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ABSTRACT

Hi-C analysis provides valuable insights into the spatial organization of chromatin,
which affects many aspects of genomic processes. However, the usefulness of Hi-
C is hindered by its resolution limitations owing to the sequencing cost. Here,
we propose Hi-C enhancement using Direct Diffusion Bridge (HiCBridge) that
learns transformation from low-resolution Hi-C data to high-resolution ones us-
ing direct diffusion bridge (DDB). Instead of relying on standard supervised feed-
forward networks and GANs, which often produces overly smooth textures or
falls into mode collapsing, the main idea of HiCBridge is building a diffusion pro-
cess, by directly bridging the low and high-resolution Hi-C data. Furthermore,
to make our model applicable in real-world situations, we further train our model
by increasing the variation of the real-world data with diffusion model-based data
augmentation. We demonstrate that our model can be used to improve down-
stream analyses such as three-dimensional structure matching, loop position re-
construction, and recovery of biologically significant contact domain boundaries.
Experimental results confirm that HiCBridge surpasses existing deep learning-
based models on standard vision metrics, and exhibits strong reproducibility in
Hi-C analysis of human cells.

1 INTRODUCTION

High-throughput chromosome conformation capture sequencing (Hi-C) is a powerful genomic and
epigenomic technique that offers information about the three-dimensional (3D) structure of the
genome (Lieberman-Aiden et al., 2009). While previous techniques such as 3C (Dekker et al.,
2002), 4C (Zhao et al., 2006), and 5C (Dostie et al., 2006) have been proposed to capture chro-
mosome conformation, the Hi-C method provides the advantage of capturing all possible contacts
within and between chromosomes (Varoquaux et al., 2014). By measuring the frequency of paired
chromatin interactions, Hi-C analysis enables the identification of important conformational fea-
tures of the genome, including A/B compartments (Lieberman-Aiden et al., 2009), gene regulatory
mechanisms (Rao et al., 2014; Wang et al., 2016; Schmitt et al., 2016), topology associated domains
(TADs) (Dixon et al., 2012), and chromatin loops (Rao et al., 2014).

To effectively utilize Hi-C data, the sequence read counts need to be converted into a matrix of con-
tacts. These matrices are indexed by rows and columns corresponding to genomic regions and are
partitioned into fixed bin sizes (Lajoie et al., 2015). Therefore, in the realm of Hi-C data analysis,
the ‘resolution’ or bin size is a pivotal factor that influences the outcome of various analyses, like
identifying regulatory regions or boundary regions in the genome. Achieving kilobase-scale reso-
lution in Hi-C data has thus become increasingly important for accurately elucidating 3D genome
structures. However, the reality of deep sequencing costs means that many existing Hi-C datasets
are of lower resolution, typically around 25 or 40 kb. This is because linear resolution increases
demands quadratic increase of sequence reads, making it a challenging and expensive endeavor
(Schmitt et al., 2016). Nonetheless, an insufficient number of reads leads to noisy and structurally
uninformative data (Jin et al., 2013; Filippova et al., 2014; Dixon et al., 2015; Durand et al., 2016).

To address this challenge, previous researchers have employed deep learning-based methods to
convert low-resolution data into high-resolution Hi-C data. HiCPlus (Zhang et al., 2018) and
HiCNN (Liu & Wang, 2019) leverage convolutional layers and optimize the mean squared error
(MSE) loss to map low-resolution to high-resolution Hi-C matrices. Other methods, including
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HiCSR (Dimmick, 2020), DeepHiC (Hong et al., 2020), and VEHiCLE (Highsmith & Cheng, 2021),
utilize generative adversarial neural networks (GANs) (Goodfellow et al., 2020) and employ addi-
tional loss functions to produce Hi-C matrices with sharper and more realistic features. Although
these previous studies have demonstrated high performance in improving Hi-C resolution, they suf-
fered from certain drawbacks. For example, models relying on regression and the MSE loss tend
to produce images with overly smooth textures (Mathieu et al., 2015), and GAN-based models can
suffer from unstable learning or mode collapse (Goodfellow et al., 2020). Adding explicit losses
to improve performance may inadvertently result in the learning of unwanted natural image tex-
tures (Dimmick, 2020). Since the synthesized low-resolution data for training are different from the
distribution of the real ones, inference to the real data results in poor performance (Murtaza et al.,
2022).

To address these, here we propose an Hi-C enhancement using Direct Diffusion Bridge (HiCBridge)
model that enhances Hi-C resolution in a simple yet effective manner. Specifically, we employ the
recent concept of Direct Diffusion Bridge (DDB) (Chung et al., 2023) which was inspired by Inver-
sion by direct iteration (InDi) (Delbracio & Milanfar, 2023) that iteratively denoises the data through
diffusion bridge. Specifically, by breaking down the mapping process into smaller steps along the
diffusion bridge, our model effectively learns the mapping from low-resolution to high-resolution
Hi-C data without falling into mode collapsing as seen in GANs or texture blurring common in
standard supervised deep learning. On the other hand, to create a model applicable to real-world
scenarios, we need to train HiCBridge using genuine data to prevent the model from losing its gen-
eralization ability. To mitigate this potential risk, another important contribution of this paper is a
diffusion model (Ho et al., 2020) that generates new low-resolution data from high-resolution one.
This approach diversifies the data and enhances the generalization performance of HiCBridge, which
we denote as HiCBridge+.

Comparative experiments with previous deep learning-based models demonstrate that HiCBridge+
achieves the state-of-the-art performance on several standard vision metrics. Additionally,
HiCBridge and HiCBridge+ outperforms other models on various biological metrics, providing val-
idation of Hi-C data reproducibility. Moreover, our framework excels in downstream tasks that
measure recovery of structural information. Finally, we verify the suitability of our model for real-
world Hi-C analysis by training the model on real-world low-resolution Hi-C data and comparing
the results with reconstructed high-resolution Hi-C data across different cell types and resolutions.

