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ABSTRACT
Hybrid models that combine the language modeling capabilities of Attention layers with the efficiency of Recurrent
layers (e.g., State Space Models) have gained traction in practically supporting long contexts in Large Language
Model serving. Yet, the unique properties of these models complicate the usage of complementary efficiency
optimizations such as prefix caching that skip redundant computations across requests. Most notably, their use of
in-place state updates for recurrent layers precludes rolling back cache entries for partial sequence overlaps, and
instead mandates only exact-match cache hits; the effect is a deluge of (large) cache entries per sequence, most
of which yield minimal reuse opportunities. We present Marconi, the first system that supports efficient prefix
caching with Hybrid LLMs. Key to Marconi are its novel admission and eviction policies that more judiciously
assess potential cache entries based not only on recency, but also on (1) forecasts of their reuse likelihood across a
taxonomy of different hit scenarios, and (2) the compute savings that hits deliver relative to memory footprints.
Across diverse workloads and Hybrid models, Marconi achieves up to 34.4x higher token hit rates (71.1% or 617
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ms lower TTFT) compared to state-of-the-art prefix caching systems.

1 INTRODUCTION

The emergence of large language models (LLMs) has em-
powered many applications including chatbots (cha, 2022),
Al-powered search (per, 2023), coding assistants (git, 2022),
and more. Owing to increasing workload complexity and
the evolution of inference-time enhancements such as few-
shot prompting (Brown, 2020) and chain-of-thoughts (Wei
et al., 2022), recent years have witnessed a push towards
longer context windows during serving. Indeed, the accu-
racy improvements from multi-step reasoning (Khattab et al.,
2023; Yao et al., 2022), detailed prompt templates (Liu et al.,
2023), and increased samples in few-shot prompting (Brown,
2020) all require expanded context sizes.

To keep pace with these trends, traditional foundation mod-
els like Transformers have been extended to support longer
context windows, e.g., Gemini 1.5 (Team et al., 2023) and
Claude 3 (cla, 2024b) both have 1M window size. How-
ever, their intrinsic reliance on the Attention mechanism
harms long-context serving efficiency, particularly due to its
quadratic compute complexity and large memory footprint
for housing KV cache states (Wu et al., 2024; Lee et al.,
2024). As a result, new recurrent and subquadratic model
architectures like State Space Models (SSMs) (Gu & Dao,
2023; Dao & Gu, 2024) have emerged to offer lower com-
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pute and memory costs for long-context serving (Fig. 1c),
albeit with mild accuracy degradations (Waleffe et al., 2024).
These subquadratic layers are commonly mixed with several
full Attention layers to produce Hybrid LLMs (Fig. 1a) that
lower serving costs while maintaining Attention’s superior
recall and in-context learning capabilities (Waleffe et al.,
2024; Lieber et al., 2024; Team et al., 2024; Glorioso et al.,
2024).

Although Hybrid LLMs improve per-request efficiency, they
complicate the cross-request efficiency wins that prior ef-
forts have shown to be especially effective in long-context
scenarios, i.e., prefix caching that reuses model states for
common prefixes across requests, thereby skipping compu-
tation without harming accuracy (Kwon et al., 2023; Zheng
et al., 2023b; Gao et al., 2024; Abhyankar et al.). The pri-
mary challenge is that SSM model states are updated in
place (Fig. 1b), so states at the end of a sequence cannot
be rolled back to represent a prefix of the sequence. This
presents a dilemma for serving systems. On one hand, max-
imizing reuse opportunities for future (arbitrary) workloads
mandates caching fine-grained state checkpoints at regu-
lar intervals, e.g., every 256 tokens. On the other hand,
increased checkpointing frequency inflates the number of
cache entries generated per sequence, each of which is large
(due to the sheer size of SSM states) but most of which
present limited reuse opportunities, i.e., sparsely-hit. The
net effect is cache thrashing with low-utility entries (Fig. 2),
and a poor memory-vs-compute savings tradeoff (§3).
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Figure 1. Overview of Hybrid models.
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Figure 2. Prefix caching reuses model states of common prefixes
(green) across requests, accelerating inference. Fine-grained check-
pointing results in many sparsely-hit entries (blue).

We present Marconi,' the first prefix caching system de-
signed to support Hybrid LLMs. For a given sequence, Mar-
coni simultaneously manages cache entries for both SSM
states and KVs, ensuring that all of the preceding sequence
states for each cached entry are also present to support reuse.
Moreover, Marconi eschews traditional caching logic based
on recency (Kwon et al., 2023; Zheng et al., 2023b; Sri-
vatsa et al., 2024), and instead introduces novel admission
and eviction strategies that value potential cache entries
with awareness of the aforementioned SSM overheads; we
describe these in turn.

To cope with the large size and ““all or nothing” nature of
SSM cache entries (i.e., hits only arise on exact sequence
matches, unlike with KVs), Marconi adopts a judicious ad-
mission strategy, whereby only SSM candidates with high
reuse likelihood are accepted. Our driving insight is that,
despite lacking knowledge of upcoming requests, the reuse
potential of each SSM state can be sufficiently estimated
when assessed against the taxonomy of potential prefix reuse
scenarios. Specifically, token redundancy arises across re-
quests as either (a) purely-input shared prefixes, e.g., system
prompts, or (b) a combination of input and output token shar-
ing, e.g., conversation history. The former case typically
arises across many requests, enabling Marconi to vet each

“Marconi plays the mamba, listen to the radio, don’t you
remember?” — Lyrics of We Built This City, song by Starship

candidate against previously-observed sequences. In con-
trast, for the latter case, Marconi assigns value only to SSM
states that represent the last decoded token (which conver-
sations typically resume from, as opposed to intermediate
branching). We efficiently encapsulate this bookkeeping in
a radix tree that highlights sequence overlap, and introduce
a speculative insertion step prior to each prefill to determine
the potential reuse opportunties for the upcoming sequence
(and the resultant checkpointing required).

For eviction, our main observation is that, with Hybrid
LLMs, when assigning value to the cache entry for a given
sequence, we have to account for both KVs and SSM states
which exhibit different tradeoffs between memory and com-
pute savings. Specifically, whereas the size of KVs’ entries
for a sequence is (linearly) proportional to the compute sav-
ings from reusing that sequence, SSM state sizes are fixed
and unrelated to sequence length and compute savings. To
enable more holistic management of cache entries, Marconi
introduces a new FLOP-aware eviction policy that assesses
candidates for eviction based not only on recency/popularity,
but also the potential compute savings they deliver (normal-
ized against the space they consume in the cache). This
inherently trades the hit rate of shorter sequences for longer
ones — an especially desirable tradeoff given the superior
efficiency of Hybrid models over Transformers.

