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Abstract

Answer Sentence Selection (AS2) is one of
the main components for building an accurate
Question Answering pipeline. AS2 models
rank a set of candidate sentences based on how
likely they answer a given question. The state
of the art in AS2 exploits pre-trained transform-
ers by transferring them on large annotated
datasets, while using local contextual informa-
tion around the candidate sentence. In this pa-
per, we propose three pre-training objectives
designed to mimic the downstream fine-tuning
task of contextual AS2. This allows for spe-
cializing language models when fine-tuning for
contextual AS2. Our experiments with continu-
ous pre-training of ROBERTa and ELECTRA
using two public and two large-scale industrial
datasets show that our pre-training approaches
can improve the accuracy of baseline of contex-
tual AS2 by up to 2.4%.

1 Introduction

Answer Sentence Selection (AS2) is a fundamen-
tal task in QA, which consists of re-ranking a set
of answer sentence candidates according to how
likely they correctly answer a given question. From
a practical standpoint, AS2-based QA systems can
operate under much lower latency constraints than
corresponding Machine Reading (MR) based QA
systems. This is because AS2 systems process sev-
eral sentences/documents in parallel, while MR sys-
tems parse the entire document/passage in a sliding
window fashion before finding the answer (Garg
and Moschitti, 2021).

Modern AS2 systems (Garg et al., 2020; Laskar
et al., 2020) use transformers to cross-encode ques-
tion and answer candidates together. Recently, Lau-
riola and Moschitti (2021) have demonstrated that
performing answer ranking using only the candi-
date sentence is sub-optimal, for e.g., the answer
sentence may contain unresolved coreference with
entities, or the sentence may lack specific context
for answering the question. Several works (Ghosh

et al., 2016; Tan et al., 2018; Han et al., 2021) have
explored performing AS2 using context around an-
swer candidates (for example, adjacent sentences)
towards improving performance. Local contextual
information, i.e., the previous and next sentences of
the answer candidates, can help coreference disam-
biguation, and provide additional knowledge to the
model. This helps to rank the best answer at the top,
with minimal increase in compute requirements.

Some research works (Lauriola and Moschitti,
2021; Han et al., 2021) have directly used existing
pre-trained models such BERT, RoBERTa, etc. for
contextual AS2, by fine-tuning them on a input
text constituted by several sentences with differ-
ent roles, i.e., the question, answer candidate, and
local context (previous and following sentences
around the candidate). This structured input cre-
ates practical challenges during fine-tuning, as stan-
dard pre-training approaches do not align well with
the downstream contextual AS2 task, e.g., the lan-
guage model does not know the role of each of the
multiple sentences in the input. In other words,
the extended sentence-level embeddings have to be
learnt directly during fine-tuning, causing under-
performance empirically.

In this paper, we tackle the aforementioned is-
sues by designing three pre-training objectives that
structurally align with the final contextual AS?2 task,
and can help improve the performance of language
models when fine-tuned for AS2. Our pre-training
objectives exploit information in the structure of
paragraphs and documents to pre-train the context
slots in the transformer text input. We evaluate our
strategies on two popular pre-trained transform-
ers using two large public and two large industrial
datasets. The results show that our approaches
can effectively adapt transformers to process con-
textualized input, thus improving model accuracy.
Compared to baselines, our structural pre-training
improves the models’ accuracy by up to 2.4%. We
plan to release code and pre-trained models.



2 Related Work

Answer Sentence Selection: TANDA (Garg et al.,
2020) established the state of the art for AS2 using
a large dataset (ASNQ) for transfer learning. Other
approaches for AS2 include: (Bonadiman and Mos-
chitti, 2020), that trains separate encoders for ques-
tion and answer candidates, and (Yoon et al., 2019),
which uses compare-aggregate and clustering to
gather more information for each candidate.

Contextual AS2: Ghosh et al. (2016) refine
LSTMs to accept answer candidates and topics in
input, allowing higher accuracy in tasks such as
next sentence selection. Tan et al. (2018) use GRU
networks to model answer candidates and local con-
text, improving performance on two AS2 datasets.
The first contextualized transformer for AS2 was
proposed by Lauriola and Moschitti (2021), which
use both local and global document-level con-
text to better disambiguate between answer candi-
dates. Han et al. (2021) use unsupervised similarity
matching techniques to extract relevant context for
answer candidates from the document to enhance
ranking capabilities of their models.

