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Figure 1. We introduce a method to perform 3D reconstruction from the shadow cast on the floor by occluded objects. In the middle, we
visualize our reconstruction of the occluded chair from a new camera view.

Abstract

3D reconstruction is a fundamental problem in computer
vision, and the task is especially challenging when the object
to reconstruct is partially or fully occluded. We introduce a
method that uses the shadows cast by an unobserved object
in order to infer the possible 3D volumes under occlusion.
We create a differentiable image formation model that allows
us to jointly infer the 3D shape of an object, its pose, and
the position of a light source. Since the approach is end-to-
end differentiable, we are able to integrate learned priors of
object geometry in order to generate realistic 3D shapes of
different object categories. Experiments and visualizations
show that the method is able to generate multiple possible
solutions that are consistent with the observation of the
shadow. Our approach works even when the position of
the light source and object pose are both unknown. Our
approach is also robust to real-world images where ground-
truth shadow mask is unknown.

1. Introduction
Reconstructing the 3D shape of objects is a fundamental

challenge in computer vision, with a number of applications
in robotics, graphics, and data science. The task aims to

estimate a 3D model from one or more camera views, and re-
searchers over the last twenty years have developed excellent
methods to reconstruct visible objects [1, 13–15, 24, 25, 43].
However, objects are often occluded, with the line of sight
obstructed either by another object in the scene, or by them-
selves (self-occlusion). Reconstruction from a single image
is an under-constrained problem, and occlusions further re-
duce the number of constraints. To reconstruct occluded
objects, we need to rely on additional context.

One piece of evidence that people use to uncover occlu-
sions is the shadow cast on the floor by the hidden object.
For example, figure 1 shows a scene with an object that has
become fully occluded. Even though no appearance features
are visible, the shadow reveals that another object exists be-
hind the chair, and the silhouette constrains the possible 3D
shapes of the occluded object. What hidden object caused
that shadow?

In this paper, we introduce a framework for reconstructing
3D objects from their shadows. We formulate a generative
model of objects and their shadows cast by a light source,
which we use to jointly infer the 3D shape, its pose, and
the location of the light source. Our model is fully differen-
tiable, which allows us to use gradient descent to efficiently
search for the best shapes that explain the observed shadow.
Our approach integrates both learned empirical priors about
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the geometry of typical objects and the geometry of cam-
eras in order to estimate realistic 3D volumes that are often
encountered in the visual world.

Since we model the image formation process, we are able
to jointly reason over the object geometry and the parame-
ters of the light source. When the light source is unknown,
we recover multiple different shapes and multiple different
positions of the light source that are consistent with each
other. When the light source location is known, our approach
can make use of that information to further refine its outputs.
We validate our approach for a number of different object
categories on a new ground truth dataset.

The primary contribution of this paper is a method to use
the shadows in a scene to infer the 3D structure, and the rest
of the paper will analyze this technique in detail. Section 2
provides a brief overview of related work for using shadows.
Section 3 formulates a generative model for objects and how
they cast shadows, which we are able to invert in order to in-
fer shapes from shadows. Section 4 analyzes the capabilities
of this approaches with a known and unknown light source.
We believe the ability to use shadows to estimate the spatial
structure of the scene will have a large impact on computer
vision systems’ ability to robustly handle occlusions.

2. Related Work
We briefly review related work in 3D reconstructions,

shadows, and generative models. Our paper combines a
model of image formation with generative models.

Single-view 3D Reconstruction and 3D Generative
Models: The task of single-view 3D reconstruction – given
a single image view of a scene or object, generate its un-
derlying 3D model – has been approached by deep learning
methods in recent years. This task is related to unconditional
3D model generation; while unconditional generation cre-
ates 3D models a priori, single-view reconstruction can be
thought of as generation a posteriori where the condition is
the input image view. Given the under-constrained nature
of the problem, this is usually done with 3D supervision.
Different lines of work address this by generating 3D mod-
els in different types of representations [36]: specifically,
whether they use voxels [5], point cloud representations [9],
meshes [12, 28], or the more recently introduced occupancy
networks [24].

