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Abstract
Entity matching is the task of linking records001
from different sources that refer to the same002
real-world entity. Past work has primarily003
treated entity linking as a standard supervised004
learning problem. However, supervised entity005
matching models often do not generalize well006
to new data, and collecting exhaustive labeled007
training data is often cost prohibitive. Further,008
recent efforts have adopted LLMs for this task009
in few/zero-shot settings, exploiting their gen-010
eral knowledge. But LLMs are prohibitively011
expensive for performing inference at scale for012
real-world entity matching tasks.013

As an efficient alternative, we re-cast entity014
matching as a conditional generation task as op-015
posed to binary classification. This enables us016
to “distill” LLM reasoning into smaller entity017
matching models via natural language expla-018
nations. This approach achieves strong perfor-019
mance, especially on out-of-domain generaliza-020
tion tests (↑10.85% F-1) where standalone gen-021
erative methods struggle. We perform ablations022
that highlight the importance of explanations,023
both for performance and model robustness.024

1 Introduction025

Entity matching, also known as record linkage or026

data deduplication, refers to matching records from027

different sources which refer to the same underly-028

ing entity, in the absence of unique identifiers. This029

is a practically important task across a diverse set030

of domains, e.g., database management, healthcare,031

customer relationship management, and financial032

services; in such applications, normalizing entities033

to realize a unified view of data is imperative.034

Most prior work on entity matching has adopted035

supervised techniques, training a model to link036

entities within a particular domain. Performing037

pair-wise comparison on all record pairs is com-038

putationally prohibitive, especially on large scale039

datasets; typical entity resolution pipelines there-040

fore perform blocking followed by matching (Li041

Test Data

Binary Labeled Training Data

Figure 1: An example of the generalization problem in
entity matching: A model trained on a dataset of com-
puters (e.g., WDC-Computers) is tested on instances
taken from a corpus comprising shoes (WDC-Shoes).

et al., 2020; Wang et al., 2023a). The former step 042

entails identifying candidate record pairs which 043

may reference the same entity, while in the latter 044

one attempts to infer whether this candidate is in- 045

deed a match. 046

Assuming a supervised setting for this task is 047

limiting in a few key ways. First, collecting hu- 048

man supervision is inherently expensive. Second 049

and relatedly, training an entity matching model in 050

one “domain” (in this work, a domain is a prod- 051

uct category) via explicit supervision will yield a 052

model which is unlikely to readily transfer to other 053

domains. For example, a model trained to match 054

camera models based on descriptions is unlikely to 055

generalize well to linking laptops (nevermind non- 056

electronics). But collecting annotations linking 057

products in all possible categories is not feasible. 058

This has motivated work on transferable models 059

for entity matching across domains (Trabelsi et al., 060
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2022; Tu et al., 2022c,a; Chai et al., 2023).061

One way to address the generalization prob-062

lem may be to use general-purpose LLMs “zero-063

shot”, via prompting and/or lightweight fine-tuning.064

Given the generality of such models, it is intuitive065

that they may be more robust to domain shifts when066

matching entities. Moreover, an as-yet unexplored067

potential benefit of LLMs for this task is their abil-068

ity to provide (natural language) “reasoning” for069

their outputs; this may permit fast manual verifica-070

tion of linkages, and therefore instill confidence in071

model outputs. Aside from this, we later show that072

the richer signal in generated label “rationales” (or073

explanations) allows for improved model distilla-074

tion, consistent with recent findings on other tasks075

(Ho et al., 2022).076

A downside of LLMs is inference cost; applying077

such models to very large datasets—and contin-078

uously to new data as it is produced—is expen-079

sive. A comparatively tiny database with just one-080

thousand entities can yields a million (1k × 1k)081

candidate pairs, translating to thousands of dollars082

in inference costs.1 We therefore explore model dis-083

tillation for entity matching. In particular, we elicit084

“reasoning” alongside outputs for entity matching085

tasks from massive LLMs, and use this to train086

a modestly sized LM for entity matching such087

that it can also provide supporting rationales.2 We088

show that despite its small size, the resultant model089

achieves strong performance. Moreover, our abla-090

tions highlight the importance of rationalization for091

robust entity matching, i.e., generalization.092

Our contributions are as follows. (1) We frame093

entity matching as a conditional generation task and094

show that relatively small seq2seq models perform095

comparably to non-generative models when tested096

on in-domain instances. However, both approaches097

suffer significant loss in performance when tested098

on out-of-domain instances. (2) We show how099

augmenting entity matching training datasets with100

chain-of-thought style reasoning (explanations) ob-101

tained from larger models results in significant102

gains on out-of-domain instances. (3) We perform103

comprehensive ablations on LLM-generated “ex-104

planations” to tease out which aspects of these ex-105

planations affect downstream model performance.106

These findings may have implications for other107

tasks.108

1openai.com/pricing
2This is a type of distillation, but differs from traditional

approaches (Hinton et al., 2015) in that we are distilling only
“reasoning” abilities, and not capabilities on the task itself.

Flan-T5
(base)

DITTO
(RoBERTa-base)

Mistral-7B LLM
(Instruct)

Training Method Supervised Supervised ICL Few-shot

Abt-Buy 89.92 89.33 31.11
Amazon-Google 76.23 75.58 25.54
Walmart-Amazon 87.40 86.76 18.53
Beer 93.33 94.37 32.91
iTunes-Amazon 93.09 97.06 41.88
WDC-Computers 92.08 91.70 43.27
WDC-Cameras 91.25 91.23 45.31
WDC-Watches 93.72 95.69 53.94
WDC-Shoes 90.20 88.07 51.64

Table 1: Comparison of performance (F-1 scores) for
prior work (Li et al., 2020) with recent generative mod-
els (Chung et al., 2022) under full supervision (except
on Mistral-7B LLM) on the task of entity matching un-
der binary labeled (BL) data.