Pre-training Objectives: Sentence-level objec-
tives such as Next Sentence Prediction (Devlin
et al., 2019), Sentence Order Prediction (Lan et al.,
2020) and Span Prediction (Joshi et al., 2019)
have been widely explored for transformers (along
with token-level objectives (Devlin et al., 2019;
Liu et al., 2019)) to improve accuracy for down-
stream sequence classification tasks. However, the
majority of these objectives are agnostic of the
downstream tasks. End task-aware pre-training
has been studied for summarization (Rothe et al.,
2021), dialogue systems (Li et al., 2020), passage
retrieval (Gao and Callan, 2021) and multi-task
learning (Dery et al., 2021). Lee et al. (2019),
Chang et al. (2020) and Sachan et al. (2021) use the
Inverse Cloze task to improve retrieval performance
for bi-encoders, by exploiting paragraph structure
via self-supervised objectives. For AS2, recently
Di Liello et al. (2022a) proposed paragraph-aware
pre-training for joint classification of multiple can-
didates. Di Liello et al. (2022b) propose a sentence-
level pre-training paradigm for AS2 by exploiting
document and paragraph structure. However, these
works do not consider the structure of the down-
stream task (specifically contextual AS2). To the
best of our knowledge, ours is the first work to
study transformer pre-training strategies for AS2
augmented with context using cross-encoders.

3 Contextual AS2

AS2: Given a question ¢ and a set of answer can-
didates S = {s1,...,sp}, the goal is to find the
best s that answers g. This is typically done by
learning a binary classifier C of answer correct-
ness by independently feeding the pairs (g, s;),7 €
{1,...,n} as input to C, and making C predict
whether s; correctly answers g or not. At inference
time, we find the best answer for ¢ by selecting
the answer candidate s; which scores the highest
probability of correctness k = arg max; C(q, s;).

Contextual AS2: Contextual models for AS2 ex-
ploit additional context around answer candidates
to improve the final accuracy. This has been shown
to be effective (Lauriola and Moschitti, 2021) in
terms of overcoming coreference disambiguation
and lack of enough information to rank the best
answer at the top. Different from the above case,
contextual AS2 models receive as input a tuple
(q, si, ¢;) where ¢; is the additional context corre-
sponding to sentence candidate s;. A popular op-
tion for ¢; is to consider the sentences immediately
before and after the answer candidate.

4 Context-aware Pre-training Objectives

We design a transformer pre-training task that
aligns well with fine-tuning contextual AS2 mod-
els, both structurally and semantically. We exploit
the division of large corpora in documents and the
subdivision of documents in paragraphs as a source
of supervision. We provide triplets of text spans
(a, b, ) as model inputs when pre-training, which
emulates the structure of (g, s;, ¢;) for contextual
AS2 models, where a, b and c play the analogous
role of the question, the candidate sentence (that
needs to be classified), and the context (which helps
in predicting (a, b) correctness), respectively. For-
mally, given a document D from the pre-training
corpus, the task is to infer if @ and b are two sen-
tences extracted from the same paragraph P € D.
We called this objective: “Sentences in Same Para-
graph (SSP)”. We design three different ways of
choosing the appropriate contextual information c
and then we present the details on how we auto-
matically sample the text spans a, b and ¢ from the
pre-training documents.

Static Document-level Context (SDC) Here, we
choose the context c to be the first paragraph Py
of D = {P,..,P,} from which b is extracted.
This is based on the intuition that the first para-
graph acts as a summary of a document’s content



(Chang et al., 2020): this strong context can help
the model at identifying if b is extracted from the
same paragraph as a. We call this static document-
level context since the contextual information c is
constant for any b extracted from the same docu-
ment D. Specifically, the positive examples are
created by sampling a and b from a single ran-
dom paragraph P; € D,¢ > 0. For the previously
chosen a, we create hard negatives by randomly
sampling a sentence b from different paragraphs
PieD,j#iNj>0. Wesetc = P, for this
negative example as well since b still belongs to
D. We create easy negatives for a chosen a by
sampling b from a random paragraph P/ in another
document D’ # D. In this case, ¢ is chosen as the
first paragraph P of D’ since the context in the
downstream AS?2 task is associated with the answer
candidate, and not with the question.

