

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VERIFIABLE NATURAL LANGUAGE TO LINEAR TEMPO- RAL LOGIC TRANSLATION: A BENCHMARK DATASET AND EVALUATION SUITE

Anonymous authors

Paper under double-blind review

ABSTRACT

Empirical evaluation of state-of-the-art natural language (NL) to temporal logic (TL) translation systems reveals near-perfect performance on existing benchmarks. However, current studies only measure the accuracy of the *translation* of NL logic into formal TL, ignoring a system’s capacity to *ground* atomic propositions into new scenarios or environments. This is a critical feature, necessary for the *verification* of resulting formulas in a concrete state space. In this paper, we introduce the **Verifiable Linear Temporal Logic Benchmark (VLTL-Bench)**, a unifying benchmark for automated NL-to-LTL translation. The dataset consists of three unique state spaces and thousands of diverse natural language specifications and their corresponding formal temporal logic specifications. Moreover, the benchmark contains sample traces to verify the temporal logic expressions. While the benchmark directly supports end-to-end evaluation, we observe that many frameworks decompose the process into i) lifting, ii) grounding, iii) translation, and iv) verification. The benchmark provides ground truths after each of these steps to enable researchers to improve and evaluate different substeps of the overall problem. Using the benchmark, we evaluate several state-of-the-art NL-to-TL translation models and frameworks, including nl2spec, NL2TL, NL2LTL, Lang2LTL, sequence-to-sequence translation, and various LLM prompting techniques. Our evaluation confirms that existing work is capable of reliably performing lifting and translation with high accuracy, while it exposes their struggles to ground the translation into a state space, which stems from the lack of existing datasets.

1 INTRODUCTION

Formal verification is essential for the safe deployment of autonomous robots (Tellex et al., 2020; Raman et al., 2013), cyber-physical controllers (Konur, 2013), and safety-critical software systems (Alur, 2015). Verification first begins with a specification that defines intent in precise temporal logic (TL) (Watson & Scheidt, 2005; Bellini et al., 2000). However, human stakeholders typically articulate intent in ambiguous natural language (NL) (Veizaga et al., 2021; Lamar, 2009; Lafi et al., 2021), and the conversion of this NL to TL is a challenging and time-consuming process that requires human experts (Yin et al., 2024; Cardoso et al., 2021; Thistle & Wonham, 1986). Due to this complexity, automated NL-to-TL translation has emerged as a core research problem (Chen et al., 2023; Zrelli et al., 2024; He et al., 2022; Wang et al., 2025). Recently, neural sequence-to-sequence models (Hahn et al., 2022; Pan et al., 2023; Hsiung et al., 2022), grammar-constrained decoders (Post & Vilar, 2018; Geng et al., 2024), and large language models (LLMs) (Xu et al., 2024; Chen et al., 2023; Fuggitti & Chakraborti, 2023; Cosler et al., 2023) have all demonstrated promising results on benchmark corpora, with reported accuracies often exceeding 90%.

Despite these gains, evaluations are misleading as most datasets only test *lifted* translation, where temporal logic formulas contain abstract placeholders for atomic propositions (APs). The harder task of *grounded* translation—instantiating APs with domain-specific actions and arguments—is usually left unmeasured. This imbalance stems from limitations of current datasets, which omit the annotations required to separately evaluate lifting, translation, and grounding. As a result, current frameworks optimize for partial tasks, leaving open the more difficult but necessary problem of grounding for producing fully executable specifications.

Figure 1: Overview of our dataset synthesis and evaluation framework for NL-to-LTL translation. The framework used a configuration file to define concrete and unique scenarios. The data synthesis generates the NL and TL pairs with associated traces for verification while providing ground truth results for intermediate components.

Benchmarks for NL-to-TL translation include CW (MacGlashan et al., 2015), GLTL (Gopalan et al., 2018), Navi (Wang et al., 2021), and Conformal (Wang et al., 2025). Their limitations are fourfold. (i) Although recent frameworks decompose the task into lifting, translation, and grounding, these benchmarks supply ground truth only for the end-to-end result (NL-TL pairs), preventing assessment of intermediate components. (ii) CW and GLTL omit grounding entirely, yielding translations without executable semantics. For example, the NL specification: “Go to the green room and then go to the blue room.” is mapped to the LTL expression: “ $\Diamond G \rightarrow \Diamond B$ ”, without providing a grounded definition of the predicates G and B . (iii) Navi and Conformal nominally support grounding but rely on overly simplistic state spaces (e.g., Navi’s colored-room grid), which fails to capture the referential and contextual ambiguities of natural language. (iv) Execution traces/trajectories for independent semantic verification (e.g., via model checking), are not provided, preventing rigorous evaluation.

In this paper, we introduce the **Verifiable Linear Temporal Logic Benchmark (VLTL-Bench)**, a benchmark that grounds linear temporal logic (LTL) in a concrete world state space while broadening linguistic and logical coverage through more diverse atomic propositions. As illustrated in Figure 1, VLTL-Bench exposes every stage of the NL-to-TL pipeline: raw and lifted NL specifications, an AP-to-Reference dictionary, lifted and grounded LTL formulas, and both satisfying and unsatisfying traces. Our dataset synthesis and evaluation framework for NL-to-LTL translation leverages scenario configurations to construct grounded action/target combinations, from which we synthesize diverse natural language representations and integrate them into sentence, LTL, and trace templates, yielding corpora whose components can be used individually or combined for holistic evaluation. This layered design makes it possible to isolate performance on lifting, translation, grounding, and verification individually, while also enabling end-to-end evaluation. We provide four scenario configuration files and construct a **Kitchen Assistant**, Traffic light, Search & Rescue, and Warehouse dataset. Using these four datasets we evaluate the capabilities and limitations of state-of-the-art NL to TL translation frameworks. In summary, we propose: (i) a single, extensible benchmark for evaluating all NL-to-TL translation components; (ii) the first verification evaluation using satisfying and unsatisfying traces; and (iii) an empirical study that reveals both new failure modes in current methods and the severe accuracy decline when grounding is required.

The remainder of this paper is organized as follows. Section 2 covers preliminaries for LTL and model checking. Section 3 contains a detailed description of the Verifiable Linear Temporal Logic Benchmark datasets, as well as details on how they were synthesized. Section 4 includes an evaluation of current NL-to-TL frameworks on both Verifiable Linear Temporal Logic Benchmark and existing datasets. We conclude our paper in 5. Additional details may be found in the Appendix A

108

2 BACKGROUND AND RELATED WORK

109
110 In this section we introduce necessary notation and background information on temporal logic systems
111 including terminology, linear temporal logic symbols, and existing NL-to-TL datasets.
112113 **Linear Temporal Logic.** The syntax of LTL is given by the following grammar:
114

115
$$\begin{aligned} \varphi ::= & \pi \mid \neg\varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \Rightarrow \varphi_2 \\ & \mid \bigcirc\varphi \mid \lozenge\varphi \mid \square\varphi \mid \varphi_1 \cup \varphi_2 \end{aligned}$$

116

117 We further discuss model checking with linear temporal logic in Appendix A.1 and Appendix A.2.
118119

2.1 PRELIMINARIES

120 In this section, we formally define a number of key terms necessary to describe and evaluate NL-to-TL
121 translation systems. In order to provide a cogent description of these systems, as well as a robust
122 evaluation, we define these terms as follows:
123124 **Scenario:** Referred to in existing work as the “World”, “Environment”, or “Space”. A set S of
125 conditions appearing on a trace.
126127 **Condition:** In model checking, a condition is a uniquely-named Boolean variable c_i .
128129 **Atomic Proposition:** $\pi \in \Phi$, where Φ is the set of propositional variables in an LTL expression.
130 During LTL verification, π_i is assigned a value by matching with a condition $c \in S$.
131132 **Lifting:** $\lambda: \text{NL} \rightarrow \Phi$, extracting substrings corresponding to APs from natural language.
133134 **Grounding:** $g(\pi) = c$, replacing an abstract AP in an LTL expression with a condition $c \in S$.
135136 **Translation:** $\tau: \text{NL} \rightarrow \text{LTL}$, converting a natural language string into a formal LTL expression.
137138 **Verification:** Given a trace σ or Kripke structure K , check whether a grounded LTL expression $g(\varphi)$
139 holds. For trace-based verification, construct a minimally satisfactory K from σ .
140141

