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Abstract

Gaussian Process Factor Analysis (GPFA) is a powerful factor analysis model for1

extracting low-dimensional latent processes underlying population neural activities.2

However, one limitation of standard GPFA models is that the number of latent3

factors needs to be pre-specified or selected through heuristic-based processes. We4

propose the infinite GPFA model, a fully Bayesian non-parametric extension of the5

classical GPFA model by incorporating an Indian Buffet Process (IBP) prior over6

the factor loading process, such that it is possible to infer the potentially infinite set7

of likely latent factors active at each time points, in a probabilistically principled8

manner. Learning and inference in the infinite GPFA model is performed through9

variational expectation-maximisation, and we additionally propose a scalable ex-10

tension based on sparse variational Gaussian Process methods. We empirically11

demonstrate that the infinite GPFA model correctly infers dynamically changing12

activations of latent factors on synthetic dataset. Through fitting the infinite GPFA13

model to population activities of hippocampal pyramidal cells during spatial nav-14

igation, we identify non-trivial and behavioural meaningful variability in neural15

encoding process, and interpret neural variability from a novel perspective.16

1 Introduction17

Latent variable modelling is a popular class of unsupervised approaches for discovering low-18

dimensional manifolds underlying high-dimensional neural population activities [Churchland et al.,19

2007, Cunningham and Yu, 2014, Pei et al., 2021]. Accurate inference over the dynamical latent20

processes allows us to perform exploratory analysis for identifying relevant behavioural correlates21

of target neuron ensembles. However, a key limitation for such modelling is the necessity for pre-22

specifying latent dimensions. This is usually performed based on model-selection apporaches, such23

as cross-validation and various information measures [Doya, 2007]. In the absence of prior knowl-24

edge of encoded behavioural covariates underlying target neurons, heuristically selecting the latent25

manifold dimensions lacks interpretability, and the selection is often sensitive with respect to model26

hyperparameters and sampling process, hence leading to inconsistent inference outcomes. Alternative27

approaches based on regularisation methods, such as automatic relevance determination [ARD; Wipf28

and Nagarajan, 2007, Jensen et al., 2021], requires maximum likelihood (ML) learning based on29

marginalisation over all training samples. Therefore, selection of the set of latent factors that are30

mostly likely accounting for all observations, but not for each observation.31

Here we propose a novel, probabilistically principled model that enables simultaneous posterior32

inference of the number of latent factors and the set of activated latent factors pertinent to each33

observation. Specifically, we develop a fully Bayesian nonparametric extension of the Gaussian34

Process Factor Analysis (GPFA) model [Yu et al., 2008], a popular latent variable model for extracting35

latent Gaussian process factors underlying population activities over single trials. The resulting model,36
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Figure 1: Graphical demonstration of generative processes of GPFA and IBP models. Generative
models for standard (a) and infinite (b) GPFA models with sparse variational approximation. (c)
Graphical illustration of IBP prior, in the form of weighted factor analysis model, with binary
activations. Each observation yn is generated as a weighted sum of different set of latent factors with
some additive noise. By taking the limit D → ∞, we essentially place an IBP prior on the binary
latent activation, Z.

infinite GPFA, incorporates stochastic activation of latent factors in the loading process, which is37

modelled by the Indian Buffet Process (IBP) prior [Ghahramani and Griffiths, 2005]. The IBP defines38

a distribution over binary matrices with finite number of rows and infinite number of columns, hence39

enabling inference over the potentially infinite number of features, as well as tracking uncertainty40

associated with factor activations for each observation. Importantly, the latter feature allows us to41

investigate the nature of neural variability from a novel perspective: the variability in the expression of42

latent factors, potentially due to changes in internal states of the animal [Kelemen and Fenton, 2010,43

Flavell et al., 2022]. Through empirical evaluations on synthetic datasets, we show that the infinite44

GPFA model yields similar performance as standard GPFA model on dataset with constant generative45

process, but significantly outperforms GPFA when variability is introduced to the generative process.46