We evaluated Marconi on a wide range of workloads, re-
quest arrival patterns, cache sizes, and Hybrid model ar-
chitectures. Overall, we find that Marconi improves cache
hit rates by an average of 4.5-34.4x compared to state-of-
the-art caching systems (e.g., VLLM (Kwon et al., 2023),
SGLang (Zheng et al., 2023b)) that are extended to support
Hybrid models. The win in token hit rate translates to la-
tency savings of 36.1-71.1% (103.3-617.0ms) for P95 TTFT.
Microbenchmarks show that Marconi performs better in sce-
narios with longer contexts, higher ratios of SSM layers,
and larger SSM state dimensions — trends that align with
recent model developments. Marconi is open sourced at
https://github.com/ruipeterpan/marconi.
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2 BACKGROUND

In this section, we provide background on the efficient re-
current architectures (exemplified by SSMs), Hybrid mod-
els that contain these alternative architectures, and prefix
caching for efficient LLM inference.

2.1 State Space Models and Hybrid Models

Token generation in LLM inference involves two main
phases. First, the prefill phase processes an input sequence,
generating the model’s internal states (e.g., KV cache/KVs
in Attention layers) for each layer of an LLM, and outputs
the first new token. The decoding phase then utilizes the
internal states to perform autoregressive token generation.

During prefill, generating the first token depends on all
previous tokens. In Transformers, the self-attention mech-
anism calculates how each token in the sequence “attends”
to every other token. Consequently, the Attention mecha-
nism incurs quadratic computational complexity (Dao et al.,
2022), which quickly bottlenecks GPU compute as sequence
lengths scale (Agrawal et al., 2024). Furthermore, the size
of the KVs in Attention layers grows linearly with sequence
length, resulting in a large inference-time memory require-
ment (Wu et al., 2024; Lee et al., 2024).

State space models (SSMs) and more generally linear RNNs
and linear attention, such as Mamba (Gu & Dao, 2023;
Dao & Gu, 2024), address these inefficiencies by selec-
tively “compressing” previous context into a recurrent and
compact representation. The recurrent representation is
used alongside the previous token to update the recurrent
representation in place, as shown in Fig. 1b. Because the
SSM states maintain a constant size, memory consumption
remains fixed regardless of sequence length, and the compu-
tational complexity scales linearly, rather than quadratically,
with the sequence length (Fig. 1c). Although pure SSM
models outperform Transformers on many NLP tasks, they
lag behind on certain workloads that require strong recall
or in-context learning capabilities (Waleffe et al., 2024; nee,
2024). To balance inference efficiency and model capability,
SSM-Attention Hybrid models (Fig. 1a) have been proposed.
These models blend quadratic Attention and subquadratic
SSM layers, typically interleaved in a specific ratio (com-
monly 1 Attention layer for every 6-10 SSM layers (Waleffe
et al., 2024; Lieber et al., 2024; Glorioso et al., 2024)).
When compared to Transformers of equivalent scale trained
on the same datasets, Hybrid models demonstrate superior
performance across a wide range of tasks while preserving
most of the efficiency advantages of SSM layers (up to 8%
faster) (Waleffe et al., 2024). Many Hybrid models have
been productionized (car, 2024; Lieber et al., 2024; Team
et al., 2024; Glorioso et al., 2024; zam, 2024a;b; Waleffe
et al., 2024; Ren et al., 2024), with the largest being Jamba
1.5 at 398B parameters (Team et al., 2024).

2.2 Prefix Caching

Shared prefixes across requests, including input tokens and
sometimes output tokens, are common across many LLM ap-
plications. For example, question-answering workloads of-
ten share a detailed system prompt combined with few-shot
examples that provide instructions and demonstrations (Yao
et al., 2022). Similarly, coding agents interact with the
environment in multiple rounds, where each new request
consists of a trajectory of past environment interactions and
new observations and actions (Yang et al., 2024a; Wang
et al., 2024). Redoing the prefill of these shared prefixes
for all requests leads to many redundant computations, hurt-
ing both throughput and latency. Prefix caching mitigates
this by caching and reusing the model’s internal states that
represent the common prefixes (Fig. 2), achieving a lower
time to first token (TTFT) latency, lower tail time per token
(TPT) latency?, and higher prefill throughput (measured in
tokens/s).

Many research and production systems have been proposed
to reap the benefits of prefix caching in Transformer infer-
ence (Kwon et al., 2023; Zheng et al., 2023b; Gao et al.,
2024; Srivatsa et al., 2024; Abhyankar et al.; cla, 2024a; cha,
2024; Qin et al., 2024; ope, 2024). On startup, these systems
provision blocks of GPU/CPU memory for caching the pre-
fix states. Before prefilling a new sequence, the inference
engine looks up the prefix cache for the longest matching
prefix. Upon a cache hit, the corresponding prefix is fetched
before prefilling. After decoding the final token of the se-
quence, to favor recency, the system admits the model states
of all tokens of the new sequence into the cache. To reduce
memory fragmentation, the KVs are usually partitioned into
fixed-sized token blocks in the prefix cache, each housing
the KVs of z tokens where x is the block size (Kwon et al.,
2023), and existing token blocks are evicted to make room if
the cache is full. Because KVs have a sequence dimension,
managing and evicting model states is efficient and flexible.
E.g., if we have the KVs of a sequence of tokens 1...q and
want to retain the KVs of the prefix 1...p (p < q), tensor
slicing can be performed on the sequence dimension of the
full KVs.

