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ABSTRACT

Empirical evaluation of state-of-the-art natural language (NL) to temporal logic
(TL) translation systems reveals near-perfect performance on existing benchmarks.
However, current studies only measure the accuracy of the translation of NL
logic into formal TL, ignoring a system’s capacity to ground atomic propositions
into new scenarios or environments. This is a critical feature, necessary for the
verification of resulting formulas in a concrete state space. In this paper, we in-
troduce the Verifiable Linear Temporal Logic Benchmark (VLTL-Bench), a
unifying benchmark for automated NL-to-LTL translation. The dataset consists
of three unique state spaces and thousands of diverse natural language specifica-
tions and their corresponding formal temporal logic specifications. Moreover, the
benchmark contains sample traces to verify the temporal logic expressions. While
the benchmark directly supports end-to-end evaluation, we observe that many
frameworks decompose the process into i) lifting, ii) grounding, iii) translation,
and iv) verification. The benchmark provides ground truths after each of these
steps to enable researchers to improve and evaluate different substeps of the overall
problem. Using the benchmark, we evaluate several state-of-the-art NL-to-TL trans-
lation models and frameworks, including nl2spec, NL2TL, NL2LTL, Lang2LTL,
sequence-to-sequence translation, and various LLM prompting techniques. Our
evaluation confirms that existing work is capable of reliably performing lifting
and translation with high accuracy, while it exposes their struggles to ground the
translation into a state space, which stems from the lack of existing datasets.

1 INTRODUCTION

Formal verification is essential for the safe deployment of autonomous robots (Tellex et al., 2020;
Raman et al., 2013), cyber-physical controllers (Konur, 2013), and safety-critical software systems
(Alur, 2015). Verification first begins with a specification that defines intent in precise temporal logic
(TL) (Watson & Scheidt, 2005; Bellini et al., 2000). However, human stakeholders typically articulate
intent in ambiguous natural language (NL) (Veizaga et al., 2021; Lamar, 2009; Lafi et al., 2021), and
the conversion of this NL to TL is a challenging and time-consuming process that requires human
experts (Yin et al., 2024; Cardoso et al., 2021; Thistle & Wonham, 1986). Due to this complexity,
automated NL-to-TL translation has emerged as a core research problem (Chen et al., 2023; Zrelli
et al., 2024; He et al., 2022; Wang et al., 2025). Recently, neural sequence-to-sequence models (Hahn
et al., 2022; Pan et al., 2023; Hsiung et al., 2022), grammar-constrained decoders (Post & Vilar, 2018;
Geng et al., 2024), and large language models (LLMs) (Xu et al., 2024; Chen et al., 2023; Fuggitti
& Chakraborti, 2023; Cosler et al., 2023) have all demonstrated promising results on benchmark
corpora, with reported accuracies often exceeding 90%.

Despite these gains, evaluations are misleading as most datasets only test lifted translation, where
temporal logic formulas contain abstract placeholders for atomic propositions (APs). The harder
task of grounded translation—instantiating APs with domain-specific actions and arguments—is
usually left unmeasured. This imbalance stems from limitations of current datasets, which omit the
annotations required to separately evaluate lifting, translation, and grounding. As a result, current
frameworks optimize for partial tasks, leaving open the more difficult but necessary problem of
grounding for producing fully executable specifications.
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AP Assembly
———————————

Action(Target) = search(apple)

AP Reference Insertion
———————————

search(apple) ↔ look for the red fruit

Search and Rescue

Traffic Light

Warehouse
————————————

Targets: Type:
- Item: name
- Location: name

Actions:
- idle(ego)
- get_help(ego)
- search(Item)
- pickup(Item)
- deliver(Item, Location)

Template
————————————————

 LTL:
- ◻(φ₁ →♢(φ₂))

NL:  
- “Globally, if prop_1 

occurs, then eventually 
prop_2 happens.” 

Trace: 
- Good:       [{φ₁}, ∅, {φ₂}]
- Bad:     [{φ₁}, ∅, ∅]

Action 
References

Target 
References

Condition Selection
(i.e φ₁ = search(apple))

AP References
(i.e prop₁ = look for the red fruit)

Grounding
———————————
φ₁ = search(apple)
φ₂ = deliver(apple)

Lifting
———————————

prop_1 = ‘look for the red fruit’
prop_2 = ‘drop it off’
— — — — — — — — —

φ₁  ↔  prop_1  
φ₂  ↔  prop_2

1. Lifting Accuracy
Input:

“The system should locate the florets and then wait.”

Lifted NL: 
“The system should prop_1 and then prop_2.”  ✔
“The system should prop_1 and then.”              ✘
                                             

4. Verification Accuracy2. Grounding Accuracy:
prop_1: 

 “locate the florets” 
->  “search(broccoli)”    ✔
->  “search(roses)”         ✘

prop_2:  
“wait”  ->  “idle()”               ✔

->  “search()”          ✘

Kripke Structure

s0
sC 
idle

sB 
idle

sA

s2 
idle

s1 
search

Search and Rescue

Traffic Light

Warehouse
————————————

Type:
- Item

 - Location
Target:

- apple : Item
- loading_dock : Location

Actions:
- idle()
- search(Item)
- deliver(Item, Location)

Scenario Configuration

Lifting Rules
———————————

prop_1 = ‘look for the red fruit’
prop_2 = ‘drop it off’

Grounding Rules
———————————

φ₁ = search(apple)
φ₂ = deliver(apple)

— — — — — — — — —
φ₁  ↔  prop_1  
φ₂  ↔  prop_2

Action 
References

Target 
References

LTL Assembly
———————————

 LTL:
- ◻(φ₁ →♢(φ₂))

NL:  
- “Globally, if prop_1 

occurs, then eventually 
prop_2 happens.” 

Trace: 
- Good:          [{φ₁}, ∅, {φ₂}]
- Bad:             [{φ₁}, ∅, ∅]

Dataset Generation

VLTL-Bench

3. Translation Accuracy:
Lifted NL:  

“The system should prop_1 
and then prop_2.”