We further apply our model to population activities of hippocampal place cells recorded during47

spatial navigation tasks, and identify non-trivial variability in the neural encoding process, which is48

additionally contingent on the engaged task context.49

2 Background50

2.1 Gaussian Process Factor Analysis51

GPFA extends standard factor analysis models, by replacing Gaussian factors with Gaussian Process52

factors for capturing non-trivial temporal dependencies over the latent space [Yu et al., 2008]. Similar53

to standard factor analysis model, GPFA assumes conditional independence between observation54

dimensions, given the latents. The generative model of GPFA is defined as following (Figure 1a).55

fd(·) ∼ GP
(
md(·), kd(·, ·)

)
, for d = 1, . . . .D ,

h(xn) = C · F(xn) + d , for n = 1, . . . , N ,

y(xn) ∼ p (y(xn)|ϕ(h(xn)), θ) , for n = 1, . . . , N ,

(1)

where md(·) and kd(·, ·) are the mean and kernel functions for the d-th latent factors, respectively1,56

C ∈ RM×D is the loading matrix that projects the latent factors to the neural space, with M being the57

number of neurons, d is the offset for the linear transformation, F(xn) = [f1(xn) · · · fD(xn)] is58

the column-stack of all latent factors at input location xn, ϕ(·) is some (non-linear) link function,59

and θ is some auxiliary generative parameters. Learning and inference with GPFA model can be60

performed using variational expectation-maximisation (EM), which we briefly review in the appendix.61

1We assume md(·) = 0 unless stated otherwise.
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2.2 Indian Buffet Process62

The IBP defines a distribution over binary matrices with finite number of rows (observations) and63

infinite number of columns (latent factors) [Ghahramani and Griffiths, 2005]. Hence, by factorising64

the loading process in a factor analysis model into independent binary activation matrix, Z, and65

activation weight matrix, C, we can place an IBP prior over Z for allowing stochastic loading of66

latent factors into each observation. Moreover, posterior inference over Z allows for determination of67

the optimal set of latent factors pertinent to each observation, in a probabilistically principled manner.68

For interpretation, we consider the following Gaussian factor analysis model with stochastic latent69

activations (Figure 1c).70

fd ∼ N (0, σ2
d),Cd ∼ N (0, ν2dI), for d = 1, . . . ,∞ ,

πd ∼ Beta(
α

D
, 1), for d = 1, . . . , D ,

p(Z|π) =
D∏

d=1

πmd

d (1− πd)
N−md ,

yn = C(Zn ⊙ F) + ϵn , for n = 1, . . . , N .

(2)

We observe that p(Z) models the probability for the n-th observation possessing the k-th factor, for71

all n and k. Taking the limit D → ∞, it can be shown that the marginal distribution over Z following72

the IBP distribution, and α controls the expected total number of latent factors (see details in the73

appendix). Posterior inference over the IBP-distributed Z is intractable, but it is possible to perform74

approximate inference leveraging either MCMC or variational methods [Ghahramani and Griffiths,75

2005, Doshi et al., 2009]. Here we use the mean-field variational inference approach, which we76

briefly review in the appendix Doshi et al. [2009].77

3 Infinite GPFA78

Under the similar motivation behind the original proposal of IBP, we now propose infinite GPFA, the79

fully Bayesian nonparametric extension of standard GPFA that allows simultaneous inference over80

the optimal number of latent features and the set of most likely active latent factors underlying each81

observation. Specifically, the generative process of infinite GPFA is as following (Figure 1b).82

fd(·) ∼ GP
(
0, kd(·, ·)

)
, πd ∼ Beta

( α

D
, 1
)
, znd|πd ∼ Bernoulli(πd) ,

Cd ∼ N (0, ν2dI) , h(xn) = C · (Z⊙ F(xn)) + d , y(xn) ∼ p(y(xn)|ϕ(h(xn))) , ∀n, d ,
(3)

Here we use the finite Beta-Bernoulli approximation of the IBP distribution (Equation 2; [Ghahramani83

and Griffiths, 2005]). For the simplicity of demonstration, we assume both the loading weight matrix,84

C, and concentration parameter, α, to be deterministic (but setting priors over C and α is also85

possible, see Section 4.1 and appendix for further details). Note that the major difference between86

the generative processes of standard and infinite GPFA lies in their implementation of factor loading87

process, where standard GPFA assumes each latent GP factor is deterministically loaded into the88

observations, and infinite GPFA allows stochastic binary expression of latent factors that varies across89

each timestep and observation. Both learning of generative parameters and approximate inference90

over latent variables (f , π and Z) in the infinite GPFA model is achieved through variational learning,91

leveraging mean-field variational approximations. We further develop a sparse-variational extension92

of the infinite GPFA (infinite svGPFA), which greatly improves scalability. Further mathematical93

details of model learning and inference can be found in the appendix due to space constraints.94