Dynamic Paragraph-level Context (DPC) We
dynamically select the context c to be the para-
graph from which the sentence b is extracted. We
create positive examples by sampling a and b from
a single random paragraph P; € D, and we set
the context as the remaining sentences in F;, i.e.,
¢ = P; \ {a,b}. Note that leaving a and b in P;
would make the task trivial. For the previously cho-
sen a, we create hard negatives by sampling b from
another random paragraph P; € D, j # i, and set-
ting ¢ = P; \ {b}. We create easy negatives for a
chosen a by sampling b from a random P/ in an-
other document D’ # D, and setting c = P/ \ {b}.

Dynamic Sentence-level Local Context (DSLC)
We choose c to be the local context around the sen-
tence b, i.e, the concatenation of the previous and
next sentence around b in P € D. To deal with
corner cases, we require at least one of the previ-
ous or next sentences of b to exist (e.g., the next
sentence may not exist if b is the last sentence of
the paragraph P). We term this DSLC as the con-
textual information c is specified at sentence-level
and changes correspondingly to every sentence b
extracted from D. We create positive pairs similar
to SDC and DPC by sampling a and b from the
same paragraph P; € D, with c being the local
context around b in P; (and a ¢ ). We automati-
cally discard paragraphs that are not long enough
to ensure the creation of a positive example. We
generate hard negatives by sampling b from another
P; € D, j # i, while for easy negatives, we sam-
ple b froma P, € D', D’ # D (in both cases c is
set as the local context around b).

5 Datasets

Pre-Training To perform a fair comparison and
avoid any improvement arising from the usage of
additional pre-training data, we use the same pre-
training corpus as RoBERTa (Liu et al., 2019). This
includes the English Wikipedia, the BookCorpus
(Zhu et al., 2015), OpenWebText (Gokaslan and
Cohen, 2019) and CC-News'. We transform the
datasets above to implement the pre-training objec-
tives that we described in Section 4.

Contextual AS2 We evaluate our pre-trained
models on two public and two industrial datasets
for contextual AS22. For all datasets, we use the
standard ‘clean’ setting, by having at least one pos-
itive and one negative candidate per question in
the dev. and test sets. We measure performance us-
ing P@1 (Precision-at-1), MAP and MRR. Dataset
statistics are presented in Appendix A.2.

For testing our pre-training models on the down-
stream task, we used the following AS2 datasets:
* ASNQ is a large scale AS2 dataset (Garg et al.,
2020) derived from NQ (Kwiatkowski et al., 2019).
The questions are user queries from Google search,
and answers are extracted from the top ranked
Wikipedia page. We extract the contextual infor-
mation for each answer candidate and use the data
splits of Lauriola and Moschitti (2021).

* NewsAS2 is a large scale AS2 dataset created
from NewsQA (Trischler et al., 2017), an MR
dataset, following the same procedure used by
Garg et al. for ASNQ. The dataset contains ~70K
questions generated by humans and answer candi-
dates extracted from the CNN/Daily Mail corpus.

* IQAD is a large scale industrial dataset contain-
ing de-identified questions asked by users to a pop-
ular commercial virtual assistant. IQAD contains
~220k questions where answers are retrieved from
a large web index (~1B web pages) using Elas-
ticsearch. We use two different evaluation bench-
marks for IQAD: (i) IQAD Bench 1: Contains 2.2k
questions with 15 answer candidates annotated for
correctness by crowd workers, (ii) IQAD Bench 2:
Contains 2k questions with 15 answer candidates
annotated with explicit fact verification guidelines
for correctness by crowd workers. (Our manual
analysis indicates a higher annotation quality for
QA pairs in Bench 2 than Bench 1). Results on

"The STORIES (Trinh and Le, 2018) dataset is no longer
publicly available, and thus we ignore it

We do not use popular AS2 datasets such as Wik-
iQA (Yang et al., 2015), TREC-QA (Wang et al., 2007) due to
contextual information not being available for them.