Lifted LTL:
♢ prop_1 ➡ ◯ prop_2    ✔
♢ prop_1 ➡ prop_2         ✘

{φ₁}

{φ₂}

––– 
{φ₁}

T
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et

Natural Language 
Lifting

Natural Language 
Specification

Lifted NL

Lifted NL to TL 
Translation

Action and Target 
Grounding

Verification

Lifted TL Grounded TL Traces

✔
✘

✔
✘

✔
✘

✔
✘

Figure 1: Overview of our dataset synthesis and evaluation framework for NL-to-LTL translation.
The framework used a configuration file to define concrete and unique scenarios. The data synthesis
generates the NL and TL pairs with associated traces for verification while providing ground truth
results for intermediate components.

Benchmarks for NL-to-TL translation include CW (MacGlashan et al., 2015), GLTL (Gopalan et al.,
2018), Navi (Wang et al., 2021), and Conformal (Wang et al., 2025). Their limitations are fourfold.
(i) Although recent frameworks decompose the task into lifting, translation, and grounding, these
benchmarks supply ground truth only for the end-to-end result (NL-TL pairs), preventing assessment
of intermediate components. (ii) CW and GLTL omit grounding entirely, yielding translations without
executable semantics. For example, the NL specification: “Go to the green room and then go to
the blue room.” is mapped to the LTL expression: “♢G → ♢B”, without providing a grounded
definition of the predicates G and B. (iii) Navi and Conformal nominally support grounding but rely
on overly simplistic state spaces (e.g., Navi’s colored-room grid), which fails to capture the referential
and contextual ambiguities of natural language. (iv) Execution traces/trajectories for independent
semantic verification (e.g., via model checking), are not provided, preventing rigorous evaluation.

In this paper, we introduce the Verifiable Linear Temporal Logic Benchmark (VLTL-Bench), a
benchmark that grounds linear temporal logic (LTL) in a concrete world state space while broadening
linguistic and logical coverage through more diverse atomic propositions. As illustrated in Figure 1,
VLTL-Bench exposes every stage of the NL-to-TL pipeline: raw and lifted NL specifications, an
AP-to-Reference dictionary, lifted and grounded LTL formulas, and both satisfying and unsatisfying
traces. Our dataset synthesis and evaluation framework for NL-to-LTL translation leverages scenario
configurations to construct grounded action/target combinations, from which we synthesize diverse
natural language representations and integrate them into sentence, LTL, and trace templates, yielding
corpora whose components can be used individually or combined for holistic evaluation. This layered
design makes it possible to isolate performance on lifting, translation, grounding, and verification
individually, while also enabling end-to-end evaluation. We provide three scenario configuration files
and construct a Traffic light, Search & Rescue, and Warehouse dataset. Using these three datasets
we evaluate the capabilities and limitations of state-of-the-art NL to TL translation frameworks. In
summary, we propose: (i) a single, extensible benchmark for evaluating all NL-to-TL translation
components; (ii) the first verification evaluation using satisfying and unsatisfying traces; and (iii)
an empirical study that reveals both new failure modes in current methods and the severe accuracy
decline when grounding is required.

The remainder of this paper is organized as follows. Section 2 covers preliminaries for LTL and
model checking. Section 3 contains a detailed description of the Verifiable Linear Temporal Logic
Benchmark datasets, as well as details on how they were synthesized. Section 4 includes an evaluation
of current NL-to-TL frameworks on both Verifiable Linear Temporal Logic Benchmark and existing
datasets. We conclude our paper in 5. Additional details may be found in the Appendix A
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2 BACKGROUND AND RELATED WORK

In this section we introduce necessary notation and background information on temporal logic systems
including terminology, linear temporal logic symbols, and existing NL-to-TL datasets.

Linear Temporal Logic. The syntax of LTL is given by the following grammar:

φ ::= π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2

| ⃝φ | ♢φ | □φ | φ1 ∪ φ2

We further discuss model checking with linear temporal logic in Appendix A.1 and Appendix A.2.

2.1 PRELIMINARIES

In this section, we formally define a number of key terms necessary to describe and evaluate NL-to-TL
translation systems. In order to provide a cogent description of these systems, as well as a robust
evaluation, we define these terms as follows:

Scenario: Referred to in existing work as the “World”, “Environment”, or “Space”. A set S of
conditions appearing on a trace.
Condition: In model checking, a condition is a uniquely-named Boolean variable ci.
Atomic Proposition: π ∈ Φ, where Φ is the set of propositional variables in an LTL expression.
During LTL verification, πi is assigned a value by matching with a condition c ∈ S.
Lifting: λ: NL → Φ, extracting substrings corresponding to APs from natural language.
Grounding: g(π) = c, replacing an abstract AP in an LTL expression with a condition c ∈ S.
Translation: τ : NL → LTL, converting a natural language string into a formal LTL expression.
Verification: Given a trace σ or Kripke structure K, check whether a grounded LTL expression g(φ)
holds. For trace-based verification, construct a minimally satisfactory K from σ.

2.2 EXISTING BENCHMARK DATASETS

In this section, we review existing benchmarks for NL-to-TL translation. We compare these corpora
in terms of linguistic and logical complexity, and support for evaluation of different framework
modules in Table 1. We measure the complexity using the number of unique words appearing in
natural language specifications (#Words), as well as the number of unique temporal logic expressions
(#TL). In terms of modules, we report if a dataset has support for evaluation of lifting, grounding,
and verification. We also provide examples from existing datasets in Appendix A.5.

In Table 1, we observe that the older datasets Cleanup World (CW) (MacGlashan et al., 2015) and
GLTL (Gopalan et al., 2018) from the pre-LLM era have limited complexity both in terms of unique
words and temporal logic expressions. While they support evaluation of translation, the lifting data is
not explicitly given, the APs do not vary in their form to any meaningful degree, and they can be
lexically identified in both the NL and TL elements of each entry ("green room"↔ G, "blue

Table 1: Comparison of existing LTL benchmarks and VLTL-Bench. We report the number of unique
words across all NL specifications and the number of unique LTL specifications. Additionally, we
report support for lifting, grounding, and verification.