3 CHALLENGES OF PREFIX CACHING
WITH HYBRID LLMS

Compared to Attention, SSM’s properties greatly benefit
its per-request computational complexity and memory con-
sumption. However, the very properties that make SSMs
more efficient also complicate prefix caching, an important
optimization for cross-request efficiency wins. The key

2Even though prefix caching is a prefill-only optimization, a
lower prefill latency also reduces the tail TPT for high-throughput
LLM inference engines (Agrawal et al., 2024).
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Figure 3. Fine-grained caching of token blocks results in many
SSM states being cached. This creates sparsely-hit entries in
which many SSM states are never reused (a), underutilizing the
precious cache capacity. Worse, this creates a huge memory usage
even for a single sequence of a 7B model (b), overwhelming and
thrashing the cache.

reason lies in how SSM updates its internal states: SSMs
recurrently and efficiently compress the history of tokens
into a compact state and update the recurrent state in place
by overwriting the previous states, keeping the memory
usage constant. Further, while SSM states are generally
smaller than the KVs of whole sequences in Attention, they
aim to capture the same cross-token information as KVs do
and thus are typically 10-100x larger than a single token’s
KVs (Appendix A). In summary, SSM states exhibit the
following key properties:

SSM State Properties

1. SSM states are constant-sized regardless of
how many tokens they represent.

2. SSM states are updated in place, so a se-
quence’s states cannot be rolled back to repre-
sent its prefixes.

3. SSM states are orders of magnitude larger than
the KVs of a single token.

J

The core challenge of prefix caching in Hybrid LLM infer-
ence is that SSM states exhibit “all or nothing” reusability:
To realize prefix reusing, we need all prefix tokens’ KVs
for each Attention layer and one SSM state that exactly
matches all prefix tokens for each SSM layer. However,
if future requests only use a prefix of a sequence, such as
tokens 1...p from a sequence 1...q (p < q), the SSM lay-
ers cannot reuse states that represent 1...q (property 9)
and neither can the KVs be reused by Attention layers, as
prefix reusing is bottlenecked by the layer with the least
reusing opportunities. To maximize reuse opportunities for
future requests that might reuse arbitrary prefixes of the
most recent request, fine-grained checkpointing (every z
tokens) of many previously overwritten SSM states is re-
quired. This creates an equal-sized token block for each

interval, containing K'Vs for x tokens and SSM states that
represent all prior tokens (Fig. 2). However, this elicits two
challenges for existing prefix caching systems. To demon-
strate this, we analyze one of the experiments in §5. No
existing systems support prefix caching for Hybrid models,
so we extend vVLLM (Kwon et al., 2023) using its caching
policy to support Hybrid models.

Cache underutilization. While reusing KVs requires ac-
cessing all prior tokens’ KVs, reusing SSM states only needs
the last token block. This results in sparsely-hit cache entries
on a sequence level, with many low-utility SSM states never
accessed after admission. Fig. 3a shows that with a block
size of 32, 25.0% of the token blocks’ KVs are reused by
future requests, but a mere 0.4% of SSM states are reused, a
65.3 x difference. Using larger blocks mitigates both issues
by reducing the checkpointing granularity and the number
of SSM states checkpointed. However, the issues persist
(3.3% reuse rate for block size 128 which exceeds what
vLLM natively supports), and larger block sizes lead to in-
ternal memory fragmentation of KVs within token blocks,
impacting memory utilization (Kwon et al., 2023).

High memory usage. Worse, fine-grained checkpointing
quickly leads to an excessive memory usage due to the SSM

states’ size. For example, with block size 16, the state size

of an SSM layer is 4x? larger than the KVs of an Atten-

tion layer in the token block because of property e Since
there are many more SSM layers than Attention layers in
Hybrid models for efficiency (Waleffe et al., 2024), their
states quickly overwhelm the GPU HBM (and possibly CPU
RAM): for a 7B model, a single sequence of 10K tokens con-
sumes 17.4 GB (Fig. 3b), 3.3 bigger than a Transformer
of the same size. Even if sequences are short and the states
are evicted soon after a request finishes inference, they must
still be admitted into the prefix cache, potentially requiring
eviction of entries with higher utility, leading to frequent
cache thrashing and low cache hit rate.

In conclusion, existing prefix caching systems face a
dilemma in Hybrid LLM inference: maximizing reuse op-
portunities mandates fine-grained state checkpointing but
doing so creates large yet sparsely-hit entries that over-
whelm and thrash the limited cache capacity. Therefore,
a judicious cache management scheme is needed to better
reap the benefits of prefix caching in Hybrid LLM inference.

4 DESIGN AND IMPLEMENTATION

Marconi is the first prefix caching system designed to ac-
commodate the unique characteristics of Hybrid models. It
is designed to support models with arbitrary layer compo-
sitions, including Hybrid models, pure Transformers, and

3d_state /(2-block_size). The 2 stands for the key and
value tensors in KVs. See Appendix A for more details.
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pure SSMs. Its primary goal is maximizing the cache utiliza-
tion to reduce redundant computation and minimize TTFT
latency. To improve cache utilization and prevent the large
SSM states from thrashing the cache, Marconi judiciously
admits SSM states (§4.1), only accepting states with a high
reuse likelihood based on a taxonomy of potential prefix
reuse scenarios. The bookkeeping of requests is realized via
aradix tree that represents past request overlap. Once admit-
ted, as states of all layers need to work in conjunction and
represent the same prefix tokens to realize prefix caching,
Marconi opts to manage different types of model states holis-
tically in the same tree (Fig. 4), where each node contains
the SSM states and KVs of a sequence, rather than disag-
gregating the cache space for different types of layer states.
For eviction (§4.2), to account for the different tradeoffs
between memory and compute savings of different layers’
states, Marconi introduces a FLOP-aware eviction policy
that balances recency and potential compute savings deliv-
ered by reusing entries. We describe the implementation
details in §4.3.

4.1 Cache Admission

Marconi aims to cache the states with high reuse likelihood
during admission. Although prefix reuse patterns of future
requests cannot be perfectly predicted, our key insight is
that the reuse potential can be sufficiently estimated through
a taxonomy of potential prefix reusing scenarios. Through
extensive analysis of prefix reusing patterns in various real-
world datasets and request traces (Qin et al., 2024; cha,
2024; Zheng et al., 2023b) that represent traffic of both
dedicated inference deployments (Jimenez et al., 2023) and
public-facing APIs (cha, 2022; sha, 2024), we classify the
token composition of all reused prefixes into two types:

1. Purely input: The prefix is a part of the input sequence
from a previous input, such as system prompts (cha,

2022), instructions (Yao et al., 2022), few-shot exam-
ples (Hendrycks et al., 2020), self-consistency (Wang
et al., 2022), long-document QA (Li et al., 2023), etc.