2.2 EXISTING BENCHMARK DATASETS

142 In this section, we review existing benchmarks for NL-to-TL translation. We compare these corpora
143 in terms of linguistic and logical complexity, and support for evaluation of different framework
144 modules in Table 1. We measure the complexity using the number of unique words appearing in
145 natural language specifications (#Words), as well as the number of unique temporal logic expressions
146 (#TL). In terms of modules, we report if a dataset has support for evaluation of lifting, grounding,
147 and verification. We also provide examples from existing datasets in Appendix A.5.
148149 In Table 1, we observe that the older datasets **Cleanup World (CW)** (MacGlashan et al., 2015) and
150 **GLTL** (Gopalan et al., 2018) from the pre-LLM era have limited complexity both in terms of unique
151 words and temporal logic expressions. While they support evaluation of translation, the lifting data is
152 not explicitly given, the APs do not vary in their form to any meaningful degree, and they can be
153154 Table 1: Comparison of existing LTL benchmarks and VLTL-Bench. We report the number of unique
155 words across all NL specifications and the number of unique LTL specifications. Additionally, we
156 report support for lifting, grounding, and verification.
157

Dataset	# Words	# TL	Lifting	Translation	Grounding	Verification
CW (MacGlashan et al. (2015))	184	37	~	✓	✗	✗
GLTL (Gopalan et al. (2018))	183	37	~	✓	✗	✗
Navi (Wang et al. (2021))	131	6414	✗	✓	~	✗
Conformal (Wang et al. (2025))	439	212	~	✓	~	✗
VLTL-Bench Warehouse	1028	5991	✓	✓	✓	✓
VLTL-Bench Traffic Light	217	6196	✓	✓	✓	✓
VLTL-Bench Search and Rescue	245	5425	✓	✓	✓	✓
VLTL-Bench Kitchen Assistant	376	7385	✓	✓	✓	✓

lexically identified in both the NL and TL elements of each entry ("green room" $\leftrightarrow G$, "blue room" $\leftrightarrow B$, etc.). The **Navi**. corpus, introduced by (Wang et al., 2021), couples NL commands with LTL formulas in a grid world. As Table 1 shows, Navi exhibits a substantial increase in logical complexity, with 6,414 unique formulas and support for partial grounding. Its 221 unique APs make it a strong test of translation and lexical robustness, though this improvement comes at the cost of well-defined grounding rules: the corpus does not specify formal APs, providing instead POS-tagged natural language representations. As reflected in Table 1, the **Conformal** (Wang et al., 2025) dataset introduces 439 unique words and 212 formulas with explicit grounding, but its scale is modest at 1,000 examples. In contrast, VLTL-Bench provides a testbed suited to holistic evaluation across lifting, translation, grounding, and verification. We provide a more detailed quantitative comparison between these datasets and VLTL-Bench in Section 3.4.

3 THE VERIFIABLE LINEAR TEMPORAL LOGIC BENCHMARK

In the following subsections, we first introduce *Grounded Scenario Configuration*, which formalizes the world model by defining types, targets, and actions that ensure well-typed logical atoms. We then describe our *Data Synthesis* pipeline, which instantiates expert-crafted NL–LTL templates with scenario-specific atoms to produce paired sentences, formulas, and traces. Next, we present the *Metrics* used to evaluate each stage of the NL-to-LTL pipeline, and finally, we detail the *Datasets* generated from three scenario definitions, highlighting their unique challenges and properties.

3.1 GROUNDED SCENARIO CONFIGURATION

To formalize how natural language specifications map onto executable logical structures, we distinguish three interconnected components: **types**, **targets**, and **actions**. *Types* serve as abstract categories that describe what kinds of objects or entities an action can take as input (e.g., a location, an item, or a threat). *Targets* are the grounded instantiations of these action–type combinations, where abstract slots are filled with concrete constants. *Actions* are verbs that capture the capabilities of the agent; each action comes with a signature that specifies the expected types of its arguments. Together, this hierarchy ensures that linguistic expressions can be systematically mapped into well-typed logical atoms: types constrain argument structure, actions define the permissible predicates, and targets bind them to domain-specific instances. Each dataset is parameterized by a *scenario*—a small, declarative world model that provides:

Types $t \in \mathcal{T}$: denotes the sort of parameters accepted by an action (e.g. `item` or `location`).

Targets \mathcal{L} : Specific instances of typed arguments, (e.g. an argument `apple` of type `item`, or an argument `loading_dock` of type `location`).

Actions $\mathcal{A}_{\text{args}}$: verbs the agent may perform, which may have one or more targets, (e.g. `idle()` has no targets, `deliver(apple, loading_dock)` takes two—`item` and `location`).

3.2 DATA SYNTHESIS

To produce our datasets, we began with the 36 expert-crafted lifted NL–LTL pairs of the nl2spec benchmark (Cosler et al., 2023), and we added 7 new ones of our own (provided in Appendix A.4). We then transformed these 43 examples into templates to support diverse NL–LTL synthesis. Finally, for each NL–LTL example, we crafted one pair of traces—one satisfying and one violating.

Each dataset entry includes a tuple of these three artifacts,

$$\underbrace{\{\text{sentence, lifted sentence}\}}_{\text{NL (raw \& lifted)}}, \underbrace{\varphi_G, \varphi_L}_{\text{LTL (grounded \& lifted)}}, \underbrace{\sigma_{\text{good}} \models \varphi_G, \sigma_{\text{bad}} \not\models \varphi_G}_{\text{Traces (holds \& } \neg \text{ holds)}},$$

and is algorithmically constructed with the following steps:

1. **Template selection.** Uniformly choose a lifted template. Each template has an arity that determines how many atomic propositions must be instantiated.
2. **Atom sampling.** For each argument slot in the template, draw a unique atomic proposition by randomly selecting actions and arguments from the scenario's \mathcal{A}_t and \mathcal{L} . Let k denote

Figure 2: Overview of an isolated evaluation of each individual component. Lifting accuracy measures accuracy of predicted natural language AP spans, grounding accuracy measures the performance on mapping AP spans to world state conditions, translation accuracy measures the performance on NL-LTL translation on the token-level, and verification accuracy is an approach to measuring whether a grounded LTL expression holds on a trace.

the total number of sampled atoms. Fill the LTL skeleton with these k atoms to obtain the *grounded* formula φ_G , and replace each atom by prop_i to obtain the *lifted* formula φ_L .

3. **NL realization.** Fill the template pattern with each atom’s surface form (including articles/prepositions), apply morphological fixes (gerunds, capitalization), and record token-level spans. Emit both the free-form sentence and its `grounded_sentence` with explicit prop_i placeholders.
4. **Trace filling.** Apply the template’s trace patterns to the list $[\text{prop}_1, \dots, \text{prop}_k]$, yielding one positive trace (satisfies φ_G) and one negative trace (violates φ_G).

This rich annotation supports four independent evaluation axes, displayed in Figure 2.

3.3 METRICS

In this section, we introduce four complementary metrics that capture performance at different levels of the NL-to-TL pipeline, which is illustrated in Figure 2. Lifting accuracy measures the identification of atomic proposition spans in natural language, grounding accuracy evaluates their mapping to world state conditions, translation accuracy assesses logical equivalence between predicted and reference formulas, and verification accuracy checks whether predicted formulas satisfy or violate traces as expected. Together, these metrics provide a comprehensive view of system performance.