The cost to obtain 3D ground truth for supervision [16]
poses a great limitation to the single-view 3D reconstruction.
To scale up the applications, another line of work uses
multi-view 2D images as supervision [18, 26, 44], or even
only single image as supervision [11, 17, 21, 22, 42, 43].
More classically, approaches using Multi-View Stereo
(MVS) reconstruct 3D object by combining multiple
views [2, 4, 7, 10, 31–33].

Occlusions and Shadows: Shadows present a naturally-
occurring visual signal that can help to clarify uncertainty

caused by occlusion. By observing the shadows cast by
what we cannot see, we gain insight into the 3D structure
of the unseen portion. Previous work has considered the use
of shadows towards elucidating structure in a classic vision
context. [39] first applied shadows to determine shapes in 3D
line drawings. This was extended by [34], who determined
surface orientations for polyhedra and curved surfaces with
shadow geometry. Shadows can also be used more actively
to recover 3D shape. [3] shows how shadows can help infer
the geometry of a shaded region. [30] also propose shadow
carving, a way of using multiple images from the same
viewpoint but with different lighting conditions to discover
object concavities. Meanwhile, [38] use shadows as cues
to determine parameters for refining 3D textures. Recent
work has leveraged deep learning tools to enable detection
of shadows from realistic images [40], making it possible
to extend the use of shadows to realistic settings. Thus far,
shadows have not seen much application in determining
structure using the tools afforded to vision by the latest
deep learning techniques. [35] proposed a method to count
number of people and classify their activities from the obser-
vation of a blank wall. [37] is a concurrent work marrying
implicit neural fields with shadows. However, the paper
requires shadow masks from many light sources with known
locations, while our method only requires a single light
sources with unknown location. This is made possible by
leveraging the priors from a generative model of 3D objects.

Generation Under Constraints: Generation under
constraints appears throughout the literature in many forms.
It falls under the general framework of analysis by synthe-
sis [20,45]. Tasks such as super-resolution, image denoising,
and image inpainting, begin with an incomplete image and
ask for possible reconstructions of the complete image [27].
In other words, the goal is to generate realistic images that
satisfy the constraint imposed by the given information.
Typical approaches consider this as conditional generation,
where a function (usually, a neural network) is learned to
map from corrupted inputs to the desired outputs [8, 19, 27].
More recently, [23] propose using search rather than
regression to address these types of tasks in the context of
the super-resolution problem. Recent work by [29] uses
differentiable rendering to deform an icosphere to generate
targeted shadow art sculptures, with interesting results. Un-
like their work, ours focuses on generating a set of plausible
objects which could explain a given shadow in a real scene.

3. Method
We represent the observation of the shadow as a binary

image s ∈ RW×H . Our goal is to estimate a set of possible
3D shapes, their poses, and corresponding light sources that
are consistent with the shadow s. We approach this problem
by defining a generative model for objects and their shadows.
We will use this forward model to find the best 3D shape that
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Figure 2. Overview of our method. Given an observation of a shadow s, we optimize for an explanation jointly over the location of the
light c, the pose of the object Tϕ, and the latent vector of the object 3D shape z. Since every step is differentiable, we are able to solve this
optimization problem with gradient descent. By starting the optimization algorithm with different initializations, we are able to recover
multiple possible explanations Ω for the shadow.

could have produced the shadow.

3.1. Explaining Shadows with Generative Models

Let Ω = G(z) be a generative model for 3D objects,
where Ω parameterizes a 3D volume and z ∼ N (0, I) is
a latent vector with an isotropic prior. When the volume
blocks light, it will create a shadow. We write the location
of the illumination source as c ∈ R3 in world coordinates,
which radiates light outwards in all directions. The camera
will observe the shadow ŝ = π(c,Ω), where π is a rendering
of the shadow cast by the volume Ω onto the ground plane.