Dataset # Words # TL Lifting Translation Grounding Verification

CW (MacGlashan et al. (2015)) 184 37 ∼ ✓ × ×
GLTL (Gopalan et al. (2018)) 183 37 ∼ ✓ × ×
Navi (Wang et al. (2021)) 131 6414 × ✓ ∼ ×
Conformal (Wang et al. (2025)) 439 212 ∼ ✓ ∼ ×
VLTL-Bench Warehouse 1028 5991 ✓ ✓ ✓ ✓
VLTL-Bench Traffic Light 217 6196 ✓ ✓ ✓ ✓
VLTL-Bench Search and Rescue 245 5425 ✓ ✓ ✓ ✓
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room"↔ B, etc.). The Navi. corpus, introduced by (Wang et al., 2021), couples NL commands
with LTL formulas in a grid world. As Table 1 shows, Navi exhibits a substantial increase in logical
complexity, with 6,414 unique formulas and support for partial grounding. Its 221 unique APs make
it a strong test of translation and lexical robustness, though this improvement comes at the cost of
well-defined grounding rules: the corpus does not specify formal APs, providing instead POS-tagged
natural language representations. As reflected in Table 1, the Conformal (Wang et al., 2025) dataset
introduces 439 unique words and 212 formulas with explicit grounding, but its scale is modest at
1,000 examples. In contrast, VLTL-Bench provides a testbed suited to holistic evaluation across
lifting, translation, grounding, and verification. We provide a more detailed quantitative comparison
between these datasets and VLTL-Bench in Section 3.4.

3 THE VERIFIABLE LINEAR TEMPORAL LOGIC BENCHMARK

In the following subsections, we first introduce Grounded Scenario Configuration, which formalizes
the world model by defining types, targets, and actions that ensure well-typed logical atoms. We
then describe our Data Synthesis pipeline, which instantiates expert-crafted NL–LTL templates with
scenario-specific atoms to produce paired sentences, formulas, and traces. Next, we present the
Metrics used to evaluate each stage of the NL-to-LTL pipeline, and finally, we detail the Datasets
generated from three scenario definitions, highlighting their unique challenges and properties.

3.1 GROUNDED SCENARIO CONFIGURATION

To formalize how natural language specifications map onto executable logical structures, we dis-
tinguish three interconnected components: types, targets, and actions. Types serve as abstract
categories that describe what kinds of objects or entities an action can take as input (e.g., a location,
an item, or a threat). Targets are the grounded instantiations of these action–type combinations, where
abstract slots are filled with concrete constants. Actions are verbs that capture the capabilities of the
agent; each action comes with a signature that specifies the expected types of its arguments. Together,
this hierarchy ensures that linguistic expressions can be systematically mapped into well-typed logical
atoms: types constrain argument structure, actions define the permissible predicates, and targets bind
them to domain-specific instances. Each dataset is parameterized by a scenario—a small, declarative
world model that provides:

Types t ∈ T : denotes the sort of parameters accepted by an action (e.g. item or location).

Targets L: Specific instances of typed arguments, (e.g. an argument apple of type item, or an
argument loading dock of type location).

Actions Aargs: verbs the agent may perform, which may have one or more targets, (e.g. idle() has
no targets, deliver(apple, loading dock) takes two—item and location).

3.2 DATA SYNTHESIS

To produce our datasets, we began with the 36 expert-crafted lifted NL-LTL pairs of the nl2spec
benchmark (Cosler et al., 2023), and we added 7 new ones of our own (provided in Appendix A.4).
We then transformed these 43 examples into templates to support diverse NL–LTL synthesis. Finally,
for each NL–LTL example, we crafted one pair of traces—one satisfying and one violating.

Each dataset entry includes a tuple of these three artifacts,{
sentence, lifted sentence}︸ ︷︷ ︸

NL (raw & lifted)

, φG, φL︸ ︷︷ ︸
LTL (grounded & lifted)

, σgood |= φG, σbad ̸|= φG︸ ︷︷ ︸
Traces (holds & ¬ holds)

}
,

and is algorithmically constructed with the following steps:

1. Template selection. Uniformly choose a lifted template. Each template has an arity that
determines how many atomic propositions must be instantiated.

2. Atom sampling. For each argument slot in the template, draw a unique atomic proposition
by randomly selecting actions and arguments from the scenario’s At and L. Let k denote
the total number of sampled atoms. Fill the LTL skeleton with these k atoms to obtain the
grounded formula φG, and replace each atom by propi to obtain the lifted formula φL.

4
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1. Lifting Accuracy
Input:

“The system should locate 
the florets and then wait.”

Lifted NL: 
“The system should prop_1 
and then prop_2.”  
“The system should prop_1 
and then.” 
                                             

4. Verification Accuracy3. Grounding Accuracy:
prop_1: 

 “locate the florets” 
->  “search(broccoli)”    ✔
->  “search(roses)”         ✘

prop_2:  
“wait”  ->  “idle()”              ✔

->  “search()”          ✘

Kripke Structure

2. Translation Accuracy:
Lifted NL:  

“The system should prop_1 
and then prop_2.”

Lifted LTL:
♢ prop_1 ➡ ◯ prop_2    ✔
♢ prop_1 ➡ prop_2         ✘

{φ₁}

{φ₂}

––– 
{φ₁}

✔

✘

Figure 2: Overview of an isolated evaluation of each individual component. Lifting accuracy measures
accuracy of predicted natural language AP spans, grounding accuracy measures the performance
on mapping AP spans to world state conditions, translation accuracy measures the performance on
NL-LTL translation on the token-level, and verification accuracy is an approach to measuring whether
a grounded LTL expression holds on a trace.

3. NL realization. Fill the template pattern with each atom’s surface form (including arti-
cles/prepositions), apply morphological fixes (gerunds, capitalization), and record token-
level spans. Emit both the free-form sentence and its grounded sentence with explicit
propi placeholders.

4. Trace filling. Apply the template’s trace patterns to the list [prop1, . . . , propk], yielding one
positive trace (satisfies φG) and one negative trace (violates φG).

This rich annotation supports four independent evaluation axes, displayed in Figure 2.

3.3 METRICS

In this section, we introduce four complementary metrics that capture performance at different levels
of the NL-to-TL pipeline, which is illustrated in Figure 2. Lifting accuracy measures the identification
of atomic proposition spans in natural language, grounding accuracy evaluates their mapping to world
state conditions, translation accuracy assesses logical equivalence between predicted and reference
formulas, and verification accuracy checks whether predicted formulas satisfy or violate traces as
expected. Together, these metrics provide a comprehensive view of system performance.

Lifting accuracy. For each token Si in a sentence, the system predicts a label λ̂(Si) ∈ {0, 1, . . . , k},
where 0 denotes background and n denotes membership in πn.

LiftAcc =
1

|S|

|S|∑
i=1

[
λ̂(Si) = λ(Si)

]
.

This measures the token-level classification accuracy of mapping substrings to atomic propositions.