Lifting accuracy. For each token \mathbb{S}_i in a sentence, the system predicts a label $\hat{\lambda}(\mathbb{S}_i) \in \{0, 1, \dots, k\}$, where 0 denotes background and n denotes membership in π_n .

$$\text{LiftAcc} = \frac{1}{|\mathbb{S}|} \sum_{i=1}^{|\mathbb{S}|} [\hat{\lambda}(\mathbb{S}_i) = \lambda(\mathbb{S}_i)].$$

This measures the token-level classification accuracy of mapping substrings to atomic propositions.

Translation accuracy. Given a natural language specification s , the system produces a predicted TL formula $\hat{\varphi}$. Translation accuracy is an exact match between the predicted and reference formulas:

$$\text{TransAcc} = [\hat{\varphi} \equiv \varphi],$$

where \equiv denotes logical equivalence. When working with lifted NL, the target is φ_L ; for grounded NL, the target is φ_G .

Grounding accuracy. Let $\{\text{prop}_1, \dots, \text{prop}_k\}$ be lifted placeholders and g_S the gold grounding function. The system predicts \hat{g}_S .

$$\text{GroundAcc} = \frac{1}{k} \sum_{j=1}^k [\hat{g}_S(\text{prop}_j) = g_S(\text{prop}_j)].$$

This measures how well predicted atoms match their reference predicates and arguments.

Verification accuracy. For each dataset entry, two traces are provided: a positive trace σ_{good} (satisfies φ_G) and a negative trace σ_{bad} (violates φ_G). Given a predicted grounded formula $\hat{\varphi}_G$, verification

270 Table 2: Comparison of NL–LTL datasets. We report the total number of entries (Size), the total
 271 number of unique TL entries, and the total number of unique APs appearing in the TL entries.
 272 [†]Note that these datasets do not explicitly provide quantities of actions and arguments, and these are
 273 estimated by the authors.

Dataset	Size	Unique TL	# APs	# Actions	# Args
GLTL Gopalan et al. (2018) [†]	11,109	37	4	1	4
CW MacGlashan et al. (2015) [†]	3,371	37	4	1	4
Conformal Wang et al. (2025) [†]	1,000	212	239	4	235
Navi Wang et al. (2021) [†]	7,474	6,414	221	–	26
Kitchen Assistant [VLTL-Bench]	10,000	7,385	172	9	36
Search-and-rescue [VLTL-Bench]	7,304	5,425	220	7	44
Traffic-light [VLTL-Bench]	7,319	6,196	5,046	4	175
Warehouse [VLTL-Bench]	7,457	5,991	5,074	5	82

286 checks whether the satisfaction relation holds:

$$\text{VerifAcc} = \frac{1}{2} \left([\sigma_{\text{good}} \models \hat{\varphi}_G] + [\sigma_{\text{bad}} \not\models \hat{\varphi}_G] \right).$$

290 3.4 DATASETS

292 We construct **four** scenario definitions accompanied by action and target references, namely a **Kitchen**
 293 **Assistant**, Traffic Light, Search & Rescue, and Warehouse scenario. The details are provided in
 294 Appendix A.8. Using our proposed data synthesis, we generate **four** new datasets for training and
 295 evaluation. Each of our **four** datasets is designed to highlight distinct challenges for NL-to-LTL
 296 translation: the *Traffic Light Control* scenario is intended to balance action and argument grounding
 297 challenges, including a large library of “street name” arguments, but a smaller set of actions; the
 298 *Search-and-Rescue* scenario emphasizes multi-step temporal dependencies and deliberately includes
 299 ambiguous actions such as “avoid” and “communicate” to stress-test the system’s ability to distinguish
 300 between natural language verbs and temporal operators; the **Kitchen Assistant** scenario includes
 301 intentionally ambiguous action and argument references in order to stress both action and argument
 302 grounding simultaneously; and the *Warehouse* scenario introduces high semantic and linguistic
 303 variability by incorporating all 80 COCO object classes, making grounding especially complex. In
 304 this section, we use an entry from the *Warehouse* dataset as an example to illustrate the structure and
 305 properties of our data; additional examples from the other scenarios are provided in Appendix A.7.

306 **Warehouse.** Our *Warehouse* dataset simulates a realistic warehouse retrieval scenario, explicitly
 307 designed for scalability and complexity in grounding tasks. *Warehouse* is our most distinct dataset
 308 with its inclusion of all 80 COCO (Lin et al., 2014) object classes, significantly enriching the semantic
 309 and linguistic complexity and variation of atomic propositions. As with each of our datasets, all
 310 entries include LTL formulas with explicit grounding and alignment at token-level granularity, as
 311 well as verified positive (“good”) and negative (“bad”) execution traces for robust validation.

312 Example:

- **Sentence:** “At every moment, at least one of drop off the long chair to the loading dock, wait, or look for the glass for alcoholic beverage holds.”
- **Lifted Sentence:** “At every moment, at least one of prop_1, prop_2 or prop_3 holds.”
- **Grounded LTL Formula:** `globally(deliver(bench, loading_dock) or idle() or search(wine_glass))`
- **APs:** `prop_1 = “drop off long chair to loading dock”, prop_2 = “wait”, prop_3 = “look for glass for alcoholic beverage”`
- **Positive Trace:** `[deliver(bench, loading_dock)], [idle()], [search(wine_glass)]`
- **Negative Trace:** `[idle()], [idle()], [search(wine_glass), deliver(bench, loading_dock)]`

324 4 EXPERIMENTAL RESULTS

326 In this section, we present the results of multiple evaluations of NL-to-LTL translation frameworks
 327 and components. In Section 4.1, we measure the performance of common natural language lifting
 328 approaches, evaluated on four existing datasets in addition to [three of the four](#) datasets we present
 329 in VLTL-Bench. In Section 4.2, we evaluate three SOTA NL-to-LTL frameworks on lifted NL to
 330 lifted TL translation. Note here, that measuring lifted translation performance on existing datasets
 331 is particularly difficult, as they present varying degrees of clarity in their lifted natural language
 332 elements. In both translation evaluations, we use the pyModelChecking library (Casagrande, 2024) to
 333 determine logical equivalence. The CW (MacGlashan et al., 2015), GLTL (Gopalan et al., 2018), and
 334 Navi (Wang et al., 2021) datasets have been processed to include lifted natural language components
 335 by (Chen et al., 2023), and we perform similar processing of the Conformal dataset (Wang et al., 2025)
 336 to include it in our evaluation. In Section 4.3 we develop and evaluate two grounding baselines on our
 337 three datasets. In Section 4.4, we assemble the best results from the three individual evaluations to
 338 perform the first end-to-end translation evaluation. In Section 4.5 we perform our novel verification
 339 evaluation over the example traces of our dataset.

340 4.1 LIFTING EVALUATION

342 First, we evaluate four language models on the natural language lifting task. The LLM-based
 343 approaches each use the lifting prompt template from the NL2TL framework (Chen et al., 2023),
 344 which includes few-shot ground-truth NL to lifted NL examples from each of the datasets. The
 345 input to both models is a natural language sentence and we compare the prediction made by the
 346 model against the ground-truth lifted natural language using the lifting accuracy metric defined in
 347 Section 3.3. We present the results in Table 3 where we see the linguistic complexity of our datasets
 348 is highlighted in the accuracies, as even the best scoring model (GPT-4.1) reduces in performance on
 349 our new datasets. This performance drop is even more significant on the lower-cost, smaller GPT
 350 models. This indicates our success in increasing evaluation complexity.