4 Results95

4.1 Empirical Evaluation on Synthetic Data96

We first consider synthetic population spikings generated from two sinusoidal latent processes,97

following the generic GPFA generative process with exponential link function and Poisson conditional98

likelihood (Equation 1). To demonstrate variations in neural encoding within a single trial, we99
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Figure 2: Empirical evaluation of infinite svGPFA on synthetic dataset. (a) Generative process
for synthetic data, following the standard GPFA generative model with sinusoidal latent processes
(f1(x) = cos3(x) and f2(x) = sin(3x)) and (optional) binary masking. The latents are linearly
projected to the neural space, and passed through an exponential link function to generate firing
rates, which are then used to generate spikes following time-inhomogeneous Poisson process. The
binary masking, Z, represents within-trial variability in expression of latent factors in the neural
activities. (b) Variational free energy objective during training for different models. (c) R-squared
score between posterior means over latent processes and ground-truth latents, for svGPFA (blue)
and infinite svGPFA (orange), on data given both generative processes (with and without encoding
variability). (d) Log-log plot between logarithm of predicted and ground-truth firing rates for svGPFA
(left) and infinite svGPFA (right). Different color represents different neurons. All evaluations are
performed based on averaging over 10 random seeds where applicable.

optionally apply a multiplicative binary mask to the latent processes before projecting them to the100

neural space (Equation 3). We generate synthetic data for 100 neurons over 10 trials, each lasting 10101

seconds in duration, for both cases with and without encoding variability (Figure 2a).102

Under both generative processes, we fit standard and infinite svGPFA to corresponding population103

activities. We place Gaussian and Gamma priors over C and α, respectively, hence additional104

marginalisation over them is required to compute the posterior distribution over latent processes105

(corresponding prior parameters are identical between svGPFA and infinite svGPFA where applicable).106

Both methods converge quickly under either data generative process (Figure 2b). Upon training107

completion2, to validate the fidelity of fitted latents, we compare the R-squared score between the108

posterior means over the latent processes and the ground-truth latents for both models. For the109

baseline case with trivial binary masks, we observe that both models perform comparably well,110

reaching almost perfect discovery of latent processes driving the generation of neural activities.111

When encoding variability is introduced to binary masking, we observe that inferred latents of112

infinite svGPFA explains the ground-truth latents significantly better than those of standard svGPFA113

(one-sided student-t test, p = 0.0028). Such performance difference in model fitting is exacerbated114

through examining the accuracy of predicted firing rate: the svGPFA prediction is significantly115

noisier than the infinite svGPFA prediction, and the mean squared error of predicted log-rates is116

0.40± 0.87, which is again significantly higher than infinite svGPFA (0.0043± 0.025). Absence of117

explicit mechanisms accounting for variability in factor loading process in standard GPFA leads to118

greater deficits in learning the correct generative process. This is due to increased prediction errors in119

spiking observations induced by periods when at least one of the factors is not activated, which leads120

to learning of the wrong generative parameters to account for the gap.121

4.2 Variability in Neural Encoding in Multi-Phase Spatial Navigation Tasks122

We now probe the existence of variability in neural encoding and potential behavioural implications123

in real neural recordings. We apply our model to simultaneously recorded population activities of124

204 pyramidal cells recorded from rat dorsal hippocampal CA1, whilst the rat is performing a spatial125

memory task [Pfeiffer and Foster, 2013]. Within each trial, given 36 uniformly arranged feeding126

2All hyperparameters used in training can be found in Appendix

4



(a)

1 2 3
CCA Dimensions

0.5

0.6

0.7

0.8

0.9

C
an

on
ic

al
 C

or
re

la
tio

ns

Model

svGPFA
infinite svGPFA

(b)

0.0 30.0 60.0 90.0 120.0 150.0
time (s)