To reconstruct the 3D objects from their shadow, we
formulate the problem as finding a latent vector z, object
pose ϕ, and light source location c such that the predicted
shadow ŝ is consistent with the observed shadow s. We
perform inference by solving the optimization problem:

min
z,c,ϕ

L (s, π(c,Ω)) where Ω = Tϕ (G(z)) (1)

The loss function L compares the candidate shadow ŝ =
π(c,Ω) and the observed shadow s, and since silhouettes
are binary images, we use a binary cross-entropy loss. We
model the object pose with an SE(3) transformation T pa-
rameterized by quaternions ϕ. In other words, we want to
find a latent vector that corresponds to an appropriate 3D
model of the object that, in the appropriate pose, casts a
shadow matching the observed shadow. Consequently, we
can freely choose the location of the camera; we do not need
to model the camera extrinsic parameters. Since z is nor-
mally distributed, we constrain the norm of z to be within
δ ∈ R distance to the surface of a unit hyper-sphere.

Figure 2 illustrates an overview of this setup. The solution
z∗ of the optimization problem will correspond to a volume
that is consistent with the observed shadow. We can obtain
the resulting shape through Ω∗ = Tϕ∗ (G(z∗)). By solving
Equation 1 multiple times with different initializations, we
obtain a set of solutions {z∗} yielding multiple possible 3D
reconstructions.

3.2. G(z): Generative Models of Objects

To make the reconstructions realistic, we need to incorpo-
rate priors about the geometry of objects typically observed
in the visual world. Rather than searching over the full space
of volumes Ω, our approach searches over the latent space
z of a pretrained deep generative model G(z). Generative
models that are trained on large-scale 3D data are able to
learn empirical priors about the structure of objects; for ex-
ample, this can include priors about shape (e.g., automobiles
usually have four wheels) and physical stability (e.g., ob-
ject parts must be supported). By operating over the latent
space z, we can use our knowledge of the generative model’s
prior to constrain our solutions to 3D objects that match the
generative model’s output distribution.

Our approach is compatible with many choices of 3D
representation. In this implementation, we choose to model
our 3D volumes with an occupancy field [24]. An occupancy
network y = fΩ(x) is defined as a neural network that
estimates the probability y ∈ R that the world coordinates
x ∈ R3 contains mass. The generative model G(z) is trained
to produce the parameters Ω of the occupancy network.
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Figure 3. Differentiable rendering of shadows. A point p on the
ground plane will be a shadow if the corresponding ray from the
light source intersects with the volume f . We calculate whether p
is a shadow by finding the intersecting ray rθ , and max pooling fΩ
along the ray.

3.3. π: Differentiable Rendering of Shadows

To optimize Equation 1 with gradient descent, we need to
calculate gradients of the shadow rendering π and its projec-
tion to the camera. This operation can be made differentiable
by max-pooling the value of the occupancy network along a
light ray originating at the light source. Although integrating
occupancy along the ray may be more physically correct to
deal with partially transmissive media as in NeRF [25], since
we are primarily concerned with solid, opaque objects and
binary shadow masks, we find max-pooling to be a useful
simplifying approximation.

Let rθ ∈ R3 be a unit vector at an angle θ, and let n ∈ R3

be a vector normal to the ground plane. We need to calculate
whether the ray from the light source c along the direction of
rθ will intersect with the ground plane n, or whether it will
be blocked by the object Ω. The shadow will be an image
π(c,Ω) formed on the ground plane, and the intensity on the
plane at position p is given by:

π(c,Ω)[p] = max
d∈R

fΩ(c+ drθ) s.t. p = c− cTn

rTθ n
rθ

(2)

where we use the notation π(c,Ω)[p] to index into π(c,Ω)
at coordinate p. The right-hand constraint between p and
rθ is obtained by calculating the intersection of the light ray
with the ground plane.

For the light ray rθ landing at p, the result of π is the
maximum occupancy value fΩ along that ray. Since π(c,Ω)
is an image of the shadow on a plane, we use homography to
transform π(c,Ω) into the perspective image ŝ captured by
the camera view. A figure 3 illustrating the image formation
model can be found in appendix.

Algorithm 1 Inference by Inverting the Generative Model

1: Input: Shadow image s, step size η, number of itera-
tions K, and generator G.