Translation accuracy. Given a natural language specification s, the system produces a predicted TL
formula φ̂. Translation accuracy is an exact match between the predicted and reference formulas:

TransAcc =
[
φ̂ ≡ φ

]
,

where ≡ denotes logical equivalence. When working with lifted NL, the target is φL; for grounded
NL, the target is φG.

Grounding accuracy. Let {prop1, . . . ,propk} be lifted placeholders and gS the gold grounding
function. The system predicts ĝS .

GroundAcc =
1

k

k∑
j=1

[
ĝS(propj) = gS(propj)

]
.

This measures how well predicted atoms match their reference predicates and arguments.

Verification accuracy. For each dataset entry, two traces are provided: a positive trace σgood (satisfies
φG) and a negative trace σbad (violates φG). Given a predicted grounded formula φ̂G, verification
checks whether the satisfaction relation holds:

VerifAcc =
1

2

(
[σgood |= φ̂G] + [σbad ̸|= φ̂G]

)
.

5
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Table 2: Comparison of NL–LTL datasets. We report the total number of entries (Size), the total
number of unique TL entries, and the total number of unique APs appearing in the TL entries.
†Note that these datasets do not explicitly provide quantities of actions and arguments, and these are
estimated by the authors.

Dataset Size Unique TL # APs # Actions # Args

GLTL Gopalan et al. (2018)† 11,109 37 4 1 4
CW MacGlashan et al. (2015)† 3,371 37 4 1 4
Conformal Wang et al. (2025)† 1,000 212 239 4 235
Navi Wang et al. (2021)† 7,474 6,414 221 – 26

Search-and-rescue [VLTL-Bench] 7,304 5,425 220 7 44
Traffic-light [VLTL-Bench] 7,319 6,196 5,046 4 175
Warehouse [VLTL-Bench] 7,457 5,991 5,074 5 82

3.4 DATASETS

We construct three scenario definitions accompanied by action and target references, namely a Traffic
Light, Search & Rescue, and Warehouse scenario. The details are provided in Appendix A.8. Using
our proposed data synthesis, we generate three new datasets for training and evaluation. Each of
our three datasets is designed to highlight distinct challenges for NL-to-LTL translation: the Traffic
Light Control scenario is intended to balance action and argument grounding challenges, including a
large library of “street name” arguments, but a smaller set of actions; the Search-and-Rescue scenario
emphasizes multi-step temporal dependencies and deliberately includes ambiguous actions such as
“avoid” and “communicate” to stress-test the system’s ability to distinguish between natural language
verbs and temporal operators; and the Warehouse scenario introduces high semantic and linguistic
variability by incorporating all 80 COCO object classes, making grounding especially complex. In
this section, we use an entry from the Warehouse dataset as an example to illustrate the structure and
properties of our data; additional examples from the other scenarios are provided in Appendix A.7.

Warehouse. Our Warehouse dataset simulates a realistic warehouse retrieval scenario, explicitly
designed for scalability and complexity in grounding tasks. Warehouse is our most distinct dataset
with its inclusion of all 80 COCO (Lin et al., 2014) object classes, significantly enriching the semantic
and linguistic complexity and variation of atomic propositions. As with each of our datasets, all
entries include LTL formulas with explicit grounding and alignment at token-level granularity, as
well as verified positive (”good”) and negative (”bad”) execution traces for robust validation.

Example:

• Sentence: “At every moment, at least one of drop off the long chair to the loading dock,
wait, or look for the glass for alcoholic beverage holds.”

• Lifted Sentence: “At every moment, at least one of prop 1, prop 2 or prop 3 holds.”

• Grounded LTL Formula: globally( deliver(bench, loading dock) or
idle() or search(wine glass))

• APs: prop 1 = “drop off long chair to loading dock”, prop 2 = “wait”, prop 3 = “look
for glass for alcoholic beverage”

• Positive Trace: [deliver(bench, loading dock)], [idle()],
[search(wine glass)]

• Negative Trace: [idle()], [idle()], [search(wine glass), deliver(bench,
loading dock)]

4 EXPERIMENTAL RESULTS

In this section, we present the results of multiple evaluations of NL-to-LTL translation frameworks
and components. In Section 4.1, we measure the performance of common natural language lifting

6
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approaches, evaluated on four existing datasets in addition to the three datasets we present in VLTL-
Bench. In Section 4.2, we evaluate three SOTA NL-to-LTL frameworks on lifted NL to lifted TL
translation. Note here, that measuring lifted translation performance on existing datasets is particularly
difficult, as they present varying degrees of clarity in their lifted natural language elements. In both
translation evaluations, we use the pyModelChecking library (Casagrande, 2024) to determine logical
equivalence. The CW (MacGlashan et al., 2015), GLTL (Gopalan et al., 2018), and Navi (Wang et al.,
2021) datasets have been processed to include lifted natural language components by (Chen et al.,
2023), and we perform similar processing of the Conformal dataset (Wang et al., 2025) to include
it in our evaluation. In Section 4.3 we develop and evaluate two grounding baselines on our three
datasets. In Section 4.4, we assemble the best results from the three individual evaluations to perform
the first end-to-end translation evaluation. In Section 4.5 we perform our novel verification evaluation
over the example traces of our dataset.

4.1 LIFTING EVALUATION

First, we evaluate four language models on the natural language lifting task. The LLM-based
approaches each use the lifting prompt template from the NL2TL framework (Chen et al., 2023),
which includes few-shot ground-truth NL to lifted NL examples from each of the datasets. The
input to both models is a natural language sentence and we compare the prediction made by the
model against the ground-truth lifted natural language using the lifting accuracy metric defined in
Section 3.3. We present the results in Table 3 where we see the linguistic complexity of our datasets
is highlighted in the accuracies, as even the best scoring model (GPT-4.1) reduces in performance on
our new datasets. This performance drop is even more significant on the lower-cost, smaller GPT
models. This indicates our success in increasing evaluation complexity.

Table 3: Comparison of lifting approaches.

