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ABSTRACT

Hierarchical classification, the problem of classifying images according to a hi-1

erarchical taxonomy, has practical significance owing to the principle of “making2

better mistakes”, i.e., better to predict correct coarse labels than incorrect fine3

labels. Nevertheless, the literature does not sufficiently study this problem, pre-4

sumably because using top-1 accuracy to benchmark methods tends to yield a5

ranking order consistent with those using hierarchical metrics. On the other hand,6

for a downstream task of classification, today’s de facto practice is to finetune a7

pretrained deep neural network using the cross-entropy loss on leaf classes, result-8

ing in a leaf-class softmax classifier which even rivals sophisticated hierarchical9

classifiers atop deep nets. We argue that hierarchical classification should be bet-10

ter addressed by regularizing finetuning with explicit consideration of the given11

hierarchical taxonomy, because data intuitively lies in hierarchical manifolds in12

the raw feature space defined by the pre-trained model. To this end, we propose13

a hierarchical cross-modal contrastive loss that computes contrative losses w.r.t14

labels at hierarchical levels in the taxonomy (including both hierarchy and text15

concepts). This results into features that can better serve hierarchical classifica-16

tion. Moreover, for inference, we re-conceptualize hierarchical classification by17

treating the taxonomy as a graph, presenting a diffusion-based methodology that18

adjusts posteriors at multiple hierarchical levels altogether. This distinguishes our19

method from the existing ones, which are either top-down (using coarse-class pre-20

dictions to adjust fine-class predictions) or bottom-up (processing fine-class pre-21

dictions towards coarse-label predictions). We evaluate our method by comparing22

them against existing ones on two large-scale datasets, iNat18 and iNat21. Ex-23

tensive experiments demonstrate that our method resoundingly outperforms prior24

arts w.r.t both top-1 accuracy and hierarchical metrics.25

1 INTRODUCTION26

Hierarchical classification (Naumoff, 2011; Deng et al., 2012; Zhu & Bain, 2017; Bertinetto et al.,27

2020) has long been a pivotal and challenging problem in machine learning. It aims to categorize28

images w.r.t a given hierarchical taxonomy, adhering to the principle of “making better mistakes” —29

essentially, favouring correct coarse-class predictions over inaccurate fine-class predictions (Deng30

et al., 2012; Wu et al., 2020).31

Methods of hierarchical classification improve either training or inference. Existing inference meth-32

ods can be divided into two types: top-down (Redmon & Farhadi, 2017), and bottom-up (Val-33

madre, 2022). Top-down methods adjust the posterior for predicting a specific class by using its34

parent/ancester posterior probabilities. They often underperform bottom-up methods Redmon &35

Farhadi (2017); Bertinetto et al. (2020), which prioritise predicting the leaf-classes and subsequently36

calculate posteriors for the parent/ancestor classes. Valmadre (2022) attributes the underperfor-37

mance of top-down methods to the high diversity within coarse-level categories, soliciting effec-38

tive training methods. Perhaps surprisingly, although these sophisticated hierarchical classification39

methods show promising results in certain metrics, they do not consistently rival the simplistic flat-40

softmax baseline, which learns a softmax classifier on the leaf classes only. The status quo leads to41

a natural question: Is it still helpful to make predictions for hierarchical classes other than the leaf42

classes for better hierarchical classification? That said, it is still an open question how to effectively43

exploit hierarchical taxonomy to improve training and inference for hierarchical classification.44
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(C) Our finetuning exploits taxonomy towards 

features better serving hierarchical classification.

(A) Typical finetuning uses cross-entropy 

loss on the leaf / fine-grained classes only.

(B) Data in a pretrained feature 

space lies in hierarchical manifolds.

Brown Bear
Polar Bear

Asian Black Bear

American Black Bear

class: Carnivora

family: Ursidae

species: Brown Bear

Figure 1: To solve a downstream task of classification, a de facto practice is to fine-tune a pretrained model
using the cross-entropy loss on leaf classes (e.g., Brown Bear at the species level). (A): This yields features that
help leaf-class classification but fail to model their hierarchical relationships w.r.t a taxonomy (e.g., Ursidae at
the family level). Hence, it does not necessarily help hierarchical classification. Nevertheless, such features
are better than the “raw features” of the pretrained model, which provides a feature space (B) where data
hypothetically lie in hierarchical manifolds w.r.t the taxonomy. (C): Differently, we propose to fine-tune the
pretrained model by explicitly exploiting the hierarchical taxonomy towards features that can better serve the
task of hierarchical classification (Fig. 2).