0.0

0.5

1.0

re
sp

on
si

bi
lit

y

f4(x) f8(x) homing phase

(c)
Figure 3: Probing within-trial encoding variability in place cell population activities during
spatial navigation with alternating behavioural phases. (a) Illustration of behavioural task [Pfeiffer
and Foster, 2013]. Rats navigate in a 2m× 2m box, with 36 feeding wells uniformly arranged in the
box. Animals alternate between searching for reward in a random well (foraging phase), and navigate
back to a home well (homing phase). (b) We perform CCA between posterior mean over latent
processes and selected behavioural variables for both infinite svGPFA and standard svGPFA. We show
comparison of first three canonical correlations for the two models (dots represent different random
seeds). (c) Temporal trace of posterior responsibilities associated with selected latent processes, and
binary behavioural phase (green line, 0 and 1 indicate foraging and homing phases, respectively).

wells within a 2m×2m open-field arena (Figure 3a), rats learn to alternate between foraging for food127

in an unknown and random location (foraging phase), and returning to a fixed home location (homing128

phase). The transition to the next phase or trial is automatic upon consumption of the reward. We fit129

both standard and infinite svGPFA, with 10-dimensional latents to one recording session lasting 2187130

seconds, binning spike trains into spike counts within each 30 ms time window.131

We perform canonical correlation analysis (CCA) between posterior mean of latent factors and relevant132

behavioural variables, including the 2-dimensional allocentric location, speed, and head direction of133

the animal [Hardoon et al., 2004, O’keefe and Nadel, 1978, Geisler et al., 2007]. Conforming with134

our findings from the synthetic experiment, we found that inferred latents from the infinite svGPFA135

model comprise more faithful representations of behvaioural covariates than those from the standard136

svGPFA, indicated by the higher canonical correlations over all three principal directions.137

We examine the activation of each latent factors across all timesteps. We observe high variability138

over time in posterior responsibilities for each latent (Figure 3c). Hence, despite stationarity in the139

marginal distribution of behavioural variables, the infinite svGPFA model predicts that the expression140

of these variables in population neural activities is not deterministic over time. By separating the141

continuous recording into alternating homing and foraging phases, we identify latent processes142

exhibiting selective activations in accordance with different behavioural phases. Specifically, we143

observe one latent process, f4(x), is usually increasingly activated during foraging phases and144

deactivated during homing phases (Figure 3c). From standard correlational analysis, we found that145

f4(x) is most strongly correlated with the speed of the animal. We identify another latent process,146

f8(x), being most strongly correlated with spatial location of the animal, which is activated at the147

beginning of homing phases, and decreasingly activated over the foraging phase. These comprise a148

coherent interpretation: speed is more actively represented during random foraging, potentially due149

to the importance of speed information in path integration (especially given extended trajectories),150

whereas during homing phases, the rat is usually running in straight trajectories back to the home151

location, potentially leveraging a pre-fixed strategy, hence leading to decreased representation of152

speed information, but increased representation of allocentric spatial location, in population activities.153

Collectively, we identify non-trivial temporal variability in encoding of behavioural correlates in154

population neural activities, and show that such variability is mediated by behavioural state of the155

animal through empirical verification.156

5 Discussion157

We introduce the infinite GPFA, a fully Bayesian nonparametric generalisation of standard GPFA158

models. The incorporation of the IBP prior over latent activations enables simultaneous inference over159

both the number of latent factors, as well as the most likely active set of latent factors underlying each160

observation. Through extensive evaluations on both synthetic and real neural datasets, we demonstrate161

improved empirical performance comparing to standard GPFA models. More importantly, we show162

that the infinite GPFA model is suited for exploring a gap in interpreting neural variability: the163

variability in neural encoding arising from changes in internal states of the animal.164
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A Further Model Details215

A.1 Variational Learning for GPFA216

We consider the standard GPFA generative process (Equation 1). We use variational expectation-217

maximisation (EM) methods for approximate inference over latent processes in GPFA. Specifically,218

we leverage the mean-field sparse-variational approximation based on inducing points for scalability219

purposes [Titsias, 2009], which renders desirable conditional independence in the variational free220

energy objective.221

q(F,U) =

D∏
d=1

p(fd|ud)q(ud) , F [q] =
∑
x

⟨log p(y|ϕ(h))⟩q(h) −
D∑

d=1

KL [q(ud)||p(ud)] , (4)

where ud are the inducing points for the d-th latent factor.222

From standard Gaussian identity, we know that the conditional likelihood p(fd(x)|ud) is also Gaussian,223

with mean Kd
xw(K

d
wz)