Mean LiftAcc (%)
S&R TL WH

Model GLTL CW CF Navi (ours) (ours) (ours)

GPT-3.5-turbo 81.6 78.6 76.8 71.0 65.3 59.4 67.9
GPT-4o-mini 84.9 82.3 85.6 81.0 66.7 63.1 68.9
GPT-4.1-mini 97.7 95.9 96.1 97.1 94.4 96.6 93.1

4.2 LIFTED TRANSLATION EVALUATION

Next, we evaluate the lifted translation capabilities of the three NL-to-LTL frameworks—nl2spec,
NL2LTL, and NL2TL. In order to analyze the performance of their lifted translation abilities, the
ground-truth lifted NL specification is given to the translation model, and the resulting lifted LTL
translation is compared against the ground-truth lifted LTL. The formula for the translation accuracy
metric is given in Section 3.3. We present these results in Table 4. Here, we see that lifted translation
can be very successful with both out-of-the-box LLM prompting (nl2spec) and with fine-tuned
seq2seq models. However, as we have noted, we will see in end-to-end evaluation that this is an
overconfident estimation of translation performance as grounding is not considered.

4.3 GROUNDING EVALUATION

In this section, we present the results obtained from our evaluation of our baseline grounding
framework, applied to the ground truth lifted TL from our three VLTL-Bench datasets. We use two
prompting strategies (described in Appendix A.6) applied to three GPT models to provide a broad
evaluation of current grounding capabilities. Our first prompting baseline—few-shot—is composed of
a brief description of the task at hand, accompanied by nine few-shot examples of correct (sentence,
lifted sentence, AP-dictionary) tuples from all three scenarios (as opposed to individual scenarios).
The next strategy is the scenario baseline prompt which includes the full scenario configuration
file, as well as three few-shot examples from the dataset. To measure grounding accuracy, we
parse the resulting AP-dictionary predictions and compare them with our ground-truth knowledge of
the AP-dictionary in each entry. Our metrics are per-AP and per-AP-dictionary accuracy. Per-AP
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Table 4: Comparison of four frameworks on the Lifted NL to Lifted TL translation task. Note that we
provide ground-truth lifted NL specifications.

TransAcc (%)
S&R TL WH

Framework Model GLTL CW CF Navi (ours) (ours) (ours)

GPT-3.5-turbo 37.9 48.1 18.3 9.9 11.9 13.2 13.8
NL2LTL (Fuggitti & Chakraborti, 2023) GPT-4o-mini 38.6 55.4 23.6 10.4 12.3 13.9 12.5

GPT-4.1-mini 51.7 64.6 42.1 39.7 41.6 40.0 37.4

GPT-3.5-turbo 44.4 40.9 35.2 50.3 51.1 46.3 50.2
nl2spec (Cosler et al., 2023) GPT-4o-mini 77.3 80.1 73.5 69.7 74.9 75.8 74.2

GPT-4.1-mini 89.8 92.9 78.3 81.5 89.1 91.6 88.4

NL2TL (Chen et al., 2023), Lang2LTL t5-base 99.9 99.9 94.9 99.7 100.0 100.0 100.0

accuracy is calculated by recording the total number of correctly grounded APs divided by the total
number of APs in the test set, and per-AP-dictionary accuracy is calculated by recording the total
number of completely correct AP-dictionaries, divided by the size of the test set. These results are
presented in Table 5.

Our evaluation of the two grounding baselines reveals that even advanced LLMs struggle to accurately
ground lifted APs into a concrete world state space - even when the parameters of this state space
are provided, as is done in the scenario baseline. We observe that even though the scenario baseline
achieves lower performance on most benchmarks and settings, it beats the few-shot baseline on our
Warehouse scenario when comparing the more powerful reasoning models. As noted in Section 3,
the Warehouse scenario is specifically designed to stress-test grounding and lifting. We conclude
that the provision of the world state space in the scenario baseline includes information that aids
reasoning models in determining which world state conditions are referred to in the lifted APs, but
the overall performance of these baselines on the grounding task remains notably lower than other
tasks involved in verifiable NL-to-LTL translation.

Table 5: Comparison of Grounding approaches. This table displays binary accuracy between predicted
AP Grounding and known AP dictionary. LLM Baseline uses 9 few–shot sentence + lifted sentence +
AP dict examples from every dataset; “Scenario” includes the scenario definition in the prompt and
3 examples from only that dataset. Note that Lang2LTL grounds using cosine similarity between
reference and canonical AP embeddings.

Accuracy (% of APs) Accuracy (% of AP Dictionaries)
Prompt Model S&R Traffic Light Warehouse S&R Traffic Light Warehouse

GPT-3.5-turbo 56.9 69.5 18.3 34.2 51.4 7.4
Few-shot General GPT-4o-mini 82.3 66.5 18.4 68.6 48.4 7.0

GPT-4.1-mini 77.3 67.4 23.8 60.4 45.8 7.8

GPT-3.5-turbo 76.7 37.3 13.6 63.6 20.8 5.0
Few-shot Scenario GPT-4o-mini 66.7 44.8 23.6 44.8 16.8 9.2

GPT-4.1-mini 68.6 27.9 34.4 45.2 15.4 13.0

Lang2LTL (Liu et al., 2023) N/A 77.6 86.2 61.8 59.0 73.6 38.8

4.4 END-TO-END TRANSLATION EVALUATION

Now, we perform and end-to-end evaluation which considers the accumulation of the three individual
translation steps. For all three frameworks, we select the best-performing component (model) from
each of the individual evaluations (lifting, grounding, and translation) to assemble an end-to-end
translation framework which factors in the combined performance of all the translation steps. We see
in Table 6, that as a result of the poor grounding results of all current approaches, the high performance
of the lifting and lifted translation steps is diminished, resulting in a poor overall semantic accuracy
of the final translation. Our datasets show that even the best performing model (NL2TL) does not
approach real-world performance needs, inciting the need for NL-to-TL translation approaches which
consider a concrete world state space.
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Table 6: End-to-end evaluation of all three SOTA frameworks using the best lifting, translation, and
grounding components. We report the binary accuracy of the resulting LTL.

Accuracy (%)
Framework S&R Traffic Light Warehouse

NL2LTL (Fuggitti & Chakraborti, 2023) 35.4 38.4 26.2
nl2spec (Cosler et al., 2023) 34.8 33.6 29.6
NL2TL (Chen et al., 2023) 54.4 60.1 46.2
Lang2LTL (Liu et al., 2023) 58.5 72.1 37.9

4.5 VERIFICATION EVALUATION

Finally, we present the results of our experiments on the verification of LTL outputs from each of
the three NL-to-LTL translation frameworks that we compare. We use the outputs from our lifted
translation evaluation (Table 4) to isolate the verification metric from the lifting task, and apply our
LLM-baseline grounding frameworks. In Table 7, out results demonstrate that even frameworks
exhibiting accurate lifted NL to lifted TL translation suffer a notable decline in performance when
grounding relies on systems similar to our LLM baselines. Furthermore, this evaluation supports the
use of trace satisfaction in place of ground-truth LTL comparison as a metric for grounded translation
accuracy, because the example traces encode the minimum specifications of correctly grounded and
translated LTL. In future frameworks, example traces could be used as part of a feedback loop to
grounding and translation components.