Our contributions can be summarized as follows:

• Using direct diffusion bridge, we propose an HiCBridge model that shows high perfor-
mance without any additional explicit losses.

• To enhance its generalization performance for real-world data, we propose HiCBridge+,
by finding the optimal combination of using diffusion model to enrich HiCBridge’s data.

• The proposed model shows the highest performance on metrics on standard vision metrics,
various biological metrics, and downstream tasks across different cell types and resolutions.

2 BACKGROUNDS

Hi-C data acquisition and resolution. Hi-C data offer profound insights into the 3D structural
information of chromatin within cell nuclei (Lieberman-Aiden et al., 2009). The acquisition of Hi-
C involves sequencing spatially proximate DNA fragments to reveal long-range interactions across
an entire genome. Raw Hi-C data represent pairwise reads counted at corresponding locations on
chromosome, which are then converted into 2D contact matrices indicating the contact frequency of
each bin. Details of pre-processing we used are provided in the Appendix A.1.

The resolution of Hi-C data depends on the bin size of the Hi-C contact matrix. Similar to pixel size
in images, shorter bins (e.g., 10kb) yield more detailed chromosome contact information (Liu &
Wang, 2019), while coarser resolutions with larger bins (e.g., 1Mb) provide a broader perspective.
The resolution of experimentally obtained Hi-C data is proportional to the number of read pairs,
and insufficient read coverage indicates sparse contact frequency. A n fold increase in resolution
requires n2 read pairs, resulting in higher costs for Hi-C experiments. Therefore, the low-resolution
Hi-C data in the standard binning size produces noisy contact maps due to the low sequence reads.
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Figure 1: Model pipeline overview. HiCBridge framework produces high-resolution data from cor-
rupted data by applying noising procedure Eq. (6) and denoising through Gθ(xt). To increase the
diversity in the Hi-C dataset, we further train a diffusion model to generate low-resolution data by
conditioning on high-resolution data. HiCBridge+ is the HiCBridge trained with diffusion model-
based data augmentation.

Existing deep learning approaches for Hi-C enhancement. Previous deep learning-based meth-
ods to enhance Hi-C resolution can be broadly categorized into two types based on their objectives:
those employing the Mean Squared Error (MSE) loss and those using Generative Adversarial Net-
work (GAN) loss. HiCPlus and HiCNN optimize the MSE loss using convolutional neural networks
to enhance downsampled low-resolution Hi-C matrices. However, regressing to high-resolution
through the MSE loss often results in blurry outputs. With the advent of GANs, models such as
HiCSR, DeepHiC, and VEHiCLE utilize GAN loss to generate more realistic high-resolution data
from low-resolution counterparts. More specifically, the HiCSR model employs a task-specific au-
toencoder to compare the differences between features in the latent space. DeepHiC incorporates a
perceptual loss (Johnson et al., 2016) and total variation loss, while VEHiCLE employs a variational
autoencoder (VAE) (Kingma & Welling, 2013) to extract intrinsic important features from Hi-C data
and utilizes an explicit loss based on the TAD insulation score. However, GAN-based models are
susceptible to mode collapse, and models relying on explicit losses may introduce artifacts incon-
sistent with the Hi-C data (Dimmick, 2020).

In Fig. 2, we highlight the limitations of models trained with traditional MSE and GAN approaches.
HiCPlus, an MSE-based model, fails to capture existing TAD regions present in high-resolution
data, whereas the GAN-based model, HiCSCR, exhibits outliers in locations where they should not
be. Those artifacts could potentially lead to misinterpretation of the reconstructed Hi-C data.

In addition, with the exception of VEHiCLE, previous deep learning models were trained using
synthetic low-resolution data downsampled to a specific resolution (e.g., 1/16 read counts) from
high-resolution raw Hi-C data, not contact matrices. A study by Murtaza et al. (2022) demonstrated
differences in the distribution of real low-resolution data compared to synthetic counterparts, poten-
tially resulting in sub-optimal performance in real-world situation.

Direct diffusion bridge. Here we briefly review Direct Diffusion Bridge (DDB) (Chung et al.,
2023). Consider the case where we can sample x0 := x ∼ p(x), and x1 := y ∼ p(y|x), i.e.
paired data for training. This diffusion bridge introduces a continual degradation process by taking
a convex combination of (x0,x1), starting from the clean image at t = 0 to maximal degradation at
t = 1, with additional stochasticity induced by the noise component σt. This can be represented as

xt = (1− αt)x0 + αtx1 + σtz, z ∼ N (0, I), (1)
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Figure 2: Comparison of Hi-C data and enhancement results on GM12878 chromosome 5 4.4Mb-
5.3Mb. Blue arrows indicate TAD regions that should be present in existing high-resolution data.
Yellow arrow indicates outliers that are not present in existing data. Our model showcases con-
servative reconstruction, preserving structural information without introducing artifacts that could
potentially lead to misinterpretation of the reconstructed Hi-C data, whereas the GAN-based model,
HiCSCR, exhibits outliers in locations where they should not be.

where αt, σ
2
t are time-dependent parameters. Our goal is to train a time-dependent neural network

that maps any xt to x0 that recovers the clean image. The training objective is

min
θ

Ext∼p(xt|x0),x0∼p(x0),t∼U(0,1)[∥Gθ(xt)− x0∥22], (2)

which is equivalent to the denoising score matching (DSM) (Hyvärinen & Dayan, 2005):

min
θ

Ey∼p(y|x),x∼p(x), t∼U(0,1)

[
∥sθ(xt)−

xt − x0

γt
∥22
]
, (3)

Once the network is trained, we can reconstruct x0 starting from x1 by, for example, using DDPM
ancestral sampling (Ho et al., 2020), where the posterior for s < t reads

p(xs|x0,xt) = N (xs; (1− α2
s|t)x0 + α2

s|txt, σ
2
s|tI), (4)

with α2
s|t :=

γ2
s

γ2
t

, σ2
s|t :=

(γ2
t −γ2

s )γ
2
s

γ2
t

. At inference, x0 is replaced with a neural network-estimated
x̂0|t to yield xs ∼ p(xs|x̂0|t,xt) from Gθ∗ , where we simply denote the trained networks as Gθ∗

even if it is parameterized otherwise.

