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Abstract

Two-sided matching under uncertainty has recently
drawn much attention due to its wide applications.
Existing works in matching bandits mainly focus
on the one-sided learning setting and design algo-
rithms with the objective of converging to stable
matching with low regret. In this paper, we con-
sider the more general two-sided learning setting,
i.e. participants on both sides have to learn their
preferences over the other side through repeated
interactions. Inspired by the classical result that
the optimal matching for the proposing side can
be obtained using the Gale-Shapley algorithm, our
inquiry stems from the curiosity about whether this
result still holds in a two-sided learning setting. To
handle this question, we formally introduce the
two-sided learning setting, addressing strategies
for both the arm and player sides without restrictive
assumptions such as special preference structure
and observation of winning players. Our results not
only provide a positive answer to our inquiry but
also offer a near-optimal upper bound, achieving
O(log T ) regret.

1 INTRODUCTION

Stable matching with preferences on both sides is a clas-
sic problem with wide applications encompassing marriage,
college admission, and labor markets. The classical litera-
ture [Roth and Sotomayor, 1992, Roth and Xing, 1997, Gale
and Shapley, 1962] usually focuses on how to generate a
stable outcome, i.e. how to find a stable matching where
no pair wants to swap their partners. However, these works
usually assume that every participant is aware of her own
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preference perfectly beforehand, which may not be satisfied
in many scenarios. As an illustration, consumers may lack
knowledge about the service qualities offered by service
providers, and workers may find themselves unaware of the
value associated with the provided positions. In contrast to
the assumption of perfect prior knowledge of individual pref-
erences, participants in real-world scenarios usually acquire
information about their own utilities through repeated in-
teractions. For instance, in online crowdsourcing platforms
(Upwork and TaskRabbit) and question-answering platforms
(Quora, Stack Overflow), participants engage in repeated
transactions, receiving stochastic rewards and learning their
preferences over time. This uncertain aspect of preference
acquisition introduces complexities that go beyond the tra-
ditional stable matching literature, forming the basis for
exploration in more realistic matching scenarios.

Recent literature on matching bandits ([Liu et al., 2020,
Basu et al., 2021, Liu et al., 2021, Sankararaman et al.,
2021, Maheshwari et al., 2022]) has initiated exploration
into scenarios where participants on one side seek to learn
preferences through bandit feedback. We refer to this set-
ting as the one-sided learning in matching bandits. In the
context of learning uncertain individual preferences through
repeated interactions, a pivotal question within the domain
of matching markets revolves around understanding the con-
vergence to equilibrium. In response to this question, many
works in matching bandits propose algorithms with the ob-
jective of achieving stable matching with low regret. How-
ever, given the absence of prior information about individual
preferences and a centralized platform for information col-
lection, many works resort to assumptions to simplify the
preference learning process. Some assume direct observa-
tion ([Kong and Li, 2023, Liu et al., 2021, Pokharel and Das,
2023]), while others leverage special preference structures
([Basu et al., 2021, Maheshwari et al., 2022, Sankararaman
et al., 2021]).

In our work, we study the more general case where both
sides lack the knowledge of their own preferences, referred
to as the two-sided learning setting. Importantly, we do not



make assumptions regarding observations or impose spe-
cial preference structures. Based on classical results in the
matching market, the optimal matching for the proposing
side can be obtained using the Gale-Shapley algorithm. Our
inquiry revolves around the exploration of whether this re-
sult remains applicable in the context of a two-sided learning
setting. Specifically, our study involves two distinct sides of
participants: the player side and the arm side. At each time
slot, players simultaneously propose to arms, and arms se-
lect one proposal from all the candidates. Every participant
can learn her own preference only through the rewards ob-
tained after each match. Our objective is to ascertain whether
these participants can converge to the player-optimal stable
matching and, if so, how fast the convergence occurs.

Intuitively thinking, in the two-sided learning setting, achiev-
ing a stable equilibrium appears improbable if arms consis-
tently provide inaccurate feedback about their preferences.
To avoid this situation, we make several reasonable assump-
tions. Given that players’ decisions hinge on feedback from
arms, the efficient learning of preferences by arms is crucial
to providing valuable feedback to players. Therefore, the
learning speed of arms is the key to the problem. We mea-
sure the learning difficulty of the arm side by comparing
it with the player side. In the main part of our paper, we
consider a plausible scenario where the difficulty level of
arms’ preferences learning is comparable with that of play-
ers, up to a constant ratio of D. Additionally, taking into
account the rationality of arms—specifically, their intention
to maximize utilities—we introduce the concept of the "ra-
tional condition" and delve into the scenario where arms’
strategies satisfy this condition.

As for the player-side strategies, we propose a new algo-
rithm for the complex two-sided learning setting and provide
rigorous regret analysis. Our results show that the market
converges to the optimal stable matching at a logarithmic
rate. Specifically, our algorithm achieves O(log T/∆2) re-
gret with respect to player-optimal stable matching, where
T represents the time horizon and ∆ represents the min-
imal gap of player utilities. This regret bound is tight in
terms of T and ∆. The regret bound also matches with the
state-of-art result in the simpler one-sided learning setting.
Furthermore, the algorithm design and theoretical analysis
methods themselves may also serve as a preliminary step for
future studies in the two-sided learning matching bandits.

Moreover, as an extension and a preliminary investigation
into the realm of more diverse strategies for arms, we con-
sider the case where arms adopt strategic policies to col-
laborate with players without the assumption of learning
difficulty.

1.1 RELATED WORK

MAB is a classic and well-studied framework that models
the decision-making process under uncertainty ([Katehakis
and Veinott Jr, 1987, Auer et al., 2002]). A player faces K
arms with different utilities and aims to find out the best
arm based on the stochastic reward received after each pull.
The explore-then-commit (ETC) methods ([Garivier et al.,
2016, Rosenski et al., 2016]) , UCB-based strategies ([Li
et al., 2010]) and Bayesian-type policies ([Chapelle and Li,
2011, Scott, 2010]) are commonly used to address the trade-
off between exploration and exploitation and to minimize
regret.

The first work that combines MAB framework and match-
ing markets is from [Das and Kamenica, 2005], and Das
and Kamenica [2005] propose an algorithm with numerical
study under the strong assumption that each side of the mar-
ket is homogeneous. Liu et al. [2020] generalize the MAB
based matching and propose basic ETC type and UCB type
algorithms. However, Liu et al. [2020] mainly consider the
centralized setting which is not so practical in reality.

Later, a line of research emerged to study decentralized
matching bandits with one-sided learning. As mentioned
earlier, various works make different assumptions about
arm preferences. For instance, Sankararaman et al. [2021]
analyze the scenario of globally ranked players where all
arms rank players in the same order. Later, Basu et al. [2021]
consider a more general case of uniqueness consistency and
propose UCB-D4. Another specific case, α-reducibility, is
explored by Maheshwari et al. [2022]. These assumptions
are designed to ensure a unique stable matching.

When examining general preferences without constraints, it
is common for multiple stable matches to exist in the market.
The least preferred stable matching for players is referred
to as the player-pessimal stable matching, while the most
preferred one is termed the player-optimal stable matching.
Regret, defined concerning the optimal stable matching, is
more desirable, as comparing it with the pessimal stable
matching could result in additional linear regret compared
to the optimal stable matching. With accurate knowledge of
arm preferences on both the arm side and player side, Liu
et al. [2021] design a conflict-avoiding algorithm named
CA-UCB, which upper-bounds the player-pessimal stable
regret under the assumption of "observation." Similarly,
Kong et al. [2022] analyze a Thompson Sampling-based
conflict-avoiding algorithm with "observation." Focusing
on general preferences, Basu et al. [2021] propose a phased-
based algorithm but with a high exponential dependency
on 1

∆ . Adopting the assumption of "observation," Kong
and Li [2023] propose ETGS, which guarantees player-
optimal stable regret. ML-ETC, proposed by Zhang et al.
[2022], is an ETC-based algorithm that can apply to general
preference structures, and it also upper-bounds the player-
optimal stable regret without "observation".



Table 1: Comparison between our work and prior results.

Assumptions Player-Stable Regret
[Liu et al., 2020] one-sided, centralized, known ∆ O(K log T/∆2)∗
[Liu et al., 2020] one-sided, centralized O(NK3 log T/∆2)

[Sankararaman et al., 2021] one-sided, globally ranked O(NK log T/∆2)
[Basu et al., 2021] one-sided, uniqueness consistency O(NK log T/∆2)

[Maheshwari et al., 2022] one-sided, α-reducibility O(CNK log T/∆2)

[Liu et al., 2021] one-sided, observation O(exp (N4)K2 log2 T/∆2)

[Kong et al., 2022] one-sided, observation O(exp (N4)K2 log2 T/∆2)

[Basu et al., 2021] one-sided O(K log1+ϵ T/∆2 + exp (1/∆2))∗
[Zhang et al., 2022] one-sided O(K log T/∆2)∗
[Kong and Li, 2023] one-sided, observation O(K log T/∆2)∗

[Pokharel and Das, 2023] two-sided, observation no theoretical results
[Pagare and Ghosh, 2023] two-sided O(T0(K log T/T0∆

2)1/γ + T0(T/T0)
γ)∗

this paper two-sided O(K log T/∆2)∗
1 K is the number of arms and N is the number of players.
2 ∗ represents the type of regret bound is player-optimal.
3 C relates to preferences and may grow exponentially in N .
4 ϵ, γ are positive hyper-parameters, γ belongs to (0, 1). T0 is a hyper-parameter that needs information about ∆.
5 The table categorizes "one-sided" versus "two-sided" based on whether learning involves interaction from both

parties, rather than focusing on market characteristics.