Table 7: Performance (binary accuracy) on S&R, Traffic Light, and Warehouse, broken down into
satisfied holding traces, satisfied not-holding traces, and both. All three frameworks are evaluated on
both grounding strategies using their top-scoring lifted translation model.

S&R Traffic Light Warehouse

Framework Grounding Strategy Sat Unsat Both Sat Unsat Both Sat Unsat Both

NL2LTL (Fuggitti & Chakraborti, 2023)
Few-shot General 61.6 61.4 35.4 64.6 60.2 38.4 52.4 58.6 26.2
Few-shot Scenario 1.06 32.0 7.4 61.8 59.2 36.6 12.4 36.2 9.8

nl2spec (Cosler et al., 2023)
Few-shot General 47.4 48.0 34.8 47.2 46.0 33.6 46.0 44.2 29.6
Few-shot Scenario 34.0 36.4 21.0 40.2 41.8 28.2 32.0 34.6 19.0

NL2TL (Chen et al., 2023)
Few-shot General 75.0 79.4 54.4 80.2 80.6 60.8 71.4 74.8 46.2
Few-shot Scenario 27.5 50.8 22.1 72.6 76.3 54.5 33.3 52.4 23.5

Lang2LTL (Liu et al., 2023) Embedding 43.3 61.9 39.3 44.7 63.0 41.3 21.6 40.1 16.6

5 CONCLUSION

We present the Verifiable Linear Temporal Logic Benchmark. VLTL-Bench is a suite of three new NL-
to-LTL translation datasets that include the standard natural language and LTL pairs, supplemented
with lifted natural language, lifted LTL, and trace examples. These additional features provide
a method for the isolated training and evaluation of individual NL-to-LTL translation framework
components. The provision of trace examples in VLTL-Bench introduces the possibility of a new
type of input that is plausible in real-world translation frameworks, but unrepresented in current
corpora. We acknowledge that the datasets included in the VLTL-Bench suite are generated using a
finite number of linguistic and logical templates, populated by diverse synthetic natural language APs.
VLTL-Bench reveals significant weaknesses in what were previously ironclad NL-to-LTL translation
frameworks. Among these weakness are: the reliance on accurately lifted NL inputs for translation,
lack of accurate grounding components, and lack of example trace inputs in current approaches. We
envision our contribution will encourage exploration of diverse methods for grounded NL-to-LTL
translation, beyond the use of LLMs.
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A APPENDIX

In this appendix, we present a detailed overview of linear temporal logic in A.1, a discussion of
verification via Kripke structures in A.2, a quantitative comparison of our VLTL-Bench dataset
against existing datasets as well as examples from those datasets in A.5, our developed prompts for
the baseline grounding approaches in A.6, the configuration files for our three scenarios in A.8, and
finally our estimated compute resource usage and our external code and license information in A.9.

A.1 LINEAR TEMPORAL LOGIC

Linear temporal logic (LTL) is a modal extension of classical propositional logic that enables
reasoning about how truths evolve over a discrete, linear timeline (Zhu, 2021). Formulas in LTL are
interpreted over infinite sequences (or “traces”) of states

σ = s0, s1, s2, . . . ,

where each state si (which has a set of conditions) specifies which atomic propositions πµ hold
true at time i. This framework makes it possible to specify and verify both safety properties (e.g.,
“nothing bad ever happens”) and liveness properties (e.g., “something good eventually happens”),
and it underpins many model-checking techniques for reactive systems.

The syntax of LTL is given by the following grammar:

φ ::= π | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2

| ⃝φ | ♢φ | □φ | φ1 ∪ φ2

where π ranges over a finite set of atomic propositions; ¬, ∧, ∨, and ⇒ are the standard Boolean
connectives; ⃝ (next) asserts that its operand holds in the immediately following state; ♢
(eventually) asserts that its operand holds at some point in the future; □ (always) asserts
that its operand holds at every future state; φ1 ∪ φ2 (until) asserts that φ1 continuously holds until
φ2 becomes true. Formally, we write σ, i |= φ to mean “formula φ holds at position i in trace σ.” For
example:

σ, i |= φ1 ∪ φ2 iff ∃k ≥ i : σ, k |= φ2 ∧ ∀j ∈ [i, k) : σ, j |= φ1.

Although our focus is on discrete-time LTL, many of these ideas carry over to related formalisms
such as signal temporal logic (STL) for continuous-time, real-valued signals (Madsen et al., 2018).
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A.2 VERIFICATION VIA KRIPKE STRUCTURES AND FLUENTS

Verification of LTL specifications is typically conducted using a Kripke structure, which is a formal
transition system comprising states, transitions, and labels indicating which atomic propositions hold
true in each state. Formally, a Kripke structure is defined as a tuple M = (S, S 0, R, L), where:

• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• R ⊆ S × S is the transition relation, specifying allowed state transitions,
• L : S → 2AP is a labeling function mapping states to the sets of atomic propositions that

are true in each state.

Verification involves checking whether every possible path through the Kripke structure satisfies the
given LTL formula. For instance, safety properties such as “a collision never occurs” require that no
path through the structure contains a state labeled with the proposition collision. Conversely,
liveness properties such as “a goal is eventually reached” demand the existence of a future state in
every valid path labeled with the proposition goal. Additionally, verification explicitly involves
fluents—timestamped state variables that indicate when certain conditions or states become true.
Each fluent captures both the state variable (atomic proposition) and the time step at which the
transition into the corresponding state occurs. Formally, a fluent can be represented as a tuple (πµ, t),
indicating that proposition πµ becomes true at time step t due to a state transition within the Kripke
structure. Fluents bridge the gap between high-level temporal specifications and lower-level state
transitions, facilitating practical model checking and control synthesis in robot control systems.
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A.3 VLTL-BENCH LTL EXPRESSION STATISTICS

Token / Operator Search & Rescue Traffic Light Warehouse
and 5536 5508 5297
double implies 1104 1141 1091
finally 3835 3842 3918
globally 9899 9851 9820
implies 5164 5295 5264
next 12144 12304 11713
not 6781 6724 6593
or 3198 3229 3054
prop 1 14440 14466 14193
prop 2 7934 7964 7835
prop 3 3740 3831 3825
until 1112 1088 1147

Table 8: Operator splits and template breakdowns by domain.