Context ASNQ NewsAS2 IQAD Bench 1 IQAD Bench 2
Model

ode used MAP MRR P@1 MAP MRR P@1 MAP MRR Pe@l MAP MRR Pe@l
ELECTRA-Base X 69.3(0.0) 75.1(0.1) 650(0.2)  813(0.2) 842(0.1) 75.6(0.2) Baseline Baseline
ELECTRA-Base & / 723(06) 779(0.8) 68.1(0.8) 820(04) 846(02) 76005  -0.6% -0.6% -1.0% 04% -04% -09%
(Ours) ELECTRA-Base + SSP (SDC) / 747(05) 795(03) 69.6(03)  827(0.2) 853(03) 77.0(04)  +12% +0.6% +0.6%  +0.9% +09% +1.4%
(Ours) ELECTRA-Base + SSP (DPC) /o 744(02) 795(02) 705(02)  827(0.5) 85.6(04) 77.3(0.7)  +04% -03% -0.6% +04% +02% +0.1%
(Ours) ELECTRA-Base + SSP (DSLC) v 743(0.3) 79.4(0.5 70.0(0.8)  82.8(0.4) 85.5(04) 77.3(05)  +1.0% +05% +0.6%  +02% +02% 0.0%
(Ours) ELECTRA-Base + SSP (All) /  138(04) 787(03) 688(04)  827(0.2) 854(02) 772(0.3)  +0.1% -0.1% -04% +0.1% +0.1% -0.1%
RoBERTa-Base X 682(0.5) 742(03) 635(0.5)  81.7(0.1) 844(0.0) 762(02)  +0.6% +0.5% +0.1%  +0.7% +0.9% +1.3%
RoBERTa-Base & / 716(06) 773(05) 67.6(0.6)  824(0.2) 85.1(04) 766(0.7)  +04% +04% 0.0% +1.1%  +09% +1.7%
(Ours) RoBERTa-Base + SSP (SDC) /  731(05) 784(06) 68.7(0.8)  828(0.1) 854(02) 769(02) +17% +18% +3.0%  +1.0% +09% +1.7%
(Ours) RoBERTa-Base + SSP (DPC) /o 732(04) 785(03) 69.2(0.5)  823(0.1) 849(0.1) 760(0.1)  +04% +0.6% +12%  +12% +15% +2.7%
(Ours) RoBERTa-Base + SSP (DSLC) /o 729(04) 784(02) 69.0(0.3)  826(0.2) 853(0.1) 77.0(02)  +0.6% +0.9% +1.5%  +1.0% +09% +1.4%
(Ours) RoBERTa-Base + SSP (All) / 729(06) 77.9(0.6) 682(0.8)  83.0(0.2) 856(04) 77.3(0.5)  +12% +1.5% +24%  +14% +13% +2.2%

Table 1: Results (std. dev. in parenthesis) on AS2. Models with & are from (Lauriola and Moschitti, 2021). v/
and X denote whether local contextual information was used in fine-tuning. SDC, DPC and DSLC indicate the
pre-training variants of the SSP task that we propose. Best results are in bold while we underline statistically
significant improvements over the two contextual baselines (&) using a Student ¢-test with 95% of confidence level.

IQAD are presented relative to a baseline due to
the data being internal.

6 Experiments

Continuous Pre-Training We use RoBERTa-
Base and ELECTRA-Base® public checkpoints,
and perform continuous pre-training using our ob-
jectives for ~10% of the compute used by the
original models. Extensive details are given in
Appendix C. We experiment with each of our pre-
training objectives independently, as well as com-
bining all of them with the two model architectures.

Fine-Tuning We fine-tune each continuously pre-
trained model on all the AS2 datasets. As baselines,
we consider (i) standard pairwise-finetuned AS2
models, using only the question and the answer
candidate, and (ii) contextual fine-tuned AS2 mod-
els from (Lauriola and Moschitti, 2021), that use
the question, answer candidate and local context.

Results Table 1 summarizes the results of our ex-
periments averaged across 5 runs. On ASNQ, our
pre-trained models get 3.8-5.5% improvement in
P@1 over the baseline using only the question and
answer. Our models also outperform the stronger
contextual AS2 baselines (1.6% with RoBERTa
and 2.4% with ELECTRA), indicating that our
task-aware pre-training can help improve the down-
stream fine-tuning performance. On NewsAS2, we
observe a similar trend in results, where all our
models (except one) outperform both the pair-wise
and contextual baselines.

On IQAD, we observe that the contextual
baseline performs at-par or lower than the non-
contextual baseline, indicating that off-the-shelf
transformers cannot effectively exploit the context

*Due to compute limitations, we don’t extend our pre-
training experiments to Large models (each pre-training run
will take ~10 days on 8 A100-GPUs each with 40GB RAM).

available for this dataset. The answer candidates
and context for IQAD are extracted from millions
of web documents. Thus, learning from the con-
text in IQAD is a harder task than learning from it
on ASNQ, where the context belongs to a single
Wikipedia document. Our pre-trained models help
to process the diverse and possibly noisy context
of IQAD, and produce a significant improvement
in P@1 over the contextual baseline.