The literature mentioned above often assumes knowledge of
arm preferences and relies on precise feedback from arms.
In contrast, Pokharel and Das [2023] address the scenario
where preferences on both sides are unknown in matching
bandits. They propose the PCA-DAA algorithm, incorpo-
rating random delays to reduce the likelihood of conflicts,
though their findings are currently supported only by em-
pirical results. In a recent study, Pagare and Ghosh [2023]
introduce a multi-epoch ETC-type algorithm that achieves
sub-linear regret. While the multi-epoch approach effec-
tively reduces regret to a sub-linear level, it tends to induce
over-exploration, resulting in still significant regret, typi-
cally polynomial. Their algorithm also necessitates the spec-
ification of a hyper-parameter T0, which is constrained by
requirements pertaining to knowledge of the minimal gap.
Specifically, their approach relies on the assumption of a
non-small gap. Additionally, the algorithm mandates that
arms employ a symmetry algorithm similar to that used by
players. Other works explore two-sided learning matching
within the bandit framework from various angles. For exam-
ple, Jagadeesan et al. [2023] delve into matching markets
under the stochastic contextual bandit model, where a plat-
form, at each round, selects a market outcome with the goal
of minimizing cumulative instability.

2 MODEL

Suppose there are N players and K arms, and denote the
set of players and arms by N and K respectively. We adopt
the commonly used assumption in matching bandits that
N ≤ K ( e.g. [Liu et al., 2021, Kong and Li, 2023, Basu

et al., 2021, Liu et al., 2020, Basu et al., 2021])1. Both
the player side and arm side are unaware of their prefer-
ences. Specifically, for each player j, she has a fixed but
unknown utility ujk associated with each arm k and prefers
arms with higher utilities. For each arm k, it also has a
fixed but unknown utility ua

kj associated with each player
j and prefers players with higher utilities (the superscript
a stands for "arm"). Without loss of generality, we assume
all utilities are within [0, 1], i.e. for every j ∈ N , k ∈ K,
ujk, u

a
kj ∈ [0, 1]. Define the utility gap for player j as ∆j =

mink1,k2∈K,k1 ̸=k2 |ujk1 − ujk2 | and the utility gap for arm
k as ∆a

k = minj1,j2∈N ,j1 ̸=j2 |ua
kj1
− ua

kj2
|. As a common

assumption in previous work (e.g. [Pokharel and Das, 2023,
Liu et al., 2020, 2021]), all preferences are strict, which
means that both the minimal gap of player ∆ = minj∈N ∆j

and the minimal gap of arm ∆a = mink∈K ∆a
k are positive.

Moreover, we consider the reasonable case where the diffi-
culty level of arms’ preferences learning is comparable with
players’ up to a positive constant D ∈ (0,∞). Specifically,
we assume D∆a ≥ ∆j for all j ∈ N in the main part of the
paper (except for Section 4). Throughout the time horizon T ,
every player and arm will learn about their own preferences
through interactions and want to match with one from the
other side with higher utility. We use the notation j1 ≻k j2
to indicate that arm k prefers player j1 to player j2 and the
similar notation k1 ≻a

j k2 to represent that player j prefers
arm k1 to arm k2.

1This assumption guarantees that each player can match with
at least one arm. However, by adjusting the exploration phase,
our algorithm remains effective even when N > K, with regret
bounded by O(N log T/∆2).



At each time step t ≤ T , each player j pulls an arm Ij(t)
simultaneously. If there exists one player pulling the arm
k, we assume that the arm k will choose to match with the
player rather than staying unmatched since all utilities are
non-negative. When there are multiple players pulling arm
k, a conflict arises, and arm k will choose to match one of
the candidates based on its strategy (see details in Section
2.2). The unchosen players will get rejected and obtain no
reward. Denote the winning player on arm k at time step
t by Ak(t). Let Cj(t) represent the rejection indicator of
player j at time step t. Cj(t) = 1 indicates that player
j gets rejected and Cj(t) = 0 otherwise. When a match
succeeds between player j and arm k, both player j and
arm k receive stochastic rewards sampled from the fixed
latent 1-subgaussian distributions with mean ujk and ua

kj ,
respectively. In this paper, we consider the general fully
decentralized setting, i.e., no direct communication among
players is allowed, and there is no central organizer or extra
external information such as observation.

No Centralized Organizer and Explicit Communication.
When considering learning in matching markets, several
studies ([Min et al., 2022, Jagadeesan et al., 2023]) assume
the existence of a central platform capable of directly deter-
mining the matching outcome. However, real-world applica-
tions typically involve participants who act individually and
independently, reflecting a decentralized setting where there
is no central organizer or explicit communication between
players to facilitate direct coordination among players. Ad-
ditionally, due to privacy considerations, participants may
opt out of disclosing their received rewards ([Rees-Jones
and Skowronek, 2018]). For scalability reasons, decentral-
ized solutions are also favored ([Larsson, 2018]). Notably,
the majority of the related works referenced in our paper
consider matching bandits from a decentralized perspective
and emphasize the importance of the decentralized setting
([Sankararaman et al., 2021, Liu et al., 2021]).

No Observation of Winning Players. In the literature on
matching bandits, observation of winning players (which
assumes that all players can observe all the winning players
on all arms) is a strong but widely used assumption. Even
when some arms are never selected by the player, the player
can also get their information based on observation. This
assumption greatly helps players to learn arms’ preferences
and other players’ actions. Liu et al. [2021] incorporate the
observation to design a conflict-avoid algorithm, Kong and
Li [2023] use the observation to help players infer others’
learning progress easily. However, it will be more challeng-
ing but more desirable to throw away the assumption. In real
applications, the common case is that a player will only be
informed of her own result (acceptance or rejection) rather
than being aware of every accepted player. The assump-
tion of no observation also captures the fully decentralized
scenario, i.e. players take actions only based on their own
matching histories, without access to others’ information.

2.1 REGRET FOR BOTH SIDES

Before we introduce the definition of regret, we recall the
definition of matching stability, which is an important issue
when considering matching bandits in matching markets.

A matching between the player side and the arm side is
stable if there does not exist a (player, arm) pair such that
each one prefers the other partner to the current matched
partner. For each player j, her optimal stable arm mj is
the arm with the highest utility among her matched arms
in all possible stable matchings while her pessimal stable
arm mj is the matched arm with the lowest utility. For each
arm k, its optimal stable player ma

k is the player with the
highest utility among its matched players in all possible
stable matchings while its pessimal stable player ma

k is the
matched player with the lowest utility. We define stable
regret by comparing the utility of the matched pair with the
stable pair. The player-optimal and player-pessimal stable
regret for player j are defined as follows, respectively:

Rj(T ) = E[
T∑

t=1

(ujmj
− (1− Cj(t))ujIj(t))],

Rj(T ) = E[
T∑

t=1

(ujmj
− (1− Cj(t))ujIj(t))].

Similarly, the arm-optimal and arm-pessimal stable regret
for arm k are defined as follows, respectively:

R
a

k(T ) = E[
T∑

t=1

(ua
kma

k
− ua

kAk(t)
)],

Ra
k(T ) = E[

T∑
t=1

(ua
kma

k
− ua

kAk(t)
)].

Furthermore, the Gale-Shapley (GS) algorithm outlined in
[Gale and Shapley, 1962] ensures the existence of a stable
matching. Consequently, the aforementioned definition is
justified.

Player-optimal Stable Regret. The optimal stable regret
is defined with respect to the optimal stable pair that has
higher utility than the pessimal stable pair. Consequently,
achieving sublinear optimal stable regret is considered more
challenging and desirable. However, a classical result in
[Gale and Shapley, 1962] indicates the impossibility of
simultaneously achieving sublinear regret that is both player-
optimal and arm-optimal. Gale and Shapley also introduce
the Gale-Shapley (GS) algorithm, which secures optimal
stable matching for the proposing side. We aim to investigate
whether a similar result holds in the context of the two-sided
learning setting. Therefore, in this paper, our primary focus
lies on player-optimal stable matching.



2.2 ARMS’ STRATEGIES

In this section, we specify the strategies for arms to choose
matched pairs among candidates. Furthermore, rather than
focusing on a particular strategy like in [Pagare and Ghosh,
2023], we explore the broader scenario where arms have
the flexibility to employ diverse strategies, provided that
such strategies remain aligned with the overarching goal of
maximizing their individual utilities.