−1ud and covariance Kd
xx −Kd

x,w(K
d
ww)

−1(Kd
xw)

T , where Kd
x,w ∈ RN×S such224

that
(
Kd

x,w

)
nd

= kd(xnwd). Hence, given q(ud) = N (µu
d ,S

u
d), we could easily compute the225

marginal variational approximation for f , q(fd) = N (µf
d ,S

f
d).226

µf
nd = kd(xn,w)

(
Kd

ww

)−1
µf

d , (sfnd)
2 = kdnn + kdnw

(
(Kd

ww)
−1Su

d(K
d
ww)

−1 − (Kd
ww)

−1
)
kdwn ,

(5)

Note that q(h) is additively GP-distributed (Equation 1). In general, the expected log conditional227

likelihood can only be evaluated approximately [Duncker and Sahani, 2018, Keeley et al., 2020].228

However, it is possible to compute the expected log conditional-likelihood under certain assumptions229

of conditional likelihood and link function (e.g., Gaussian observation and identity link function).230

The KL divergence between the variational approximation and GP prior over the inducing points can231

be evaluated analytically.232

A.2 Variational Inference for IBP233

We re-iterate the weighted factor analysis generative process below.234

fd ∼ N (0, σ2
d),Cd ∼ N (0, ν2dI), for d = 1, . . . ,∞ ,

πd ∼ Beta(
α

D
, 1), for d = 1, . . . , D ,

p(Z|π) =
D∏

d=1

πmd

d (1− πd)
N−md ,

yn = C(Zn ⊙ F) + ϵn , for n = 1, . . . , N .

(6)

Given the conjugacy between Beta and binomial distributions, we can analytically marginalise π out.235

p(Z) =
D∏

d=1

α
DΓ(md +

α
D )Γ(N −md + 1)

Γ(N + 1 + α
D )

, (7)

Taking the limit D → ∞, the IBP places a prior on [Z], the canonical form of Z that is permutation-236

invariant [Ghahramani and Griffiths, 2005].237

p([Z]) =
αD exp(−αHN )∏

h∈{0,1}N\0 Dh!

D∏
d=1

(N −md)!(md − 1)!

N !
(8)

where D is the number of non-zero columns in Z, HN =
∑N

n=1
1
n is the N -th harmonic number, md238

is the number of one-entries in the d-th column of Z, Dh is the number of occurrences of non-zero239

binary column vector h in Z, α is the prior parameter that controls the expected number of features240

present in each observation.241
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A useful interpretation of IBP is based on the stick-breaking formulation [Teh et al., 2007], which242

interprets πd being constructed by stick-breaking weights, πd =
∏d

i=1 vd, where vd ∼ Beta(α, 1).243

We hence see that the probability of employing the d−th latent factor decreases exponentially with d,244

and α controls the expected number of latents.245

Inference given the IBP prior can be performed with either MCMC or variational methods [Ghahra-246

mani and Griffiths, 2005, Doshi et al., 2009]. Here we briefly review the finite mean-field variational247

inference approach outlined in Doshi et al. [2009].248

q(πd|ad, bd) = Beta(ad, bd), ∀d ,
q(Cd|µd,Sd) = N (µd,Sd), ∀d ,
q(znd|τnd) = Bernoulli(τnd), ∀n, d ,

(9)

Given the conditional independence within the generative model, the variational free energy objective249

takes the following expression3.250

F [q] = ⟨log p(π,C,Z,Y)− log q(π)q(C)q(Z)⟩

=
D∑

d=1

⟨log p(πd)⟩+
D∑

d=1

⟨log p(Cd)⟩+
N∑

n=1

D∑
d=1

⟨log p(znd|πd)⟩+
N∑

n=1

⟨log p(yn|Zn,C)⟩+H[q]

(10)

A.3 Variational Learning for Infinite GPFA251

We perform variational learning using the finite mean-field variational approximations, q(U,π,Z) =252 ∏D
d=1 [q(ud)q(πd)

∏
n p(znd)].253

q(ud|µu
d ,S

u
d) = N (ud|µu

d ,S
u
d) , ∀d ,

q(πd|ad, bd) = Beta(πd|ad, bd) , ∀d ,
q(znd|τnd) = Bernoulli(τnd) , ∀n, d ,

(11)