The DPC and DSLC approaches align well (of-
ten having overlapping or identical contexts for
the same (a,b) input), explaining their compara-
ble performance across all datasets. In SDC, the
context ¢ can potentially be very different from
(a,b), and this may help in exploiting information
from multiple documents/domains as is the case
for IQAD. For these reasons, we believe DPC and
DSLC should be used when answer candidates are
extracted from withing the same document, while
SDC works best with candidates collected across
multiple documents. We present an extended dis-
cussion of our results in Appendix E. Also, we
observe that combining all the objectives together
does not always outperform the individual objec-
tives, which is probably due to the different pre-
training ways of sampling context being heteroge-
neous from each other and not aligning well.

7 Conclusions

In this paper, we have proposed three pre-training
strategies for transformers, which (i) are aware of
the downstream task of contextual AS2, and (ii) use
the document and paragraph structure information
to define effective objectives. Our experiments
on two public and two industrial datasets using
two transformer models show that our pre-training
strategies can provide significant improvement over
the contextual AS2 models.
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Appendix
A Datasets

A.1 Pre-training

We preprocess Wikipedia, the BookCorpus, CC-
News and OpenWebText by filtering away: (i) sen-
tences having a length smaller than 20 characters,
(ii) paragraphs shorter than 60 characters and (iii)
documents shorter than 200 characters. We split
paragraphs in sequences of sentences using the
NLTK tokenizer (Loper and Bird, 2002) and we
create the datasets for continuous pre-training fol-
lowing the definitions in Section 4.

For each objective, we sample randomly up to 2
hard negatives and additional easier negatives until
the total number is 4. Instead of reasoning in terms
of sentences, we designed our objectives to cre-
ate a and b as small spans composed of 1 or more
contiguous sentences. For a, we keep the length
equal to 1 sentence because it emulates the ques-
tion, which usually is just a single sentence. For b,
we randomly sample the length between 1 and 3.
The length of the context ¢ cannot be decided a pri-
ori because it depends on the specific pre-training
objective and the length of the paragraph.

All the resulting continuous pre-training datasets
are about 300GB in size (uncompressed) and con-
tain around 350M training examples each.

A.2 Fine-Tuning

The statistics on the number of unique questions
and question-answer pairs for each fine-tuning
dataset are provided in Table 2. While ASNQ has a
huge number of negatives for each question (more
than 300 on average), NewsAS?2 has a smaller num-
ber of answer candidates per question (25 on av-
erage). Note that we do not use the contextual
WikiQA dataset for our experiments due to missing
contextual information (on contacting the authors
of (Lauriola and Moschitti, 2021), we found that
this dataset is not available anymore).

NewsAS2 was created by splitting each docu-
ment in NewsQA into individual sentences with the
NLTK tokenizer (Loper and Bird, 2002). Then, for
each sentence, we assigned a positive label if it con-
tained at least one of the annotated answers for that
document, a negative label otherwise. This lead
to a datasets with 1.69% positives sentences per
query in the training set, 1.66% in the dev set and
1.68% in the test set. We will release this NewsAS2
dataset along with code and models from our paper.

Train Dev Test
Dataset
#Q #QA #Q #QA #Q #QA
ASNQ 57242 20377568 1336 463914 1336 466148
2252 38587
IQAD 221334 3894129 2434 43369 5088 33498
NewsAS2 71561 1840533 2102 51844 2083 51472

Table 2: Number or unique questions and question-
answer pairs in the fine-tuning datasets. IQAD Bench 1
and Bench 2 sizes are mentioned in the Test set column
corresponding to IQAD.

B Frameworks & Infrastructure

Our framework is based on (i) HuggingFace Trans-
formers (Wolf et al., 2020) for model architecture,
(i1) HuggingFace Datasets (Lhoest et al., 2021)
for data processing, (iii) PyTorch-Lightning for
distributed training (Falcon et al., 2019) and (iv)
TorchMetrics for AS2 evaluation metrics (Detlef-
sen et al., 2022).

We performed our pre-training experiments for
every model on 8 NVIDIA A100 GPUs with 40GB
of memory each, using fpl6 for tensor core accel-
eration.