2. Input and output: The prefix consists of previous
input and output tokens, such as conversation history
in chatbots (Gao et al., 2024; cha, 2024; 2022), past
environment interactions for LLM agents (Yang et al.,
2024a; Yao et al., 2022), etc.

This taxonomy allows Marconi to devise different mecha-
nisms for identifying and caching the corresponding states.
For the purely-input case, as the same prefix is usually
shared across many requests, Marconi can observe and com-
pare previous requests to identify these hot common prefixes.
For the input-and-output case, Marconi only values SSM
states that represent the last decoded token between conver-
sation rounds, which conversations typically append to, as
opposed to branch off from.

Leveraging the above insights, to estimate the reuse like-
lihood, Marconi uses a radix tree to bookkeep the request
history, identify common prefixes, and map sequences to
their states. A radix tree is a space-efficient prefix tree with
edges labeled by sequences of varying lengths. Within the
tree, each edge is associated with the KVs of tokens it repre-
sents and the SSM states that represent all tokens prior to the
last token in the edge (Fig. 4c). Nodes represent branch-off
points in sequences: those with multiple children represent
prefixes that are “purely input”, whereas nodes with < 1
child may represent “input and output” prefixes of future
requests. Because nodes represent high-utility states, Mar-
coni caches states judiciously by only admitting SSM states
represented by the last token of edges. For input-and-output
cases, Marconi simply checkpoints the state after the last de-
coding step. Because the last token’s KVs include all prior
tokens, all KVs of the whole sequence are still effectively
cached, which is the same as existing systems. To identify
“purely input” prefixes, prior to prefilling each sequence,
Marconi employs a speculative insertion of the input tokens
to see if new intermediate nodes will be created (Fig. 4). If
s0, Marconi caches the prefix’s states during prefill.

Obtaining states during prefill. After prefilling KVs in
Attention, they can be partitioned and trimmed to represent
subsequences. In contrast, SSM states cannot be rolled back
to represent a prefix, so Marconi needs a new mechanism
previously unnecessary for Transformers inference. Mar-
coni supports two main methods for checkpointing SSM
states during prefill. Some SSMs (Dao & Gu, 2024; Sun
et al., 2023; Yang et al., 2023) perform chunked state pass-
ing during prefill, where the input sequence is split into
chunks to compute intra-chunk states. For these models, we
simply materialize and cache the state of the second-to-last
chunk in the prefix. For example, when prefilling a sequence
of 100 tokens using chunk size 32, if we need to cache the
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state at token 80, we can checkpoint the state at token 64.
This approach may miss some prefix caching opportunities
within a chunk but introduces minimal runtime overhead.
Optionally, custom kernels can be developed to quickly roll
the state forward by a few tokens to reach the exact location.
For models that don’t support chunked state passing (Gu &
Dao, 2023; Lieber et al., 2024), Marconi performs a two-
pass prefill to get the precise state at the prefix. For example,
the first pass prefills the first 80 tokens to generate the prefix
state, while the second pass starts from the prefix state and
prefills the remaining 20 tokens.

Tradeoffs. Compared to fine-grained checkpointing, Mar-
coni’s judicious admission has slight drawbacks, but its
tremendous benefits compensate for the drawbacks. Be-
cause the states of the last decoded token are immediately
cached for all sequences, “input and output” prefixes can be
reused instantaneously. In contrast, “purely input” prefixes
only benefit from reusing starting from the third occurrence
of the prefix, as Marconi uses the second occurrence to iden-
tify the prefix and checkpoint its states. While this approach
sacrifices the benefit of reusing a “purely input” prefix on
its second occurrence, these prefixes are typically shared
across many requests. As a result, missing savings on a
single request has a negligible impact on overall savings.
On the other hand, judicious admission reduces coverage
and slightly limits the potential reusability of arbitrary pre-
fixes, as only up to two SSM states are admitted per se-
quence. However, due to the huge number of low-utility
SSM states rejected from admission by Marconi, this altru-
istic approach significantly reduces the size and improves
the utility of cached Hybrid model states, enhancing overall
cache utilization.

Comparison with SGLang. SGLang (Zheng et al., 2023b)
is an existing prefix caching system for Transformers that
also leverages a radix tree for mapping sequences to to-
kens and their KVs. Different from SGLang, Marconi uses
the past requests in the radix tree to determine which SSM
states to cache by performing speculative insertions before
prefilling an upcoming sequence. Further, Marconi’s phi-
losophy of judicious state admission fundamentally differs
from SGLang, which admits the states of all tokens dur-
ing admission and is no different from other prefix caching
systems like vVLLM (Kwon et al., 2023). We show how
these differences yield superior cache efficiency in §5. Our
system doesn’t invent new data structures for KV cache
management, and instead builds on the rich prior work in
this space that also aims to manage prefixes’ model states ef-
ficiently. Our main contribution lies in being the first system
to redesign caching policies and their interactions with these
data structures to practically address the unique properties
of emerging Hybrid models.
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Figure 5. FLOP efficiency of the model states of different 7B mod-
els as the sequence length scales. The more SSM layers in the
model, the steeper the increase in FLOP efficiency.

4.2 Cache Eviction

For eviction, our main observation is that KVs and SSMs
in Hybrid model states exhibit different tradeoffs between
memory and compute savings. Specifically, whereas the
size of KVs for a sequence is linearly proportional to the
sequence length and (approximately) the compute savings
from reusing that sequence, SSM state sizes are fixed regard-
less of sequence length and compute savings. To quantify
this difference, we propose a new metric, FLOP efficiency,
to measure the compute savings (measured in the number of
floating operations) per unit of memory achieved by reusing
a prefix cache entry:
Total FLOPs across layers

Memory consumption of all states

ey

Here, Total FLOPs across layers denotes the sum of re-
dundant compute across different types of layers (i.e., At-
tention, SSM, and MLP) circumvented by reusing the prefix
entry, and Memory consumption of all states denotes
the total size of all stateful layers’ states (i.e., Attention and
SSM). More details on FLOP efficiency are in Appendix A.
Fig. 5 compares the FLOP efficiency of model states in
three different 7B models: Transformers (Attention-only),
Mamba (SSM-only), and Hybrid (with an Attention:SSM
ratio of 1:6). The increase of FLOP efficiency as sequence
length scales is steeper for models with a higher ratio of
SSM layers as larger portions of the model states become
more FLOP efficient.