3 METHODS

3.1 HICBRIDGE

The conventional regression models based on the Mean Squared Error (MSE) loss causes the model
to regress to the mean in the target domain, resulting in blurring and losing details. To mitigate this
problem, we propose Hi-C enhancement using Direct Diffusion Bridge (HiCBridge) using direct
diffusion bridge (DDB) which breaks down the regression into smaller steps.

Specifically, we establish a stochastic relationship between the contact matrix from high-resolution
Hi-C data, x0 ∈ RH×W , and its low-resolution counterpart, x1 ∈ RH×W as

x1 = A(x0) ∼ p(x1|x0), (5)

where A represents a stochastic, non-linear and unknown operator. We can conceptualize A as
generating a contact matrix of low-resolution data from corresponding high-resolution data, follow-
ing the distribution p(x1|x0). Unfortunately, unlike conventional image restoration (Richardson,
1972), we do not possess prior knowledge about this operator. Moreover, A possesses stochastic
characteristics, making a one-to-one matching of paired data unattainable.
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Given the stochastic nature of the mapping, our goal is to exploit the direct diffusion bridge model
to link the paired data x0 and x1 as in (1). In particular, a study by Chung et al. (2023) show that
we can reformulate (1) as

xt = (1− t)x0 + tx1 +
√
tϵηt, (6)

when αt = t and σt =
√
tϵηt. Here, ηt represents the standard Brownian motion that accounts for

the stochastic nature of the contact matrix from low-resolution Hi-C data, and ϵ is a small constant
that controls the strength of the noise. Then, in line with (4), we can obtain the denoised data by a
small step size δ by

xt−δ =
δ

t
Gθ∗(xt) +

(
1− δ

t

)
xt. (7)

Here, we choose δ = 1
1000 at training and δ = 1 at inference. Specifically, as shown in Fig. 1,

starting from the noisy contact matrix xt from low-resolution Hi-C data, our method estimates the
corresponding estimates of the clean contact map through Gθ∗(xt). With the estimate Gθ∗(xt), Eq.
(7) generates the cleaner version of the contact matrix xt−δ compared to xt. In particular, by using
δ = 1 at inference, we can arrive at the final estimate of the clean contact matrix in just one step,
which makes the algorithm very fast.

3.2 HICBRIDGE+: DIFFUSION-BASED LOW-RESOLUTION DATA AUGMENTATION

In order to enhance the practicality and applicability of our model, we train models using data
obtained from actual experiments. Unfortunately, the insufficiency of Hi-C data can lead to over-
fitting of the model. As discussed in Section 3.1, the mapping of the Hi-C contact matrix is not
precisely known, necessitating multiple experiments to collect sufficient Hi-C data to augment the
dataset. However, this data collection process is time-consuming and expensive. To overcome this
challenge, we train a diffusion model to sample the data from the unknown operator A.

Specifically, we train a DDPM model (Ho et al., 2020) to generate new low-resolution Hi-C data
corresponding to the high-resolution ones. During the training process, we concatenated the high-
resolution data to the input for conditioning. Our diffusion model ϵθ is trained to predict the various
level of noises from corrupted input using Algorithm 1.

Using this trained diffusion model, we generate new low-resolution Hi-C data that align with their
original high-resolution counterparts by Algorithm 2. Although the learned denoising function can
be used to generate new low-resolution data from Gaussian noise, we employ the method introduced
by Meng et al. (2021) and Chung et al. (2022) to accelerate generation speed. Specifically, we per-
turb the high-resolution data at t = 0.5 and then denoise them over the half iterations, conditioning
the high-resolution data at each step. Subsequently, we train a new HiCBridge using an augmented
Hi-C dataset, combining the generative power of diffusion with the regression capability of DDB.
We call this model as HiCBridge+. The pipeline of HiCBridge+ is shown in Fig. 1. We visualized
generated low-resolution using diffusion model in Appendix F.

Algorithm 1 Training
Require: x1, {

√
ᾱt}t∈[0,1]

repeat
ϵ ∼ N (0, I)
t ∼ U(0, 1)
xt ←

√
ᾱtx1 +

√
1− ᾱtϵ

L = ∥ϵ(t)θ (xt|x1)− ϵ∥2
Take gradient decent step on

L for θ
until converged

Algorithm 2 Data augmentation

Require: x0, {
√
ᾱt, σt}t∈[0,1], ϵ

(t)
θ , δ

t← 0.5
ϵ ∼ N (0, I)
xt ←

√
ᾱtx0 +

√
1− ᾱtϵ

while t > 0 do
z ∼ N (0, I)

xt−δ = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵ
(t)
θ (xt|x0)

)
+ σtz

t← t− δ
end while
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Figure 3: Comparison of Hi-C data and enhancement results by each model. The left two columns
represent the low-resolution and high-resolution data of the actual GM12878 Hi-C data. The odd
rows represent the Hi-C data and the even rows represent the difference from the high-resolution
data of the corresponding genome region.

4 EXPERIMENTAL RESULTS

4.1 EVALUATION METHODS

To ensure the evaluation of our proposed method for Hi-C resolution enhancement, we trained all
models on the real Hi-C data and utilized standard vision metrics commonly employed in deep
learning-based models. These metrics include the Pearson correlation coefficient (PCC), Spearmans
correlation coefficient (SCC), peak signal-to-noise ratio (PSNR), structural similarity index metric
(SSIM), mean squared error (MSE), and signal-to-noise ratio (SNR). However, Yang et al. (2017)
indicated that these correlation-based metrics do not fully capture the reproducibility of Hi-C data.
To address this, we incorporated two Hi-C specific similarity metrics, GenomeDISCO (Ursu et al.,
2018) and HiCRep (Yang et al., 2017). GenomeDISCO provides a concordance score by employing
graph random walks to denoise contact maps, and HiCRep calculates a stratum-adjusted correlation
coefficient that accounts for distance-dependency weights by stratifying Hi-C data.

