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Abstract

Integrated Gradients (IG) is a widely used algorithm for attributing the outputs
of a deep neural network to its input features. Due to the absence of closed-
form integrals for deep learning models, inaccurate Riemann Sum approximations
are used to calculate IG. This often introduces undesirable errors in the form
of high levels of noise, leading to false insights in the model’s decision-making
process. We introduce a framework, RIEMANNOPT, that minimizes these errors
by optimizing the sample point selection for the Riemann Sum. Our algorithm
is highly versatile and applicable to IG as well as its derivatives like Blur IG and
Guided IG. RIEMANNOPT achieves up to 20% improvement in Insertion Scores.
Additionally, it enables its users to curtail computational costs by up to four folds,
thereby making it highly functional for constrained environments.

1 Introduction

Deep Neural Network (DNN) classifiers for computer vision are increasingly being utilized in critical
fields such as healthcare [4] and autonomous driving [3]. Hence, it has become increasingly important
to understand the decision-making process for these models. This has led to a growing body of
research focused on understanding how the predictions of these deep networks can be attributed to
specific regions of the image. An attribution method attempts to explain which inputs the model
considers to be most important for its outputs. Several gradient-based [20, 18, 19, 9, 17, 12] and
gradient-free [11, 14, 23, 5, 7, 30, 22, 29] attribution methods have been developed for deep learning
models. Integrated Gradient methods [27, 10, 24] are a specific class of gradient-based attribution
methods that compute a line integral of the gradients of the model over a path defined from a baseline
image to the given input.

The complex functional space of deep learning models is often considered as a source of noise for
many gradient-based attribution methods, resulting in undesirable high attribution to some background
regions. For Integrated Gradients, Kapishnikov et al. [2021] claim that the source of noise is large
gradients in the model surface while Smilkov et al. [2017] argue that the source of error is the rapid
fluctuation of the gradients of deep learning models.

Deep learning models do not have closed-form integrals, so their integrals are approximated by
the Riemann Sums [24]. This approximation involves the sampling of a number of points along
the path and approximating the integral using interpolation between these points. Using more
points to approximate the Riemann sum naturally results in cleaner saliency maps. However, most
applications of Integrated Gradients require a high number of steps for the Riemann Sum [24, 16],
generally between 20 to 1000, rendering Integrated Gradients’ usage practically unfeasible in real-
time applications. On the other hand, using lesser number of samples severely impacts the quality of
the saliency map. This results in a trade-off between speed and performance.
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Figure 1: Visual comparison of Integrated Gradient methods with and without RIEMANNOPT. For
IG, RIEMANNOPT suppresses the noise around the Spoonbill and also slightly concentrates stronger
attribution scores on the mouse trap. Applying RIEMANNOPT to BlurIG significantly increases
concentration on the subjects of images. GIG saliency maps remain perceptually similar.

Sotoudeh and Thakur [2019] have attempted to tackle the above issue of inaccurate Integrated
Gradients computation by exactly computing the underlying integral using EXACTLINE. However,
their application is limited to neural networks that are composed of piece-wise linear operations. Most
traditional models, like InceptionV3 [25], ViT [6] and ResNet [8], while being primarily composed
of linear operations, also make use of non-linear operations like LayerNorm [1], GroupNorm [26]
and Attention [2] thus prohibiting the use of EXACTLINE. Furthermore, the use of EXACTLINE
might not be considered ideal in cases where there are computational constraints since it requires
∼ 14000 gradient computations per image for large models.

To overcome the problem of redundancy by ineffective sampling schedules prevalent in Integrated
Gradient methods, we introduce RIEMANNOPT, a framework to pre-determine optimal points for
sampling to calculate Riemann Sums. The pre-determined points are specific only to the model.
Hence, the computation to determine the points is only done once and does not need to be repeated for
every image. Unlike EXACTLINE, our method does not impose any architectural constraints on the
underlying model, with the additional benefit of requiring far fewer samples. We present qualitative
and quantitative results for RIEMANNOPT on Integrated Gradients (IG) [24], Blur Integrated Gradients
(BlurIG) [27] and Guided IG (GIG) [10]. Our method can be easily combined with existing IG-based
methods and enable them to generate cleaner saliency maps.

2 Background

In this section, we review the mathematical definition of IG [24], BlurIG [27], and GIG [10].