We argue that, to better approach hierarchical classification for a downstream task that defines a45

hierarchical taxonomy, one should first explicitly exploit this taxonomy to learn features (Fig. 1),46

not just finetuning a pretrained model using the cross-entropy loss on leaf classes only (Bertinetto47

et al., 2020). Note that a taxonomy contains not only a hierarchy of concepts (e.g., species, genus,48

order, family, etc.) but also describable texts or names for the concepts. This motivates us to finetune49

a pretrained vision-language model (VLM) (Radford et al., 2021; Wang et al., 2023; Goyal et al.,50

2023). For better finetuning, we introduce a hierarchical cross-modal contrastive fine-tuning strategy51

(HCCF) (Sec. 3.2). HCCF explicitly exploits hierarchical taxonomy towards learning better features,52

which directly mirror the given taxonomy and hence better serve hierarchical classification.53

Moreover, we argue that one should also collectively adjust posteriors at multiple hierarchical levels54

towards the final results of hierarchical classification. To this end, we present a set of diffusion-based55

methods for inference (Sec. 3.3), inspired by the literature of information retrieval Page et al. (1998);56

Iscen et al. (2017); An et al. (2021) which shows that diffusion is adept at mapping manifolds.57

This distinguishes our methods from existing top-down and bottom-up inference approaches that58

linearly interpret hierarchical classification. Our methods treat the hierarchical taxonomy as a graph,59

enabling probability distribution in the taxonomy. To the best of our knowledge, our work makes60

the first attempt to apply diffusion to hierarchical classification. Extensive experiments demonstrate61

that our diffusion-based inference methods, along with HCCF, achieve state-of-the-art performance62

and resoundingly outperform prior arts (Sec. 4.2).63

To summarize, we make three major contributions.64

1. We revisit the problem of hierarchical classification from the perspective of manifold learn-65

ing, offering new insights in the contemporary deep learning land.66

2. We present the hierarchical cross-modal contrastive finetuning strategy for finetuning a67

model to better solve the problem of hierarchical classification.68

3. We introduce a novel diffusion-based inference methodology to exploit posteriors at mul-69

tiple levels towards the final prediction.70

2 RELATED WORKS71

Hierarchical classification. Hierarchical classification holds significance, ensuring broader-level72

results even when detailed predictions are elusive. Datasets like ImageNet (Russakovsky et al.,73

2015) and WordNet (Miller, 1995) have long emphasized taxonomy, while newer ones like iNat1874

(Van Horn et al., 2018) and iNat21 offer finer-grained labels. Research in this domain is robust,75

with seminal works like “Hedging Your Bet” (Deng et al., 2012) and contemporary deep learning76

approaches employing flat softmax, oftmargin, and descendant softmax training losses (Valmadre,77

2022), along with bottom-up (Valmadre, 2022) and top-down (Redmon & Farhadi, 2017) infer-78

ences. Its practical applications are evident in areas like long-tailed 3D detection for autonomous79

driving (Peri et al., 2023), emphasizing specific metrics, methods, and joint training. Despite ex-80
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tensive research, recent findings suggest that advanced training and inference methods don’t always81

surpass the flat softmax baseline (Valmadre, 2022). This paper presents innovative techniques that82

harness hierarchical data more efficiently during both the training and inference stages.83

Long-tailed recognition (LTR). Long-tail categorization is an active research topic, as the long-84

tail feature is prevalent across coarse-level, fine-grained, and instance-level categorizations. Cur-85

rent strategies often employ data rebalancing (Mahajan et al., 2018; Chawla et al., 2002) or class-86

balanced loss functions (Cao et al., 2019) to improve the classification accuracy of infrequent classes.87

Despite these advancements, the exploration of the long-tail attribute within hierarchical categoriza-88

tion remains less investigated, indicating a need for further research in this area.89

Fine-grained visual categorization (FGVC). Fine-grained categorization, a task bridging coarse-90

level classification and instance-level classification, presents both significant value and substantial91

challenges (Akata et al., 2015; Yang et al., 2018). In cases where predicting the fine-grained level92

tag proves difficult, users often still prefer an accurate coarse-level result, highlighting the impor-93

tance of hierarchical research within the fine-grained classification (Deng et al., 2012). This paper94

contributes to this aspect, pushing forward the understanding and application of hierarchical fine-95

grained categorization in the context of long-tail distributions.96

Diffusion. Diffusion is an advanced methodology adept at faithfully delineating the manifold within97

a data distribution by leveraging the interconnectedness inherent in a Markov chain (Zhou et al.,98

2003a;b). A renowned variation of this method, PageRank (Page et al., 1998), has achieved con-99

siderable success in various business endeavors. Moreover, it has been extensively employed in100

the realm of image retrieval (Iscen et al., 2017; An et al., 2021), an application of instance-level101

classification. However, its potential in broader classifications, such as fine-grained and hierarchi-102

cal categorizations, has not been extensively researched. In this paper, we pioneer the exploration103

of its utility in understanding and utilizing the relationships within these broader, fine-grained, and104

hierarchical classifications.105

3 METHODS106

Hierarchical classification and notations. This paper delves into the intricacies of Single-Path107