Furthermore, we conducted three downstream tasks to assess the reconstruction of structural infor-
mation in Hi-C data. The overview of downstream analysis is shown in Fig. 4. Firstly, we compared
the 3D structure of chromatin based on the template modeling score (TM-Score) (Zhang & Skol-
nick, 2004) between the reconstructed Hi-C data and the high-resolution reference. We obtained
the 3D structure of chromatin using 3DMax (Oluwadare et al., 2018) and compared the average
TM-score. Secondly, we assessed the accuracy of TAD positioning by comparing the Insulation
score (Crane et al., 2015). Since TAD represents a region with strong physical interactions, pin-
pointing the location of TADs has biological significance. We computed the TAD insulation vector
by sliding the window and obtained the L2 difference from the high-resolution data like in previous
work (Highsmith & Cheng, 2021). Lastly, we validated the models’ capability to accurately recon-
struct chromatin loop positions by comparing the Jaccard Index of the reconstructed loops. We used
Fit-Hi-C (Ay et al., 2014) to identify important loop positions and assessed how much the enhanced
data shared loop positions with the high-resolution reference.

4.2 COMPARATIVE EVALUATION IN TERMS OF VISUAL METRICS

We conducted a comprehensive comparison between the HiCBridge, HiCBridge+ and several deep
learning-based models, namely HiCPlus, HiCSR, DeepHiC, and VEHiCLE. The evaluation was
based on standard vision metrics, using Hi-C data from chromosomes 4, 14, 16, and 20 of GM12878
cells. As shown in Table 1, our HiCBridge+ model demonstrated superior performance across all
metrics, with significant margins. When comparing results from other previous models, incorporat-
ing additional loss functions tended to improve the vision metrics. The actual Hi-C data used for
testing and the reconstructed Hi-C data of each model are displayed in Fig. 3. Note that HiCPlus,
which optimized the MSE loss, produced blurry output, and HiCSR and DeepHiC, constrained by
inadequately large image sizes, exhibited grid-like artifacts. And VEHiCLE, utilizing explicit losses,
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Figure 4: Illustration of downstream analyses of reconstructed Hi-C data. TM-Score assesses the
structural similarity, and Insulation score helps identify TAD boundaries by calculating average
interaction frequency within sliding windows. Jaccard Index measures the accuracy of reconstructed
significant chromatin loops.

Table 1: Quantitative evaluation of average standard vision metrics on GM12878 test Hi-C data.
+ indicates that diffusion augmentation is applied. Bold: best, underline: second best.

Method PCC SCC PSNR SSIM MSE (↓) SNR

Low-resolution 0.854 0.667 18.02 0.352 0.02091 326.4
HiCPlus (Zhang et al., 2018) 0.906 0.742 20.13 0.554 0.01107 413.9
HiCSR (Dimmick, 2020) 0.909 0.750 20.13 0.523 0.01123 413.9
DeepHiC (Hong et al., 2020) 0.909 0.730 20.24 0.542 0.01083 419.4
VEHiCLE Highsmith & Cheng (2021) 0.968 0.886 24.46 0.596 0.00582 694.2
HiCBridge (ours) 0.977 0.911 26.86 0.671 0.00294 911.1
HiCBridge+ (ours) 0.978 0.912 27.05 0.676 0.00278 930.9

Table 2: Comparative results of HiCRep and GenomeDISCO on GM12878 cell line. ‘chr’ represents
chromosome and + indicates diffusion augmentation is applied. Bold: best, underline: second best.

Method
HiCRep GenomeDISCO

chr 4 chr 14 chr 16 chr 20 chr 4 chr 14 chr 16 chr 20

Low-resolution 0.917 0.950 0.948 0.957 0.924 0.926 0.913 0.921
HiCPlus (Zhang et al., 2018) 0.943 0.966 0.960 0.966 0.953 0.944 0.911 0.915
HiCSR (Dimmick, 2020) 0.957 0.966 0.959 0.959 0.935 0.873 0.852 0.831
DeepHiC (Hong et al., 2020) 0.958 0.971 0.967 0.968 0.960 0.957 0.939 0.946
VEHiCLE (Highsmith & Cheng, 2021) 0.919 0.956 0.954 0.964 0.623 0.753 0.799 0.846
HiCBridge (ours) 0.968 0.979 0.974 0.975 0.965 0.961 0.946 0.939
HiCBridge+ (ours) 0.984 0.987 0.982 0.987 0.947 0.946 0.931 0.947

resulted in unintended distributional shifting effects in the reconstructed Hi-C data. Our model out-
performed all others without requiring additional loss functions. Furthermore, we observed that
augmenting the data with a diffusion model resulted in even higher performance.

4.3 COMPARATIVE EVALUATION IN TERMS OF HI-C REPRODUCIBILITY

We employed reproducibility metrics specific to Hi-C data, namely HiCRep and GenomeDISCO,
comparing with high-resolution Hi-C data. We used the same data as for the vision metric compar-
ison and applied off-the-shelf parameters for the reproducibility assessment. As presented in Table
2, our model achieved the highest Hi-C reproducibility performance. Interestingly, despite showing
high vision metric results, VEHiCLE performed poorly on GenomeDISCO and even lower than the
low-resolution Hi-C data. These results are in accordance with the results of Murtaza et al. (2022).
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Table 3: Comparative downstream results of average TM-Score, Insulation score (IS), and Jaccard
Index on GM12878 test Hi-C data. + indicates that diffusion augmentation is applied. Bold: best,
underline: second best.