351 Table 3: Comparison of lifting approaches.

353 Model	Mean LiftAcc (%)						
	354 GLTL	CW	CF	Navi	S&R (ours)	TL (ours)	WH (ours)
355 GPT-3.5-turbo	81.6	78.6	76.8	71.0	65.3	59.4	67.9
356 GPT-4o-mini	84.9	82.3	85.6	81.0	66.7	63.1	68.9
358 GPT-4.1-mini	97.7	95.9	96.1	97.1	94.4	96.6	93.1

361 4.2 LIFTED TRANSLATION EVALUATION

363 Next, we evaluate the lifted translation capabilities of the three NL-to-LTL frameworks—nl2spec,
 364 NL2LTL, and NL2TL. In order to analyze the performance of their lifted translation abilities, the
 365 ground-truth lifted NL specification is given to the translation model, and the resulting lifted LTL
 366 translation is compared against the ground-truth lifted LTL. The formula for the translation accuracy
 367 metric is given in Section 3.3. We present these results in Table 4. Here, we see that lifted translation
 368 can be very successful with both out-of-the-box LLM prompting (nl2spec) and with fine-tuned
 369 seq2seq models. However, as we have noted, we will see in end-to-end evaluation that this is an
 370 overconfident estimation of translation performance as grounding is not considered.

371 4.3 GROUNDING EVALUATION

373 In this section, we present the results obtained from our evaluation of our baseline grounding
 374 framework, applied to the ground truth lifted TL from our three VLTL-Bench datasets. We use two
 375 prompting strategies (described in Appendix A.6) applied to three GPT models to provide a broad
 376 evaluation of current grounding capabilities. Our first prompting baseline—*few-shot*—is composed of
 377 a brief description of the task at hand, accompanied by nine few-shot examples of correct (sentence,
 lifted sentence, AP-dictionary) tuples from *all three scenarios* (as opposed to individual scenarios).

378 Table 4: Comparison of four frameworks on the Lifted NL to Lifted TL translation task. Note that we
 379 provide ground-truth lifted NL specifications.
 380

381	382	Framework	Model	TransAcc (%)						
				383	GLTL	CW	CF	Navi	S&R (ours)	384 TL (ours)
386	387	NL2LTL (Fuggitti & Chakraborti, 2023)	GPT-3.5-turbo	37.9	48.1	18.3	9.9	11.9	13.2	13.8
			GPT-4o-mini	38.6	55.4	23.6	10.4	12.3	13.9	12.5
			GPT-4.1-mini	51.7	64.6	42.1	39.7	41.6	40.0	37.4
388	389	nl2spec (Cosler et al., 2023)	GPT-3.5-turbo	44.4	40.9	35.2	50.3	51.1	46.3	50.2
			GPT-4o-mini	77.3	80.1	73.5	69.7	74.9	75.8	74.2
			GPT-4.1-mini	89.8	92.9	78.3	81.5	89.1	91.6	88.4
NL2TL (Chen et al., 2023), Lang2LTL		t5-base		99.9	99.9	94.9	99.7	100.0	100.0	100.0

390
 391 The next strategy is the *scenario* baseline prompt which includes the full scenario configuration
 392 file, as well as three few-shot examples from the dataset. Our final grounding baseline employs the
 393 **same scenario-specific few-shot examples as the previous approach**, with the addition of specific
 394 instructions to include intermediate reasoning steps used to arrive at the answer. We use GPT-
 395 4o for this chain-of-thought approach in order to evaluate the performance of reasoning-capable
 396 models on this task. All four models are instructed to format their final answer in JSON format. To
 397 measure grounding accuracy, we parse the resulting AP-dictionary predictions and compare them
 398 with our ground-truth knowledge of the AP-dictionary in each entry. Our metrics are per-AP and
 399 per-AP-dictionary accuracy. Per-AP accuracy is calculated by recording the total number of correctly
 400 grounded APs divided by the total number of APs in the test set, and per-AP-dictionary accuracy is
 401 calculated by recording the total number of completely correct AP-dictionaries, divided by the size of
 402 the test set. These results are presented in Table 5.
 403

404 Our evaluation of the two grounding baselines reveals that even advanced LLMs struggle to accurately
 405 ground lifted APs into a concrete world state space - even when the parameters of this state space
 406 are provided, as is done in the *scenario* baseline. We observe that even though the *scenario* baseline
 407 achieves lower performance on most benchmarks and settings, it beats the *few-shot* baseline on our
 408 Warehouse scenario when comparing the more powerful reasoning models. As noted in Section 3,
 409 the Warehouse scenario is specifically designed to stress-test *grounding and lifting*. We conclude
 410 that the provision of the world state space in the *scenario* baseline includes information that aids
 411 reasoning models in determining which world state conditions are referred to in the lifted APs, but
 412 the overall performance of these baselines on the grounding task remains notably lower than other
 413 tasks involved in verifiable NL-to-LTL translation.

414 Table 5: Comparison of Grounding approaches. This table displays binary accuracy between predicted
 415 AP Grounding and known AP dictionary. LLM Baseline uses 9 few-shot sentence + lifted sentence +
 416 AP dict examples from every dataset; “Scenario” includes the scenario definition in the prompt and
 417 3 examples from only that dataset. Note that Lang2LTL grounds using cosine similarity between
 418 reference and canonical AP embeddings.

419	420	Prompt	Model	Accuracy (% of APs)			Accuracy (% of AP Dictionaries)		
				S&R	Traffic Light	Warehouse	S&R	Traffic Light	Warehouse
421	422	<i>Few-shot General</i>	GPT-3.5-turbo	56.9	69.5	18.3	34.2	51.4	7.4
			GPT-4o-mini	82.3	66.5	18.4	68.6	48.4	7.0
			GPT-4.1-mini	77.3	67.4	23.8	60.4	45.8	7.8
423	424	<i>Few-shot Scenario</i>	GPT-3.5-turbo	76.7	37.3	13.6	63.6	20.8	5.0
			GPT-4o-mini	66.7	44.8	23.6	44.8	16.8	9.2
			GPT-4.1-mini	68.6	27.9	34.4	45.2	15.4	13.0
425	426	<i>Few-shot Chain-of-Thought</i>	GPT-4o	94.8	85.9	69.9	94.1	81.5	61.4
		Lang2LTL (Liu et al., 2023)	N/A	77.6	86.2	61.8	59.0	73.6	38.8

428 4.4 END-TO-END TRANSLATION EVALUATION

429 Now, we perform and end-to-end evaluation which considers the accumulation of the three individual
 430 translation steps. For all three frameworks, we select the best-performing component (model) from

432 each of the individual evaluations (lifting, grounding, and translation) to assemble an end-to-end
 433 translation framework which factors in the combined performance of all the translation steps. We see
 434 in Table 6, that as a result of the poor grounding results of all current approaches, the high performance
 435 of the lifting and lifted translation steps is diminished, resulting in a poor overall semantic accuracy
 436 of the final translation. Our datasets show that even the best performing model (NL2TL) does not
 437 approach real-world performance needs, inciting the need for NL-to-TL translation approaches which
 438 consider a concrete world state space.

439
 440 Table 6: End-to-end evaluation of all three SOTA frameworks using the best lifting, translation, and
 441 grounding components. We report the binary accuracy of the resulting LTL.

Framework	Accuracy (%)		
	S&R	Traffic Light	Warehouse
NL2LTL (Fuggitti & Chakraborti, 2023)	35.4	38.4	26.2
nl2spec (Cosler et al., 2023)	34.8	33.6	29.6
NL2TL (Chen et al., 2023)	54.4	60.1	46.2
Lang2LTL (Liu et al., 2023)	58.5	72.1	37.9

450 4.5 VERIFICATION EVALUATION

451 Finally, we present the results of our experiments on the verification of LTL outputs from each of
 452 the three NL-to-LTL translation frameworks that we compare. We use the outputs from our lifted
 453 translation evaluation (Table 4) to isolate the verification metric from the lifting task, and apply our
 454 LLM-baseline grounding frameworks. In Table 7, our results demonstrate that even frameworks
 455 exhibiting accurate lifted NL to lifted TL translation suffer a notable decline in performance when
 456 grounding relies on systems similar to our LLM baselines. Furthermore, this evaluation supports the
 457 use of trace satisfaction in place of ground-truth LTL comparison as a metric for grounded translation
 458 accuracy, because the example traces encode the minimum specifications of correctly grounded and
 459 translated LTL. In future frameworks, example traces could be used as part of a feedback loop to
 460 grounding and translation components.