flop_efficiency =

Traditional prefix caching systems designed for Transform-
ers don’t need to consider FLOP efficiency because KVs’
FLOP efficiency is near-constant, and most systems only
use recency for eviction. However, ignoring it in Hybrid
LLM inference risks evicting states with higher FLOP ef-
ficiency but do not have the best recency. To enable more
holistic management of cache entries, Marconi introduces a
FLOP-aware eviction policy that assesses candidates for
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eviction based not only on recency but also the potential
compute savings they deliver (normalized against the space
they consume in the cache). In addition to recency, Marconi
accounts for the FLOP efficiency by computing a utility
score S that represents the utility for each radix node n:

S(n) = recency(n) + « - flop_efficiency(n)  (2)

This metric favors cache entries with higher recency, save
more compute, and take less memory. Both the recency
and flop_efficiency scores are normalized to the
range (0, 1) by comparing all nodes’ last-accessed times-
tamps and FLOP saved/byte in the radix tree. During evic-
tion, Marconi iteratively removes nodes with the lowest
utility score until there is enough space to accommodate the
new request’s states. As such, child nodes” FLOP savings
are calculated relative to parents’ savings.

Managing the balance. Marconi manages the balance be-
tween favoring recency and FLOP efficiency by tuning a.
A higher o emphasizes FLOP efficiency, while setting o
to O falls back to LRU. Marconi manages the balance by
observing the workload and retrospectively setting the best
configuration. On startup, Marconi sets o to O until the
first eviction. Afterward, Marconi takes a snapshot of the
radix tree and enters a bootstrap period, continuing to use
LRU while bookkeeping token-level information of requests
during the bootstrapping phase. The bootstrap period in-
cludes 5 — 15x the number of requests seen before the
first eviction, capturing a representative workload sample.
Once sufficient requests have been observed, Marconi asyn-
chronously launches a grid search over possible o values
by replaying the bootstrap requests. This grid search is par-
allelized across CPU cores, significantly speeding up the
tuning process, typically taking just a few seconds, often
shorter than the time required to prefill and decode a single
request. After the grid search, Marconi adopts the o value
that maximizes the hit rate.

Comparisons with existing size-based eviction algo-
rithms. Cost-aware cache eviction for objects with variable
sizes is a well-studied problem (e.g., GDSF (Cherkasova,
1998)). The KV size in Attention layers scales with se-
quence length, serving as a proxy for compute savings from
cache hits, whereas SSM states are fixed-sized irrespective
of sequence length or compute savings. Thus, size fails as
a proxy in Hybrid LLM inference, where longer sequences
(with greater compute savings) are represented by equally
sized SSM states. We note that our system and techniques
are complementary to such prior schemes; just as we com-
bine FLOP efficiency with recency, our focus is to augment
the estimators for cache entry importance used in prior work
with a factor tailored specifically for Hybrid model reuse
benefits.
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Figure 6. Input/output sequence length distributions per workload.

4.3 Implementation details

Alongside the custom admission and eviction policies, we
made the following changes to accommodate Hybrid model
states: (1) During eviction, all nodes with < 1 children are
considered for eviction, not just leaf nodes. The reasoning is
that nodes with multiple children represent the common pre-
fixes shared by multiple requests and should not be evicted
(unless they become stale, at which point all their children
will be evicted first and the ex-parent nodes will become
leafless nodes themselves, which make them subject for
eviction), whereas intermediate nodes with a single child
are unlikely to be reused more than once and still incur a
memory cost for their SSM states. When an intermediate
node is evicted, its SSM states are released, and its KVs are
absorbed by its child node. (2) When a cache hit occurs,
only the accessed node’s timestamp is updated, unlike in
existing systems where timestamps for all ancestor nodes
are updated. In Marconi, previous SSM states are not reused
(Fig. 4c), and although ancestors” KVs are accessed, their
KVs will be subsumed by child nodes if evicted. Thus,
not updating ancestors’ timestamps doesn’t affect recency
tracking.

S EVALUATION

We evaluated the performance of Marconi under various
workloads with different datasets, request arrival patterns,
cache sizes, and model architectures. Our key findings are:

1. Overall, Marconi improves token hit rate by an average
of 4.5-34.4 x compared to fine-grained checkpointing,
reducing the P95 TTFT by up to 71.1% (617.0 ms)
compared to baseline prefix caching systems.

2. Compared to LRU, Marconi’s FLOP-aware eviction
improves the token hit rate by 19.0-219.7%. It achieves
higher token hit rates and FLOP savings by trading off
hit rate of shorter sequences to boost hit rate for longer
sequences, a desirable tradeoff given the efficiency of
Hybrid models over Transformers.

3. Marconi performs better when sequences are long, the
SSM layer ratio is high, and the SSM state dimension
is large — trends that align with recent model develop-
ments.
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Figure 7. Comparison with vLLM+. With judicious cache admission, Marconi utilizes the limited cache space to retain states with higher

utility, improving the token hit rate significantly over vVLLM+.

5.1 Methodology

Baselines. We compare Marconi with the following base-
lines. Note that neither vLLM nor SGLang natively supports
prefix caching for Hybrid/SSM models, so we have extended
both to support Hybrid models favorably.

e Vanilla inference: This baseline prefills all requests with-
out doing prefix caching.

o VLLM+ (Kwon et al., 2023): This baseline performs fine-
grained checkpointing and caches a state for every token
block. We use a token block size of 32, the largest size
that vLLM supports (vll, 2024), which favors vLLM+ by
minimizing the number of low-utility SSM states admit-
ted (Fig. 3a) while reducing memory fragmentation of
KVs within a token block.

e SGLang+ (Zheng et al., 2023b): While SGLang also
uses a radix tree, it doesn’t judiciously checkpoint states
during admission. We enhance it by applying the same
judicious admission policy as Marconi; however, the evic-
tion policy remains LRU, which does not account for
FLOP efficiency.

Metrics. The main metric we evaluate is token hit rate
(%), which represents the effectiveness of the cache and
approximates the total compute saved (FLOP) well. We
define token hit rate as the ratio of the number of tokens that
skipped prefill over the total number of input tokens. We
also evaluate different percentiles (PS5, P50, and P95) of time
to first token (TTFT, ms). FLOP saved is a reasonable proxy
for compute and latency savings because prefill is easily
compute-bottlenecked. We do not evaluate downstream
metrics (e.g., F1 score) as prefix reusing is exact and does
not change the LLM output.

