flows based on the incomplete coarse-
grained urban flow observations. UrbanSTC [24] formulates a
self-supervision to predict fine-grained urban flows, taking into
account all correlated spatial and temporal contrastive patterns.

4.2.3 Training Details and Hyper-parameters Settings. We employ
the Adam [7] optimizer with a learning rate of 1𝑒−3 and a weight
decay of 5𝑒−5. We set the number of residual blocks in the FE blocks
and the feature extraction network as 1 and 3, respectively. For con-
venience in comparing with baselines, we apply the same number
of channels, i.e., 128. The self-supervised loss weight is searched
within the range {0.002, 0.01, 0.02, 0.05, 0.1, 0.5}, and the structural
constraint lossweight is chosen from {0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5}.

Dataset Settings. We set the missing rates of input data maps at
20%, 40%, 60%, and 80% to evaluate MGSR with baselines where the
contribution of the two missing modes is the same. For example,
with a missing rate of 20%, both the sensor distribution and the
random missing pattern generate 10% missing data each.

Baseline Settings. For baselines, we initially preserve the set-
tings as provided in the original papers and fine-tune hyperparam-
eters across the datasets. Due to the baselines not being proficient
in multi-granularity data maps, for convenience of comparison, we
manually align data maps and generate one data map. Additionally,
the baselines cannot end-to-end infer multi-granularity data maps
while inferring one granularity data map at a time.

For the input, the granularity of the aligned data map is the same
as the highest granularity in input data maps. We fill the data map
with ground truths if the corresponding position is covered by an
arbitrary data map in the input data maps (see detailed description
in Appendix A). The manual alignment method is the performance
upper bound of GLAN. For the output, each baseline method re-
quires a separate model to be trained for each granularity data map.
In this way, baselines avoid the multi-task problem but increase the
number of parameters and computing power consumption.

4.3 Performance Results
To demonstrate the effectiveness of MGSR (RQ1), we compare it
with baselines. For convenience of comparison, we design a variant
of MGSR, named MGSR-S, where the input and output ways are
the same as the baselines. From the performances summarized in
Table 3, we have the following findings.

We observe the performances of MGSR and baselines across
various missing rates, from low to high. As shown in Table 2, the
aligned missing rates are low and approximately non-missing when
setting the missing rate at 20%. As the missing rate grows to 60%
and above, the aligned missing rate significantly decreases. MGSR
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SE
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8
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Figure 3: Illustration of GLAN performances on BJTaxi P1.
(a), (b), and (c) are 8 × 8, 16 × 16, and 32 × 32, respectively.

and baselines exhibit similar or slightly inferior performance when
setting 20% missing rates. This can be attributed to the baselines’
use of GAN and self-supervised tasks, which are effective at increas-
ing performance levels when the missing data rate is relatively low.
However, as the missing rates increase, the performance of most
baselines declines significantly. MT-CSR shows a minor decline, but
MGSR exhibits only a slight decrease in performance as the missing
rates rise. MT-CSR exhibits limitations in addressing the few-shot
problem, which is particularly evident in its performance on the
MHK dataset. MGSR consistently outperforms the baselines, espe-
cially in scenarios with higher missing data rates. This consistent
performance advantage underscores the robustness of our method
in handling varying degrees of data incompleteness, highlighting
its capability to maintain high-quality inference across different
granularity levels, even under challenging conditions.

The performance of Mean surpasses that of HA because HA
relies on historical mappings that can be disrupted by missing data,
leading to performance degradation. UrbanFM and UrbanPy exhibit
performance drops with increased missing data because they do not
account for missing values. UrbanSG improves performance with
the GAN architecture and handles missing data better. UrbanSTC
alleviates missing data issues through self-supervised tasks. MT-
CSR, which considers missing values, performs well but cannot
handle different missing patterns.

Additionally, the input and output ways of MGSR differ from
those of MGSR-S and the baselines, where MGSR is at a disad-
vantage in terms of input and output. This is why MGSR cannot
perform as well as MGSR-S. For the input, MSRG-S obtains fine-
grained information under the same coverage area. For the output,
MGSR is an end-to-end framework that infers multi-granularity
data maps with fewer parameters, which is a multi-task problem.
Meanwhile, the multi-task labels provide additional supervised
signals for parameter optimization, enhancing its generalization
capability. This is why MGSR performance is degraded compared
to MGSR-S performance, especially the former.