2: Output: Parameters of a 3D volume Ω
3: Inference:
4: Randomly initialize z ∼ N (0, I)
5: for k = 1, ...,K do
6: J(z, c, ϕ) = L (s, π(c, Tϕ(G(z))))
7: z ← z − η · (∇zJ(z, c, ϕ) +N (0, σI)) where σ =

K−1−k
K

8: z← z/||z||2
9: c← c− η∇cJ(z, c, ϕ)

10: ϕ← ϕ− η∇ϕJ(z, c, ϕ)
11: end for
12: Return parameters of 3D volume Ω = Tϕ(G(z))

3.4. Optimization

Given a shadow s, we optimize z, c, and ϕ in Equation
1 with gradient descent while holding the generative model
G(z) fixed. We randomly initialize z by sampling from a
multivariate normal distribution, and we randomly sample
both a light source location c and an initial pose ϕ. We
then calculate gradients using back-propagation to minimize
the loss between the predicted shadow ŝ and the observed
shadow s.

During optimization, we need to enforce that z resembles
a sample from a Gaussian distribution. If this is not satis-
fied, the inputs to the generative model will no longer match
the inputs it has seen during training. This could result in
undefined behavior and will not make use of what the gener-
ator has learned. We follow the technique from [23], which
made the observation that the density of a high-dimensional
Gaussian distribution will condense around the surface of a
hyper-sphere (the ‘Gaussian bubble’ effect). By enforcing a
hard constraint that z should be near the hyper-sphere, we
can guarantee the optimization will find a solution that is
consistent with the generative model prior.

The objective in Equation 1 is non-convex, and there are
many local solutions for which gradient descent can become
stuck. Motivated by [41], we found that adding linearly
decaying Gaussian noise helped the optimization find better
solutions. Algorithm 1 summarizes the full procedure.

4. Experimental Results

The goal of our experiments is to analyze how well our
method can estimate 3D shapes that are consistent with an
observed shadow. We perform two different quantitative
experiments to evaluate the 3D reconstruction performance
of our model. We further provide several visualizations and
qualitative analysis of our method.
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Figure 4. 3D Reasoning Under Occlusion. We show several examples of 3D object reconstruction under occlusion. The 1st column shows
the original scenes including both objects. Shadow masks shown in the 2nd column. The 3rd and 4th column are our reconstruction as seen
from another camera view. Note that the red chair in the front is not being reconstructed by our model.

Method Car Chair Plane Sofa All

Random .329 .203 .211 .209 .238
Nearest Neighbor [6] .414 .299 .349 .352 .322
Regression [24] .611 .274 .410 .524 .467
Latent Search (Ours) .706 .371 .537 .598 .553

Im2Mesh (full image) [24] .737 .501 .571 .680 .622

Table 1. Results for 3D reconstruction from the shadows assuming
the object pose and the light source position are both known. We
report volumetric IoU, and higher is better. The Im2Mesh result
shows the performance at 3D reconstruction when the entire image
is observable, not just the shadows.

4.1. Common Experimental Setup

Evaluation Metric: We use volumetric IoU to evaluate
the accuracy of 3D reconstruction. Volumetric IoU is calcu-
lated by dividing the intersection of the two volumes by their
union. We uniformly sample 100k points in the bounding
volume. We calculate the occupancy agreement of the points
between the candidate 3D volume and the original volume.

Baselines: To validate our method quantitatively, we
selected several baselines for comparison. Since we are an-
alyzing how well generative models can explain shadows
in images, we compare against the 3 approaches: Regres-
sion, Nearest Neighbor, Random. Detailes of these baseline
methods can be found in the supplemental material.

4.2. Reconstruction: Known Light & Object Pose

We first evaluate our method on the task of 3D reconstruc-
tion when the light position and pose are known. For each
scene, we randomize the location of the light source, and

Method Car Chair Plane Sofa All

Random .283 .175 .177 .161 .199
Nearest Neighbor [6] .346 .233 .241 .233 .264
Regression [24] .559 .116 .218 .317 .303
Latent Search (Ours) .618 .187 .343 .413 .390

Table 2. Results for 3D reconstruction from the shadows assuming
the object pose and the light source position are both unknown.
We report volumetric IoU, and higher is better.

put the objects in their canonical pose. Since the problem is
under-constrained, there is not a single unique answer. We
consequently run each method eight times to generate di-
verse predictions, and calculate the average volumetric IoU
using the best reconstruction for each example.