A.4 VLTL-BENCH NEW TEMPLATES

We then craft 7 of our own templates to fill perceived gaps in specification coverage. Of these
templates, 4 entries include new lifted LTL halves (marked below with a *), and 3 include new lifted
NL halves.

NL LTL
finally ( not prop 1) “eventually, avoid prop 1”
globally ( not prop 1) “always avoid prop 1”; “prop 1 must never occur”
next prop 1 “at the next time step, prop 1 holds”
prop 1 until prop 2 “prop 1 must always hold at all times before prop 2”
finally (prop 1 and prop 2) OLD: “Eventually, both prop 1 and prop 2 will hold simultaneously”

NEW: “At some point, prop 1 and prop 2 will both hold at the same
time.”

globally (prop 1 and prop 2) OLD: “Both prop 1 and prop 2 hold at every step.”
NEW: “At all time steps, prop 1 and prop 2 both hold.”

finally (prop 1 or prop 2) OLD: “eventually, either prop 1 or prop 2”
NEW: “either prop 1 or prop 2 will hold at some point in time.”

Table 9: Examples of NL–LTL mappings. OLD/NEW entries show updated phrasing.

A.5 EXISTING DATASETS

Cleanup World (CW).

• Sentence: “go to the blue room keep going and stop when you reach the green room”
• LTL Formula: “finally(blue room and finally green room)”
• Grounded Sentence: “go to the prop 1 keep going and stop when you reach the green

prop 2,”
• APs: prop 1 = go to blue room, prop 2 = go to green room.

GLTL.

• Sentence: “enter the blue or red room and proceed until the green room”
• LTL Formula: “finally((red room or blue room) and finally green room)”
• Grounded Sentence: “enter the prop 2 or prop 1 and proceed until the green prop 3,”
• APs: prop 1 = go to red room, prop 2 = go to blue room, prop 3 = go to green room
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Navi.

• Sentence: “at some time get hold apple or whenever acquire pear”
• LTL Formula: “finally(get hold v apple n or finally(acquire v pear n)”
• Grounded Sentence: “at some time prop 1 or whenever prop 2”
• APs: prop 1 = get hold v apple n, prop 2 = acquire v pear n

ConformalNL2LTL.

• Sentence: “Stay in parking lot 4 until you reach car 5”
• LTL Formula: “parking lot 4 until car 5”
• Grounded Sentence: “Stay in prop 1 until you reach prop 2”
• APs: prop 1 = go to parking lot 4, prop 2 = go to car 5

A.6 GROUNDING PROMPTS

This section includes the few-shot examples used in our grounding prompt baselines. The few-shot
baselines uses all of the following in its prompt, while the scenario baseline includes only the scenario
specific few-shot examples combined with the scenario description, given in Appendix A.8

Few-shot Prompt:

”role”: ”system”, ”content”: ”You are an LTL translation assistant, your goal is to return the desired
prop dict, a dictionary that relates natural language atomic proposition/predicate references to their
canonical/known representation in the scenario.”,
”role”: ”user”, ”content”:
Few-shot Examples:
{examples from ALL domains, shown in appendix A.7, total of 9
examples}
Now predict:
Sentence: {sentence}
Lifted: {lifted sentence}
Prop dict:

Scenario Prompt:

”role”: ”system”, ”content”: ”You are an LTL translation assistant, your goal is to return the desired
prop dict, a dictionary that relates natural language atomic proposition/predicate references to their
canonical/known representation in the scenario.”,
”role”: ”user”, ”content”:
Scenario Configuration: scenario yaml, given in appendix A.8
Few-shot Examples:
{examples from this specific scenario, shown in Appendix A.7}
Now predict:
Sentence: {sentence}
Lifted: {lifted sentence}
Prop dict:
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A.7 FEW-SHOT EXAMPLES BY SCENARIO

Warehouse Examples

Sentence: [”The system must eventually, avoid prop 1”]
Lifted Sentence: [”The system must eventually, avoid prop 1”]
prop dict: {
”prop 1”: {
”action canon”: ”deliver”,
”action ref”: ”drop off”,
”args canon”: [”sandwich loading dock”],
”args ref”: [”square food loading dock”]
}
}
Sentence: [”Whenever prop 1 holds, prop 2 holds as well.”]
Lifted Sentence: [”Whenever prop 1 holds, prop 2 holds as well.”]
prop dict: {
”prop 1”: {
”action canon”: ”idle”,
”action ref”: ”remain still”,
”args canon”: [],
”args ref”: []
},
”prop 2”: { ”action canon”: ”get help”,
”action ref”: ”call for help”,
”args canon”: [],
”args ref”: []
}
}

Sentence: [”If prop 2 holds, then in the next step prop 3 persists until prop 1 holds, or else prop 3
holds forever.”]
Lifted Sentence: [”If prop 2 holds, then in the next step prop 3 persists until prop 1 holds, or else
prop 3 holds forever.”]
prop dict: {
”prop 1”: {
”action canon”: ”pickup”,
”action ref”: ”grab”,
”args canon”: [”hot dog”],
”args ref”: [”bunned sausage”]
},
”prop 2”: {
”action canon”: ”pickup”,
”action ref”: ”grab”,
”args canon”: [”potted plant”],
”args ref”: [”plant”]
},
”prop 3”: { ”action canon”: ”search”,
”action ref”: ”search for”,
”args canon”: [”cup”],
”args ref”: [”beverage cup”]
}
}
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Search and Rescue Examples

Sentence: [”This controller must always avoid prop 1”]
Lifted Sentence: [”This controller must always avoid prop 1”]
prop dict: {
”prop 1”: {
”action canon”: ”record”,
”action ref”: ”begin recording”,
”args canon”: [”fire source”],
”args ref”: [”fire source”]
}
}