C Continuous Pre-Training

We experiment with RoBERTa-Base and
ELECTRA-Base public checkpoints. RoBERTa-
Base contains 124M parameters while ELECTRA-
Base contains 33M parameters in the generator
and 108M in the discriminator.

We do continuous pre-training starting from the
aforementioned models for 400K steps with a batch
size of 4096 examples and a triangular learning
rate with a peak value of 10~* and 10K steps of
warm-up. In order to save resources, we found it
beneficial to reduce the maximum sequence length
to 128 tokens. In this setting, our models see about
210B additional tokens each, which are exactly
the 10% of those used in the original RoBERTa
pre-training. Moreover, in terms of complexity our
objectives are more efficient because the attention
computational complexity grows quadratically in
the sequence length, which in our case is 4 times
smaller.

We use cross-entropy as the loss function for
all our pre-training and fine-tuning experiments.
Specifically, for ROBERTa pre-training we sum
the MLM and our proposed binary classification
losses with equal weights (1.0). For ELECTRA
pre-training, we sum three losses: MLM loss with
a weight of 1.0, the Token Detection loss with a
weight of 50.0, and our proposed binary classifica-
tion losses with a weight of 1.0.



Model Hyper-parameter ASNQ NewsAS2 IQAD
Batch size 2048 256 256
Peak LR le-05 Se-06 le-05

RoBERTa ‘Warmup steps 10K 5K 5K
Epochs 6 8 10
Batch size 1024 128 256
Peak LR le-05 le-05 2e-05

ELECTRA ‘Warmup steps 10K 5K 5K
Epochs 6 8 10

Table 3: Hyper-parameters used to fine-tune RoOBERTa
and ELECTRA on the AS2 datasets. The best hyper-
parameters has been chosen based on the MAP results
on the validation set.

During continuous pre-training, we feed the
text tuples (a,b,c) (as described in Section 4)
as input to the model in the following format:
‘[CLS]a[SEP]b[SEP|c[SEP] .

To provide independent sentence/segment ids to
each of the inputs a, b and ¢, we initialize the sen-
tence embeddings layers of RoBERTa and ELEC-
TRA from scratch, and extend them to an input size
of 3.

The pre-training of every model obtained by
combining ELECTRA and RoBERTa architectures
with our contextual pre-training objectives took
around 3.5 days each on the machine configuration
described in Appendix B. All the dataset prepara-
tion required 10 hours over 64 CPU cores.

D Fine-Tuning

The most common paradigm for AS2 fine-tuning
is to consider publicly available pre-trained trans-
former checkpoints (pre-trained on large amounts
of raw data) and fine-tune them on the AS2 datasets.
Using our proposed pre-training objectives, we are
proposing stronger model checkpoints  which can
improve over the standard public checkpoints, and
can be used as the initialization for downstream
fine-tuning for contextual AS2.

To fine-tune our models on the downstream AS2
datasets, we found it is beneficial to use a very large
batch size for ASNQ and a smaller one for IQAD
and NewsAS2. Moreover, for every experiment we
used a triangular learning rate scheduler and we did
early stopping on the development set if the MAP
did not improve for 5 times in a row. We fixed the
maximum sequence length to 256 tokens in every
run, and we repeated them 3 times with different
initial random seeds. We did not use weight decay
but we clipped gradients larger than 1.0 in abso-
lute value. More specifically, for the learning rate

*We plan to release our code and pre-trained model check-
points after the anonymity period.

we tried all values in {5 * 1076,1075,2 % 107}
for ROBERTa and in {10752 % 1075, 5 % 1075}
for ELECTRA. Regarding the batch size, we
tried values {512,1024,2048,4096} for ASNQ
and {46, 128,256,512} for IQAD and NewsAS2.
More details about final hyper-parameter are given
in Table 3.

For the pair-wise models, we format in-
puts as ‘[CLS|q[SEP]s;[SEP|’, while for con-
textual models we build inputs of the form
‘[CLS]q[SEP]s; [SEP]c¢;[SEP] .

We do not use extended sentence/segment ids
for the non-contextual baselines and retain the
original model design: (i) disabled segment ids
for RoOBERTa and (ii) only using 2 different sen-
tence/segment ids for ELECTRA. For the fine-
tuning of our continuously pre-trained models as
well as the contextual baseline, we use three dif-
ferent sentence ids corresponding to ¢, s and c for
both RoOBERTa and ELECTRA.