461
 462 Table 7: Performance (binary accuracy) on S&R, Traffic Light, and Warehouse, broken down into
 463 satisfied holding traces, satisfied not-holding traces, and both. All three frameworks are evaluated on
 464 both grounding strategies using their top-scoring lifted translation model.

Framework	Grounding Strategy	S&R			Traffic Light			Warehouse		
		Sat	Unsat	Both	Sat	Unsat	Both	Sat	Unsat	Both
NL2LTL (Fuggitti & Chakraborti, 2023)	<i>Few-shot General</i>	61.6	61.4	35.4	64.6	60.2	38.4	52.4	58.6	26.2
	<i>Few-shot Scenario</i>	1.06	32.0	7.4	61.8	59.2	36.6	12.4	36.2	9.8
nl2spec (Cosler et al., 2023)	<i>Few-shot General</i>	47.4	48.0	34.8	47.2	46.0	33.6	46.0	44.2	29.6
	<i>Few-shot Scenario</i>	34.0	36.4	21.0	40.2	41.8	28.2	32.0	34.6	19.0
NL2TL (Chen et al., 2023)	<i>Few-shot General</i>	75.0	79.4	54.4	80.2	80.6	60.8	71.4	74.8	46.2
	<i>Few-shot Scenario</i>	27.5	50.8	22.1	72.6	76.3	54.5	33.3	52.4	23.5
Lang2LTL (Liu et al., 2023)	Embedding	43.3	61.9	39.3	44.7	63.0	41.3	21.6	40.1	16.6

475 5 CONCLUSION

476 We present the Verifiable Linear Temporal Logic Benchmark. VLTL-Bench is a suite of three new NL-
 477 to-LTL translation datasets that include the standard natural language and LTL pairs, supplemented
 478 with lifted natural language, lifted LTL, and trace examples. These additional features provide
 479 a method for the isolated training and evaluation of individual NL-to-LTL translation framework
 480 components. The provision of trace examples in VLTL-Bench introduces the possibility of a new
 481 type of input that is plausible in real-world translation frameworks, but unrepresented in current
 482 corpora. We acknowledge that the datasets included in the VLTL-Bench suite are generated using a
 483 finite number of linguistic and logical templates, populated by diverse synthetic natural language APs.
 484 VLTL-Bench reveals significant weaknesses in what were previously ironclad NL-to-LTL translation
 485 frameworks. Among these weaknesses are: the reliance on accurately lifted NL inputs for translation,

486 lack of accurate grounding components, and lack of example trace inputs in current approaches. We
487 envision our contribution will encourage exploration of diverse methods for grounded NL-to-LTL
488 translation, beyond the use of LLMs.
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Rajeev Alur. *Principles of Cyber-Physical Systems*. The MIT Press, 2015. ISBN 0262029111.

543 Pierfrancesco Bellini, Riccardo Mattolini, and Paolo Nesi. Temporal logics for real-time system
544 specification. *ACM Computing Surveys (CSUR)*, 32(1):12–42, 2000.

545 Rafael C Cardoso, Georgios Kourtis, Louise A Dennis, Clare Dixon, Marie Farrell, Michael Fisher,
546 and Matt Webster. A review of verification and validation for space autonomous systems. *Current
547 Robotics Reports*, 2(3):273–283, 2021.

548 Alberto Casagrande. pymodelchecking code repository, 2024. Available at <https://github.com/albertocasagrande/pyModelChecking>.

549 Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. NL2tl: Transforming natural languages
550 to temporal logics using large language models. In *Proceedings of the 2023 Conference on
551 Empirical Methods in Natural Language Processing*, 2023.

552 Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and Caroline Trippel. nl2spec:
553 Interactively translating unstructured natural language to temporal logics with large language
554 models. In *Computer Aided Verification: 35th International Conference, CAV 2023, Paris, France,
555 July 17–22, 2023, Proceedings, Part II*, pp. 383–396, Berlin, Heidelberg, 2023. Springer-Verlag.
556 ISBN 978-3-031-37702-0. doi: 10.1007/978-3-031-37703-7_18. URL https://doi.org/10.1007/978-3-031-37703-7_18.

557 Francesco Fuggitti and Tathagata Chakraborti. NL2tl - a python package for converting natural lan-
558 guage (nl) instructions to linear temporal logic (ltl) formulas. In *AAAI Conference on Artificial Intel-
559 ligence*, 2023. URL <https://api.semanticscholar.org/CorpusID:259726762>.

560 Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding
561 for structured nlp tasks without finetuning, 2024. URL <https://arxiv.org/abs/2305.13971>.

562 Nakul Gopalan, Dilip Arumugam, Lawson L. S. Wong, and Stefanie Tellex. Sequence-to-sequence
563 language grounding of non-markovian task specifications. *Robotics: Science and Systems XIV*,
564 2018. URL <https://api.semanticscholar.org/CorpusID:46994194>.

565 Christopher Hahn, Frederik Schmitt, Julia J Tillman, Niklas Metzger, Julian Siber, and Bernd
566 Finkbeiner. Formal specifications from natural language. *arXiv preprint arXiv:2206.01962*, 2022.

567 Jie He, Ezio Bartocci, Dejan Ničković, Haris Isakovic, and Radu Grosu. Deepstl – from english re-
568 quirements to signal temporal logic, 2022. URL <https://arxiv.org/abs/2109.10294>.

569 Eric Hsiung, Hiloni Mehta, Junchi Chu, Xinyu Liu, Roma Patel, Stefanie Tellex, and George
570 Konidaris. Generalizing to new domains by mapping natural language to lifted ltl. In *2022
571 International Conference on Robotics and Automation (ICRA)*, pp. 3624–3630. IEEE, 2022.

572 Savas Konur. A survey on temporal logics for specifying and verifying real-time systems. *Frontiers
573 of Computer Science*, 7(3):370, 2013. doi: 10.1007/s11704-013-2195-2. URL https://journal.hep.com.cn/fcs/EN/abstract/article_4956.shtml.

574 Mohammed Lafi, Bilal Hawashin, and Shadi AlZu’bi. Eliciting requirements from stakeholders’
575 responses using natural language processing. *Computer Modeling In Engineering & Sciences*, 127
576 (1):99–116, 2021.

577 Carl Lamar. Linguistic analysis of natural language engineering requirements. Master’s thesis,
578 Clemson University, 2009.

579 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
580 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision-
581 ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
582 part v 13*, pp. 740–755. Springer, 2014.

594 Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein, Stefanie Tellex, and
 595 Ankit Shah. Grounding complex natural language commands for temporal tasks in unseen
 596 environments. In Jie Tan, Marc Toussaint, and Kourosh Daryish (eds.), *Proceedings of The 7th*
 597 *Conference on Robot Learning*, volume 229 of *Proceedings of Machine Learning Research*, pp.
 598 1084–1110. PMLR, 06–09 Nov 2023. URL <https://proceedings.mlr.press/v229/liu23d.html>.

600 James MacGlashan, Monica Babes-Vroman, Marie desJardins, Michael L. Littman, Smaranda
 601 Muresan, S. Squire, Stefanie Tellex, Dilip Arumugam, and Lei Yang. Grounding english
 602 commands to reward functions. In *Robotics: Science and Systems*, 2015. URL <https://api.semanticscholar.org/CorpusID:1709515>.

603 Curtis Madsen, Prashant Vaidyanathan, Sadra Sadraddini, Cristian-Ioan Vasile, Nicholas A. DeLateur,
 604 Ron Weiss, Douglas Densmore, and Calin Belta. Metrics for signal temporal logic formulae. In
 605 *2018 IEEE Conference on Decision and Control (CDC)*, pp. 1542–1547, 2018. doi: 10.1109/CDC.
 606 2018.8619541.

607 Jiayi Pan, Glen Chou, and Dmitry Berenson. Data-efficient learning of natural language to linear
 608 temporal logic translators for robot task specification. In *2023 IEEE International Conference on*
 609 *Robotics and Automation (ICRA)*, pp. 11554–11561. IEEE, 2023.