Labels (SPL) and Non-Mandatory Leaf-Node Prediction (NMLNP) in hierarchical classification.108

In SPL, a sample is restricted from belonging to multiple distinct classes unless there exists a109

superclass-subclass relationship. On the other hand, NMLNP allows the classifier to predict any110

class within the hierarchy, not being confined to just the leaf nodes. In this study, we let Y denote111

the entirety of categories within the taxonomy tree. For a given node y ∈ Y , C(y) signifies its child112

nodes, while A(y) stands for its ancestor nodes. The set of leaf nodes is represented by L.113

3.1 HIERARCHICAL MANIFOLD114

We introduce a hierarchical manifold model in the embedding space to elucidate the intricacies of115

hierarchical classification. Although data manifolds are prevalent in high-dimensional spaces, what116

sets hierarchical classification apart is its distinct manifold structure. As depicted in Fig 1, before117

optimization, each category in the embedding space can be visualized as a separate manifold. Draw-118

ing an analogy to the parent-child node relationship, parent manifolds envelop child manifolds.119

An optimally refined embedding space should discern manifolds across all hierarchical levels.120

The hierarchical manifold assumption holds merit. Given that manifolds are frequently observed121

in diverse real-world datasets, it’s plausible that the embedding space houses these hierarchical122

manifolds prior to achieving an optimal training solution. This sheds light on the limitations of123

current techniques in addressing the hierarchical classification challenge. As illustrated in Fig. 1,124

existing methods, failing to grasp the nuances of higher-level manifolds, might misclassify an125

image under the family level, even if they correctly identify it at the species level.126

While there are extant hierarchical loss functions aimed at this problem, they predominantly predict127

only the leaf node categories. Consequently, the hierarchical loss equation ultimately converges to128

supervision solely at the leaf level. For instance, when employing bottom-up inference for interior129
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a photo of laridae

a photo of larus

a photo of larus argentatus

V

visual encoder text encoder

contrastive loss

text prompt

family: laridae

genus: larus

species: larus argentatus

T
contrastive loss

contrastive loss

hierarchical taxonomy
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Figure 2: The proposed Hierarchi-
cal Cross-modal Contrastive Finetuning
(HCCF) exploits hierarchical taxonomy to
adapt a pretrained visual encoder to the
downstream task of hierarchical classifica-
tion. It sums contrastive losses between a
training image and its taxonomic names at
multiple levels. To the best of our knowl-
edge, we make the first attempt to fine-tune
a vision-language model using a predefined
taxonomy for hierarchical classification.

node prediction results as:130

qy(θ) =

{
[softmaxL(θ)]y if y ∈ L∑

v∈C(y) qv(θ) if y /∈ L
(1)

The negative log-likelihood concerning the interior nodes is reduced to the leaf nodes as ℓ(y, θ) =131

− log qy(θ) = − log
(∑

u∈L(y) exp θu

)
+ log

(∑
u∈L(y) exp θu

)
. Advanced losses, such as soft-132

margin and descendant softmax (Valmadre, 2022), also focus on the leaf level, neglecting the sepa-133

ration of higher-level manifolds. This results in suboptimal outcomes for hierarchical classification.134

The hierarchical manifold model inspires novel strategies for both training and inference. For the135

training phase, the model suggests that we should: 1) Effectively leverage the multiple labels asso-136

ciated with each training image, and 2) Enhance the separation between sample distributions from137

different categories across various levels in the embedding space, thereby reducing misclassification138

risks. During inference, the model motivates us to use diffusion—a technique renowned for its139

efficacy with manifolds—to refine the scores predicted by the neural network.140

3.2 HIERARCHICAL CROSS-MODAL CONTRASTIVE FINE-TUNING141

To more effectively map the taxonomy relations in the embedding space, we initially employ142

the Vision-language pretrained model, CLIP (Radford et al., 2021), as our primary visual encoder.143

Using textual descriptions for each image provides a more comprehensive supervisory signal, cap-144

turing both leaf and interior node relationships in the taxonomy tree. While CLIP’s superiority over145