Workloads. In our main results, we evaluate Marconi on
two multi-turn conversational datasets: LMSys (Zheng et al.,
2023a) and ShareGPT (sha, 2024) with different sequence
lengths distributions. The LLM output sequences in LM-
Sys are relatively long, often reaching thousands of tokens,
whereas the LLM output sequences in ShareGPT are suc-
cinct and often take tens or hundreds of tokens. We also in-
clude an agentic workload: SWE-Agent (Yang et al., 2024a)
on SWE-Bench (Jimenez et al., 2023), a benchmark for eval-

vating LLM agents on real-world software issues collected
from GitHub. We plot the sequence length distribution in
Fig. 6. These datasets contain multiple chat sessions, each
with multiple rounds of requests. We vary the inter-session
arrival time and inter-request arrival time to account for en-
vironment response time (e.g., human typing, interactions
with the coding IDE) and queuing delay in the inference
engine.

Models. We use a 7B Hybrid model with {4,24,28}
{Attention,SSM,MLP} layers in our main results. For in-
sights into our wins on TTFT, we use Jamba-1.5-Mini, an
Attention-SSM Hybrid model with 12B active/52B total
parameters, and serve it with state dimension 128 using
the vLLM implementation on four A100-40GB GPUs. We
use FP16 precision in all experiments. The results apply to
models of different sizes because the size of the prefix cache
needs to be scaled accordingly.

Setup. Experiments were run on a p4d.24xlarge AWS in-
stance with eight A100-40GB GPUs, 96 Intel(R) Xeon(R)
Platinum 8275CL CPUs, and 1152GB of DDR4 RAM.

5.2 End-to-End Results

Fig. 7 shows the token hit rate of vLLM+ and Marconi
across different traces. The boxes show different quartiles
of the data while the whiskers on the box plots show P5
and P95, allowing us to disregard extreme data and con-
centrate on the typical cases. With its judicious admission
strategy, Marconi avoids wasteful caching decisions and
optimizes the cache utilization, improving the hit rate by an
average of 4.5x, 7.3, and 34.4x for LMSys, ShareGPT,
and SWEBench.

Fig. 8 compares Marconi with SGLang+ to highlight the
benefits of FLOP-aware eviction over LRU. The win is the
most significant on SWEBench, with a P95 win of 219.7%.
The improvements on LMSys and ShareGPT are less pro-
nounced, reaching a P95 win of 45.6% and 19.0%. This can
be attributed to the difference in workload characteristics: as
shown in Fig. 6, SWEBench has the widest input sequence
length distribution, ranging from hundreds of tokens to tens
of thousands of tokens. LMSys has a narrower distribution,
with most sequences under 10K tokens, while ShareGPT
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Figure 9. Distribution of P95 TTFT relative to no prefix caching.

predominantly features sequences under 2K tokens. The
longer the sequences, the more critical FLOP efficiency
becomes in eviction decisions. For workloads dominated
by shorter sequences, suboptimal eviction choices in terms
of FLOP efficiency have a smaller impact on Marconi’s
performance gains.

Fig. 9 shows the distribution of P95 TTFT relative to no
prefix caching across different traces. Marconi’s token hit
rate translates to TTFT reduction, reducing the P95 TTFT
by up to 36.9%, 73.2%, and 46.8% (281.4 ms, 106.3 ms,
and 617.0 ms) compared to vanilla inference without prefix
caching. Compared to vLLM+, Marconi delivers up to
36.1%, 71.1%, and 46.8% (275.4 ms, 103.3 ms, and 617.0
ms) larger P95 TTFT reductions; these numbers are 17.2%,
12.8%, and 24.7% (131.1 ms, 18.5 ms, and 325.7 ms) when
compared to SGLang+.

5.3 Fine-Grained Analysis of FLOP-Aware Eviction

To understand the performance improvement of FLOP-
aware eviction over LRU, we compare the caching decisions
of Marconi with SGLang+ using a request arrival trace from
SWEBench. On this trace, SGLang+ achieves a 16.4% over-
all token hit rate, while Marconi achieves a significantly
higher hit rate of 32.7%, an improvement of 99.4%.

In Fig. 10a, we categorize the requests by sequence length
and plot the difference in average hit rate between SGLang+
and Marconi. Marconi shows a lower hit rate (up to -
3.0%) for sequences with <7K tokens, while for sequences
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Figure 10. Fine-grained analysis of FLOP-aware eviction. Marconi
achieves a higher hit rate for longer sequences while sacrificing the
hit rate for some shorter sequences (a), although the degradation
in TTFT for shorter sequences is minimal (b).

with >7K tokens, it outperforms SGLang+ with a hit rate
improvement of up to 25.5%. This is due to Marconi’s
FLOP-aware approach, which prioritizes caching entries
with higher FLOP efficiency under contention. Since longer
sequences cost more FLOP, Marconi demonstrates an over-
all improvement of 90.3% in FLOP saved compared to
SGLang+.

Fig. 10b shows the impact of FLOP-aware eviction on TTFT
distribution. Due to Marconi’s lower hit rate for shorter
sequences, it suffers a slight increase in TTFT at lower
percentiles: Marconi’s PS TTFT is 6.3% worse than in
SGLang+. However, because Hybrid models prefill short
sequences quickly, the absolute latency reduction is min-
imal (2.1 ms, see the magnified area in Fig. 10b). This
trade-off allows Marconi to achieve a lower TTFT at higher
percentiles, reducing P50 and P95 TTFT by 13.4% and
22.0% (74.2 ms and 274.9 ms), respectively.

5.4 Microbenchmarks and Ablation Studies

In these microbenchmarks, we use different representative
traces to dissect Marconi’s performance improvements.

Impact of cache contention. In Fig. 11, we analyze
how cache contention affects Marconi’s benefits. We vary
the cache size from 60 GB (high contention) to 140 GB
(low contention). Across the five cache sizes, Marconi
achieves token hit rate improvements of 24.3%, 51.5%,
68.3%, 30.0%, and 10.0% over SGLang+, respectively. The
most significant performance gains occur under moderate
contention, where eviction decisions are critical. In high con-
tention scenarios, limited cache capacity prevents caching
many useful prefixes (resulting in a token hit rate of less than
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Figure 11. Impact of contention on FLOP-aware eviction’s benefits.
Marconi achieves the biggest win when the cache contention is
moderate and judicious eviction decisions matter the most.
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Figure 12. Impact of model architecture on Marconi’s performance.
Marconi performs better for models with higher ratios of SSM
layers and larger SSM state dimensions.