2.1 Integrated Gradients

Sundararajan et al. [2017] utilized the idea of a path function. γ : [0, 1]→ Rn is a smooth function
that denotes a path within Rn from x′ to x, satisfying γ(0) = x′ and γ(1) = x. Further, they defined
path integrated gradients along the ith dimension for an input x, given a baseline x′, obtained by
integrating the gradients along the path γ(α) for α ∈ [0, 1] as:

Ii(x) =

∫ 1

0

∂f(γ(α))

∂γi(α)

∂γi(α)

∂α
dα, (1)

Where f denotes a DNN classifier. Integrated Gradients (IG) Sundararajan et al. [2017] originally
defined the path method as a straight line path specified γIG(α) = x′+α×(x−x′) for α ∈ [0, 1].
Later, BlurIG and GIG introduced non-linear paths that had their respective advantages over IG.
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2.2 Blur Integrated Gradients

Xu et al. [2020] introduced Blur Integrated Gradients: For a given function f : Rm×n → [0, 1]
representing a classifier, let z(x, y) be the 2D input. Blur IG’s path is defined by a Gaussian filter that
progressively blurs the input. Formally:

γBlurIG(x, y, α) =

∞∑
m=−∞

∞∑
n=−∞

1

πα
e−

x2+y2

α z(x−m, y − n) (2)

The final BlurIG computation is as follows:

IBlurIG(x, y) ::=

∫ 0

∞

∂fc(γ
BlurIG(x, y, α))

∂γBlurIG(x, y, α)

∂γBlurIG(x, y, α)

∂α
dα (3)

2.3 Guided Integrated Gradients

Guided IG [10] (GIG) follows an adaptive integration path γIG(α), α ∈ [0, 1] to avoid high gradient
regions. An adaptive path is one that depends on the model being used:

γGIG = argmin
γ∈Γ

N∑
i=1

∫ 1

0

|∂f(γ(α))
∂γi(α)

∂γi(α)

∂α
|dα, (4)

After finding the optimal path γGIG, GIG computes the attribution values similar to IG,

IGIG
i (x) =

∫ 1

0

∂f(γGIG(α))

∂γGIG
i (α)

∂γGIG
i (α)

∂α
dα. (5)

3 Methodology

In this section, we present simple derivation to determine an upper bound on the error introduced by
approximating a one-dimensional integral using a Riemann Sum. We then extend the definition for
multi-dimensional line integrals and define the algorithm RIEMANNOPT uses to schedule samples to
minimize this upper bound.

3.1 Error Minimization of Riemann Sums in 1D

We now present the derivation to estimate the error introduced due to the left Riemann Sum ap-
proximation of a standard 1D integral

∫ αk

α0
g(α) dα where {αi}ki=0 is the set of points at which the

integrand, g(α), is evaluated.

The standard way to calculate the left Riemann Sum is:

R =

n−1∑
i=0

g(αi)(αi+1 − αi) (6)

The integral can be broken down as:

I =

n−1∑
i=0

∫ αi+1

αi

g(α)dα (7)

By applying the Taylor Series approximation around αi in (7):
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I ≈
n−1∑
i=0

∫ αi+1

αi

g(αi) + (α− αi)g
′(αi) dx

≈
n−1∑
i=0

g(αi)(αi+1 − αi) + g′(αi)
(αi+1 − αi)

2

2

(8)

By (6), (8) and the Triangle Inequality:

|R− I| ≲ 1

2

n−1∑
i=0

∣∣g′(αi)(αi+1 − αi)
2
∣∣ (9)

3.2 Algorithm

IG computes d integrals (attributions) per image, one for each pixel. We treat each integral indepen-
dently and use the derivation above to estimate the average error over all integrals. The input to the
function, g, would be multidimensional, resulting in a different Taylor Series expansion. However, the
approximation would still be mathematically sound since the integral corresponding to the ith feature
is only dependant on the gradient along that component, i.e. error corresponding to the ith dimension
of gradient only contributes to the ith integral. We use this observation in conjunction with the finite
distance approximation of the derivative to determine the optimal points for sampling a Riemann
Sum for the dataset. The primary idea behind the algorithm is to approximate the average |g′(α)|
for all input features on a small subset of images, ∼ 1% of the validation dataset, then compute the
optimal sampling points and use them for the entire dataset.

The following tensors are used in Algorithm 1 where d is the dimensionality of the input:

• Ik×d: Samples evaluated at k equispaced points along the path.