If arms are aware of their preferences beforehand, they can
straightforwardly select the option with the highest utility
among the candidates to optimize their rewards. However,
in the context of a two-sided learning setting, arms lack
awareness of their own utilities and must engage in a learn-
ing process through interactions. This implies that arm k
can only make a selection to match one player based on
past rewards received. Nevertheless, with the accumulation
of samples from various players, arms’ estimations of their
own utilities become more accurate. For arms that adopt
"rational" strategies, once they have gathered a sufficient
number of samples for each player, they are likely to choose
to match with the player exhibiting the highest utility with a
high probability.

We will formally introduce the rational condition to de-
scribe arms’ learning strategies below, and we focus on such
strategies for arms in the main part of the paper (except for
Section 4). We will see later that common bandit learning
algorithms satisfy this condition (e.g., UCB, empirical esti-
mator), showing that such an assumption on arms’ behavior
is not restricted. The empirical mean associated with player
j estimated by arm k is denoted by ûa

kj and the matched
times associated with player j estimated by arm k is denoted
by Na

kj . Define event Ea = {∀j ∈ N , k ∈ K, |ûa
kj−ua

kj | <
2
√

log T
Na

kj
}. The event Ea represents that the samples’ quality

is not too bad, i.e., the empirical means are not very far from
true values at every time slot. We will show in our proof that
Ea is a high-probability event since all samples are drawn
from sub-gaussian distributions.

Definition 1 (Arm’s Rational Condition). We say arm k
adopts a strategy that satisfies R rational condition, if after
collecting R log T

(∆a)2 samples for every player, conditional on
Ea, arm k will choose to match with the player with highest
utility among the candidates.

Rational strategies not only guarantee that arms are ratio-
nally motivated to maximize their individual utilities but
also facilitate the prompt provision of valuable feedback for
players. When adopting rational strategies, arms exhibit a
tendency to avoid choosing suboptimal candidates exten-
sively, as long as the quality of samples remains reasonably
satisfactory. Consequently, players will not receive inaccu-
rate feedback a lot.

As mentioned, the rational condition is not a strict con-

straint. Through simple calculation and scaling, we can see
that numerous widely employed bandit-learning techniques,
including the Upper Confidence Bound (UCB) policy and
those following the empirical leader, meet the criteria for
the rational condition with R = 16. Moreover, our assump-
tion for arms’ strategies covers scenarios where some arms
use empirical mean estimators to choose which invitation
to accept, while other players use UCB estimators to select
candidates.

3 ROUND-ROBIN ETC ALGORITHM

In this section, we propose our algorithm for players: Round-
Robin ETC which obtains an asymptotic O(log T ) player-
optimal stable regret. By introducing Round-Robin ETC,
we demonstrate that, even in the context of two-sided un-
known preferences, it is possible to attain the optimal stable
matching for the proposing side with low regret.

3.1 CHALLENGES AND SOLUTIONS

In this subsection, we will discuss some unique challenges in
the two-sided learning matching bandits, as well as how our
proposed techniques address the challenges. Then, we give
a brief introduction of the major phases in our algorithm.

A unique challenge brought by the two-sided learning set-
ting lies in the asymmetry of the learning ability on both
sides. Intuitively, it will be harder for arms to collect enough
samples since players can choose arms proactively while
arms can only passively choose one player from the candi-
dates. Despite this asymmetry, it is imperative for arms to
expediently and accurately learn their preferences, as this
early learning is crucial for ensuring that players receive
accurate information during conflicts. In essence, address-
ing this asymmetry is crucial for the overall success of the
learning process in a two-sided learning setting.

Another typical challenge lies in the absence of explicit
communication channels or direct observation of conflict
results. Reaching the correct optimal stable matching re-
quires cooperation between the independent players and
arms given limited communication. It is challenging but
crucial to let players decide on when to end their individual
exploration and to start a collective matching process. Play-
ers face difficulties in discerning the exploration progress
of other players, and it becomes even more challenging to
understand the exploration progress of arms, given that play-
ers can only infer this from the passive actions of arms (i.e.,
selecting one player from the candidates). Consequently,
determining the optimal timing and method to foster coop-
eration and converge to stable matching poses significant
challenges for those independent players.

To tackle these challenges, we initially acknowledge that in
conflict-free scenarios, i.e., when only one player pulls one



arm, a successful match occurs, generating a clear sample
for both the player and the arm. Leveraging the concept of
round-robin exploration, we aim to avoid conflicts and facil-
itate simultaneous preference learning for both the player-
side and the arm-side. Additionally, we integrate confidence
bounds to enable players to measure their individual explo-
ration progress and wait for arms to accumulate sufficient
samples. In order to estimate the learning progress of other
players, we design decentralized communication through
deliberate conflicts, which allow players to send and infer
information. Specifically, players will deliberately compete
for an arm, trying to send information by letting other play-
ers get rejected or to receive information by inferring from
the rejection indicators. Furthermore, we carefully design
the algorithm such that players can enter exploitation as
soon as possible, i.e., they do not need to wait until all oth-
ers have learned their preferences accurately. The intuitive
idea is that, if a player is to start exploitation, she only needs
to make sure that any other player that could potentially
"squeeze" her out has already entered (or is also about to
enter) exploitation.

Together with these analyses, we provide a brief introduction
of our algorithm. Firstly, the algorithm will assign a distinct
index to each player. Next, players will do rounds of round-
robin exploration. After every round of exploration, players
will communicate their progress of preference learning to
decide on whether to start matching. If players decide to start
matching, they will run the Gale-Shapley (GS) algorithm
and occupy their potential optimal stable arm till the end.
Otherwise, the players will start a new round of exploration.

3.2 ROUND-ROBIN ETC

The Algorithm 1 consists of 3 phases: "Index Assignment",
"Round Robin" and "Exploitation". Players will enter the
"Index Assignment" phase and the "Round Robin" phase
simultaneously but may leave the "Round-Robin" phase for
the "Exploitation" phase at different time steps.

In the "Index Assignment" phase (Line 1), every player
will receive a distinct index. To be specific (see procedure
INDEX-ASSIGNMENT), every player will keep pulling arm
1 until the first time, say step t, she doesn’t get rejected.
She will be assigned index t and then move to pull the next
arm, i.e., arm 2. Since there can only be one player that
successfully matches with arm 1 at each time step, after N
time steps, all players can receive different indices.

In the "Round Robin" phase (Line 3-18), the players will
(1) explore the arms without conflict, (2) communicate on
their progress of exploration, and (3) start matching or up-
date their indices and available arms in a round based way.
Specifically, each round comprises three sub-phases: (1)
exploration, (2) communication, and (3) update. A player
will leave the "Round Robin" phase when she finds out her
optimal stable arm confidently. Then, she will enter the "Ex-

ploitation" phase and occupy her potential optimal stable
arm, say arm k, making arm k unavailable to other players.
Denote the set of players that are still in the "Round Robin"
phase by N2, the number of remaining players by N2, the
available set of arms by K2, and the number of available
arms by K2. We further elaborate on the three sub-phases
in "Round Robin" below.

Algorithm 1 Round Robin ETC (for a player j)

# Phase 1: Index Assignment
1: Index← INDEX-ASSIGNMENT(N,K)

# Phase 2: Round Robin
2: N2 ← N,K2 ← K,K2 ← K # N2 is the number of

remaining players in Phase 2, K2 is available arms
3: while OPT= ∅ do

# when j hasn’t found her potential optimal stable arm
#Sub-Phase: Exploration

4: (Success, ûj ,Nj)← EXPLORATION(Index, K,K2,K2, ûj ,Nj)
#Sub-Phase: Communication

5: Success← COMM(Index, Success, N2,K2,K2)
#Sub-Phase: Update

6: OPT← GALE-SHAPLEY,N1 ← N2,K1 ← K2

# N1,K1 are temporary parameters to help update N2,K2

7: if Success= 1 then Break while
#successful players will enter the exploitation phase

8: end if
9: for t = 1, ..., N2K2 do#check arms’ availability

10: if t=(Index−1)K2+m then
11: Pull arm k that is m-th arm in K2

12: if Cj=1 thenK1 ← K1 \{k}, N1← N1−1
13: end if
14: end if
15: end for
16: N2 ← N1,K2 ← K1 #update available arms and

number of players
17: Index← INDEX-ASSIGNMENT(N2,K2)
18: end while

#Phase 3: Exploitation Phase:
19: Pull OPT arm

procedure INDEX-ASSIGNMENT(N,K)
1: π ← K[1]
2: for t = 1, 2, ..., N do
3: Pull arm π
4: if Cj = 0, π = K[1] then Index← t, π ← K[2]
5: end if
6: end for
7: return Index

1. Exploration (Line 4, see Algorithm 2 EXPLORATION).
Every player will explore available arms according to the
index to avoid conflict, and every exploration will last
for K2K