ImageNet as a pretrained model is somewhat recognized, its efficacy in hierarchical classification146

remains untested. Our experiments on the renowned iNat18 dataset (Van Horn et al., 2018) indicate147

significant improvements (Table 1).148

Our advancements extend beyond the utilization of the CLIP pre-trained model. We propose a hier-149

archical cross-modal contrastive loss, aiming to extend the distance between sample distributions150

across varied categories and levels (shown in Fig. 2). This strategy is anchored in two core tenets151

of our hierarchical manifold model. Firstly, we harness the full potential of textual descriptions for152

each training image. By employing the CLIP text encoder, we encode the hierarchical labels of153

these images. Distinct from prevailing hierarchical losses, our interior node prediction isn’t merely154

inferred from leaf nodes. Instead, it’s directly guided by the embedding vectors of text labels across155

different levels, enabling a more nuanced understanding of category relationships and better cap-156

turing of higher-level manifolds. Secondly, our methodology employs contrastive loss, ensuring157

maximal separation between samples from diverse categories, thereby mitigating the complexities158

introduced by hierarchical manifolds. Our hierarchical cross-modal contrastive fine-tuning loss is159

defined as:160

L (f, g) :=

L∑
l=1

(
N∑
i=1

− log
exp(f̄ l(Ii) · ḡ(T l

i ))∑N
j=1 exp(f̄

l(Ii) · ḡ(T l
j ))

+
N∑
i=1

− log
exp(f̄ l(Ii) · ḡ(T l

i ))∑N
j=1 exp(f̄

l(Ij) · ḡ(T l
i ))

)
, (2)

where f̄ l (Ii) is normalized embedding of the i-th image Ii from the visual encoderf l, which con-161

sists of visual backbone and level-specific head. ḡ
(
T l
j

)
is the normalized text embedding of the162

text T l
j , that is the j-th sample of level l extracted from text encoder g. Assuming there are N163

image-texts pairs in one batch, Ii is input image and T l
i denotes the ground truth label at level l. All164
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taxonomy tree text prompts utilize a shared text encoder, mitigating overfitting risks and conserving165

training and inference resources. The visual encoder comprises a shallow feature extractor and a166

level-specific extractor head for every level, ensuring encoding aligns with the hierarchical taxon-167

omy level. Both visual and text encoders are updated during training, and text encoding of every168

taxonomy level serve as linear classifier weights during inference.169

3.3 DIFFUSION-BASED INFERENCE170

Through our new training strategy, we generate prediction scores for all taxonomy categories. The171

ensuing challenge is to utilize these scores for inference and robust decision-making effectively.172

Existing inference techniques, namely the top-down (Redmon & Farhadi, 2017) and down-173

top (Valmadre, 2022) approaches, can be further improved. The top-down method computes the174

conditional likelihood of each child node based on its parent nodes. While theoretically appeal-175

ing, it is empirically outperformed by the down-top approach (Redmon & Farhadi, 2017; Bertinetto176

et al., 2020; Valmadre, 2022). Valmadre (Valmadre, 2022) attributes this underperformance to the177

high diversity within coarse-level categories and advocates using fine-grained scores to infer hierar-178

chical outcomes. We align with Valmadre’s observations, yet we assert that predictions for mid-level179

categories have inherent value when utilizing our innovative diffusion-based inference.180

Motivation. When a category receives an anomalously high or low score from the neural network,181

we can recalibrate this score based on the scores of its neighboring categories within the taxonomy182

tree. Essentially, sub-categories under the same parent category should exhibit consistent scoring183

patterns, either high or low. By diffusing the scores across the taxonomy’s structural connections to184

achieve equilibrium, we can enhance the initial predictions made by the neural network Remarkably,185

experiment results show that our method enhances both the leaf-level top-1 accuracy and the overall186

hierarchical performance, outperforming existing techniques (Sec. 4.4).187

Notation. Given a total of n categories (including intermediate categories) in the taxonomy graph,188

we define a connection matrix W ∈ Rn×n to describe the interrelationships among categories within189

the graph. Let f0 ∈ Rn be the prediction output of the neural network. Our target is to refine f0190

based on W to get the final f⋆, which gives both better leaf-level and hierarchical performance.191

Connection matrix. We first use the expert-designed taxonomy given by each dataset to define the192

connection matrix W . That is, wij = 1 if category i and j have the parent-children relation in the193

taxonomy tree. Otherwise wij = 0. Here, we assume the graph is undirected, and the connection194

matrix is symmetric (W = WT ). The self-similarity is set as zero (diag(W ) = 0). We will explore195

more weight options within this matrix in subsequent sections.196

Normalization for the connection matrix is an essential step for diffusion in information retrieval.197

We find it is also necessary in the hierarchical classification. In this paper, we use the symmetrically198

normalization as follows:199

Wn = D−1/2WD−1/2, D = diag(W1n). (3)

Iteration. Our diffusion mechanism iteratively updates the category scores according to the follow-200

ing:201

f t+1 = αWnf
t + (1− α)f0, (4)

where α is set among (0, 1). This is a “random work” algorithm in the taxonomy graph. Intu-202

itively, for each iteration, each category spreads its prediction score to its neighbor categories with203

probability α, and follows the initial neural network prediction with probability 1− α.204

Convergence: The iterative process is assured to converge towards a stationary distribution (Zhou205

et al., 2003b). We provide a straightforward proof here. By recursively integrating f1 = αWnf
0 +206