10%). Conversely, in low contention scenarios, the cache
has sufficient space to store a larger number of prefixes,
and thus FLOP-unaware eviction decisions have a smaller
impact on the hit rate.

Varying layer compositions. As described in §3, the ra-
tio of SSM layers directly affects the memory footprint of
model states. In Fig. 12a, as we increase the Attention:SSM
ratio from 1:2 to 1:4 to 1:8, Marconi’s token hit rate improve-
ment over vVLLM+ and SGLang+ increases from 13.5% and
5.8% to 66.6% and 26.0% to 2.6 x and 59.7%. When serv-
ing a pure Transformer, the three systems achieve the same
performance. In order to get efficiency wins while preserv-
ing quality, the fundamental philosophy of Hybrid models
is to use a majority of subquadratic layers with efficient
computational properties while mixing in a small number
of Attention layers to ensure model quality (Lieber et al.,
2024; Glorioso et al., 2024; Waleffe et al., 2024). Therefore,
we posit that Marconi will have better performance on most
future Hybrid models.

Varying SSM state dimensions. As described in §3, the di-
mensionality of the recurrent SSM state directly affects the
memory consumption of model states. Notably, the recent
trend is for SSM state dimensionality to increase for better
language modeling capability (Gu & Dao, 2023; Dao & Gu,
2024). In Fig. 12b, as we increase the state dimension of a
Hybrid model from 16 (Mambal) to 128 (Mamba2), Mar-
coni’s token hit rate improvement over VLLM+ grows from
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Figure 13. Impact of request arrival pattern on Marconi’s perfor-
mance. Lower reusing opportunities, denoted by a higher session
arrival rate (a) and longer time between requests within a session
(b), reduce the token hit rate but improve Marconi’s relative win
due to higher contention between requests.

5.7x to 35.4x. A larger SSM state dimension increases
the state sizes, exacerbating the issues in §3 and making
Marconi’s judicious admission more effective.

Varying request arrival patterns. Fig. 13 shows how re-
quest arrival patterns affect Marconi’s performance. As the
average number of request (chat) sessions per second in-
creases from 0.5 to 2, Marconi’s token hit rate decreases
from 48.7% to 43.0%. Similarly, as the average response
time between requests in a session increases from 5 s to 10
s, Marconi’s token hit rate decreases from 25.9% to 24.1%
due to reduced effectiveness of prefix caching from more
sessions sharing the fixed cache capacity and longer delays
between prefix reuses in a session. However, Marconi’s rela-
tive improvement over SGLang+ grows from 1.4 to 1.6,
thanks to increased contention between requests across ses-
sions.

6 RELATED WORK

(Hybrid) recurrent subquadratic models. There has
been a resurgence of recurrent/linear models in the recent
years: RWKV (Peng et al., 2023), RetNet (Sun et al., 2023),
GLA (Yang et al., 2023), Griffin (De et al., 2024), Recur-
rentGemma (Botev et al., 2024), XLSTM (Beck et al., 2024),
Test-Time Training (TTT) (Sun et al., 2024), DeltaNet (Yang
et al., 2024b;c), B'MOJO (Zancato et al., 2024), Mam-
baFormer (Park et al., 2024), Titans (Behrouz et al., 2024),
Lightning Attention (Li et al., 2025), Hunyuan-TurboS (hun,
2025), Nemotron-H (nem, 2025), etc. Importantly, although
these models have different state updating rules (Yang et al.,
2023; 2024c), they all update their (large) model states
recurrently. As such, we only evaluate Mamba/SSMs, a rep-
resentative architecture. The properties we summarize in §3
also apply to these recurrent layers (with slight variations
on FLOP and state size), and Marconi can be extended to
support prefix caching for all Hybrid models with recurrent
layers.

Prefix caching. Many recent systems have been proposed to
capitalize on prefix reusing opportunities in LLM inference.
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InferCept (Abhyankar et al.) optimizes for KVs reusing
in multi-turn chat scenarios. CachedAttention (Gao et al.,
2024) and Pensieve (Yu & Li, 2023) maintain hierarchical
caches to leverage memory/storage mediums. Preble (Sri-
vatsa et al., 2024) performs cluster-level stateful caching that
routes requests to the GPU with the longest prefix. Prompt-
Cache (Gim et al., 2024) and CacheBlend (Yao et al., 2024)
reuse KVs but do approximations that lead to accuracy drops.
All past work admits all tokens’ KVs, whereas Marconi’s
philosophy of judicious admission is fundamentally differ-
ent to handle SSM state entries’ sparsity. Moreover, most
prior work uses LRU for eviction and none of them factored
in FLOP efficiency.

Other LLM inference optimizations. Continuous batch-
ing is easier to realize for SSM layers because the tensors in
each step of decoding don’t have a sequence dimension and
can easily be batched even if the sequences have different
lengths, unlike in Transformers where selective batching is
needed for applying batching only to certain operations (Yu
etal., 2022). The SSM states of Hybrid models don’t require
paged memory management (Kwon et al., 2023) as they are
fix-sized and don’t grow and shrink like KVs. However, the
KVs of Attention layers still need to be managed by paging.
Chunked prefill (Agrawal et al., 2024) for Hybrid models
requires specialized kernels under development in many
serving frameworks (Kwon et al., 2023). Hybrid models
benefit from layer-specific optimizations like FlashAtten-
tion (Dao et al., 2022; Dao, 2023; Shah et al., 2024).

7 CONCLUSION

This paper proposes Marconi, the first prefix caching sys-
tem designed to accommodate the unique characteristics of
Hybrid models. Marconi proposes novel and judicious ad-
mission and eviction policies, achieving up to 34.4 x higher
token hit rates (71.1% or 617 ms lower TTFT) over extended
versions of state-of-the-art systems.
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Attention MLP SSM
FLOPs per layer S8LD? +4L*D 16LD? 12LD? +16LDN + 10L
State size per layer (bytes) 4ALD N/A 2DN
FLOPs saved per byte L+2D N/A L-(6D/N +8+5/DN)
FLOPs saved per byte (7B model) L + 8192 N/A 200L

Table 1. The FLOP efficiency of different layer types. As seen in the last two rows, the FLOP efficiency of SSM layers scales much more
steeply compared to Attention layers. SSMs’ state sizes are orders of magnitude (N/2 = 64 in this 7B Hybrid model, where D = 4096

and N = 128) bigger than the KVs of a single token.