2⌈log T ⌉ time steps. Based on the distinct index
and the assumption that K ≥ N , each arm is pulled by at
most one player at each time step during the exploration,



Algorithm 2 EXPLORATION (for player j)

Require: Index, K1,K,K, ûj ,Nj

1: for t = 1, 2, ...,KK2
1⌈log T ⌉ do

2: Pull (Index + t)mod K = m-th arm in K and up-
date ûjk, Njk

3: end for
4: if ∀k1 ̸= k2 ∈ K, UCBjk1

< LCBjk2
or LCBjk1

> UCBjk2

then Success← 1
# whether the player achieves a confident estimation

5: end if
6: return Success, ûj ,Nj

Algorithm 3 COMM (for player j)

Require: Index, Success, N,K,K
1: for i = 1, 2, ..., N ,t_index = 1, 2, ..., N , r_index =

1, 2, ..., N , r_index ̸=t_index do
# player with t_index is transmitter, r_index is receiver

2: for m = 1, 2, ...,K do
# communication process is through conflicts on m-th arm

3: if Index=t_index # if transmitter then
4: Pull the m-th arm in K if Success= 0
5: end if
6: if Index=r_index # if receiver then
7: Pull m-th arm in K, Success← 0 if Cj = 1
8: end if
9: end for

10: end for
11: return Success

preventing any conflicts. Player j will update her em-
pirical mean ûj and the matched times Nj throughout
the exploration. To measure her progress in preference
learning, player j will incorporate confidence bounds.
The notions of upper confidence bound "UCB" and lower
confidence bound "LCB" are defined as follows:

UCBjk = ûjk + c

√
log T

Njk
, LCBjk = ûjk − c

√
log T

Njk
,

where ûjk denotes the empirical mean and Njk de-
notes the times player j is matched with arm k. Let
c = max{2,

√
RD
2 + 1}. We say that when a player

j achieves a confident estimation on the arm set K∗

if for every k1, k2 ∈ K∗ such that k1 ̸= k2, either
UCBjk1

< LCBjk2
or LCBjk1

> UCBjk2
holds.

2. Communication (Line 5, see Algorithm 3 COMM). The
players will communicate through deliberate conflicts in
an index-based order. This sub-phase lets players commu-
nicate on their progress of exploration. Specifically, they
will communicate whether they have achieved confident
estimations and the communication proceeds pairwise
following the order of the index. The player with index
1 will first serve as a transmitter, sending information
to the player with index 2, then to players with index 3,

4 and so on. After the player with index 1 has finished
sending information to others, the player with index 2
will be the transmitter, then the player with index 3 and
so on. The player who wants to receive information is
the receiver.
The communication subphase conducts all pairwise com-
munication between all pairs of remaining players on all
available arms for N2 times. Specifically, for every pair
of different remaining players j1 and j2, communication
occurs on every available arm for N2 times. Every com-
munication is conducted through a deliberate conflict on
a communication arm of K2 between a transmitter and
a receiver. The player with index "t_index", denoted as
player j1, serves as the transmitter, and the player with
index "r_index" is the receiver (Line 1 in Algorithm 3).
Suppose j2 is the receiver, and arm k is the communica-
tion arm, i.e. the m-th arm ofK2 (Line 2 in Algorithm 3).
The receiver j2 will choose arm k to receive information.
The transmitter j1 will choose arm k only when she fails
to achieve a confident estimation or has been rejected
when receiving others’ information in the previous time
steps during the communication sub-phase. Other players
will pull an arbitrary arm k′ ̸= k.
If a player achieves a confident estimation and never
gets rejected when receiving others’ information during
the communication sub-phase, we say that the player
obtains successful learning. Note that if a player obtains
successful learning, it means that with high probability,
the remaining players that may "squeeze" her out on
the available arms all achieve confident estimations (and
all obtain successful learning). We use "Success" in the
pseudocode (Line 4, 5, 7) to denote the success signal,
and "Success= 1" indicates that the player obtains suc-
cessful learning while "Success= 0" otherwise. We call
the players who obtain successful learning successful
players, and others are called unsuccessful players.

3. Update (Line 6-17). The successful players will be able
to find out their potential optimal stable arms, and unsuc-
cessful players will update their indices, the number of
remaining players N2, and the set of available arms K2.
The first procedure GALE-SHAPLEY ([Gale and Shapley,
1962]) enables successful players to match their poten-
tial optimal stable arms. Then successful players will
enter the "Exploitation" phase, and unsuccessful play-
ers will update the available arms in order. Specifically,
when t = (n − 1)K2 + m in Line 10, the player with
index n, suppose player j, will pull the m-th arm in K2,
suppose arm k, to check its availability. If player j gets
rejected, then she will kick arm k out of the available
arm set. Lastly, unsuccessful players will update their
indices by the INDEX-ASSIGNMENT function and start
a new round.

In the "Exploitation" phase (Line 19), every player will keep
pulling her potential optimal stable arm till the end.



Rationale of the Communication. Note that in the scenario
where only a subset of players completes their preference
learning and initiates the exploitation of stable pairs within
this subset, the stable pairs obtained may not align with those
in the original stable matching. Previous research often re-
lies on specific preference frameworks to address this issue,
such as uniqueness consistency and global ranking assump-
tions. Nevertheless, when dealing with a general preference
structure, it is common for other players with higher priority
to potentially squeeze those settled players out from their
current pairs, resulting in chaos in the matching markets.
Communication serves the purpose of conveying informa-
tion about whether these high-priority players have finished
their explorations. Therefore, the communication process
indeed helps the players match with their optimal stable
arms effectively and with minimal cost.

Example 1 (Example of Round Robin phase). Consider a
matching market with three arms denoted as a1, a2, a3 and
three players denoted as p1, p2, p3. The individual prefer-
ences are outlined as follows:

p1 : a1 ≻ a2 ≻ a3, a1 : p1 ≻a p3 ≻a p2,

p2 : a3 ≻ a2 ≻ a1, a2 : p1 ≻a p3 ≻a p2,

p3 : a2 ≻ a3 ≻ a1, a3 : p3 ≻a p1 ≻a p2.

If arms consistently provide accurate feedback once any
player achieves a confident estimation (an event with high
probability), the Round Robin phase may proceed as follows:

Table 2: An example of Round Robin Phase.

round remaining players confident players successful players available arms
1 {p1, p2, p3} {p3} ∅ {a1, a2, a3}
2 {p1, p2, p3} {p1, p3} {p1, p3} {a1, a2, a3}
3 {p2} {p2} {p2} {a3}

The round-robin phase comprises three rounds, resulting in
two rounds of communication.

In the first round, only player p3 attains a confident es-
timation. Consequently, during communication, player p1
will initially pull the three arms in order twice, serving as
the transmitter. During the first three pulls, player p2 will
sequentially pull the three arms to receive information, serv-
ing as a receiver. Subsequently, during the next three pulls,
player p3 will serve as the receiver, i.e. pull the three arms
to obtain information. However, when player p3 pulls arms
1 and 2, she will get rejected, as these arms prefer player
p1. Consequently, no player achieves successful learning in
this round.

In the second round, players p1 and p3 achieve confident
estimations. During this round of communication, since
players p1 and p3 have achieved confident estimations, they
will not pull the same arm as the receiver when transmitting
information. Consequently, receivers will not get rejected
when receiving their information. Player p2 will pull the

same arm as the receiver. However, since players p1 and
p3 are preferred over player p2 on all arms, they will also
not get rejected when receiving information from p2. This
implies that players p1 and p3 obtain successful learning
and will proceed to the exploitation phase.

In the last round, with only one player remaining, there is
no communication. Having achieved a confident estimation,
player p2 will leave the round-robin phase for the exploita-
tion phase after this round.

3.3 REGRET ANALYSIS

Theorem 1. If every player runs Algorithm 1, and arms
adopt R rational strategies, then the optimal stable regret
of any player j can be upper bounded by:

Rj(T )≤N+K3r⌈log T ⌉+Nr(KN(N−1)+N+K+1)+4KN+2

=O(
K log T

∆2
).

Moreover, the arm-pessimal stable regret for any arm k can
also be upper bounded by:

Ra
k(T )≤N+K3r⌈log T ⌉+Nr(KN(N−1)+N+K+1)+4KN+2

=O(
K log T

∆2
),

where r equals to ⌈ 4(c+2)2

K2∆2 ⌉ and c = max{2,
√
RD
2 + 1}.

Proof Sketch. We provide only a proof sketch for the player-
optimal stable regret, with similar analysis applicable to
derive the result for the arm regret. The complete proof is
available in Appendix B.

Define the event E = {∀j ∈ N , k ∈ K, |ûjk − ujk| <
2
√

log T
Njk
}. We can decompose the regret depending on

whether E and Ea holds, i.e.

Rj(t) ≤E[
T∑

t=1

(ujmj− (1− Cj(t))ujIj(t))|E ∩ E
a]

+TPr[¬E ] + TPr[¬Ea].