(1− α)f0 into subsequent iterations f2, f3, and so on, we derive:207

f t = (αWn)
tf0 + (1− α)

t∑
i=0

(αWn)
if0. (5)

As t approaches infinity, the term (αWn)
t approaches zero, and the summation term converges208

to (I − αWn)
−1, where I denotes the identity matrix of size n. Thus, the eventual stationary209

distribution is expressed as:210

f∗ = (1− α)(I − αWn)
−1f0. (6)
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Relation to Spectral Clustering: It’s pertinent to elucidate the connection between our hierarchi-211

cal classification diffusion and spectral clustering, given that both methodologies emphasize node212

grouping within a graph. Notably, the term (I − αWn) in Equation 6 can be interpreted as a variant213

of the symmetrically normalized Laplacian (I − Wn) for the taxonomy graph. This Laplacian is214

instrumental in spectral clustering, enabling the capture of the data’s intrinsic topological character-215

istics. In the spectral clustering paradigm, each node is characterized by a k-dimensional spectral216

space vector, derived from the k eigenvectors satisfying v = (I − Wn)
−1λv. Conversely, our dif-217

fusion process assigns each node a singular scalar score, as dictated by Equation 6. Conceptually,218

our diffusion approach can be perceived as a tailored spectral clustering for the neural network’s219

predicted vector f0, pinpointing a category subset with peak scores in the spectral domain.220

Differentiable diffusion: As demonstrated in Eq. 6, the diffusion process converges to a closed221

form. Intriguingly, this represents a linear transformation from the initial scores f0 to the final state222

f⋆. Currently, the connection matrix W is constructed based on the provided taxonomy tree struc-223

ture, comprising binary values that might not accurately capture the genuine relationships between224

category pairs. Given a substantial sample size from the training set, we investigate the potential of225

training a linear mapping directly to supplant the closed form. This differentiable method could offer226

a more nuanced understanding of the relationships between categories. We call this new approach227

differentiable diffusion.228

Our main contribution lies in introducing an advanced diffusion method, specially designed for229

using the taxonomy graph’s structure. To the best of our knowledge, this is the first work to apply230

diffusion techniques to hierarchical classification problems. While existing literature has extensively231

explored the diffusion of instance space (like web and image) with considerable success (Page et al.,232

1998; An et al., 2021), the impact of diffusion on the category space (how to group the instances)233

remains largely uncharted territory. This diffusion approach offers several distinct advantages over234

existing top-down and down-top inference:235

1. Comprehensive graph utilization: Unlike traditional methods that focus solely on di-236

rect parent-child relationships, our diffusion technique leverages the entire graph structure,237

including sibling relationships.238

2. Iterative information blending: While existing methods transfer information once239

through the graph edge, our diffusion process iteratively blends information at each node240

until a stable state is achieved, thereby maximizing the utility of all predicted category241

nodes.242

3. Manifold problem resolution: Our method addresses the manifold problem by utilizing243

inter-category relationships, on which we elaborate subsequently.244

4 EXPERIMENTS245

4.1 IMPLEMENTATIONS246

To assess the efficacy of our novel training and inference approach for hierarchical classification,247

we employ the metrics and dataset from the recent study by Valmadre (Valmadre, 2022). This study248

presents state-of-the-art (SOTA) methods, comprehensive experiments on existing techniques, and249

a suite of robust metrics tailored for hierarchical classification. Similar to Valmadre (2022), all250

the experiments use ResNet 50 (He et al., 2016) as the backbone. Valmadre’s benchmark dataset251

is the balanced iNaturalist 21-mini (iNat21). In our evaluation, we extend the datasets to include252

iNaturalist 18 (iNat18), showcasing the versatility of our method and its performance under long-253

tailed distributions. In line with Valmadre’s approach (Valmadre, 2022), our metrics are derived254

from operating curves, encompassing Average Precision (AP), Average Correct (AC), Recall at X%255

Correct (R@XC), and a specificity measure. We also incorporate single prediction metrics such as256

Majority F1, Leaf F1, and Leaf Top1 Accuracy. Notably, while Leaf Top1 Accuracy gauges leaf-257

level accuracy, the other metrics focus on hierarchical classification performance. Our methods are258

benchmarked against various SOTA hierarchical classification techniques, including flat softmax259

(Bertinetto et al., 2020), Multilabel focal (Lin et al., 2017), Cond softmax (Redmon & Farhadi,260

2017), Cond sigmoid (Brust & Denzler, 2019), DeepRTC (Wu et al., 2020), PS softmax (Wu et al.,261