Method TM-Score IS (↓) Jaccard Index

Low-resolution 0.454 4.221 0.086
HiCPlus (Zhang et al., 2018) 0.802 3.209 0.316
HiCSR (Dimmick, 2020) 0.708 2.986 0.440
DeepHiC (Hong et al., 2020) 0.509 3.161 0.432
VEHiCLE (Highsmith & Cheng, 2021) 0.506 3.743 0.425
HiCBridge (ours) 0.821 2.627 0.447
HiCBridge+ (ours) 0.792 2.316 0.463

4.4 ABILITY TO RECOVER STRUCTURAL FEATURES OF CHROMOSOMES

To verify how successfully the reconstructed Hi-C data recovered the structural information of the
high-resolution data, we evaluated the TM-Score, TAD Insulation score, and Jaccard Index of the
reconstructed loops. In the Table 3, our model achieved the best performance on all of downstream
analyses. Our model not only recovers 3D information of high-resolution Hi-C data and exhibits
minimal differences in reconstructed TAD boundaries but also restores significant chromatin loop.

Table 4: The results of in different resolutions (1/16, 1/50 and 1/100) on GM12878 chromosome 20
Hi-C data. ‘IS’ represents Insulation score and + indicates that diffusion augmentation is applied.
Bold: best, underline: second best.

Method
1/16 1/50 1/100

SSIM HiCRep IS (↓) SSIM HiCRep IS (↓) SSIM HiCRep IS (↓)

Low-resolution 0.425 0.989 1.938 0.235 0.972 3.436 0.153 0.951 4.921
HiCPlus (Zhang et al., 2018) 0.667 0.846 2.205 0.628 0.828 3.397 0.571 0.811 4.461
HiCSR (Dimmick, 2020) 0.621 0.859 2.103 0.531 0.851 3.392 0.476 0.835 4.406
DeepHiC (Hong et al., 2020) 0.641 0.854 2.163 0.582 0.845 3.655 0.508 0.829 5.779
VEHiCLE (Highsmith & Cheng, 2021) 0.750 0.588 2.003 0.628 0.852 3.053 0.525 0.819 4.124
HiCBridge (ours) 0.787 0.988 2.074 0.757 0.976 3.053 0.717 0.963 4.416
HiCBridge+ (ours) 0.796 0.990 1.837 0.751 0.970 2.944 0.643 0.944 4.143

Table 5: The average results on different cell types (K562, IMR90) test Hi-C data. ‘IS’ represents
Insulation score and + indicates that diffusion augmentation is applied. Bold: best, underline:
second best.: second best.

Method K562 IMR90

SSIM HiCRep IS (↓) SSIM HiCRep IS (↓)
Low-resolution 0.232 0.860 7.284 0.349 0.944 5.724
HiCPlus (Zhang et al., 2018) 0.366 0.906 5.991 0.475 0.961 4.848
HiCSR (Dimmick, 2020) 0.383 0.917 5.550 0.502 0.964 3.892
DeepHiC (Hong et al., 2020) 0.370 0.919 6.843 0.485 0.965 4.697
VEHiCLE (Highsmith & Cheng, 2021) 0.444 0.908 6.100 0.574 0.958 4.622
HiCBridge (ours) 0.468 0.927 5.632 0.575 0.970 3.737
HiCBridge+ (ours) 0.477 0.943 5.319 0.602 0.980 3.594

4.5 GENERALIZATION IN DIFFERENT RESOLUTIONS AND CELL TYPES

Different resolutions. We analysed the generalization performance of our model to assess its ap-
plicability in different resolutions. We compared SSIM as a vision metric, HiCRep as a Hi-C re-
producibility, and Insulation score as a downstream task for data downsampled to specific ratios
(1/16, 1/50, and 1/100) on GM12878 chromosome 20. As shown in Table 4, the results demon-
strate the robust performance of our framework across varied resolutions. It is worth noting that the
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downsampled data was obtained from high-resolution data, so the HiCrep and Insulation scores al-
ready indicate that downsampled data are similar to the high-resolution. We observed that for other
models, except ours, the HiCRep and Insulation score are actually worse than the downsampled
data. Furthermore, the lower the downsampling ratio, the less effective the augmentation becomes.
Downsampled low-resolution data are visualized in Appendix F.

Different cell types. We compared the generalization of the model for different cell types: K562,
IMR90. We employed SSIM, HiCRep and Insulation score for chromosomes 4, 14, 16, and 20 for
each cell. From Table 5, we can observed that all models maintain their metric-specific performance
on the GM12878 test data. For GM12878, VEHiCLE scored the highest of any previous model in
visual acuity metrics, DeepHiC in HiCRep, and HiCSR in Insulation score. As with the GM12878
test data, we verified that our model also generalized better to other cell types. Furthermore, we
verified that augmentation with a diffusion model helped to increase performance in various cell
types. All of these results indicate that our framework is the most suitable model for real-world
Hi-C data applications. We visualized insulation vectors which used for calculating Insulation score
in IMR90 cell line in Appendix A.3, which confirms the accuracy of our method. The results for
each model on different cell types are displayed in Appendix F.

4.6 ABLATION STUDY

Table 6: Comparison the regression and augmentation effect for GM12878 chromosome 20 based
on generation method. Bold: best.

Method PCC SCC PSNR SSIM MSE (↓) SNR

Diffusion 0.981 0.912 28.00 0.647 0.00164 783.5
HiCBridge 0.987 0.929 30.12 0.795 0.00100 999.0

HiCBridge + DDB Aug. 0.987 0.929 30.19 0.800 0.00099 1007.6
HiCBridge + Diffusion Aug. 0.988 0.930 30.22 0.802 0.00098 1011.3

Regression with a diffusion model. One could also obtain high-resolution Hi-C data from low-
resolution with a diffusion model using Algorithm 1 and Algorithm 2 after replacing x1 and x0. To
confirm the optimality of HiCBridge over this alternative, we trained the diffusion model on the same
dataset and architecture. Table 6 demonstrates that HiCBridge has superior denoising performance
compared to the diffusion model. Furthermore, HiCBridge takes only one step, resulting in a short
inference time, unlike diffusion model that requires hundreds to thousands of steps.