• Ck−1×d: Finite difference estimate of the derivative of I for all input features.

• Ak−1: Absolute derivative estimate of I , corresponding to |g′(α)|

Algorithm 1 Estimation of Optimal Alphas
Inputs:

A subset of m examples from the validation dataset: Xi ∈ Rd, i ∈ {1, . . . ,m}
Number of sample points in a path: k
Integrand of the IG method: ∂f(γ(α))

∂γ(α) ⊙
∂γ(α)
∂α

Output:
Optimal sampling points: {α∗

j}kj=1
Initialization:

Set {αj}kj=1 as k linearly spaced scalars between the integral bounds
A← Initialize with zeros

for each i in {1, . . . ,m} do ▷ Loop over training examples

Ij ← ∂f(γ(α))
∂γ(α) ⊙

∂γ(α)
∂α

∣∣∣∣
α=αj

for j in {1, . . . , k}

Ck−1×d ← Ij+1−Ij
αj+1−αj

for j in {1, . . . , k − 1} ▷ Finite difference: g′(α) ≈ g(α+∆α)−g(α)
∆α

Apply element-wise absolute to C
Ak−1 += Average Ck−1×d across all features ▷ Estimate of |g′(α)|

end for
Normalize A by dividing by number of examples m
|g′(α)| ← Linearly Interpolate(A, α) ▷ α ∈ [0, 1], A ∈ Rk−1

α∗
j ← The set {αj}kj=1 that minimizes the upper bound error defined by Equation (9)

return {α∗
j}kj=1
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4 Experimental Setup and Metrics

In this section, we discuss the details of the implementation, dataset, model, and metrics used.

4.1 Experimental Setup

We use the original implementations with default parameters in the authors’ code for IG, GIG,
and BlurIG and implement RIEMANNOPT as a pre-computation step that links with the original
implementations. We present our results using InceptionV3 for 16, 32, 64 and 128 sample points on
the correctly classified images of the ImageNet validation dataset, ∼ 40K. To estimate |g′(α)|, we
apply Algorithm 1 to a set of 200 randomly correctly classified images from the ImageNet validation
dataset for 128 samples. Then, we use Powell’s method [15] to determine the optimal set of sampling
points. This roughly has the same computational cost as computing the saliency map for the set of
200 images. Using RIEMANNOPT is still cost-effective since we only use a small number of images
to calculate sample points but are able to use these points for the entire dataset.

4.2 Metrics

Previous works use the Insertion Score and Normalized Insertion Score to compare different attribu-
tion methods [27, 9, 10, 28, 14, 13]. It is critical to note that the purpose of the Insertion Score is
to measure the efficacy of a saliency map, i.e. it is not designed to measure how close the Riemann
Sum is to the actual integral. However, it is reasonable to assume that the true saliency map would
generally achieve better Insertion Scores than an inaccurate approximation since inaccurate estimates
introduce noise. Hence, we report the Insertion Scores and, additionally, employ the Axiom of
Completeness [24] to define a new metric that measures the quality of the saliency maps without the
need for this hypothesis.

According to the Axiom of Completeness, the sum of all feature attributions, determined by any
Integrated Gradients method, must ideally add up to the difference between the output of f at x
and x′. However, there is always an error due to inaccurate Riemann Sum estimates. Furthermore,
Sundararajan et al. [2017] advise the developer to ensure that all feature attributions add up to
f(x)− f(x′) (within 5%) and suggest increasing the number of samples if the error is greater.

Since the ground truth is unavailable, it is non-trivial to determine the numerical accuracy of a
computed saliency map. We use the relative error between the sum of feature attributions and
f(x) − f(x′) to estimate the error. This metric is not infallible since the features’ positive and
negative errors partially offset each other during the summation. Using the Triangle Inequality, it can
be easily shown that this metric is a lower bound on the true error. Nevertheless, it serves as a helpful
proxy since near-perfect saliency maps will have near-zero error, and highly erroneous maps will, on
average, have high error even after the errors partial offset.