While the probability of ¬E and ¬Ea can be upper bounded
by a 1

T factor, we only need to bound the regret conditional
on E ∩ Ea. By the design of the algorithm, we can easily
find out that the initialization phase lasts for N time steps,
which means there will be at most N regret caused by the
initialization phase. As for the other two phases, we can
prove the following statements:

• Conditional on E and Ea, with probability more than
1− 2

T , when a player achieves a confident estimation on
the available arm set K2, the arms in K2 give accurate
feedback.

• Conditional on E and Ea, all players can achieve confi-
dent estimations after collecting O(log T ) samples in
the exploration.



• If arms in K2 give accurate feedback, conditional on E
and Ea, the successful players will pull their optimal
stable arms in the exploitation phase.

Then according to the design of the algorithm and these
statements, we can also prove that conditional on E ∩ Ea,
after no more than O(log T ) time steps in the round-robin
phase, all players will enter the exploitation phase with their
correct optimal stable arm with high probability. Combining
these all together, we can obtain the results.

4 EXTENDING TO COLLABORATIVE
ARMS

In this section, we examine scenarios in which arms imple-
ment more complex policies. We demonstrate that through
collaboration between both parties, the assumption of learn-
ing difficulty can be eliminated. Furthermore, with support
from the arms, players can achieve low regret. Specifically,
we analyze the collaborative case with arbitrary learning
difficulties and more complex arm strategies beyond rational
strategies, in contrast to the previous scenario that assumed
∆a > D∆ and rational strategies for arms. The primary
objective of this section is to serve as a preliminary explo-
ration, laying the groundwork for a more comprehensive
investigation into various arm strategies. Our aim is to un-
derstand how these diverse strategies employed by the arms
can influence outcomes within the matching market.

High-Level Idea. The necessity for assuming learning dif-
ficulty arises from our objective to guarantee that, when
a player possesses a confident estimation, the arms learn
their own preferences accurately and offer precise feedback,
thereby ensuring effective communication. However, if arms
are granted the ability to employ more complex strategies,
such as employing forced rejection to indicate whether she
has completed preference learning, we can effectively ad-
dress the previously mentioned issue.

4.1 PLAYERS’ STRATEGIES

Since the new algorithm (Algorithm 4) is similar to Algo-
rithm 1, we will provide a brief overview, focusing primarily
on the differences.

Players are initially assigned distinct indices. They then al-
ternate between communication and exploration until every
participant, including the arms, obtains a confident estima-
tion. Specifically, players communicate through deliberate
conflicts, gaining insights into others’ learning processes.
If there is a participant who hasn’t achieved a confident
estimation, all players return to exploration. Once all par-
ticipants have confident estimations, players execute the
GALE-SHAPLEY algorithm to identify potential optimal
stable arms and occupy them until the end.

Algorithm 4 Round Robin ETC with help from arms (for a
player j)

1: Index← INDEX-ASSIGNMENT(N,K)
2: while OPT= ∅ do

# when j hasn’t found her potential optimal stable arm yet
3: (Success, ûj ,Nj)← EXPLORATION(Index, K,K,K, ûj ,Nj)
4: Success← COMM_ARM(Index, Success, N2,K2,K2)
5: if Success= 1 then
6: OPT← GALE-SHAPLEY
7: end if
8: end while
9: Pull OPT arm

Algorithm 5 COMM_ARM (for player j)

Require: Index, Success, N,K,K
1: if Success= 1 then Pull arm 1
2: else Pull arm 2
3: end if
4: for k = 1, 2, ...,K, t = 1, 2, ..., N do Pull arm k
5: if t =Index,Cj = 1 then Success← 0
6: end if
7: end for
8: return Success

Recall the notions of upper confidence bound "UCB" and
lower confidence bound "LCB" for player j:

UCBjk = ûjk+c

√
log T

Njk
, LCBjk = ûjk−c

√
log T

Njk
, (1)

where ûjk denotes the empirical mean and Njk denotes the
times player j is matched with arm k. In this section, let
c = 2. We say that when a player j achieves a confident
estimation if for every k1, k2 ∈ K such that k1 ̸= k2, either
UCBjk1 < LCBjk2 or LCBjk1 > UCBjk2 holds.

Regarding communication (Line 4, see Algorithm 5
COMM_ARM), players will initially report their learning
progress to arm 1 and subsequently receive feedback from
arm 1, then arm 2, and so on. Specifically, players with
confident estimations will pull arm 1, while others will pull
a different arm. Subsequently, players will take turns re-
ceiving information about others’ learning progress. More
precisely, each player will pull each arm for N times, and
successful learning is achieved only if she wins at the time
step corresponding to her index. Successful learning im-
plies that every participant has a confident estimation. Thus,
if a player achieves successful learning, she will execute
the GALE-SHAPLEY algorithm to determine her potential
optimal stable arm.

4.2 ARMS’ STRATEGIES

Arms continuously update their empirical means and
matched times throughout the entire time horizon T and as-



sess their learning progress using confidence bounds. Addi-
tionally, arms act as communication intermediaries. Specifi-
cally, arms convey information to players by intentionally
rejecting certain candidates.

Briefly speaking, arms will alternate between communica-
tion and selection (in Algorithm 6). The communication
periods for arms coincide with those for players. While not
engaged in communication, the arms will choose players
myopically, selecting the most preferred candidates based
on empirical means.

Algorithm 6 Arm Strategy (for an arm k)

1. Convey information during the communication period.
2. When not in communication, choose the most preferred
candidate based on empirical means, and keep updating
estimations.

Similarly, define the notions of upper confidence bound
"UCB" and lower confidence bound "LCB" for arm k:

UCBa
kj = ûa

kj+c

√
log T

Na
kj

, LCBa
kj = ûa

kj−c
√

log T

Na
kj

, (2)

where ûa
kj denotes the empirical mean and Na

kj denotes the
times arm k is matched with player j. Let c = 2. We say
that when an arm k achieves a confident estimation if for
every two player j1, j2 such that j1 ̸= j2, either UCBa

kj1 <
LCBa

kj2 or LCBa
kj1 > UCBa

kj2 holds.

Algorithm 7 COMM_ARM (for arm k∗)

1: record the number of candidates as Np if arm 1
2: for k = 1, 2, ...,K, t = 1, 2, ..N, do
3: if arm 1 then if achieves a confident estimation and

Np = N , accept the player with Index t
4: else if achieves a confident estimation, accept the

player with Index t
5: end if
6: end for

Regarding communication (See Algorithm 7 COMM_ARM),
arm 1 first checks if the number of invitations equals the
number of players and then selects an arbitrary candidate.
Over the next KN time steps, each arm communicates infor-
mation about whether it has achieved a confident estimation
to the players, and arm 1 additionally conveys information
about whether all players have achieved confident estima-
tions. Specifically, during time step t in the first period of
N time steps, if arm 1 has a confident estimation and re-
ceives N invitations during the previous check, it selects
the candidate with index t. Similarly, for arm k, it chooses
the candidate with index t during time step t in the k-th
period of N time steps only if it has a confident estima-
tion. After the communication phase, if each participant
attains a confident estimation, every player will be accepted

at the designated time based on her index for each arm.
Subsequently, the players are about to initiate a collective
matching process.

Note that in our algorithms, we consider that all arms have
knowledge of the indices of all players. This can be easily
adjusted by incorporating an index assignment procedure
on each arm, which only requires KN time steps in total.

4.3 REGRET ANALYSIS

The following theorem demonstrates the effectiveness of our
algorithms. The detailed proof can be found in the Appendix
D.

Theorem 2. If all players run Algorithm 4 and arms adopt
strategies Algorithm 6, then the optimal stable regret of any
player j can be upper bounded by 2 :

Rj(T ) ≤N +K3r⌈log T ⌉+ r(1 +KN) + 4KN

=O(
K log T

∆2
∗

),

where r equals to ⌈ 64
K2∆2

∗
⌉ and ∆∗ = min{∆,∆a}.

5 CONCLUSION

Inspired by the classical GS algorithm, in this work, we
study the convergence to optimal stable matching for the
proposing side in the two-sided learning matching markets.
Throwing away many previous assumptions such as observa-
tions and special preference structures in matching bandits
literature, we study the more general case and consider
strategies for both sides. We model the passive side, namely
the arm side, with a reasonable "Rational Condition", where
their objective is to maximize their individual rewards. Then,
on the proactive side, i.e., the player side, we introduce the
Round-Robin ETC algorithm, incorporating various tech-
niques to tackle challenges arising from unreliable feedback
from arms and the absence of information and communi-
cation. Through rigorous analysis, we demonstrate that the
optimal matching for the proposing side can be achieved
with high probability. Moreover, our algorithm achieves an
O(log T ) player-optimal stable regret, which matches the or-
der of the state-of-the-art guarantee in the simpler one-sided
learning setting. The simulations provided in Appendix E
further validate our results. To summarize, our work con-
tributes to the understanding of the convergence dynamics
in two-sided learning matching markets under the described
conditions. Subsequent research directions may involve ex-
amining cases where arms adopt other more strategic and
sophisticated policies. Furthermore, exploring the dynamics
of the strategic interactions between the player-side and the
arm-side could serve as an intriguing avenue for further
study.