4.4 GLAN Analysis
To evaluate whether the GLAN can align information in incomplete
multi-granularity data maps (RQ2), we conduct experiments with
8, 16, and 32 as base, gradually incorporating other granularity
information. The results, as illustrated in Fig. 3, show that RMSE
and MAE for inferring 64 and 128 granularity data maps decrease
as more data maps are aligned. Integrating coarse-grained data
maps with fine-grained data maps dramatically boosts performance,
shown in Fig. 3(a). However, performance improvements also risk
introducing noise when coarse-grained data maps integrate into

6
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Table 3: Performance comparison of MGSR and baselines.

Model Mean HA UrbanFM UrbanPy UrbanSG MT-CSR UrbanSTC MGSR-S MGSR △

BJTaxi P1

20% RMSE 26.73 38.07 6.06 6.13 6.09 6.03 5.87 5.40 6.13 8.0%
MAE 15.70 18.26 2.79 2.81 2.79 3.86 2.62 3.10 3.23 -18.3%

40% RMSE 27.59 38.25 10.97 11.08 10.97 7.15 10.79 5.74 6.63 19.8%
MAE 15.90 18.36 3.73 3.82 3.71 4.64 3.48 3.48 3.41 2.0%

60% RMSE 29.64 38.71 18.28 18.72 18.27 8.76 18.14 6.40 7.49 27.0%
MAE 16.41 18.65 6.32 7.27 6.28 5.64 6.01 3.53 3.80 37.4%

80% RMSE 33.50 39.69 27.92 28.03 27.91 12.42 27.80 7.44 8.54 40.1%
MAE 17.37 19.22 11.18 11.47 11.10 8.12 10.81 4.04 4.09 50.3%

NYCTaxi

20% RMSE 5.09 6.63 2.55 2.57 2.92 2.36 2.51 2.25 2.42 5.0%
MAE 2.49 3.00 1.25 1.26 1.43 1.40 1.21 1.23 1.27 -1.6%

40% RMSE 5.38 6.70 3.48 3.51 3.72 2.53 3.44 2.34 2.53 7.3%
MAE 2.58 3.03 1.52 1.56 1.68 1.47 1.49 1.27 1.32 13.7%

60% RMSE 5.93 6.85 4.68 4.72 4.83 2.74 4.64 2.45 2.66 10.6%
MAE 2.81 3.12 2.03 2.07 2.14 1.59 1.98 1.31 1.34 17.2%

80% RMSE 6.59 7.05 5.97 5.97 6.03 3.16 5.94 2.67 2.90 15.7%
MAE 3.09 3.24 2.63 2.64 2.70 1.80 2.59 1.40 1.40 16.6%

MHK

20% RMSE 48.96 58.24 20.89 21.37 22.48 24.42 19.98 19.74 22.41 1.2%
MAE 17.40 15.89 5.17 5.22 5.54 12.89 5.43 5.61 5.57 -7.7%

40% RMSE 50.10 58.65 26.70 28.11 26.93 27.89 26.84 19.81 28.21 25.8%
MAE 17.13 15.83 5.47 5.86 5.55 14.70 4.87 5.05 6.57 -3.7%

60% RMSE 53.57 59.87 39.27 38.92 40.58 35.67 38.64 28.29 32.17 20.7%
MAE 16.89 15.89 8.40 8.06 8.84 18.09 7.63 7.07 7.69 7.3%

80% RMSE 57.76 61.40 51.50 51.06 51.96 43.82 50.83 32.66 34.92 25.5%
MAE 16.58 16.01 11.84 11.74 11.86 22.84 11.18 9.25 10.44 17.3%
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Figure 4: Illustration of RSRN performances on BJTaxi P1.

fine-grained data maps, as shown in Fig. 3(b) and (c). This suggests
that GLAN effectively integrates multi-granularity data.

Additionally, Table 2 reveals that GLAN remains robust despite
substantial fluctuations in missing rates. Even with varying de-
grees of data incompleteness, GLAN maintains its performance,
demonstrating its resilience.

Overall, these findings indicate that GLAN not only improves the
precision of inferred data maps by effectively utilizing information
from various granularities but also offers a robust solution against
data incompleteness. These findings underscore GLAN’s value in
multi-granularity data imputation and inference tasks, highlighting
its potential for real-world urban flow monitoring applications.

4.5 RSRN Analysis
To answerRQ3, this subsection conducts various experiments about
RSRN to validate the effectiveness in the multi-task problem and the

generalization capability. We introduced a new variant, MGSR-U,
which is trained using only the 64 granularity as the ground truth
while simultaneously inferring both 64 and 128 granularities.