Table 1 compares the performance of our approach versus
baselines on this task. Our approach is able to significantly
outperform the baselines on this task (by nearly 9 points),
showing that it can effectively find 3D object shapes that are
consistent with the shadows. Since our approach integrates
empirical priors from generative models with the geometry
of camera and shadows, it is able to better generalize to the
testing set. The regression baseline, for example, does not
benefit from these inductive biases, and instead must learn
them from data, which our results show is difficult.

When the full image is available, Table 1 shows that estab-
lished 3D reconstruction methods are able to perform better,
which is expected because more information is available.
However, when there is an occlusion, the full image will
not be available, and we instead must rely on shadows to
reconstruct objects. Figure 4 shows qualitative examples
where we were able to reconstruct objects that are occluded
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Figure 5. 3D Reconstructions from Natural Shadows. We show results where we reconstruct objects in natural images, except we only use
the shadow. We first automatically segment shadow mask with [40]. We then run our algorithm out-of-the-box. Although our method has
never seen a natural image during training, it generalizes well to in-the-wild Internet images.

other objects. Although there is no appearance information,
these results show that shadows allow our model to “see
through” occlusions in many cases. The examples show
that the method is able to reconstruct objects faithfully with
diverse shapes and across different categories. We include
more examples from all categories on the website.

4.3. Reconstruction: Unknown Light & Object Pose

Since our approach is generative and not discriminative,
a key advantage is the flexibility to adapt to different con-
straints and assumptions. In this experiment, we relax our
previous assumption that the light source location and the
object pose are both known. We evaluate our approach
at reconstruction where all three variables (latent vector ẑ,
light source location ĉ, and object pose parameters ϕ) must
be jointly optimized by gradient descent to minimize the
shadow reconstruction loss.

Table 2 shows the performance of our model at recon-
structing objects with an unknown illumination position and
pose. In this under-constrained setting, our approach is able
to significantly outperform the baseline methods as much as
29%. In this setting, the most difficult object to reconstruct
is a chair, which often has thin structures in the shadow.

Discriminative regression models are limited to produce
reconstructions that are consistent with their training condi-
tions, which is a principle restriction of prior methods. As
we relax the number of known variables, the size of the input
space significantly increases, which requires the regression
baseline to increasingly generalize outside of the training
set. Table 2 shows that regression is only marginally better
than a nearest neighbor search on average. However, since
our approach is generative, and integrates inductive biases
about scene illumination, it is able to better generalize to
more unconstrained settings.

4.3.1 Natural Images

We applied our method to the real-world dataset in [40],
and automatically obtain shadow segmentations with the
detector proposed by the same work. Fig. 5 shows our 3D re-
constructions from just the estimated shadows. Our method
remains robust both for real-world images and slightly inac-
curate shadow masks. These results also show our method
estimates reasonable reconstructions when the ground-truth
camera pose or light source location are unknown. Our
method also returns reasonable-looking models even if the
floor is not flat (e.g. car on sand).

4.4. Diversity of Reconstructions

By modeling the generative process of shadows, our
approach is able to find multiple possible 3D shapes to
explain the observed shadow. When we sample different
latent vectors as initialization, coupled with stochasticity
from Gaussian noise in gradient descent, our method can
generate a diverse set of solutions to minimize the shadow
reconstruction loss. Estimation of multiple possible scenes
is an important advantage of our approach when compared
with a regression model. There are many correct solutions
to the 3D reconstruction task. When a regression model
is trained to make a prediction for these tasks, the optimal
solution is to predict the average of all the possible shapes
in order to minimize the loss. In comparison, our approach
does not regress to the mean under uncertainty.