2Similar result for arm pessimal stable regret can be simply
obtained.
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A GALE-SHAPLEY IN COMPETING BANDITS

Algorithm 8 GALE-SHAPLEY (for a player j)

Require: Success, N,K, ûj ,Nj

i← 1, sort k ∈ K, let kh be the arm with h-th highest empirical mean in K
for t = 1, 2, ..., N2 do

Pull arm ki
if Cj = 1 then

i← i+ 1
end if

end for
if Success= 1 then return ki else return ∅
end if

In the GALE-SHAPLEY algorithm, all the players will propose to their most preferred arms that they haven’t encountered
rejection on yet.

Lemma 1. [Gale and Shapley, 1962] Suppose player j obtains successful learning. If every player sorts all arms accurately,
and every arm gives accurate feedback, then the output of the GALE-SHAPLEY will equal to player j’s optimal stable arm.

Note that if all the left players N \N2 occupy their optimal stable arms, all the remaining players can also find out their
optimal stable arms through the GALE-SHAPLEY algorithm.

B REGRET PROOF

Before we analyze the regret bound, we clarify some notations and introduce some lemmas.

Note that ûjk represents the empirical mean associated with arm k, as estimated by player j, with Njk indicating the number
of times they have been matched. Similarly, ûa

kj and Na
kj are utilized to denote the empirical mean and matched times

associated with player j, as estimated by arm k. It is important to highlight that players only update empirical means and
matched times during the exploration period, whereas arms continuously update their empirical means and matched times
throughout the entire time horizon T .

Recall that N denotes the set of players within the entire market, while N2 signifies the subset of remaining players within
the "Round-Robin Phase". Similarly, K represents the set of arms within the entire market, while K2 denotes the available
arms during the "Round-Robin" phase. The utility gap for player j is denoted as ∆j = mink1,k2∈K,k1 ̸=k2

|ujk1
− ujk2

|,
and the utility gap for arm k is denoted as ∆a

k = minj1,j2∈N ,j1 ̸=j2 |ua
kj1
− ua

kj2
|. The minimal gap of players is defined as

∆ = minj∈N ∆j , and the minimal gap of arms is defined as ∆a = mink∈K ∆a
k. Furthermore, D represents a comparative

ratio between two sides, ensuring that D∆a ≥ ∆j for any j in N .

Lemma 2. (Corollary 5.1 in [Lattimore and Szepesvári, 2020]) Assume that Xi − u are independent, σ-subgaussian
random variables. Then for any ϵ ≥ 0 ,

Pr[û ≥ u+ ϵ] ≤ exp(−nϵ2

2σ2
) and Pr[û ≤ u− ϵ] ≤ exp(−nϵ2

2σ2
),

where û = X1+..+Xn

n .

Lemma 3. Define the event: E = {∀j ∈ N , k ∈ K, |ûjk − ujk| < 2
√

log T
Njk
}, and recall that Ea = {∀j ∈ N , k ∈

K, |ûa
kj − ua

kj | < 2
√

log T
Na

kj
}, Pr[¬E ] ≤ 2KN

T and Pr[¬Ea] ≤ 2KN
T hold.

Proof. We can directly get the lemma according to Lemma 2.

Lemma 4. Conditional on E and Ea, with probability more than 1− 2
T , when a player achieves a confident estimation on

the available arm set K2, the arms in K2 give accurate feedback.



Lemma 4 shows that as long as players have confidence on the estimations of arm utilities, the arms will give precise
feedback with high probability.

Proof. Suppose player j is the first player who achieves a confident estimation, from the design of the algorithm, the
remaining arm set K2 equals the whole arm set K. Suppose arms k1, k2 ∈ K satisfy ujk1

− ujk2
= ∆j . Since player j

achieves a confident estimation, thus LCBjk1
>UCBjk2

conditional on E . During the exploration, all the available arms are
explored evenly and without conflict. Note that for player j the rewards received are independent 1-subgaussian random
variables, denote the rewards received after being matched with arm k1 during the exploration by X1, X2, ..., Xn and the
rewards associated with arm k2 by Y1, Y2, ..., Yn, where n = Njk1 = Njk2 , Z1 = X1−Y1, Z2 = X2−Y2, ..., Zn = Xn−Yn

are independent
√
2-subgaussian random variables. By applying Lemma 2, with probability more than 1− 2

T we obtain that:

∆j >
Z1 + ...+ Zn

n
− 2

√
log T

n
≥ LCBjk1

− UCBjk2
+
√
RD

√
log T

n
> D

√
R log T

n
.

Note again that all the available arms are explored evenly and without conflict in the exploration. Thus the matched times
for arms satisfy that Na

kj′ ≥ n ≥ RD2 log T
∆2

j
≥ R log T

(∆a)2 for every k ∈ K and every j′ ∈ N . According to the definition of
R-rational condition, conditional on Ea, arms give accurate feedback.

Lemma 5. Conditional on E and Ea, a player j will achieve a confident estimation on K2 after no more than ⌈ 4(c+2)2

K2∆2 ⌉
rounds in the "Round Robin" phase.

Proof. Note that after ⌈ 4(c+2)2

K2∆2 ⌉ rounds in the "Round Robin" phase, every available arm is matched with player j for at

least 4(c+2)2 log T
∆2 time steps during the exploration. Since players only update empirical mean and matched times in the

exploration, the matched times of available arms are the same. For k1, k2 ∈ K2 that ujk1
> ujk2

, conditional on E , we have
that:

LCBjk1
= ûjk1

− c

√
log T

Njk1

> ujk1
− (c+ 2)

√
log T

Njk1

≥ ∆j + ujk2
− (c+ 2)

√
log T

Njk2

> ∆j + ûjk2
− (c+ 4)

√
log T

Njk2

> ∆j + ûjk2
+ c

√
log T

Njk2

− (2c+ 4)

√
log T

Njk2

= UCBjk2 +∆j − (2c+ 4)

√
log T

Njk2

.

We can conclude the lemma based on the fact that Njk2 ≥
4(c+2)2 log T

∆2 after ⌈ 4(c+2)2

K2∆2 ⌉ round in the "Round Robin"
phase.

We say a player j′ can influence player j if there exist a distinct sequence of remaining players j0 = j′, j1, ..., jn = j and a
sequence of available arms k1, ..., kn, such that ji−1 ≻ki

ji for i = 1, 2, ..., n. Otherwise, we say player j′ cannot influence
player j. The following Lemma indicates the transitivity of influence relation.

Lemma 6. If a player j0 can influence player j′, and player j′ can influence j, then j0 can also influence player j.

Proof. Since j0 can influence the optimal stable arm of player j′, and player j′ can influence the optimal stable arm of
player j, from the definition, there exist remaining players j0, j1, j2, ..., jm = j′, ..., jn = j and available arms k1, ..., kn
that satisfy ji−1 ≻ki

ji for i = 1, 2, ..., n (by emerging two sequences). Note that if one of the following cases happens:
(1) there exists m1 < m that j = jm1

, (2) there exists m2 > m that j0 = jm2
, or (3) there exist no m1 < m and m2 ≥ m

that jm1
= jm2

, we can simply conclude the lemma. Otherwise, suppose for m1 < m and m2 ≥ m that jm1
= jm2

holds,
we can find out that the remaining players j′0 = j0, ..., j

′
m1−1 = jm1−1, j

′
m1

= jm2
, j′m1+1 = jm2+1, ..., j

′
n′ = jn and

available arms k′1 = k1, ..., k
′
m1

= km1 , k
′
m1+1 = km2+1, ..., k

′
n′ = kn satisfy j′i−1 ≻k′

i
j′i for i = 1, 2, ..., n′. Repeat the

above process, we can find a distinct sequence of remaining players j0 = j∗0 , ..., j
∗
n∗ = j and a sequence of available arms

k∗1 , ..., k
∗
n∗ that satisfy j∗i−1 ≻k∗

i
j∗i for i = 1, 2, ..., n∗ which finishes the proof.



Lemma 7. During a communication, conditional on that arms give accurate feedback, if a player j never gets rejected
when receiving, then for any j′ ̸= j ∈ N2, one of the following statements holds:

1) player j′ achieves a confident estimation on the available arm set K2,

2) player j′ cannot influence player j.