2020), Softmargin and (Valmadre, 2022) descendent softmax (Valmadre, 2022).262
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Table 1: Benchmarking results on the iNat18 dataset. We report numbers w.r.t both hierarchical metrics (Val-
madre, 2022) and the standard top-1 accuracy on leaf classes (dubbed Leaf Top1 in the last column). Our
HCCF, which contrastively finetunes a pretrained model using all the taxonomic levels, significantly outper-
forms prior arts. Additionally applying diffusion improves performance notably further.
Model AP AC R@90C R@95C Majority F1 Leaf F1 Leaf Top1
Flat softmax (Bertinetto et al., 2020) 61.18 58.94 45.44 37.58 64.27 64.57 47.33
Multilabel focal (Lin et al., 2017) 46.70 43.97 34.05 28.05 50.69 49.91 14.85
Cond softmax (Redmon & Farhadi, 2017) 54.13 51.12 36.68 30.07 58.74 58.60 36.94
Cond sigmoid (Brust & Denzler, 2019) 52.04 49.29 35.23 29.31 55.46 58.29 36.36
Deep RTC (Wu et al., 2020) 60.07 54.25 23.69 14.33 66.72 66.72 47.13
PS softmax (Wu et al., 2020) 64.15 62.02 49.54 42.02 67.50 67.44 49.21
Softmargin (Valmadre, 2022) 58.53 55.86 40.28 33.71 58.73 63.70 45.10
Descendant softmax (Valmadre, 2022) 61.88 59.65 46.79 38.49 65.48 65.32 48.71
HCCF 72.75 70.60 59.56 52.60 72.73 75.16 55.78
HCCF + diffusion 73.48 71.88 62.48 55.53 75.94 75.71 56.33

Table 2: Benchmarking results on the iNat21 dataset. We report numbers w.r.t both hierarchical metrics
(Valmadre, 2022) and the standard top-1 accuracy on leaf classes (dubbed Leaf Top1). Our HCCF finetuning,
which contrastively finetunes a pretrained model using all the taxonomic levels, significantly outperforms prior
arts. Additionally applying diffusion to inference improves performance notably further.
Model AP AC R@90C R@95C Majority F1 Leaf F1 Leaf Top1
Flat softmax (Bertinetto et al., 2020) 66.17 64.32 53.85 47.02 68.87 68.69 50.89
Multilabel focal (Lin et al., 2017) 54.58 50.35 36.16 30.45 50.62 60.27 31.05
Cond softmax (Redmon & Farhadi, 2017) 58.88 56.26 42.95 36.23 62.85 62.80 41.64
Cond sigmoid (Brust & Denzler, 2019) 59.24 56.74 42.84 35.61 61.41 65.11 44.64
Deep RTC (Wu et al., 2020) 63.92 58.07 25.36 14.10 70.17 70.22 51.43
PS softmax (Wu et al., 2020) 68.22 66.49 56.20 49.85 71.07 70.80 52.76
descendant softmax (Valmadre, 2022) 64.95 62.71 48.84 42.59 64.64 69.03 50.55
softmargin (Valmadre, 2022) 66.53 64.72 54.41 47.91 69.39 69.09 52.22
HCCF (Ours) 72.46 70.52 60.49 53.66 73.35 74.72 55.11
HCCF + diffusion (Ours) 73.16 71.62 62.81 55.97 75.31 75.32 55.86

4.2 COMPARE WITH STATE-OF-THE-ART METHODS263

We performed a comparative analysis of our innovative training and inference methods against estab-264

lished state-of-the-art (SOTA) hierarchical techniques using the iNat18 and iNat21 datasets. Table 1265

and Table 2 demonstrate the enhanced performance of our approach over existing SOTA methods266

across both datasets. Unless otherwise indicated, all methods utilized the same CLIP pretrained267

model.268

In our implementation of the SOTA methods, we strictly adhered to the code provided by Val-269

madre (Valmadre, 2022). Our results for the iNat21 are consistent with those presented by Valmadre.270

Although (Valmadre, 2022) did not provide outcomes for iNat18, we included results for this dataset271

to illustrate our model’s capability in handling long-tailed distributions, noting that iNat18 is long-272

tailed while iNat21 is balanced.273

While a direct comparison with (Valmadre, 2022) for iNat18 is not available, we ensured the reli-274

ability of our results by using the reproduction code and settings from Valmadre’s open-source re-275

sources. These results emphasize the advantages of our method over existing SOTA methodologies,276

proving effective for both balanced and long-tailed datasets. Our hierarchical contrastive training277

approach sets new standards in the field, outperforming existing SOTA methods for both the iNat18278

and iNat21 datasets.279

4.3 ABLATION STUDY ABOUT HIERARCHICAL CROSS-MODAL CONTRASTIVE FINE-TUNING280

We conducted an ablation study to assess the impact of each component in hierarchical cross-modal281

contrastive fine-tuning (HCCF), as detailed in Table 3. In contrast to the traditional training using282

cross-entropy loss (flat softmax (Bertinetto et al., 2020) combined with negative log-likelihood), our283