Sentence: [”In this task, take a photo of flood, then return home.”]
Lifted Sentence: [”In this task, prop 1 then prop 2”]
prop dict: {
”prop 1”: {
”action canon”: ”photo”,
”action ref”: ”take a photo of”,
”args canon”: [”flood”],
”args ref”: [”flood”]
},
”prop 2”: {
”action canon”: ”go home”,
”action ref”: ”return home”,
”args canon”: [],
”args ref”: []
}
}

Sentence: [”If every record flood is eventually followed by talking to the safe victim, then avoid the
impending debris must occur infinitely often.”]
Lifted Sentence: [”If every prop 1 is eventually followed by prop 2 then prop 3 must occur
infinitely often.”]
prop dict: {
”prop 1”: {
”action canon”: ”record”,
”action ref”: ”record”,
”args canon”: [”flood”],
”args ref”: [”flood”]
},
”prop 2”: {
”action canon”: ”communicate”,
”action ref”: ”talk to”,
”args canon”: [”safe victim”],
”args ref”: [”safe victim”]
},
”prop 3”: {
”action canon”: ”avoid”,
”action ref”: ”avoid”,
”args canon”: [”impending debris”],
”args ref”: [”impending debris”]
}
}
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Traffic Light Examples

Sentence: [”You”, ”must”, ”eventually,”, ”avoid”, ”set”, ”east”, ”light”, ”yellow.”]
Grounded: [”You”, ”must”, ”eventually,”, ”avoid”, ”prop 1”]
prop dict: {
”prop 1”: {
”action canon”: ”change”, ”action ref”: ”set”, ”args canon”: [”light east”, ”yellow”], ”args ref”:
[”east light”, ”yellow”] } }
Sentence: [”Both”, ”change”, ”west”, ”light”, ”red”, ”and”, ”take”, ”a”, ”video”, ”of”, ”the”, ”car”,
”on”, ”southwest”, ”10th”, ”avenue”, ”hold”, ”at”, ”every”, ”step.”]
Grounded: [”Both”, ”prop 1”, ”and”, ”prop 2”, ”hold”, ”at”, ”every”, ”step.”]
prop dict: {
”prop 1”: {
”action canon”: ”change”,
”action ref”: ”change”,
”args canon”: [”light west”, ”red”],
”args ref”: [”west light”, ”red”]
},
”prop 2”: {
”action canon”: ”record”,
”action ref”: ”take a video of”,
”args canon”: [”car”, ”southwest 10th avenue”],
”args ref”: [”car”, ”southwest 10th avenue”]
} }
Sentence: [”If”, ”take”, ”a”, ”picture”, ”of”, ”the”, ”car”, ”on”, ”northwest”, ”6th”, ”street”, ”holds”,
”and”, ”set”, ”east”, ”light”, ”green”, ”holds”, ”next,”, ”then”, ”request”, ”assistance”, ”holds”, ”in”,
”the”, ”step”, ”after”, ”that.”]
Grounded: [”If”, ”prop 1”, ”holds”, ”and”, ”prop 2”, ”holds”, ”next,”, ”then”, ”prop 3”, ”holds”,
”in”, ”the”, ”step”, ”after”, ”that.”]
prop dict: {
”prop 1”: {
”action canon”: ”photo”,
”action ref”: ”take a picture of”,
”args canon”: [”car”, ”northwest 6th street”],
”args ref”: [”car”, ”northwest 6th street”]
},
”prop 2”: {
”action canon”: ”change”,
”action ref”: ”set”,
”args canon”: [”light east”, ”green”],
”args ref”: [”east light”, ”green”]
},
”prop 3”: {
”action canon”: ”get help”,
”action ref”: ”request assistance”,
”args canon”: [],
”args ref”: []
}
}
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A.8 SCENARIO CONFIGURATIONS

In this section, we provide the scenario configuration files that are inserted into the grounding prompts
and used for data generation.

Figure 3: Warehouse Scenario Configuration file
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Figure 4: Traffic Light Scenario Configuration file
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Figure 5: Search and Rescue Scenario Configuration file
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A.9 COMPUTE RESOURCES AND EXTERNAL CODE AND LICENSE INFORMATION

All LLM inference was performed using the OpenAI API. Approximately $30.00 in compute credits
were used for our evaluations. The T5-base model used by NL2TL was trained and tested locally on
a machine using an Nvidia GeForce RTX 4070Ti Super 16 GB GPU, an Intel i9 14900KF, and 64
GB of RAM. Training took approximately 40 minutes using a batch size of 16 and a learning rate of
2e−5 for 3 epochs.

The nl2spec framework is released at https://github.com/realChrisHahn2/nl2spec
under the MIT license, the NL2TL framework is released at https://github.com/
yongchao98/NL2TL?tab=readme-ov-file with no attached license, the NL2LTL frame-
work is released at https://github.com/IBM/nl2ltl under the MIT license, and the
pyModelChecking library is released at https://github.com/albertocasagrande/
pyModelChecking under the GNU General Public License.

A.10 LARGE LANGUAGE MODEL DISCLOSURE

During the preparation of this paper, the authors employed large language models (LLMs) as assistive
tools for limited tasks including proof-reading, text summarization, and the discovery of related work.
All substantive research contributions, analyses, and claims presented in this paper were conceived,
developed, and verified by the authors. The authors maintain full ownership and responsibility for the
content of the paper, including its technical correctness, originality, and scholarly contributions.

23

https://github.com/realChrisHahn2/nl2spec
https://github.com/yongchao98/NL2TL?tab=readme-ov-file
https://github.com/yongchao98/NL2TL?tab=readme-ov-file
https://github.com/IBM/nl2ltl
https://github.com/albertocasagrande/pyModelChecking
https://github.com/albertocasagrande/pyModelChecking

	Introduction
	Background and Related Work
	Preliminaries
	Existing Benchmark Datasets

	The Verifiable Linear Temporal Logic Benchmark
	Grounded Scenario Configuration
	Data Synthesis
	Metrics
	Datasets

	Experimental Results
	Lifting Evaluation
	Lifted Translation Evaluation
	Grounding Evaluation
	End-to-End Translation Evaluation
	Verification Evaluation

	Conclusion
	Appendix
	Linear Temporal Logic
	Verification via Kripke Structures and Fluents
	VLTL-Bench LTL Expression Statistics
	VLTL-Bench New Templates
	Existing Datasets
	Grounding Prompts
	Few-shot Examples by Scenario
	Scenario Configurations
	Compute Resources and External Code and License Information
	Large Language Model Disclosure