As shown in Fig. 4, the results indicate that performances of
baselines significantly decline with missing rates increasing. This
highlights their limited robustness and adaptability to incomplete
data. MGSR-S and MGSR exhibit comparable performance, demon-
strating RSRN effectiveness for the multi-task problem. This is
attributed to the relatedness of the tasks and the appropriately de-
signed structure, enhancing generalization when trained together.

For 64, MGSR-U’s performance is close to MGSR, indicating effec-
tive learning and inference at this granularity even without explicit
multi-granularity training. However, performance of inferring 128
is a significant drop, due to the lack of 128 granularity labels during
training. Despite this, MGSR-U outperforms Mean and surpasses
some fine-grained inference models. The chained structural con-
straint provides an optimized supervisory signal that aids better
inference even without training data. Meanwhile, RSRN, leveraging
its recursive nature, effectively learns patterns of inference during
training, significantly contributing to its superior performance.

These experiments demonstrate that, while the multi-task prob-
lem can complicate the learning process, properly designed net-
work structures and training strategies can significantly enhance
generalization capabilities. The RSRN module, through its ability
to leverage structural constraints and recursive learning, shows
promising results in the multi-task problem and generalization.
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Figure 5: Ablation study of MGSR on BJTaxi P1 and MHK.
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Figure 6: Performance comparison of different missing pat-
terns. The "fixed" and the "random" denote that sensor dis-
tribution and random result in missing values, respectively.

4.6 Ablation Study
In this subsection, we present ablation studies to evaluate the con-
tributions of components within our proposed framework (RQ4).
As depicted in Fig. 5, we consider the following variants as below:

w/o FEN. This variant excludes the FEN. It leads to a significant
drop in performance due to the reduced ability, capturing complex
spatio-temporal correlations. w/o SC. The structural constraint is
removed. This results in a performance decline, emphasizing its
importance in preserving structural relationships across different
granularities. The structural constraint acts as a regularizer that
guides the framework to maintain the inherent structure of the data.
w/o SSL. This variant removes the self-supervised loss. The perfor-
mance drop suggests that it plays a significant role in enhancing
the ability to infer fine-grained data maps. It utilizes the available
data more effectively by learning from the data itself, improving
the robustness and accuracy of the inference.

4.7 Missing Patten Analysis
We analyze the impact of different missing patterns (RQ5), as illus-
trated in Fig. 6. When the missing rates for BJTaxi P1 and MHK are
below 60% and 80%, respectively, random missing patterns exhibit
a more significant negative impact. The random missing pattern
creates more randomness, resulting in spatial discontinuities, and
disrupting the framework’s ability to infer high-granularity data
maps effectively. Conversely, when the missing rates exceed these
thresholds, the sensor distribution pattern becomes more detrimen-
tal. The fixed-position missing poses a more considerable challenge,
which cannot capture spatio-temporal relationships between re-
gions leading to greater performance degradation. These findings
demonstrate the varying impacts of missing data patterns, under-
scoring the importance of accounting for the missing patterns.

5 Related Work
5.1 Fine-grained Data Map Inference
This fine-grained data inference focuses on enhancing the data
granularity to provide more detailed and accurate information. Ur-
banFM [18] was the pioneering work introducing super-resolution
convolution in the context of urban data map inference. Subsequent
models, such as UrbanPy [23], have modified this framework to
further enhance performance. DeepLGR [19] employed temporal
features to infer fine-grained data maps. UrbanSG [35] integrated
the GAN framework to aid in optimizing parameters. MT-CSR [17]
considered fine-grained data map inference in the missing data map
at a single level of granularity. To address limited data challenges,
models like UrbanSTC [24] and STCF [31] employed self-supervised
learning, thereby improving generalization and reducing reliance
on data. STCF attracted spatial-temporally similar flow maps while
distancing dissimilar ones within the representation space. Inspired
by diffusion models, DiffUFlow [36] overlay the extracted spatial-
temporal feature onto the coarse-grained flow map, serving as a
conditional guidance for the reverse diffusion process.

In addition, other techniques have been explored for fine-grained
inference. UFI-Flow [31] learned the conditional distributions of
coarse- and fine-grained map pairs. FODE [37] extended neural
Ordinary Differential Equations.

In conclusion, the fine-grained has evolved significantly with
advancements in image super-resolution techniques, multi-task and
self-supervised learning. Despite the notable progress made, chal-
lenges remain in achieving fine-grainedmulti-granularity inference,
particularly in the alignment of multi-granularity data maps.