Notation Description

L Sequence length
D Model dimension or d_model
N State/feature dimension or d_state

Table 2. Glossary of notation and terminology.

A APPENDIX
A.1 FLOP Efficiency Analysis

In this section, we detail the math used for FLOP efficiency
calculation. We list the notations used in Tab. 2.

Memory footprint. Assuming inference is performed in
FP16, the memory size of the KVs in an Attention layer is
calculated as 2 (K and V) - L - D - 2 bytes/parameter. In
comparison, the memory size of an SSM layer’s state is D
- N - 2 bytes/parameter. Additionally, each SSM layer in-
cludes a conv_1d block with a state size of in_channels
- conv_kernel - 2 bytes/parameter. Since the conv_1d
states account for only a small fraction (6.1% for the 7B
Hybrid model used throughout the paper) of the total state
size, we omit them from Tab. 1 for simplicity, but they are
included in all experiments in the main paper.

FLOP efficiency of models with different layer compo-
sitions. Fig.14 shows the FLOP distribution by layer type
in a 7B hybrid model. Attention layers contribute fewer
FLOPs for short sequences than SSMs and MLPs. However,
as their quadratic computational complexity kicks in with
longer sequences, they consume a significant portion of total
FLOPs, even though they make up only 7.1% of the model’s
layers. Tab.1 provides the FLOP breakdown by layer for a
7B hybrid model, showing that the FLOP efficiency of SSM
layers scales more sharply compared to Attention layers.

lel4
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B 24 SSM layers
4 4 Attn layers
28 MLP layers
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Figure 14. FLOP breakdown of a 7B Hybrid model.

B ARTIFACT APPENDIX
B.1 Abstract

In this artifact, we describe how to reproduce all ex-
periments in this paper. The evaluation utilizes request
arrival traces from LMSys, ShareGPT, and SWEBench,
all tokenized using the meta-1lama/Llama-2-7b-hf
tokenizer for consistency. Key experiments involve running
vLLM+, eviction policies V1 (SGLang+), V2 (Marconi),
and V3 (offline-optimal, static-av oracle policy — not in-
cluded in the paper) across various dataset/arrival rate/cache
size combinations. This artifact supports easy customiza-
tions, including implementing additional eviction policies
and evaluating new datasets and model configurations.
For a detailed version of the artifact appendix, please see
https://github.com/ruipeterpan/marconi/
blob/main/artifact_evaluation.md.

B.2
* Program: Python

Artifact check-list (meta-information)

* Disk space required: ~20 GB

* Time needed to prepare workflow: ~1 hour

* Time needed to complete experiments: ~12 hours
* Publicly available: Yes

* Code licenses: CC BY-NC


https://github.com/ruipeterpan/marconi/blob/main/artifact_evaluation.md
https://github.com/ruipeterpan/marconi/blob/main/artifact_evaluation.md
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¢ Archived DOI: 10.5281/zenodo.14970139

B.3 Description
B.3.1 How delivered

The artifact may be downloaded from zenodo at
https://zenodo.org/records/14970139

or cloned from the GitHub repository at https:
//github.com/ruipeterpan/marconi. The request
arrival traces (with token-level information) can be downloaded

from Google Drive by following the documentation below.

B.3.2 Hardware dependencies

We have tested Marconi on Cloudlab (Duplyakin et al., 2019)
nodes with Ubuntu 22.04 and Python 3.11.9. Due to the request
arrival traces containing token IDs for each request, they require a
total disk size of ~7 GB to house.

B.3.3  Software dependencies

We have prepared a conda environment file that lists all dependen-
cies and their versions.

B.3.4 Datasets

To ensure consistency when evaluating the same trace on differ-
ent model architectures, we use the same tokenizer to produce
the request arrival traces. For convenience, we compress the pro-
cessed traces (~700M/6.3G pre/post compression) and host them
on Google Drive.

B.4 Installation

The software dependencies can be installed via conda using the
environment configuration file provided in the artifact. The traces
can be downloaded via this link.

B.5 Experiment workflow

The sweep of all experiments (combinations of different cache
sizes and request arrival patterns on different datasets) can be
done by running bash run_all_experiments.sh, which
invokes policy-exploration.py and does the following for
each experiment configuration (dataset/arrival rate/cache size com-
bination):

e Runs vVLLM+
e Runs eviction policy V1, which represents SGLang+
e Runs eviction policy V2, which represents Marconi

e Runs eviction policy V3, which represents an offline-optimal,
static-«v oracle policy (the results weren’t included in the paper).
This policy sweeps over possible values of o and selects the one
that maximizes the hit rate

Running bash run.all_experiments.sh creates three
log files in /logs: 1lmsys.txt, sharegpt.txt, and
swebench. txt. Each file contains the output log of all evalua-
tions on the sweep of configurations for this dataset. Once the log
files have been generated, plotting scripts can be run to analyze
and plot the results.

B.6 Evaluation and expected result

All plotting scripts are under /plotting and can be run once
the sweep of experiments on all configurations has finished:

e Fig. 7: token_hit_rate.py

e Fig. 8: sglang_comparison.py

e Fig. 9: ttft.py

e Fig. 10: fine_grained._analysis.py

e Fig. 11: microbenchmark_contention.py

e Fig. 12a: microbenchmark_layer_composition.py
e Fig. 12b: microbenchmark._dstate.py

e Fig. 13aand 13b: microbenchmark_arrivalrate.py

B.7 Experiment customization

e Additional eviction policies can be easily implemented
in radix_cache_hybrid.py by adding a new
evict_policy._version

e Additional model configurations can be applied by editing the
default configurations (NVIDIA’s Attention-Mamba2 7B Hybrid
model) in policy_exploration.py

e Additional datasets can be evaluated by produc-
ing compatible traces as the ones generated by
/utils/generate_trace.py

B.8 Methodology

Submission, reviewing, and badging methodology:

e http://cTuning.org/ae/submission-20190109.
html

e http://cTuning.org/ae/reviewing—20190109.
html

e https://www.acm.org/publications/policies/
artifact-review-badging
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