Augmentation with DDB. In this paper, we generated low-resolution Hi-C data based on the diffu-
sion model. Instead, by swapping inputs and outputs, one could use the DDB to generate new Hi-C
data by learning to convert high-resolution Hi-C data to low-resolution data. To compare the alterna-
tive augmentation performance, we used HiCBridge as a baseline and compared the vision metrics
with the alternative data augmentation scheme. From Table 6, we verified that HiCBridge+, em-
ploying the diffusion model, yielded better results compared to the alternative augmentation method.
Since DDB learns the expectation of the conditioned output, generating low-resolution data is rela-
tively difficult. In contrast, the diffusion model is more suitable for generating low-resolution data
due to its ability to estimate the distribution.

5 CONCLUSION

In this paper, we propose Hi-C enhancement using Direct Diffusion Bridge (HiCBridge) framework
and its data augmented version (HiCBridge+) for effectively enhance Hi-C resolution by cooper-
ating with generation ability of diffusion model. Our comprehensive evaluations have shown that
HiCBridge outperforms existing deep learning-based models on standard vision metrics, even with-
out the need for additional specialized losses to boost performance. Our framework shows out-
standing reproducibility in Hi-C analysis of human cells, particularly in tasks such as 3D structure
matching, loop position reconstruction, and recovery of TAD boundaries. These results highlight the
versatility and reliability of HiCBridge+ at different resolutions and in different human cell types,
and show that our model can be a promising tool for advancing chromatin research.

9
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6 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our experiments in Appendix A, which
is organized into three main sections. In Appendix A.1, we detail the source of the raw Hi-C data
used in the experiments and outline the pre-processing methods employed to convert raw Hi-C data
into contact matrices. Appendix A.2 contains the source code for the models and the hyperpa-
rameters setting for each model. Lastly, Appendix A.3 involves the various metrics we utilized to
compare the performance of the models.

7 ETHICS STATEMENT

We have thoroughly read the ICLR Code of Ethics and affirm that this paper follows it. We will
release the source code of our experiments and specify which program was used. Including our
model, any model that converts low-resolution Hi-C data to high-resolution may potentially contain
inaccurate biological information. To mitigate potential misinformation, it is crucial to thoroughly
evaluate their applicability through diverse assessment methods.
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A EXPERIMENTAL DETAILS

A.1 HI-C DATA AVAILABILITY

Download Hi-C data. For GM12878 cell line, we used GSE63525 GM12878 insitu -
primary 30.hic for high-resolution and GSM1551550 HIC001 30.hic for low-resolution
Hi-C data. For K562, we used GSE63525 K562 combined 30.hic for high-resolution
and GSM1551620 HIC071 30.hic for low-resolution. For IMR90, we used GSE63525 -
IMR90 combined 30.hic and GSM1551602 HIC053 30.hic for high-resolution and low-
resolution data, respectively. We partitioned the dataset with chromosomes 1, 3, 5, 6, 7, 9, 11, 12,
13, 15, 17, 18, 19, and 21 as training set, chromosome 2, 8, 10, and 22 as validation set, and chro-
mosome 4, 14, 16, and 20 as test set. Synthetic low-resolution Hi-C matrices were generated using
the downsampling method introduced in Zhang et al. (2018).

Pre-processing. We obtained all Hi-C data from the Gene Expression Omnibus (GEO) GSE63525.
We downloaded Hi-C data with mapping quality>30 and the Hi-C data were KR-normalized (Knight
& Ruiz, 2013) to 10kb resolution using the Juicer software (Durand et al., 2016), resulting in Hi-
C contact matrices. Zero values along the diagonal of the contact matrix were removed. We then
threshold 99.9th percentile and normalize value ranging from 0 to 1. The contact matrix was cropped
to a size of 256 × 256 along the diagonal, except for VAE in VEHiCLE, for which the Hi-C contact
matrix was cropped to a size of 244 × 244. Similar to previous works, we partitioned the contact
matrix by overlapping every 50 bins to include contiguous information. Low-resolution Hi-C matri-
ces were synthesized by downsampling high-resolution Hi-C data to specific resolutions (1/16, 1/50,
and 1/100) following Liu & Wang (2019). We also pre-processed and generate Hi-C contact matrix
of other human cell types (K562, IMR90) using the same process, as described above.

A.2 MODEL DETAILS

Table 7: Comparative analysis of computational efficiency.

Model #Params Inference Time (ms)

HiCPlus 0.93k 29
HiCSR 5.31M 1708
DeepHiC 1.56M 818
VEHiCLE 25.9M 24
HiCBridge 20.6M 158
Diffusion Aug. 20.6M 6750

All of models were trained with GM12878 training set, encompassing a total of 3310 Hi-C contact
matrix pairs sized 256 × 256. Our implementation was built with Pytorch (Paszke et al., 2019) and
trained on a NVIDIA GeForce RTX 3090. All of models used Adam optimizer (Kingma & Ba,
2014). As shown in Table 7, we provide an overview of the computational efficiency of each model,
comparing the number of model parameters and inference time per 256 × 256 Hi-C contact matrix.
Note that VEHiCLE and HiCBridge are faster because they do not need to merge the cropped output,
owing to their larger input image size.

HiCPlus. The model architecture from https://github.com/wangjuan001/hicplus
was used. The model was optimized using the Mean Squared Error (MSE) loss and a learning
rate of 3e-5. Training was performed with a batch size of 512 for 300 epochs.

HiCSR. The model architecture from https://github.com/PSI-Lab/HiCSR was used.
We first trained the autoencoder with MSE loss with a learning rate of 1e-4 and a batch size of
4096 for 600 epochs. Subsequently, the GAN was optimized with GAN loss and feature reconstruc-
tion loss with a learning rate of 1e-5 for the generator and discriminator. We trained HiCSR with
batch size of 8 for 500 epochs.