610 Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam allocation for
 611 neural machine translation, 2018. URL <https://arxiv.org/abs/1804.06609>.

612 Vasumathi Raman, Constantine Lignos, Cameron Finucane, Kenton Lee, Mitch Marcus, and Hadas
 613 Kress-Gazit. Sorry dave, i'm afraid i can't do that: Explaining unachievable robot tasks using
 614 natural language, 06 2013.

615 Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots
 616 that use language. *Annual Review of Control, Robotics, and Autonomous Systems*,
 617 3(Volume 3, 2020):25–55, 2020. ISSN 2573-5144. doi: <https://doi.org/10.1146/annurev-control-101119-071628>. URL <https://www.annualreviews.org/content/journals/10.1146/annurev-control-101119-071628>.

618 JG Thistle and WM Wonham. Control problems in a temporal logic framework. *International Journal
 619 of Control*, 44(4):943–976, 1986.

620 Alvaro Veizaga, Mauricio Alferez, Damiano Torre, Mehrdad Sabetzadeh, and Lionel Briand. On
 621 systematically building a controlled natural language for functional requirements. *Empirical
 622 Software Engineering*, 26(4):79, 2021.

623 Christopher Wang, Candace Ross, Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Learning a natural-
 624 language to ltl executable semantic parser for grounded robotics. In Jens Kober, Fabio Ramos,
 625 and Claire Tomlin (eds.), *Proceedings of the 2020 Conference on Robot Learning*, volume 155
 626 of *Proceedings of Machine Learning Research*, pp. 1706–1718. PMLR, 16–18 Nov 2021. URL
 627 <https://proceedings.mlr.press/v155/wang21g.html>.

628 Jun Wang, David Smith Sundarsingh, Jyotirmoy V. Deshmukh, and Yiannis Kantaros. Confor-
 629 malnl2ltl: Translating natural language instructions into temporal logic formulas with conformal
 630 correctness guarantees, 2025. URL <https://arxiv.org/abs/2504.21022>.

631 David P Watson and David H Scheidt. Autonomous systems. *Johns Hopkins APL technical digest*,
 632 26(4):368–376, 2005.

633 Yilongfei Xu, Jincao Feng, and Weikai Miao. Learning from failures: Translation of natural
 634 language requirements into linear temporal logic with large language models. In *2024 IEEE 24th*
 635 *International Conference on Software Quality, Reliability and Security (QRS)*, pp. 204–215. IEEE,
 636 2024.

637 Xiang Yin, Bingzhao Gao, and Xiao Yu. Formal synthesis of controllers for safety-critical autonomous
 638 systems: Developments and challenges. *Annual Reviews in Control*, 57:100940, 2024.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Weijun Zhu. Big data on linear temporal logic formulas. In *2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)*, volume 4, pp. 544–547, 2021. doi: 10.1109/IMCEC51613.2021.9482368.

Rim Zrelli, Henrique Amaral Misson, Maroua Ben Attia, Felipe Gohring de Magalhães, Abdo Shabah, and Gabriela Nicolescu. Natural2ctl: A dataset for natural language requirements and their ctl formal equivalents. In *Requirements Engineering: Foundation for Software Quality: 30th International Working Conference, REFSQ 2024, Winterthur, Switzerland, April 8–11, 2024, Proceedings*, pp. 205–216, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-031-57326-2. doi: 10.1007/978-3-031-57327-9_13. URL https://doi.org/10.1007/978-3-031-57327-9_13.

702 **A APPENDIX**
 703

704 In this appendix, we present a detailed overview of linear temporal logic in A.1, a discussion of
 705 verification via Kripke structures in A.2, a quantitative comparison of our VLTL-Bench dataset
 706 against existing datasets as well as examples from those datasets in A.5, our developed prompts for
 707 the baseline grounding approaches in A.6, the configuration files for our three scenarios in A.8, and
 708 finally our estimated compute resource usage and our external code and license information in A.9.
 709

710 **A.1 LINEAR TEMPORAL LOGIC**
 711

712 Linear temporal logic (LTL) is a modal extension of classical propositional logic that enables
 713 reasoning about how truths evolve over a discrete, linear timeline (Zhu, 2021). Formulas in LTL are
 714 interpreted over infinite sequences (or “traces”) of states

715 $\sigma = s_0, s_1, s_2, \dots,$
 716

717 where each state s_i (which has a set of conditions) specifies which atomic propositions π^μ hold
 718 true at time i . This framework makes it possible to specify and verify both safety properties (e.g.,
 719 “nothing bad ever happens”) and liveness properties (e.g., “something good eventually happens”),
 720 and it underpins many model-checking techniques for reactive systems.

721 The syntax of LTL is given by the following grammar:

722
$$\varphi ::= \pi \mid \neg\varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \Rightarrow \varphi_2$$

 723
$$\mid \bigcirc\varphi \mid \diamond\varphi \mid \square\varphi \mid \varphi_1 \cup \varphi_2$$

 724

725 where π ranges over a finite set of atomic propositions; \neg , \wedge , \vee , and \Rightarrow are the standard Boolean
 726 connectives; \bigcirc (next) asserts that its operand holds in the immediately following state; \diamond
 727 (eventually) asserts that its operand holds at some point in the future; \square (always) asserts
 728 that its operand holds at every future state; $\varphi_1 \cup \varphi_2$ (until) asserts that φ_1 continuously holds until
 729 φ_2 becomes true. Formally, we write $\sigma, i \models \varphi$ to mean “formula φ holds at position i in trace σ .” For
 730 example:

731 $\sigma, i \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \exists k \geq i : \sigma, k \models \varphi_2 \wedge \forall j \in [i, k) : \sigma, j \models \varphi_1.$
 732

733 Although our focus is on discrete-time LTL, many of these ideas carry over to related formalisms
 734 such as signal temporal logic (STL) for continuous-time, real-valued signals (Madsen et al., 2018).

756 A.2 VERIFICATION VIA Kripke STRUCTURES AND FLUENTS
757758 Verification of LTL specifications is typically conducted using a Kripke structure, which is a formal
759 transition system comprising states, transitions, and labels indicating which atomic propositions hold
760 true in each state. Formally, a Kripke structure is defined as a tuple $M = (S, S_0, R, L)$, where:761

- 762 • S is a finite set of states,
- 763 • $S_0 \subseteq S$ is the set of initial states,
- 764 • $R \subseteq S \times S$ is the transition relation, specifying allowed state transitions,
- 765 • $L : S \rightarrow 2^{AP}$ is a labeling function mapping states to the sets of atomic propositions that
766 are true in each state.

767768 Verification involves checking whether every possible path through the Kripke structure satisfies the
769 given LTL formula. For instance, safety properties such as “*a collision never occurs*” require that no
770 path through the structure contains a state labeled with the proposition `collision`. Conversely,
771 liveness properties such as “*a goal is eventually reached*” demand the existence of a future state in
772 every valid path labeled with the proposition `goal`. Additionally, verification explicitly involves
773 fluents—timestamped state variables that indicate when certain conditions or states become true.
774 Each fluent captures both the state variable (atomic proposition) and the time step at which the
775 transition into the corresponding state occurs. Formally, a fluent can be represented as a tuple (π^μ, t) ,
776 indicating that proposition π^μ becomes true at time step t due to a state transition within the Kripke
777 structure. Fluents bridge the gap between high-level temporal specifications and lower-level state
778 transitions, facilitating practical model checking and control synthesis in robot control systems.
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A.3 VLTL-BENCH LTL EXPRESSION STATISTICS
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 NL	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 Token / Operator	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 Search & Rescue	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 Traffic Light	814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 Warehouse
and	5536	5508	5297	
double_implies	1104	1141	1091	
finally	3835	3842	3918	
globally	9899	9851	9820	
implies	5164	5295	5264	
next	12144	12304	11713	
not	6781	6724	6593	
or	3198	3229	3054	
prop_1	14440	14466	14193	
prop_2	7934	7964	7835	
prop_3	3740	3831	3825	
until	1112	1088	1147	