Finally, differently from pre-training, in fine-
tuning we always provide the previous and the next
sentence as context for a given candidate.

The contextual fine-tuning of every models on
ASNQ required 6 hours per run on the machine
configuration described in Appendix B. For the
other fine-tuning datasets, we use a single GPU per
experiment, which took less than 2 hours.

E Additional Discussion of Results

Here we explain the difference in performance we
observe from our three pre-training objectives on
different AS2 datasets. The AS2 datasets we con-
sider for our experiments have significantly differ-
ent structures: specifically, ASNQ and NewsAS2
have answer candidates being extracted from a sin-
gle document (Wikipedia and CNN Daily Mail
article respectively), while IQAD has answer can-
didates being extracted from multiple documents.
This also results in the context for the former being
more homogeneous (context for all candidates for
a question is extracted from the same document),
while for the latter the context is more heteroge-
neous (extracted from multiple documents for dif-
ferent answer candidates).

Our DPC and DSLC pre-training approaches are
well aligned in terms of the context that is used
to help the SSP predictions. The former uses the
remainder of the paragraph P as context (after re-
moving a and b), while the latter uses the sentence
previous and next to b in P. We observe empiri-



cally that the contexts for DPC and DSLC often
overlap partially, and are sometimes even identi-
cal (considering average length of paragraphs in
the pre-training corpora is 4 sentences). This ex-
plains why models pre-trained using both these
approaches perform comparably in Table 1 (with
only a very small gap in P@1 performance).

On IQAD, we observe that the SDC approach
of providing context for SSP outperforms the DPC
and DSLC approaches for pre-training. In SDC,
the context ¢ can potentially be very different from
a and b (as it corresponds to the first paragraph of
the document), and this can aid exploiting infor-
mation and effectively ranking answer candidates
from multiple documents (possibly from different
domains) like for IQAD.

F Qualitative Examples

In Table 4 we show a comparison of the ranking
produced by our models and that by the contex-
tual baselines on some questions selected from the
ASNQ test set.

ELECTRA

Q how many games does a team have to win for the world series

A1 Seven games were played, with the Astros victorious after game
seven, played in Los Angeles.

Ao In 1985, the format changed to best-of-seven.

Ag Since then, the 2011, 2014, and 2016 World Series have gone the
full seven games.

Ay The winner of the World Series championship is determined
through a best-of-seven playoff, and the winning team is awarded
the Commissioner’s Trophy.

As The Houston Astros won the 2017 World Series in 7 games against
the Los Angeles Dodgers on November 1st, 2017, winning their
first World Series since their creation in 1962.

RoBERTa

Q where are trigger points located in the body

A, Myofascial pain is associated with muscle tenderness that arises
from trigger points, focal points of tenderness, a few millimeters
in diameter, found at multiple sites in a muscle and the fascia of
muscle tissue.

Ao Myofascial trigger points, also known as trigger points, are de-
scribed as hyperirritable spots in the fascia surrounding skeletal
muscle.

A4 These in turn can pull on tendons and ligaments associated with
the muscle and can cause pain deep within a joint where there are
no muscles.

As They form as a local contraction in a small number of muscle fibers
in a larger muscle or muscle bundle.

Table 4: Some qualitative examples from ASNQ test
set where our ELECTRA and RoBERTa models with
DSLC contextual continuous pre-training were able to
rank the correct candidate in the top position while the
contextual baselines failed. The answer candidates are
shown ranked by the ordering produced by the contex-
tual baselines. Other positive candidates answers are
colored in

G Discussion of Limitations

Our proposed pre-training approaches require ac-
cess to large GPU resources (pre-training is per-
formed on 350M training samples for large lan-
guage models containing 100’s of millions of pa-
rameters). Additionally, the pre-training takes a
long time duration to finish (several days even on a
large number of NVIDIA A100 GPUs), which high-
lights that this procedure cannot easily be re-done
with newer data being made available in an online
setting. However the benefit of our approach is
that once the pre-training is complete, our released
model checkpoints can be directly fine-tuned (even
on smaller target datasets) for the downstream con-
textual AS2 task. For the experiments in this paper,
we only consider datasets from the English lan-
guage, however we conjecture that our techniques
should work similarly for languages with limited
morphology, like English. Finally, we believe the
three proposed objectives could be better combined
in a multi-task training scenario where the model
has to jointly predict the task and the label. At the
moment, we left this as a future research direction.