DeepHiC. The model architecture from https://github.com/omegahh/DeepHiC was
used. The model was optimized with GAN loss, perceptual loss, total variation loss, and MSE
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loss with a learning rate of 1e-4 for the generator and discriminator. We trained model with batch
size of 16 for 200 epochs.

VEHiCLE. We used the model architecture from https://github.com/Max-Highsmith/
\VEHiCLE. First, we trained VAE unsupervised with learning rate 1e-5, and a batch size of 512
for 50 epochs. The GAN was then optimized with GAN loss, Insulation loss, MSE loss, and VAE
loss with a learning rate of 1e-5 for the generator and discriminator. Training for VEHiCLE was
conducted with a batch size of 1 for 50 epochs.

HiCBridge. We used the U-net (Ronneberger et al., 2015) architecture from https://github.
com/lucidrains/denoising-diffusion-pytorch. The details of architecture is pro-
vided in Table 8. When training our model, we sampled intermediate Hi-C matrices using (6) with
δ = 1/1000, ϵ = 0.01 with Brownian motion. We then obtained the reconstructed Hi-C matrices in
one-step without noise. Our model was optimized with L1 loss with a learning rate of 1e-4. Training
for HiCBridge was conducted with a batch size of 12 for 300 epochs.

HiCBridge+. We trained a diffusion model to generate new low-resolution Hi-C data. Since the
generated low-resolution data should correspond to the high-resolution, we conditioned the input
of the diffusion model by concatenating the high-resolution data. Diffusion model was optimized
with L1 loss using the Adam optimizer with learning rate of 1e-4. Training for diffusion model
was conducted with a batch size of 4 for 500 epochs. The details of architecture is provided in
Table 8. Once the diffusion model was trained, we converted the high-resolution of training data
to low-resolution using diffusion model. We then trained HiCBridge+ using same architecture in
HiCBridge. To match the number of data trained, we halved the epochs to 150 since the volume of
dataset doubled. We trained HiCBridge+ with L1 loss with a learning rate 1e-4 and batch size of 4.

Table 8: Details of HiCBridge and diffusion model architecture.
HiCBridge Diffusion model

init dim 64
dim mults (1,1,2,2,4,4)

channel 1
loss type L1

condition False True
noise schedule brownian linear

objective ‘pred x0’ ‘pred noise’
timesteps 1000 1000

inference steps 1 500

A.3 EVALUATION METHODS

Standard Visual metrics. We employed Scipy (Virtanen et al., 2020) module to measure Pear-
son correlation coefficient (PCC) and Spearmans correlation coefficient (SPC). We calculated peak
signal-to-noise ratio (PSNR), structural similarity index metric (SSIM), mean squared error (MSE),
and signal-to-noise ratio (SNR) using (8-11) with C1 = 0.012 and C2 = 0.032. x and y represent
high-resolution Hi-C contact matrix and corresponding enhanced Hi-C data. µx and µy denote the
mean of x and y. σx and σy denote standard deviation of x and y. σxy represents covariance of x
and y.

PSNR(x, y) = 20 log10

(
max(y)−min(y)√

MSE(x, y)

)
(8)

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(9)
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Figure 5: Insulation vector in IMR90 chromosome 4 0.5-3Mb Hi-C data. Merged represents over-
lapped insulation vectors excluding low-resolution Hi-C data.

Figure 6: Visualization of important chromatin loop in GM12878 chromosome 4 5-7.5Mb via Fit-
Hi-C.

MSE(x, y) =
∑
i

(xi − yi)
2 (10)

SNR(x, y) =

∑
i yi√∑

i(xi − yi)2
(11)

GenomeDISCO and HiCRep. In order to evaluate the Hi-C reproducibility, we converted
the model outputs into a Hi-C contact matrix for the corresponding resolution. We then ob-
tained the GenomeDISCO through the GenomeDISCO repository from https://github.com/
kundajelab/genomedisco and the HiCRep through the HiCRep R package from https:
//github.com/TaoYang-dev/hicrep. We modified GenomeDISCO to be compatible with
Python 3 version. We used default parameter in GenomeDISCO and h = 20 in HiCRep.

TM-Score. First, we employed 3D Max from https://github.com/BDM-Lab/3DMax to
obtain .pdb file of Hi-C contact matrix. We only acquired 3D modeling at 250 bin size intervals.
We then compared TM-Score via https://github.com/Dapid/tmscoring. We used con-
vert factor as 0.6, reproducing number as 3, learning rate as 1, and maximum iteration as 1e4 in 3D
Max.

Insulation score. We followed Crane et al. (2015) with window size as 20 bins. Fig. 5 represents
insulation vector in IMR90 chromosome 4 using the aforementioned method.

Jaccard Index. We obtained significant intra-chromatin loop location using Fit-Hi-C from https:
//github.com/ay-lab/fithic. We then filtered loops for conditions where the q-value
was lower than 1e-6 and the position of the loop was between 20e3 and 1e6 in genomic distance.
With (12), we measured the Jaccard index for the high-resolution chromatin loop location. x and y
denotes loop location of reconstructed Hi-C data and high-resolution Hi-C data, respectively. The
comparison results are illustrated in Fig. 6

Jaccard(x, y) =
|x ∩ y|
|x ∪ y|

(12)
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B ABLATION STUDY

Effects of step size during training. To verify that the performance improvement is due to a
change in the structure of the model, we compared the performance of HiCBridge with one-step feed
forward supervised learning by varying the step size during training. Notably, the step size of one is
the same as the traditional supervised learning. From Table 9, we observed that increasing the step
size during training leads to higher performance. This observation highlights that the HiCBridge
framework, which can learn mappings with intermediate steps, is more efficient at learning the
mappings from low-resolution to high-resolution Hi-C data.