826 Table 8: Operator splits and template breakdowns by domain.
827828 A.4 VLTL-BENCH NEW TEMPLATES
829

830 We then craft 7 of our own templates to fill perceived gaps in specification coverage. Of these
831 templates, 4 entries include new lifted LTL halves (marked below with a *), and 3 include new lifted
832 NL halves.
833

834 835 836 837 838 839 840 841 842 843 844 NL	834 835 836 837 838 839 840 841 842 843 844 LTL
finally (not prop_1)	“eventually, avoid prop_1”
globally (not prop_1)	“always avoid prop_1”; “prop_1 must never occur”
next prop_1	“at the next time step, prop_1 holds”
prop_1 until prop_2	“prop_1 must always hold at all times before prop_2”
finally (prop_1 and prop_2)	OLD: “Eventually, both prop_1 and prop_2 will hold simultaneously” NEW: “At some point, prop_1 and prop_2 will both hold at the same time.”
globally (prop_1 and prop_2)	OLD: “Both prop_1 and prop_2 hold at every step.” NEW: “At all time steps, prop_1 and prop_2 both hold.”
finally (prop_1 or prop_2)	OLD: “eventually, either prop_1 or prop_2” NEW: “either prop_1 or prop_2 will hold at some point in time.”

845 Table 9: Examples of NL–LTL mappings. OLD/NEW entries show updated phrasing.
846847 A.5 EXISTING DATASETS
848849 **Cleanup World (CW).**

850

- 851 Sentence: “go to the blue room keep going and stop when you reach the green room”
- 852 LTL Formula: “finally(blue_room and finally green_room)”
- 853 Grounded Sentence: “go to the prop_1 keep going and stop when you reach the green prop_2,”
- 854 APs: prop_1 = go to blue room, prop_2 = go to green room.

855 **GLTL.**

- 856 Sentence: “enter the blue or red room and proceed until the green room”
- 857 LTL Formula: “finally((red_room or blue_room) and finally green_room)”
- 858 Grounded Sentence: “enter the prop_2 or prop_1 and proceed until the green prop_3,”
- 859 APs: prop_1 = go to red room, prop_2 = go to blue room, prop_3 = go to green room

864
865**Navi.**866
867
868
869
870
871

- Sentence: “at some time get hold apple or whenever acquire pear”
- LTL Formula: “finally(get_hold_v apple_n or finally(acquire_v pear_n))”
- Grounded Sentence: “at some time prop_1 or whenever prop_2”
- APs: prop_1 = get_hold_v apple_n, prop_2 = acquire_v pear_n

872

ConformalNL2LTL.873
874
875
876
877
878
879

- Sentence: “Stay in parking lot 4 until you reach car 5”
- LTL Formula: “parking_lot_4 until car_5”
- Grounded Sentence: “Stay in prop_1 until you reach prop_2”
- APs: prop_1 = go to parking lot 4, prop_2 = go to car 5

880
881**A.6 GROUNDING PROMPTS**882
883
884

This section includes the few-shot examples used in our grounding prompt baselines. The *few-shot* baselines uses all of the following in its prompt, while the *scenario* baseline includes only the scenario specific few-shot examples combined with the scenario description, given in Appendix A.8

885

Few-shot Prompt:886
887
888
889
890
891
892
893
894
895
896

“role”: “system”, “content”: “You are an LTL translation assistant, your goal is to return the desired prop_dict, a dictionary that relates natural language atomic proposition/predicate references to their canonical/known representation in the scenario.”,
 “role”: “user”, “content”:
 Few-shot Examples:
 {examples from ALL domains, shown in appendix A.7, total of 9 examples}
 Now predict:
 Sentence: {sentence}
 Lifted: {lifted_sentence}
 Prop_dict:

897
898**Scenario Prompt:**899
900
901
902
903
904
905
906
907
908
909

“role”: “system”, “content”: “You are an LTL translation assistant, your goal is to return the desired prop_dict, a dictionary that relates natural language atomic proposition/predicate references to their canonical/known representation in the scenario.”,
 “role”: “user”, “content”:
 Scenario Configuration: scenario yaml, given in appendix A.8
 Few-shot Examples:
 {examples from this specific scenario, shown in Appendix A.7}
 Now predict:
 Sentence: {sentence}
 Lifted: {lifted_sentence}
 Prop_dict:

910
911
912
913
914
915
916
917

918 A.7 FEW-SHOT EXAMPLES BY SCENARIO
919920 **Warehouse Examples**

```

921 Sentence: ["The system must eventually, avoid prop_1"]
922 Lifted Sentence: ["The system must eventually, avoid prop_1"]
923 prop_dict: {
924 "prop_1": {
925 "action_canon": "deliver",
926 "action_ref": "drop off",
927 "args_canon": ["sandwich loading_dock"],
928 "args_ref": ["square food loading dock"]
929 }
930 }
931 Sentence: ["Whenever prop_1 holds, prop_2 holds as well."]
932 Lifted Sentence: ["Whenever prop_1 holds, prop_2 holds as well."]
933 prop_dict: {
934 "prop_1": {
935 "action_canon": "idle",
936 "action_ref": "remain still",
937 "args_canon": [],
938 "args_ref": []
939 },
940 "prop_2": { "action_canon": "get_help",
941 "action_ref": "call for help",
942 "args_canon": [],
943 "args_ref": []
944 }
945 Sentence: ["If prop_2 holds, then in the next step prop_3 persists until prop_1 holds, or else prop_3
946 holds forever."]
947 Lifted Sentence: ["If prop_2 holds, then in the next step prop_3 persists until prop_1 holds, or else
948 prop_3 holds forever."]
949 prop_dict: {
950 "prop_1": {
951 "action_canon": "pickup",
952 "action_ref": "grab",
953 "args_canon": ["hot_dog"],
954 "args_ref": ["bunned sausage"]
955 },
956 "prop_2": {
957 "action_canon": "pickup",
958 "action_ref": "grab",
959 "args_canon": ["potted_plant"],
960 "args_ref": ["plant"]
961 },
962 "prop_3": { "action_canon": "search",
963 "action_ref": "search for",
964 "args_canon": ["cup"],
965 "args_ref": ["beverage cup"]
966 }
967
968
969
970
971

```

972
973**Search and Rescue Examples**974
975
976
977
978
979
980
981
982
983

Sentence: [”This controller must always avoid prop_1”]
 Lifted Sentence: [”This controller must always avoid prop_1”]
 prop_dict: {
 ”prop_1”: {
 ”action_canon”: ”record”,
 ”action_ref”: ”begin recording”,
 ”args_canon”: [”fire_source”],
 ”args_ref”: [”fire source”]
 }
 }
 }

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

Sentence: [”In this task, take a photo of flood, then return home.”]
 Lifted Sentence: [”In this task, prop_1 then prop_2”]
 prop_dict: {
 ”prop_1”: {
 ”action_canon”: ”photo”,
 ”action_ref”: ”take a photo of”,
 ”args_canon”: [”flood”],
 ”args_ref”: [”flood”]
 },
 ”prop_2”: {
 ”action_canon”: ”go_home”,
 ”action_ref”: ”return home”,
 ”args_canon”: [],
 ”args_ref”: []
 }
 }

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Sentence: [”If every record flood is eventually followed by talking to the safe victim, then avoid the impending debris must occur infinitely often.”]
 Lifted Sentence: [”If every prop_1 is eventually followed by prop_2 then prop_3 must occur infinitely often.”]
 prop_dict: {
 ”prop_1”: {
 ”action_canon”: ”record”,
 ”action_ref”: ”record”,
 ”args_canon”: [”flood”],
 ”args_ref”: [”flood”]
 },
 ”prop_2”: {
 ”action_canon”: ”communicate”,
 ”action_ref”: ”talk to”,
 ”args_canon”: [”safe_victim”],
 ”args_ref”: [”safe victim”]
 },
 ”prop_3”: {
 ”action_canon”: ”avoid”,
 ”action_ref”: ”avoid”,
 ”args_canon”: [”impending_debris”],
 ”args_ref”: [”impending debris”]
 }
 }

1026

Traffic Light Examples

1027

1028

Sentence: ["You", "must", "eventually", "avoid", "set", "east", "light", "yellow."]