Note that in the above formulation, by default we have assumed sparse variational approximation254

treatment for scalability purposes.255

Given the conditional independence in the generative process, we could express the variational free256

energy as following.257

F [q] = ⟨log p(Y,F,π,Z)− log q(F,π,Z)⟩

=

N∑
n=1

⟨log p((yn|Fn,Zn))⟩ −
D∑

d=1

KL [q(ud)||p(ud)]−
D∑

d=1

KL [q(πd)||p(πd)]−
∑
n,d

⟨KL [q(znd)||p(znd)]⟩q(πd)

(12)

Given the variational distributions, all terms always admit analytical expression apart from expected258

conditional log-likelihoods. Due to the non-Gaussian nature of q(h), previous approximation ap-259

proaches based on Gaussian quadrature no longer applies [Duncker and Sahani, 2018]. Instead, we260

leverage second-order Taylor expansion for approximating the expected conditional log-likelihood,261

which offers an effective tradeoff between computational efficiency and approximation accuracy262

(see Supplemental Section 2 for details). However, we note that under the special case of Gaus-263

sian conditional likelihood with identity link function, it is possible to evaluate such expectation264

analytically.265

⟨log p((yn|Fn,Zn))⟩ = − 1

2σ2

M∑
m=1

⟨(ynm − hnm)2⟩ = − 1

2σ2

M∑
m=1

(
(ynm − ⟨hnm⟩)2 + Var[hnm]

)
,

(13)

3Unless necessary, we do not explicitly show the variational distributions the expectation is taken with respect
to for notational simplicity.
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Given the mean-field assumption, we could analytically evaluate the expectation and variance of hnm266

with respect to the variational distributions.267

⟨hnm⟩ = Cm · (τn ⊙ µf
n) + dm ,

Var[hnm] = C⊙2
m ·

(
τ 2
n ⊙ (sfn)

2 + ((µf
n)

⊙2 + (sfn)
⊙2)⊙ τn ⊙ (1− τn)

) (14)

where µf
n and (sfn)

2 are the mean and diagonal-variance of F(xn), respectively, and ⊙2 repre-268

sents the elementwise square operation. We have leveraged the law of total variance, Var[XY ] =269

E [Var[XY ]] + Var [E[XY ]]. The complete derivation of variational free energy for the finite varia-270

tional approach can be found in Supplemental Section 2.271

The model is learned via variational EM, iteratively updating the variational parameters (Equation 11),272

and the generative model parameters (i.e., C, d and α), via gradient-based updates that maximises the273

free energy objective. In practice, we employ standard automatic differentiation framework for such274

gradient-based learning [Paszke et al., 2019].275

B Experiment Details276

All models are trained with Adam optimiser [Kingma and Ba, 2014], with learning rate 0.01. For the277

main experimental evaluations, we train all models over 2000 epochs. All evaluations are based on278

averaging over 10 random seeds where applicable.279

Synthetic Data. We instantiate both the standard GPFA and infinite GPFA models with stochastic C,280

where ν2d = 0.1. We set the number of inducing points to be 30 for the main evaluations, and the281

corresponding inducing locations are randomly initialised and trained. For all models, we use the282

squared exponential (SE) kernels, with trainable scale and lengthscale parameters.283

kd(x, x′) = s2d exp

(
−||x− x′||

τ2d

)
, (15)

Neural Data. We preprocess the spiking train data into spike counts, with 30ms time window. The284

instantaneous firing rates for each neuron are computed via dividing the spike counts by the time285

window size, followed by Gaussian smoothing. The loading matrix, C, is assumed to be deterministic,286

hence is learned through the variational M-step. The concentration parameters, α, is again assumed287

to be stochastic, with Gamma prior and parameters s1 = 1.0, s2 = 1.0. For all models, the number288

of inducing points are 100, and corresponding inducing locations are fixed as equally spaced location289

along the input (time) domain. We again use the SE kernels for the latent GPs with trainable scale290

and lengthscale parameters.291

For segmenting the continuous recordings into separate foraging and homing phases, we note that292

animals often lowers their speed upon consuming the food, and we can use this feature as a marker293

for the segmentation. Hence, we identify all periods with low speed (< 1cm/s) and within proximity294

of the reward location (< 5cm) as the end of the homing phase, and all other periods with speed295

(< 1cm/s) over an extended time span (> 10s) as the end of the foraging phase.296
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