Effects of noise distribution. In (6), we explored different noise distribution options to consider
perturbation during measurement x1. In order to compare the effect of noise schedule, we trained
HiCBridge with three noise options: zero noise, noise fixed at 0.01, and the Brownian motion. From
Table 10, We observed that the Brownian noise schedule achieved the best performance. Therefore,
we applied the Brownian noise schedule when training HiCBridge and HiCBridge+.

Effects of augmentation ratio. To validate results associated with data bias, we conducted a com-
prehensive performance analysis, examining the impact of the ratio of data augmented with the
diffusion model to actual low-resolution data. For a fair comparison, we trained models with same
training dataset and an identical amount of training data. Table 11 represents the results of standard
visual metrics on GM12878 and IMR90 cell. We observed that a higher ratio of augmented data
correlates with improved performance for the same cell type, yet diminished performance for other
cell types. Notably, augmented data consistently contributes to enhancing the generalizability of
HiCBridge.

Table 9: The results of standard vision metrics according to step size at training on GM12878
chromosome 20 Hi-C data. Bold: best.

Step size 1/δ PCC SCC PSNR SSIM MSE (↓) SNR
1 0.955 0.843 24.83 0.609 0.00353 547.7
5 0.980 0.915 28.21 0.753 0.00158 804.6

10 0.985 0.925 29.40 0.790 0.00119 919.8
100 0.987 0.929 30.00 0.798 0.00103 985.2

1000 0.987 0.929 30.12 0.795 0.00100 999.0

Table 10: The results of standard vision metrics according to noise distribution on GM12878 chro-
mosome 4 Hi-C data. Bold: best.

ϵt PCC SCC PSNR SSIM MSE (↓) SNR
0 0.956 0.887 21.32 0.441 0.00765 756.7

0.01 0.956 0.889 21.48 0.453 0.00737 771.0
Brownian 0.957 0.890 21.53 0.455 0.00728 775.4

Table 11: Comparative results of data augmentation ration on chromosome 4. Bold: best.

Authentic : synthesized PCC SCC PSNR SSIM MSE (↓) SNR
GM12878
1 : 0 (HiCBridge) 0.957 0.890 21.54 0.455 0.00727 776.4
1 : 0.5 0.958 0.891 21.91 0.457 0.00670 810.3
1 : 1 (HiCBridge+) 0.959 0.891 21.86 0.458 0.00678 805.6
0.5 : 1 0.959 0.891 21.95 0.458 0.00663 815.0
IMR90
1 : 0 (HiCBridge) 0.927 0.845 18.99 0.380 0.01289 554.5
1 : 0.5 0.931 0.846 19.60 0.386 0.01125 594.7
1 : 1 (HiCBridge+) 0.931 0.847 19.52 0.392 0.01144 589.7
0.5 : 1 0.930 0.846 19.47 0.383 0.01159 585.7
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Figure 7: Visualized the attention map of the self-attention module in HiCBridge+ on GM12878
chromosome 4 4.2Mb-5Mb.

C LIMITATION

It is important to note that our model is exclusively trained on inter-chromosomal connections, so a
different method is needed to handle contact maps between chromosomes. Additionally, our models
are limited to resolution enhancement for a bin size of 10kb. Lastly, biased data augmentation can
potentially degrade the generalization of the model, as verified in Table 11, where the results of our
model are shown to be influenced by data bias.

D INTERPRETABILITY

To understand how the model handles a given input, we analyzed the attention map of the self-
attention module in the first layer of HiCBridge+. As depicted in Fig. 7, we observed that each head
emphasized a distinct region: head 0 allocates more attention to diagonal bins, head 1 highlights
regions slightly off the diagonals, head 2 is dedicated to around 0.5Mb range of bins, and head 3
focuses on bins in more distant regions. Accordingly, our network is able to understand semantic
structure of the contact map, a desired property for Hi-C data processing.

E GENERALIZABILITY

We conducted a series of experiments to elucidate the generalization abilities of our models.
We evaluated standard visual metrics, HiCRep and TAD Insulation score on different resolution
(GM12878 from GSM1551551), different cell type (HMEC from GSE63525 and GSM1551610)
and another species (CH12-LX from GSE63525 and GSM1551640). In the Table 12, our models
also reconstructed visual information and TAD boundaries on all Hi-C datasets. HMEC, with a res-
olution of about 1/20, poses a noisier dataset than our training data, and CH12-LX, being a mouse
lymphoma cell, introduces a cross-species challenge. We supposed that these data shifts might con-
tribute to the variation in SSIM or HiCRep performance in our models.

Table 12: Quantitative evaluation on another GM12878, HMEC and CH12-LX chromosome 4 Hi-C
data. Bold: best.

Method
Standard Visual Metrics Reproducibility Downstream

PCC SPC PSNR SSIM MSE (↓) SNR HiCRep IS (↓)

GM12878GSM1551551

Low-resolution 0.807 0.680 14.40 0.292 0.03750 339.3 0.981 4.731
HiCBridge+ 0.962 0.897 22.33 0.480 0.00606 846.6 0.980 2.578

HMEC

Low-resolution 0.476 0.397 9.62 0.123 0.10968 172.3 0.850 16.253
HiCBridge+ 0.791 0.690 13.16 0.114 0.04894 259.5 0.801 11.344

CH12-LX

Low-resolution 0.690 0.585 13.09 0.324 0.05035 207.8 0.953 10.417
HiCBridge+ 0.858 0.709 17.12 0.281 0.02070 336.7 0.852 6.933
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F FURTHER EXPERIMENTAL RESULTS

Figure 8: Visualized Hi-C data of GM12878 chromosome 13.

Figure 9: Visualization of Hi-C contact matrices on downsampling ratio 1/16, 1/50 and 1/100 in
GM12878 chromosome 4 4-6.3Mb.
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Figure 10: Visualization of Hi-C contact matrices in K562 cell line.
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Figure 11: Visualization of Hi-C contact matrices in IMR90 cell line.
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