HCCF incorporates several enhancements:284
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Table 3: Ablation Study of Hierarchical Cross-Modal Fine-Tuning (HCCF) on iNat18. This study highlights
three key modifications from the Cross-Entropy (CE) loss baseline to our HCCF: using CLIP pre-trained text
encoder (text embedding), hierarchical training (L67 and L123456), and contrastive loss (CL). The adoption
of the CLIP pre-trained text encoder markedly boosts model performance, with hierarchical training and con-
trastive loss providing additional enhancements. For a comprehensive explanation, refer to Sec. 4.3.
Models AP AC R@90C R@95C Majority F1 Leaf F1 Leaf Top1
CE loss baseline (Bertinetto et al., 2020) 61.18 58.94 45.44 37.58 64.27 64.57 47.33
CE loss + text embedding 66.25 64.09 51.72 43.66 69.42 69.31 53.10
CE loss + text embedding + L67 67.81 65.7 54.13 46.09 70.81 70.66 54.07
CE loss + text embedding + L1234567 69.18 67.07 56.32 48.28 71.99 71.81 53.68
CL + text encoder + L1234567 (HCCF) 72.75 70.60 59.56 52.60 72.73 75.16 55.78

Table 4: An ablation study of Hierarchical Cross-Modal Fine-Tuning (HCCF) over different training levels on
iNat18 reveals intriguing insights. While training across more levels consistently enhances all metrics under
CE loss, as illustrated in Table 3, the same doesn’t hold true for contrastive loss. Training at the leaf level
(denoted as L7) yields the highest leaf Top1 accuracy but falls short in hierarchical metrics compared to multi-
level encoder head training. For metrics like AP, AC, and Leaf F1, comprehensive training across all levels
(denoted as L123467) outperforms other configurations. Training on levels 6 and 7 alone achieves the peak for
R@90C and R@95C. Broadening the training levels benefits hierarchical metrics, with the coarsest (level 1)
and sub-finest (level 6) levels proving most advantageous. It’s noteworthy that these findings diverge from the
prevailing belief that top-1 accuracy benchmarks align with hierarchical metric rankings (Russakovsky et al.,
2015), underscoring the importance of studying hierarchical metrics.

Model AP AC R@90C R@95C Majority F1 Leaf F1 Leaf Top1
HCCF L7 72.40 70.33 59.36 52.42 72.33 74.72 56.69
HCCF L67 72.64 70.65 60.53 53.22 72.85 74.88 56.10
HCCF L567 72.62 70.51 59.69 52.92 72.72 74.97 55.80
HCCF L4567 72.50 70.34 59.26 52.29 72.58 74.89 55.43
HCCF L34567 72.52 70.36 59.46 52.27 72.65 74.87 55.29
HCCF L234567 72.55 70.37 59.38 51.63 72.45 74.98 55.72
HCCF L1234567 72.75 70.60 59.56 52.60 72.73 75.16 55.78

Use of CLIP pre-trained text encoder: To assess the benefits of the CLIP pre-trained text encoder,285

we modified the initial weights of the final fully connected layer in CE loss training by incorporat-286

ing the CLIP pre-trained text embeddings for each category. This strategy harnesses the knowledge287

from the cross-modal pre-training set, creating a more optimized initial embedding space for the288

categories. This straightforward adjustment leads to a marked improvement in the CE baseline289

performance. While the effectiveness of leveraging the CLIP pre-trained encoder has been previ-290

ously noted in contexts like few-shot classification (Xiao et al., 2022) and object detection (Jin et al.,291

2021), our work stands out as the first to apply this technique to hierarchical classification, achieving292

notable gains.293

Hierarchical training: Unlike the flat softmax which aggregates the probabilities of child nodes294

to determine the mid-level node probability, our hierarchical training instructs the model to directly295

estimate the probability for each mid-level node. This strategy aims to better delineate the mid-296

level manifolds, as depicted in Fig. 1. This method further enhances performance, particularly in297

hierarchical metrics.298

Incorporation of contrastive loss: As discussed in Sec. 3.2, the addition of the contrastive loss299

further augments the model’s performance.300

In summary, our HCCF approach, with its multiple enhancements, demonstrates superior perfor-301

mance compared to traditional training methods. We additionally performed hierarchical cross-302

modal fine-tuning at various levels, beginning exclusively with the leaf level and culminating with303

all levels. As indicated in Table 4, the utilization of all levels yielded the optimal hierarchical perfor-304

mance. However, it adversely affected the leaf-level performance. Harnessing the bottom two levels305

proved to be the most cost-efficient strategy. Intriguingly, incorporating additional levels, such as306

levels 5, 6, and 7, did not improve performance compared to just using levels 6 and 7. It’s notewor-307