5.2 Self-supervised Learning
Self-supervised learning is widely used in many fields, e.g., com-
puter vision [5, 11–13], spatio-temporal data [28, 34], etc. In com-
puter vision, self-supervised learning methods like contrastive
learning [6, 8, 9, 29, 38] and masked image modeling [2, 16, 27, 30]
have demonstrated remarkable success in tasks such as image clas-
sification, segmentation, and object detection by leveraging large
unlabeled datasets. In the spatio-temporal data [14, 15, 20, 32], self-
supervised learning has proven useful for enhancing model robust-
ness and performance in the absence of extensive labeled data.

In particular, fine-grained data map inference has benefited from
self-supervised techniques that aim to enhance model generaliza-
tion and reduce reliance on large labeled datasets.

6 Conclusion
This paper proposesMGSR to address fine-grainedmulti-granularity
data inference by leveraging incomplete multi-granularity data.
Incomplete and multi-granularity problems are widely seen in
real-life scenarios. We design the GLAN to align incomplete multi-
granularity information. Additionally, we employ a well-designed
self-supervised task to impute missing data at each granularity.
Meanwhile, we propose the RSRN to tackle the multi-task nature
of multi-granularity data map inference and enhance the frame-
work’s generalization capabilities. Extensive experiments validate
our framework’s superiority, demonstrating substantial improve-
ments in multi-granularity data map inference.
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Table 4: Dataset Description.

Dataset Time span Time interval #Channel Input Granularity Output Granularity #Train #Valid #Test

BJTaxi

P1: 7/1/2013-10/31/2013

30 minutes 1 8 × 8, 16 × 16, 32 × 32 64 × 64, 128 × 128

1530 765 765
P2: 2/1/2014-6/30/2014 1779 889 891
P3: 3/1/2015-6/30/2015 1746 873 873
P4: 11/1/2015-3/31/2016 2122 1061 1061

NYCTaxi 1/1/2015-1/7/2015 1 hour 2 8 × 8, 16 × 16 32 × 32, 64 × 64 2880 744 720

MHK 1/21/2023-1/27/2023 30 minutes 1 8 × 8, 16 × 16 32 × 32 240 48 48

Table 5: Performance comparison of MGSR and baselines on BJTaxi P2-4 Dataset.

Model Mean HA UrbanFM UrbanPy UrbanSG MT-CSR UrbanSTC MGSR-S MGSR △

BJTaxi P2

20% RMSE 34.29 47.07 7.55 7.91 7.56 6.67 7.33 6.14 7.17 8.0%
MAE 20.11 22.56 3.17 3.47 3.18 4.25 2.97 3.62 3.74 -21.9%

40% RMSE 35.19 47.26 13.26 13.68 13.26 7.80 13.09 6.41 7.58 17.8%
MAE 20.28 22.67 4.29 4.94 4.30 5.05 4.05 3.73 3.91 7.9%

60% RMSE 37.99 47.87 23.23 23.37 23.23 10.05 23.11 7.00 8.56 30.4%
MAE 21.00 23.03 7.68 8.00 7.65 6.56 7.37 3.97 4.19 39.5%

80% RMSE 43.09 49.15 36.22 36.78 36.21 14.87 36.16 8.58 9.76 42.3%
MAE 22.22 23.79 14.23 15.56 14.16 9.68 13.95 4.62 4.87 52.3%

BJTaxi P3

20% RMSE 35.09 46.81 6.91 7.47 6.92 6.96 6.63 6.44 7.15 2.9%
MAE 20.90 22.86 3.19 3.68 3.18 4.51 2.96 3.71 3.79 -25.3%

40% RMSE 36.29 47.06 14.35 14.56 14.36 8.08 14.17 6.71 8.02 16.9%
MAE 21.17 23.01 4.67 4.97 4.66 5.28 4.39 3.87 4.22 11.8%

60% RMSE 39.67 47.80 25.78 25.93 25.78 10.72 25.63 7.31 8.60 31.8%
MAE 22.01 23.43 8.57 8.98 8.55 7.01 8.18 4.03 4.29 42.5%

80% RMSE 43.86 48.81 36.25 36.55 36.24 14.79 36.12 8.66 9.98 41.5%
MAE 23.15 24.09 14.56 15.44 14.51 9.76 14.14 4.71 4.90 51.8%

BJTaxi P4

20% RMSE 24.41 32.09 5.68 6.22 5.69 5.40 5.49 5.02 5.62 7.0%
MAE 14.44 15.60 2.53 3.03 2.55 3.56 2.38 3.04 2.99 -25.6%

40% RMSE 25.25 32.26 10.46 10.69 10.46 6.25 10.32 5.09 5.97 18.5%
MAE 14.62 15.70 3.51 3.87 3.51 4.13 3.32 3.02 3.14 9.0%