Proof. We prove the lemma by contradiction. Suppose there exists a player j′ ̸= j who doesn’t achieve a confident estimation
on the available arm set K2 and player j′ can influence player j. Then there exists a distinct sequence of remaining players
j0 = j′, j1, ..., jn = j and a sequence of available arms k1, ..., kn, such that ji−1 ≻ki ji for i = 1, 2, ..., n. Since player
j′ fails to achieve a confident estimation and arms give precise feedback, there exists t1 ≤ N1K1 in the communication
process when j1 will get rejected. Similarly, we can conclude that there exists ti for i = 1, ..., n that ti ≤ iN1K1 and at
time step ti, player ji will get rejected. Note that there are at most N2 players remaining, player j will get rejected during
the communication which is a contradiction.

According to the design of Algorithm 1, different players may match their potential optimal stable arms after different rounds
in the "Round Robin" phase. GALE-SHAPLEY in [Gale and Shapley, 1962] is used to help players find their potential
optimal stable arms. Note that if player j′ cannot influence player j, the pulls of player j′ will not influence the output of the
potential optimal arm (i.e. OPT in Line 6) for player j.

Lemma 8. Conditional on E and Ea, with probability 1− 2
T , when a player j obtains successful learning, her potential

optimal stable arm equals to her optimal stable arm.

Proof. Note that different players may obtain successful learning after different rounds in the "Round Robin" phase and there
may be multiple players obtain successful learning at the same round. We denote the n-th (in the round order) set of players
to obtain successful learning by S(n). Define the event: E∗ = {all successful players have correct estimations on K2} ∩
{all arms give accurate feedback after a player achieves a confident estimation}. We prove the statement "conditional on
E∗, when a player j obtains successful learning, her potential optimal stable arm equals to her optimal stable arm" by
mathematical induction. If the above statement holds for players in S = ∪n−1

i=1 S(i), we prove the correctness of the statement
for players in S(n). Note that conditional on E∗, all the players in S will occupy their optimal stable arms. We now verify
that any player j′ in S(m) (where m = n + 1, ...) can never influence the optimal stable arm for player j in S(n). By
contradiction, if player j′ can influence the optimal stable arm of j. Since player j′ fails to obtain successful learning
at round n, j′ either fails to achieve a confident estimation or has got rejected when receiving during the n-th round’s
communication. By combing Lemma 7 and Lemma 6, there must exist a player j0 (may equal to player j′) who fails to
achieve confident estimations and j0 can influence the optimal stable arm of j. Then player j must have got rejected when
receiving which contradicts the definition of obtaining successful learning. Combining all the above analyses, we can prove
the correctness of the statement. Now, based on Lemma 4, we only need to prove the correctness of every player’s estimation
on the available arm set K2 conditional on E . Conditional on E , for any k1, k2 ∈ K2 that LCBjk1

>UCBjk2
, have:

ujk1 > LCBjk1 > UCBjk2 > ujk2 .

Thus, the correctness of player j’s estimation is proved, and the origin statement holds.

Proof of Theorem 1. Let r = ⌈ 4(c+2)2

K2∆2 ⌉. By decomposing the player optimal stable regret and using the above lemmas, we
obtain that:

Rj(T ) = E[R1 +R2 +R3|E ∪ Ea] + T Pr[¬E ] + T Pr[¬Ea] (3)
≤ N + E[R2 +R3|E ∪ Ea] + 4KN (4)
≤ N +K3r⌈log T ⌉+ r(KN2(N − 1) +N2 +NK +N) + 4KN + 2. (5)

In Eq.3, R1 represents the regret in the "Index Assignment" phase, R2 represents the regret in the "Round Robin" phase, and
R3 represents the regret in the "Exploitation" phase. Eq.4 holds based on Lemma 3 and the fact that the "Index Assignment"
phase lasts for N time steps. Combining Lemma 4, Lemma 5 and Lemma 8, we conclude that, conditional on E and Ea,
with probability more than 1− 2

T , player will enter the "Exploitation" phase with optimal stable arm after no more than r
rounds in "Round Robin" phase. Thus, Eq.5 holds.

As for arm-pessimal stable regret, we can easily conclude the result according to the fact that: if all players match with their
optimal stable arms, then all arms match with their pessimal stable players.



C UNKNOWN TIME HORIZON

In this section, we extend the setting where the time horizon T is unknown.

The doubling trick ([Besson and Kaufmann, 2018, Auer et al., 1995]) is a commonly used method to address unknown time
horizon T and converses the bound of O(log T ). We adopt the doubling trick both on the total time horizon the exploration.

By using exponential doubling trick, the whole time horizon T is divided into several periods. In every period r1, all players
will suppose the time horizon Tr1 = 22

r1 . When they act more than Tr1 time steps in total, they will update their assumption
and enter the next period, i.e. suppose Tr1+1 = 22

r1+1

. The doubling trick will also be used in the exploration. Specifically,
the first exploration will last for 2K2 time steps, the second exploration lasts for 2 · 2K2 = 4K2 time steps, the third for
2 · 4K2 = 8K2 time steps, and so on.

Moreover, we suppose that arms are also not aware of the time horizon T . Thus, they also update their beliefs. Define
the event Ea(r1) = {∀j ∈ N , k ∈ K, |ûa

kj − ua
kj | < 2

√
2r1
Na

kj
}. We say the arms adopt modified R rational method with

unknown time horizon, if for every period r1, conditional on Ea(r1), after no more than R 2r1

(∆a)2 samples for every player,
the arms can estimate their utilities accurately.

Algorithm 9 Round Robin ETC (for a player j with unknown T )

1: Index← INDEX-ASSIGNMENT(N,K)
2: for r1 = 1, 2, ... do
3: OPT← ∅, N2 ← N,K2 ← K, r2 ← 1
4: while OPT= ∅ do# when j hasn’t found her potential optimal stable arm yet
5: for t = 1, 2, ..., 2r2K2 do # Exploration Sub-Phase
6: Pull (Index + t) mod K2 = m-th arm in K2, update ûjk, Njk, r2←r2 + 1
7: end for
8: if for every k1 ̸= k2 ∈ K2, UCBjk1

< LCBjk2
or LCBjk1

> UCBjk2
then

9: Success← 1 # the player achieves a confident estimation
10: end if# Communication Sub-Phase
11: Success← COMM(Index, Success, , N2,K2,K2)

# Update Sub-Phase
12: OPT← GALE-SHAPLEY(Success, N2,K2, ûj ,Nj)
13: if Success= 1 then Break while
14: end if
15: for t = 1, ..., N2K2 do
16: if t = (Index− 1)K2 +m then
17: Pull arm k that is m-th arm in K2

18: if Cj = 1 then K1 ← K1 \ {k}, N1 = N1 − 1
19: end if
20: end if
21: end for
22: N2 ← N1,K2 ← K1

23: Index← INDEX-ASSIGNMENT(N2,K2)
24: end while
25: Pull OPT arm
26: end for

Theorem 3. If every player runs Algorithm 9, and arms adopt modified strategies that satisfy R-rational condition, then the
optimal stable regret of any player j can be upper bounded by:

Rj(T )≤ N +
32K(c+2)2log T

∆2
+ rN log(

32K(c+2)2log T

∆2
)(KN(N−1) +N +K + 1) + (4KN + 2)r, (6)

where r = log log T + 1.

Theorem 4. If every player runs the modified algorithm of Algorithm 1 based on doubling trick on the exploration, and



arms adopt R-rational method, then the optimal stable regret of any player j can be upper bounded by 3:

Rj(T ) ≤ N +
8K(c+2)2 log T

∆2
+N log(

16K(c+2)2 log T

∆2
)(KN(N − 1) +N +K + 1) + 4KN + 2. (7)

Proof. Since doubling trick is only used on the exploration, after r rounds of exploration, every available arm is explored
for 2r+1 − 2 time steps. By similar analysis with Lemma 5, we can conclude that conditional on E , after no more than
8K(c+2)2 log T

∆2 times in the exploration, every player will achieve a confident estimation on the available arm set K2. Then
following the proof in Theorem 1, we can simply get this theorem.

Proof of Theorem 3. According to the design of Algorithm 9 and Theorem 4, we can simply get the conclusion by summing
regret in each period.

Remark 1. Similar results for arm regret can be easily obtained due to the fact that: if all players match with their optimal
stable arms, then all arms match with their pessimal stable players.

D OMITTED PROOFS IN SECTION 4

In this section, we provide a regret analysis for the collaborative case. Before we prove the main theorem, we provide some
lemmas that will be useful.

Lemma 9. If player j obtains successful learning, all participants achieve confident estimations and all players obtain
successful learning.

Proof. According to the design of the algorithm, if player j achieves successful learning, she succeeds at the time step
corresponding to her index on each arm during communication. It’s important to note that arm 1 will choose player j at
that time step only if and when all players attain confident estimations, choose arm 1 during the previous check, and arm
1 achieves a confident estimation. Other arms will select player j at the time step corresponding to her index only when
they achieve confident estimations. As a result, all participants attain confident estimations. Furthermore, it can be easily
concluded that all players achieve successful learning.

Lemma 10. Conditional on E and Ea, a participant will achieve a confident estimation after no more than ⌈ 64
K2∆2

∗
⌉ rounds

of exploration, where ∆∗ = min{∆,∆a}.