thy that these findings diverge from the prevailing belief that top-1 accuracy benchmarks align with308

hierarchical metric rankings (Russakovsky et al., 2015), underscoring the importance of studying309

hierarchical metrics.310
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Table 5: Evaluation of our cutting-edge diffusion-based inference against established state-of-the-art (SOTA)
methods on iNat18. Despite all inference techniques utilizing the same trained model, our diffusion and dif-
ferentiable diffusion approaches surpass all the SOTA methods. Notably, this enhancement is achieved without
any modifications to the trained model.
Model AP AC R@90C R@95C Majority F1 Leaf F1 Leaf Top1
Top-down (Redmon & Farhadi, 2017) 64.36 61.72 46.10 34.97 68.54 68.36 46.62
Advanced-top-down (Jain et al., 2023) 72.11 69.98 58.09 46.96 76.23 75.96 55.71
Bottom-up (Valmadre, 2022) 72.75 70.60 59.56 52.60 72.73 75.16 55.78
Diffusion (Ours) 73.48 71.88 62.48 55.53 75.94 75.71 56.33
Differentiable diffusion (Ours) 73.82 71.91 61.99 53.36 76.01 76.09 59.70

Table 6: Our diffusion-based inference method is model-agnostic, enhancing classifier performance across all
metrics. This improvement is consistent whether the model is trained comprehensively across all levels (HCCF
L123456), on level 6 and level 7 (HCCF L67), or solely at the leaf level (Flat softmax).
Model AP AC R@90C R@95C Maj F1 Leaf F1 Leaf Top1
HCCF L1234567 bottom-up 72.75 70.60 59.56 52.60 72.73 75.16 55.78
HCCF L1234567 diffusion 73.60 71.85 62.06 54.97 74.79 75.82 56.50
HCCF L1234567 differentiable diffusion 73.82 71.91 61.99 53.36 76.01 76.09 59.70
HCCF L67 bottom-up 72.64 70.65 60.53 53.22 72.85 74.88 56.10
HCCF L67 diffusion 73.35 71.63 62.26 55.25 74.57 75.51 56.84
HCCF L67 differentiable diffusion 73.23 71.37 61.38 53.30 75.48 75.44 59.51
Flat softmax bottom-up 69.18 67.07 56.32 48.28 71.99 71.81 53.68
Flat softmax diffusion 69.45 67.56 56.47 48.61 72.57 72.31 54.14
Flat softmax differentiable diffusion 69.20 67.12 56.40 48.75 71.96 71.81 53.84

4.4 COMPARE DIFFUSION WITH OTHER INFERENCE METHODS311

In addition to training, inference plays a pivotal role in hierarchical classification for final decision-312

making. We evaluated our innovative diffusion-based techniques, including both general and dif-313

ferentiable diffusion, against traditional top-down and bottom-up inference methods. The results,314

presented in Table 5, reveal that our methods notably surpass existing ones. Intriguingly, diffusion315

not only enhances hierarchical metrics but also boosts the leaf-level top 1 accuracy. The fact that316

our general diffusion doesn’t necessitate extra training makes this discovery particularly noteworthy.317

When trained using our differentiable diffusion, the performance escalates even further.318

Differentiable diffusion excels in numerous metrics over general diffusion except in R@90C and319

R@95C. The advantage of general diffusion is its simplicity and the absence of a training require-320

ment. Further experiments, as seen in Table 6, confirm the consistency of these findings across321

various models. This underscores the novelty and success of our diffusion-centric approach to clas-322

sification.323

4.5 SOCIAL IMPACT AND LIMITATIONS324

Our research introduces innovative training methodologies and novel diffusion mechanisms for hi-325

erarchical classification. Extensive experiments show that our proposed methods deliver more ac-326

curate and impactful hierarchical classification results. These advancements have potential impli-327

cations for various applications, from object detection to the realm of autonomous driving. While328

our techniques represent a significant leap forward, they have limitations. Our empirical evaluations329

have been primarily anchored to the well-structured iNat18 and iNat21 datasets. As a next step, it330

would be pivotal to assess the versatility of our method in diverse real-world contexts, including its331

potential role in autonomous driving systems.332

5 CONCLUSIONS333

This paper introduces a fresh perspective on the hierarchical classification problem by viewing it334

through the lens of manifold learning. Leveraging this approach, we present innovative strategies335

for training and inference. Our proposed hierarchical cross-modal contrastive loss and graph-based336

diffusion methods for hierarchical predictions offer a nuanced balance between coarse and fine-337

class predictions. Evaluations on iNat18 and iNat21 datasets demonstrate the superior performance338

of our methods in terms of both top-1 accuracy and various hierarchical metrics, marking a notable339

advancement in the field of hierarchical classification.340
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