60% RMSE 27.27 32.68 17.27 17.52 17.27 7.84 17.16 5.53 6.76 29.4%
MAE 15.10 15.93 5.80 6.36 5.79 5.16 5.55 3.18 3.45 38.3%

80% RMSE 31.03 33.57 26.28 26.37 26.28 11.09 26.20 6.76 8.07 39.1%
MAE 16.13 16.48 10.47 10.75 10.44 7.42 10.21 3.69 4.03 50.2%

A Manual Alignment Method
The granularity of the aligned data map is determined by the high-
est granularity present in the input data maps, ensuring that the
granularity of the aligned map matches that of the finest data avail-
able. The alignment process involves filling the aligned data map
with ground truths, but only in regions that are covered by at least
one of the input data maps.

To clarify this, as depicted in Fig. 7, consider a scenario where
two data maps of different granularity, one at 2 × 2 and another at
4× 4, are manually aligned to produce a unified 4× 4 data map. The
initial step, illustrated by the orange section, involves using the
high-granularity data map to populate the aligned map, filling in all
corresponding cells where data is available at the high granularity.
After this, the low-granularity data map is applied to complete the

remaining areas, represented in the green section. In cases where
the low-granularity map lacks precise values for certain regions
(e.g., 13 and 19), these grids are instead filled using ground truths
to maintain data consistency and ensure the aligned map is fully
populated.

This manual alignment process sets an upper bound on perfor-
mance, meaning it represents the most accurate possible reconstruc-
tion of the data. By combining high- and low-granularity inputs
and supplementing missing values with ground truths, this method
provides an optimal solution for map alignment, allowing the re-
sulting map to maintain the highest fidelity achievable with the
given data.
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Figure 7: Illustration of manually aligning multi-granularity
datamaps. The left and right aremulti-granularity datamaps
and an aligned data map, respectively. The gray grids denote
missing data. The green and orange grids in the aligned data
map indicate the values from coarse- and fine-grained data
maps.

Table 6: Aligned missing rates of datasets. It illustrates
aligned missing rates that are constructed according to the
way in Fig. 7 at various setting missing rates.

Missing Rate 20% 40% 60% 80%

BJTaxi P2 98.99% 94.00% 78.58% 50.06%
BJTaxi P3 99.46% 93.43% 78.91% 50.16%
BJTaxi P4 99.16% 93.93% 79.55% 50.09%

B Experimental Details and Further Results
B.1 Statistics of Datasets
In Section 4, we have described three datasets used for validating the
performance of our model. To further strengthen our experiments,

we now introduce three additional datasets as supplementary eval-
uation benchmarks.

Table 4 presents a detailed summary of all six datasets, including
key statistics such as the time span each dataset covers and the
granularity of both the input and output. In addition, we partition
the dataset into non-overlapping training, validation, and testing
sets, following a chronological order. The table also shows the
number of samples in the training, validation, and test sets for each
dataset, ensuring a clear understanding of the dataset distributions
used throughout our experiments.

B.2 Extended results
Table 6 presents the aligned missing rates across the datasets, fur-
ther supporting and validating the results discussed in Subsection
4.2. These supplementary experiments reinforce the findings from
the initial tests by confirming that the aligned missing rates consis-
tently behave as expected across different scenarios and datasets,
regardless of the variations in missing data rates.

In addition, Table 5 provides performance results for the BJTaxi
P2-P4, offering a more granular breakdown of model performance.
For further insights into the methodology and settings for these
tests, readers can refer to Section 4.3. The supplementary results
align closely with the original findings, confirming that the conclu-
sions reached in Section 4.2 remain valid. These additional experi-
ments help to strengthen the robustness and generalizability of the
results across different experimental conditions and datasets.

11


	Abstract
	1 Introduction
	2 Notions and Problem Definition
	3 Methodology
	3.1 Granularity Alignment Network
	3.2 Feature Extraction Network
	3.3 Recurrent Super-resolution Network
	3.4 Training

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Performance Results
	4.4 GLAN Analysis
	4.5 RSRN Analysis
	4.6 Ablation Study
	4.7 Missing Patten Analysis

	5 Related Work
	5.1 Fine-grained Data Map Inference
	5.2 Self-supervised Learning

	6 Conclusion
	References
	A Manual Alignment Method 
	B Experimental Details and Further Results 
	B.1 Statistics of Datasets
	B.2 Extended results