5 Results and Discussion

In this section, we compare the sampling points chosen by RIEMANNOPT to the linear schedules,
followed by qualitative and quantitative evaluation against the baselines. In the case of BlurIG, the
sample points chosen by RIEMANNOPT highly differ from the linearly spaced samples, as depicted
in Figure 2. Every path starts with an information-less baseline image, x′, and gradually gains
perceptible features as it moves towards the input image, x. Along the path, when the image becomes
perceptible, the gradients rapidly change, resulting in large values of |g′(α)|. For BlurIG, the image
features become perceptible at the end of the path when most of the sharpening occurs, α ≈ 0.8. For
IG and GIG, the image becomes perceptible as soon as its brightness crosses a certain threshold,
α ≈ 0.1. The abnormal spike at the end of GIG’s curve is due to it’s adaptive path mechanism.
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Figure 2: Estimated |g′(α)| and comparison of 16 linearly spaced samples and 16 optimal samples
chosen by RIEMANNOPT. High values of |g′(α)| indicate regions of the path where the gradients of
the model are rapidly changing, i.e. regions where the image becomes perceptible to the model.

RIEMANNOPT always reduces the relative error and improves metric scores across all methods
and sample counts as depicted in Table 1 and Figure 3 respectively, with a noticeable enhancement
for BlurIG. On the other hand, the improvement in GIG is not very significant. The path of GIG
is theoretically fixed for chosen model. However, due to the employment of an adaptive path, its
practical implementation is highly dependent on the number of samples as well as the location of
the samples, unlike BlurIG and IG. In the derivation 3.1 of RIEMANNOPT, we assumed that the
path function was constant and independent of the sample points. The practical implementation
of GIG breaks this assumption; this is a possible explanation for why GIG is not as improved by
RIEMANNOPT as the other methods are. In terms of relative error, RIEMANNOPT significantly
reduces the number of samples while maintaining comparable performance. Specifically, BlurIG +
RIEMANNOPT achieves similar results with 16 samples as BlurIG with 64 samples. Additionally,
BlurIG + RIEMANNOPT with 16 samples performs comparably to BlurIG with 32 samples, and GIG
+ RIEMANNOPT matches the performance of GIG with 128 samples using just 16 samples. This
makes RIEMANNOPT highly functional for computationally constrained environments.

The reader may question to what extent the optimal points, approximated for the entire dataset,
generalize for each individual image. This can be verified by applying RIEMANNOPT for several
individual images and qualitatively inspecting how much the resultant points vary for different
images. For ImageNet, we observed that the set of points generated was roughly the same. One would
expect the same trend even with different datasets since the characteristics of |g′(α)| are primarily
determined by the path construction and model’s training procedure rather than the image itself.
InceptionV3 was trained with augmentation techniques including random brightness shifts which
increased its robustness to dark images, making the image perceptible to the model at around α ≈ 0.1,
as previously mentioned. Future work could investigate how changing the in-training augmentation
parameters would affect the shape of the graph and consequently RIEMANNOPT’S chosen points,
including blurring augmentations. One would expect the rise in |g′(α)| for BlurIG’s path to occur
earlier since the model would be better at identifying blurry images, similar to the effect caused by
brightness augmentation.

Table 1: Relative Error (↓) across different methods

Method 16 Samples 32 Samples 64 Samples 128 Samples

IG 0.708 0.374 0.166 0.066

IG + RIEMANNOPT 0.404 0.223 0.123 0.065

BlurIG 0.886 0.554 0.268 0.114

BlurIG + RIEMANNOPT 0.269 0.123 0.058 0.041

GIG 0.786 0.788 0.725 0.612

GIG + RIEMANNOPT 0.666 0.731 0.711 0.610
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Figure 3: We compare RIEMANNOPT against the baseline methods using the Insertion Score and
Normalized Insertion Score. We observe noticeable improvement for BlurIG and IG.

6 Conclusion

In this paper, we present RIEMANNOPT, a highly efficient framework designed to optimize sample
points in Riemann Sums for the computation of Integrated Gradients. Both qualitative and quantitative
results demonstrate that RIEMANNOPT effectively minimizes numerical errors in saliency maps and
achieves improved Insertion Scores by up to 20%, thereby enhancing the accuracy and reliability of
attribution maps. RIEMANNOPT is adaptable, extending its applicability to any multi-dimensional
line integral computation, including derivatives of Integrated Gradients such as BlurIG and GIG.
Additionally, it enables users to curtail computational costs by up to fourfold, significantly boosting
efficiency. Opportunities for future work include extending RIEMANNOPT to further improve its
suitability for Integrated Gradient methods that employ adaptive paths.
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