Proof. After ⌈ 64
K2∆2

∗
⌉ rounds of exploration, every arm is matched with each player for at least 64

∆2
∗
log T time steps, i.e.

Njk ≥ 64 log T
∆2

∗
and Na

kj ≥
64 log T

∆2
∗

hold for every player j and every arm k. For k1, k2 ∈ K that ujk1
> ujk2

, conditional
on E , we have that:

LCBjk1
= ûjk1

− 2

√
log T

Njk1

> ujk1
− 4

√
log T

Njk1

≥ ∆j + ujk2
− 4

√
log T

Njk1

> ∆j + ûjk2
− 2

√
log T

Njk2

− 4

√
log T

Njk1

> ∆j + ûjk2
+ 2

√
log T

Njk2

− 4

√
log T

Njk2

− 4

√
log T

Njk1

= UCBjk2 +∆j − 4

√
log T

Njk2

− 4

√
log T

Njk1

≥ UCBjk2 .

Similarly, we can prove that for j1, j2 ∈ N that ua
kj1

> ua
kj2

, conditional on Ea, LCBa
kj1 > UCBa

kj2 .

Lemma 11. If a participant achieves a confident estimation, conditional on E and Ea, the estimation of the participant is
correct.

3Similar result for arm pessimal stable regret can be simply obtained.



Proof. Conditional on E , for any k1, k2 ∈ K2 that LCBjk1 >UCBjk2 , have:

ujk1
> LCBjk1

> UCBjk2
> ujk2

.

Thus, the correctness of player j’s estimation is proved. The correctness of arms’ estimations can be similarly obtained.

Combining Lemma 9 and Lemma 11 and based on the property of GALE-SHAPLEY algorithm, we can conclude that,
conditional on E and Ea, once a player obtains successful learning, she will exploit her optimal stable arm till the end.
Together with these lemmas and analysis, we now move to our main theorem.

Proof. By decomposing the player optimal stable regret and using the above lemmas, we obtain

Rj(T ) = E[R1 +R2 +R3|E ∪ Ea] + T Pr[¬E ] + T Pr[¬Ea] (8)
≤ N + E[R2 +R3|E ∪ Ea] + 4KN (9)
≤ N +K3r⌈log T ⌉+ r(1 +KN) + 4KN. (10)

In Eq.8, R1 represents the regret in the "Index Assignment" procedure, R2 represents the regret caused by the exploration
and communication, and R3 represents the regret caused by exploitation. Eq.9 holds based on Lemma 3 and the fact that
the "Index Assignment" phase lasts for N time steps. Combining Lemma 9, Lemma 10, and Lemma 11, we conclude
that, conditional on E and Ea, player will exploit optimal stable arm after no more than r rounds of exploration and
communication. Thus, Eq.10 holds.

As for arm-pessimal stable regret, we can easily conclude the result according to the fact that: if all players match with their
optimal stable arms, then all arms match with their pessimal stable players.

E SIMULATION

In this section, we provide numerical results to show the performance of our algorithm. We estimate the average player-
optimal stable regret and standard deviations of regret over 30 independent runs.
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(c) Case 3

Baselines.

• PCA-UCB is a conflict-avoiding algorithm with the random delay parameter λ. This algorithm extends CA-UCB, which
only achieves a O(log2 T ) regret bound compared to player-pessimal regret, even in the one-sided setting. We set
λ = 0.9 based on the simulations in [Pokharel and Das, 2023]. Since Pokharel and Das [2023] do not reveal detailed
strategies for the arm side, in our simulations, we assume that the arms choose candidates with the highest UCB.

• CA-ETC is a multi-epoch ETC type algorithm that theoretically obtains the regret. Same as the simulation in [Pagare
and Ghosh, 2023], we choose γ, which determines horizon length, to be 0.25. In [Pagare and Ghosh, 2023], the epoch
length T0 is chosen based on ∆a and ∆. The authors do not disclose the specific details of how T0 is chosen for
simulations, but they emphasize that T0 should be optimistically high. Thus, we set T0 to be 50000. Moreover, CA-ETC
requires arms to adopt specific symmetric strategies compared to players.



We investigate three scenarios in the context of a multi-armed bandit problem involving five players and five arms in two
instances, and four players and four arms in one instance. In the former two cases, the minimum gaps between players and
arms are set to 0.2, while in the latter case, the minimum gap is 0.25. The preferences for these scenarios are described as
follows:

(1) Case 1:

p1 : a4 ≻ a1 ≻ a2 ≻ a3 ≻ a5, a1 : p1 ≻a p4 ≻a p2 ≻a p3 ≻a p5,

p2 : a5 ≻ a2 ≻ a1 ≻ a3 ≻ a4, a2 : p2 ≻a p5 ≻a p3 ≻a p1 ≻a p4,

p3 : a3 ≻ a4 ≻ a2 ≻ a5 ≻ a1, a3 : p2 ≻a p1 ≻a p3 ≻a p5 ≻a p4,

p4 : a2 ≻ a1 ≻ a3 ≻ a5 ≻ a4, a4 : p3 ≻a p5 ≻a p2 ≻a p4 ≻a p1,

p5 : a1 ≻ a3 ≻ a4 ≻ a2 ≻ a5, a5 : p1 ≻a p3 ≻a p2 ≻a p4 ≻a p5.

(2) Case 2:

p1 : a4 ≻ a1 ≻ a5 ≻ a2 ≻ a3, a1 : p3 ≻a p1 ≻a p5 ≻a p2 ≻a p4,

p2 : a5 ≻ a1 ≻ a2 ≻ a4 ≻ a3, a2 : p5 ≻a p2 ≻a p1 ≻a p4 ≻a p3,

p3 : a2 ≻ a5 ≻ a3 ≻ a1 ≻ a4, a3 : p3 ≻a p1 ≻a p2 ≻a p5 ≻a p4,

p4 : a5 ≻ a2 ≻ a1 ≻ a3 ≻ a4, a4 : p1 ≻a p2 ≻a p5 ≻a p4 ≻a p3,

p5 : a3 ≻ a5 ≻ a2 ≻ a4 ≻ a1, a5 : p1 ≻a p4 ≻a p5 ≻a p3 ≻a p2.

(3) Case 3:

p1 : a2 ≻ a1 ≻ a4 ≻ a3, a1 : p2 ≻a p1 ≻a p4 ≻a p3,

p2 : a4 ≻ a1 ≻ a2 ≻ a3, a2 : p4 ≻a p2 ≻a p1 ≻a p3

p3 : a3 ≻ a2 ≻ a1 ≻ a4, a3 : p1 ≻a p3 ≻a p4 ≻a p2,

p4 : a1 ≻ a2 ≻ a3 ≻ a4, a4 : p2 ≻a p4 ≻a p3 ≻a p1.

From the figures, we can conclude that round-robin ETC outperforms baselines in all cases. Additionally, the results of
round-robin ETC and CA-ETC exhibit greater stability than those of PCA-UCB.

The reason why PCA-UCB performs unstably and fails to obtain sublinear results may be as follows:

Firstly, in different runs of simulations, PCA-UCB may converge to different stable matchings instead of consistently
converging to the player-optimal stable matching. This variability in convergence could be a significant challenge, as the
player-optimal stable matching is more desirable for players. Furthermore, in [Liu et al., 2021], they illustrate an example
where even the centralized UCB cannot achieve sub-linear player-optimal regret.

Secondly, when applying PCA-UCB, players adopt a UCB-type method to choose arms, resulting in insufficient samples
for arms to learn their preferences. Consequently, arms may provide inaccurate feedback in the two-sided learning setting,
potentially leading to unstable matching or an extended time to convergence.

Regarding CA-ETC, it is important to note that the players persist in exploring arms even after each participant has acquired
knowledge of her own preferences. Consequently, regret continues to accumulate over time. The regret curve exhibits a
stair-like pattern, reflecting the periodic increments in regret.

Furthermore, analysis of the depicted data indicates a consistent decrease in regret associated with CA-ECT and Round-
Robin ETC as both the number of players and arms decreases, and as the minimal gap increases. In contrast, the regret
observed for PCA-UCB exhibits an increase. This trend may be attributed to several factors outlined previously: firstly, the
tendency to converge towards lower-quality stable matchings as opposed to player-optimal stable matchings; and secondly,
the failure to converge and persistently selecting lower-quality arms. Notably, these issues are intricately linked to the
preference structure and detailed utilities rather than the scale of the market or the minimal gap.


	Introduction
	Related Work

	Model
	Regret for Both Sides
	Arms' Strategies

	Round-Robin ETC Algorithm
	Challenges and Solutions
	Round-Robin ETC
	Regret Analysis

	Extending to Collaborative Arms
	Players' Strategies
	Arms' Strategies
	Regret Analysis

	Conclusion
	GALE-SHAPLEY in Competing Bandits
	Regret Proof
	Unknown Time Horizon
	Omitted Proofs in Section 4 
	Simulation