Figure 6 shows how the generative model is able to pro-
duce multiple, diverse samples that are all consistent with
the shadow. For example, when given a shadow of a car,
the method is able to produce both trucks and sedans that
might cast the same shadow. When given the shadow of a
sofa, the latent search discovers both L-shaped sofas and
rectangular sofas that are compatible with the shadow. Fig-
ure 7 quantitatively studies the diversity of samples from
our method. As we perform latent search on the generative
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Input Shadow Sample 1 Sample 2 Sample 3 Sample 4 Original Object

Figure 6. Diversity of Reconstructions. Given one shadow (left), our method is able to estimate multiple possible reconstructions (middle)
that are consistent with the shadow. We show four samples from the model (columns). The right side shows the original object.

Known Pose and LightUnknown Pose and LightKnown Pose and LightUnknown Pose and Light
1 0.41978312 0.27473297 0.41978312 0.27473297
2 0.47321854 0.31546825 0.47321854 0.31546825
4 0.5110508 0.35610362 0.4975133 0.33799976
8 0.54140291 0.39037018 0.5110508 0.35610362

16 0.57032105 0.42140773 0.51920845 0.36725648
0.52771478 0.37680367
0.53476895 0.38329009
0.54140291 0.39037018
0.54555083 0.39641787
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Figure 7. Performance with Diverse Samples. We show that our
approach is able to make diverse 3D reconstructions from shadows.
We plot best volumetric IoU versus the number of random samples
from our method. The upward trends indicate the diversity of the
prediction results from our method.

model with different random seeds, the likelihood of pro-
ducing a correct prediction monotonically increases. This
is valuable for our approach to be deployed in practice to
resolve occlusions, such as robotics, where systems need to
reason over all hypotheses for up-stream decision making.

4.5. Analysis

Optimization Process: To gain intuition into how our
model progresses in the latent space to reach the final
shadow-consistent reconstruction, we visualize in figure 9
the optimization process by extracting the meshes corre-
sponding to several optimization iterations before converg-
ing at the end. Figure 9 shows a clear transition from the
first mesh generated from a randomly sampled latent vector,
to the last mesh that accurately cast shadows matching the
input ones. The reconstructed meshes at the end also match
the original objects.

Reconstructions of Edited Shadows: We found that

Lack of Physical 
Stability

Lack of 
Realism

Figure 8. Failures. We visualize representative failures where the
model produces incorrect shapes that still match the shadow. Our
experiments suggest that results can be further improved with more
priors, such as physical knowledge (top) and refined generative
models (bottom).

our approach is able to exploit subtle details in shadows
in order to produce accurate reconstructions. To study this
behavior, we manually made small modifications to some of
the shadow images, and analyzed how the resulting recon-
structions changed. Figure 10 shows two examples. In the
example on the left, we modified the shadow of a chair to add
an arm rest in the shadow image. In the comparison between
the original reconstruction and modified reconstruction, we
can see an arm rest being added to the reconstructed chair.
In the example on the right, we take a shadow image of a
sedan and make the shadow corresponding to the rear trunk
part higher. The reconstructed car from the modified image
becomes an SUV to adapt to the modified shadow.

Analysis of Failures: We show a few representative
examples of failures in figure 8. Although these shapes
match the provided shadow, they are incorrect because they
either lack physical stability or produce objects that are un-
likely to be found in the natural visual world. These failures
suggest that further progress on this problem is possible by
integrating more extensive priors about objects and physics.
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Figure 9. Visualizing Optimization Iterations. Visualizing the process of our model searching for 3D shapes that cast a shadow consistent
with the input. The 1st column shows the shadow used as a constraint for searching. The middle sequence of figure shows the process of
searching in the latent space. The last column shows the original object as a reference, which is unseen by our model.

Original 
Shadow

Modified 
Shadow

Reconstruction
View 1 View 2

Reconstruction
View 1 View 2

Figure 10. Reconstructing Edited Shadows. We manually modify a shadow mask and compare the reconstructed 3D object between the
original and modified shadows. View 1 is the same as the original shadow image. View 2 is a second view for visualizing more details.

5. Conclusions

This paper shows that generative models are a promising
mechanism to explain shadows in images. Our experiments
show that jointly searching the latent space of a generative
model and parameters for the light position and object pose
allows us to reconstruct 3D objects from just an observation
of the shadow. We believe tightly integrating empirical priors
about objects with models of image formation will be an
excellent avenue for resolving occlusions in scenes.
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