1029

Grounded: ["You", "must", "eventually", "avoid", "prop_1"]

1030

prop_dict: {

1031

"prop_1": {

1032

"action_canon": "change", "action_ref": "set", "args_canon": ["light_east", "yellow"], "args_ref": ["east light", "yellow"] }

1033

Sentence: ["Both", "change", "west", "light", "red", "and", "take", "a", "video", "of", "the", "car", "on", "southwest", "10th", "avenue", "hold", "at", "every", "step."]

1034

Grounded: ["Both", "prop_1", "and", "prop_2", "hold", "at", "every", "step."]

1035

prop_dict: {

1036

"prop_1": {

1037

"action_canon": "change",

1038

"action_ref": "change",

1039

"args_canon": ["light_west", "red"],

1040

"args_ref": ["west light", "red"]

},

1041

"prop_2": {

1042

"action_canon": "record",

1043

"action_ref": "take a video of",

1044

"args_canon": ["car", "southwest_10th_avenue"],

1045

"args_ref": ["car", "southwest 10th avenue"]

} }

1046

Sentence: ["If", "take", "a", "picture", "of", "the", "car", "on", "northwest", "6th", "street", "holds", "and", "set", "east", "light", "green", "holds", "next", "then", "request", "assistance", "holds", "in", "the", "step", "after", "that."]

1047

Grounded: ["If", "prop_1", "holds", "and", "prop_2", "holds", "next", "then", "prop_3", "holds", "in", "the", "step", "after", "that."]

1048

prop_dict: {

1049

"prop_1": {

1050

"action_canon": "photo",

1051

"action_ref": "take a picture of",

1052

"args_canon": ["car", "northwest_6th_street"],

1053

"args_ref": ["car", "northwest 6th street"]

},

1054

"prop_2": {

1055

"action_canon": "change",

1056

"action_ref": "set",

1057

"args_canon": ["light_east", "green"],

1058

"args_ref": ["east light", "green"]

},

1059

"prop_3": {

1060

"action_canon": "get_help",

1061

"action_ref": "request assistance",

1062

"args_canon": [],

1063

"args_ref": []

}

1064

}

1065

}

1066

}

1067

}

1068

}

1069

}

1070

}

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 A.8 SCENARIO CONFIGURATIONS
10811082 In this section, we provide the scenario configuration files that are inserted into the grounding prompts
1083 and used for data generation.

1084

```

1085     warehouse:
1086
1087     actions:
1088
1089         idle:
1090             role: ego
1091             params: []          # idle()
1092
1093         get_help:
1094             role: ego
1095             params: []          # get_help()
1096
1097         # one-argument
1098         search:
1099             role: ego
1100             params: [item]       # search(item)
1101
1102         pickup:
1103             role: ego
1104             params: [item]       # pickup(item)
1105
1106         # two-argument
1107         deliver:
1108             role: ego
1109             params: [item, location] # deliver(item, location)
1110
1111     targets:
1112         item:
1113             properties: [name]
1114             location:
1115             properties: [name]

```

1116 Figure 3: Warehouse Scenario Configuration file
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

```

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146 traffic_light:
1147
1148   actions:
1149     # ego-only
1150     get_help:
1151       role: ego
1152       params: []           # get_help()
1153
1154   # one-argument
1155   change:
1156     role: ego
1157     params: [light, color] # change(light_id, color)
1158
1159   record:
1160     role: ego
1161     params: [target]      # record(target)
1162
1163   photo:
1164     role: ego
1165     params: [target]      # photo(target)
1166
1167   targets:
1168     light:
1169       properties: [position, color]
1170     pedestrian:
1171       properties: [position, status]
1172     car:
1173       properties: [lane, speed]
1174     location:
1175       properties: [lane]

```

Figure 4: Traffic Light Scenario Configuration file

```

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

```

```

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200    search_and_rescue:
1201
1202        actions:
1203            # ego-only
1204            go_home:
1205                role: ego
1206                params: []          # go_home()
1207
1208            get_help:
1209                role: ego
1210                params: []          # get_help()
1211
1212            # person-centred actions
1213            communicate:
1214                role: ego
1215                params: [person]     # communicate(person)
1216
1217            deliver_aid:
1218                role: ego
1219                params: [person]     # deliver_aid(person)
1220
1221            record:
1222                role: ego
1223                params: [target]
1224
1225            photo:
1226                role: ego
1227                params: [target]
1228
1229
1230    targets:
1231        person:
1232            properties: [injured, trapped, safe]
1233        threat:
1234            properties: [active, neutralized]
1235        location:
1236            properties: [name]
1237
1238
1239
1240
1241

```

Figure 5: Search and Rescue Scenario Configuration file

```

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251     kitchen_assistant:
1252         locations: [prep_area, stove, pantry, refrigerator, dining_table]
1253
1254         actions:
1255             get_help:
1256                 role: ego
1257                 params: []          # get_help()
1258
1259             wash_gripper:
1260                 role: ego
1261                 params: []          # wash_hands()
1262
1263             retrieve:
1264                 role: ego
1265                 params: [ingredient, location] # retrieve(ingredient, location)
1266
1267             chop:
1268                 role: ego
1269                 params: [ingredient]      # chop(ingredient)
1270
1271             cook:
1272                 role: ego
1273                 params: [ingredient, appliance] # cook(ingredient, appliance)
1274
1275             preheat:
1276                 role: ego
1277                 params: [appliance, temperature] # preheat(appliance, temperature)
1278
1279             turn_off:
1280                 role: ego
1281                 params: [appliance]        # turn_off(appliance)
1282
1283             turn_on:
1284                 role: ego
1285                 params: [appliance]        # turn_on(appliance)
1286
1287             serve:
1288                 role: ego
1289                 params: [dish, person]      # serve(dish, person)
1290
1291             targets:
1292                 ingredient:
1293                     properties: [fresh, chopped, cooked, raw]
1294
1295             appliance:
1296                 properties: [on, temperature]
1297
1298             dish:
1299                 properties: [ready]
1300
1301             person:
1302                 properties: [hungry, waiting]

```

Figure 6: Kitchen Assistant Scenario Configuration file

1296
1297

A.9 COMPUTE RESOURCES AND EXTERNAL CODE AND LICENSE INFORMATION

1298
1299
1300
1301
1302

All LLM inference was performed using the OpenAI API. Approximately \$30.00 in compute credits were used for our evaluations. The T5-base model used by NL2TL was trained and tested locally on a machine using an Nvidia GeForce RTX 4070Ti Super 16 GB GPU, an Intel i9 14900KF, and 64 GB of RAM. Training took approximately 40 minutes using a batch size of 16 and a learning rate of $2e^{-5}$ for 3 epochs.

1303
1304
1305
1306
1307
1308

The nl2spec framework is released at <https://github.com/realChrisHahn2/nl2spec> under the MIT license, the NL2TL framework is released at <https://github.com/yongchao98/NL2TL?tab=readme-ov-file> with no attached license, the NL2LTL framework is released at <https://github.com/IBM/nl2l1t1> under the MIT license, and the pyModelChecking library is released at <https://github.com/albertocasagrande/pyModelChecking> under the GNU General Public License.

1309
1310
1311
1312
1313
1314
1315
1316

A.10 LARGE LANGUAGE MODEL DISCLOSURE

During the preparation of this paper, the authors employed large language models (LLMs) as assistive tools for limited tasks including proof-reading, text summarization, and the discovery of related work. All substantive research contributions, analyses, and claims presented in this paper were conceived, developed, and verified by the authors. The authors maintain full ownership and responsibility for the content of the paper, including its technical correctness, originality, and scholarly contributions.

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349