2 Entity Matching via Text Generation 109

We treat entity matching as a conditional text 110

generation task. For a dataset of N entity 111

pairs xi = (entity_ai, entity_bi), we model 112

the probability of generating classification label 113

(e.g., "match"/"no match") as a string yi = < 114

y1i , y
2
i · · · yTi >, conditioned on a context string 115

Ci. Formally: 116

pLM(yi|Ci, xi) =
T∏
t=1

p(yti |Ci, xi, y1···t−1
i ) 117

This is the standard conditional language model- 118

ing objective. During training, we use “teacher- 119

forcing”, i.e., condition production of outputs 120

(“match” or “not”) on reference prefixes. 121

2.1 Data 122

We use 9 publicly available entity matching 123

datasets (Köpcke et al., 2010; Konda et al., 2016) 124

used for evaluation in similar prior work (Li et al., 125

2020; Peeters and Bizer, 2023a). These datasets 126

span several domains, allowing us to assess out- 127

of-domain performance by testing a model trained 128

on one type of data on examples from a another. 129

Each dataset contains entity pairs from structured 130

tables. We follow the input linearization strategy 131

and train/validation/test splits from Li et al. (2020). 132

Under this linearization scheme each input can- 133

didate entity pair is serialized as a sequence of 134

tokens: 135

[entitya] [COL] <attr> [VAL] ... 136
[entityb] [COL] <attr> [VAL]... 137

In our generative setting, a single training instance 138
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Massive LLM 
(Alpaca/Mistral/GPT)

Explain matching label class given the entity 
descriptions:

Label: Match

E_a: Nike Sportswear AF-1 488298-436 MN Navy.
E_b: Air Force 1 [BRAND] Nike [COLOR] Navy (488298-436)

Explanation: Both entities refer to Nike AF shoes with the 
                            same model number, therefore they’re a match.

Label: Not a Match

E_a: Air Jordan 14 Retro Varsity “Laney” Black-White for Sale.
E_b: Cheap Air Jordans 4 Retro “Motorsports” Varsity White.

Explanation:

New Xtrain Instance

Augmented (Xtrain, Ytrain)

X: E_a & E_b 

Y: [LABEL] [EXP] …….

X: E_a & E_b 

Y: [LABEL] [EXP] …….

X: E_a & E_b 

Y: [LABEL] [EXP] …….

Small LM Fine-Tuning
(Flan-T5 Base)

WDC-Shoes
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Prompt

While both entities refer to Air Jordans, Entity A is a "Laney" 
version, while Entity B is a "Motorsports" version, therefore 
they are not a match.

Entity A is Jordan 14 while Entity B is Cheap Jordan Retro 4, 
therefore the two are not a match. 

Entity A is a "Laney" version which is Maize-Black-White in 
color, while Entity B is a "Motorsports" version which is Blue-
Black in color, therefore they are not a match.

GPT-4

Alpaca

Mistral-7B-Instruct

C
os

t

{Binary Labeled 
Training Data

{Explanation Augmented
Training Data

Figure 2: We propose augmenting binary labeled (BL) training data of entity matching datasets with Chain-of-
Thought style natural language explanations from large models before fine-tuning smaller, more robust generative
models. We use the time needed to generate explanation-augmented (EA) training data on a typical Amazon EC2
P3 instance as a proxy for cost in case of Mistral (Jiang et al., 2023) and Alpaca (Taori et al., 2023) models, and the
total cost of OpenAI’s API usage in case of GPT-* models. Using this approach, we realize significant performance
gains in a variety of out-of-domain test settings.

then becomes a pair of input text with entity at-139

tributes, and a linearized output target string3:140

Input [entitya] [COL] <Title> [VAL] Nike Air141
Jordans 2007 ... [entityb] [COL] <Title> Air142
Jordans by Nike [COL] <MANUF_YEAR> [VAL] 2007143
...144
Target Match145

We provide additional full length examples and146

dataset-specific instances in Appendix B.147

2.2 Small LMs, SOTA Performance148

We start by evaluating baseline generative mod-149

els to standard datasets. Table 1 summarizes our150

findings from these experiments. Generally, we151

find that even smaller generative models (e.g.,152

FlanT5-base) perform comparably to (and even oc-153

casionally outperform) their non-generative coun-154

terparts (e.g., DITTO). We also provide results155

from zero/ICL few-shot experiments using much156

3DITTO (Li et al., 2020) follows a non-generative ap-
proach and therefore does not require linearized strings as
output targets.

larger generative models (1B+ parameters) in Ap- 157

pendix E. However, deploying such large models at 158

scale would be prohibitively expensive. Therefore, 159

we focus on smaller models in this work. 160

To quantify performance on out-of-domain data, 161

we consider three experimental settings represen- 162

tative of practical conditions under which entity 163

matching models may be deployed. 164

Cross Domain Train the model on entity pairs 165

belonging to one domain (e.g., consumer electron- 166

ics products) and test its performance on another 167

domain (e.g., shoes). Training on the Amazon- 168

Google dataset and testing model performance on 169

WDC-Shoes is one example of this setting. 170

Cross Schema Entities in the test data may have 171

different attributes, not seen in training, even if the 172

data is from the same domain and derived from the 173

same source. Datasets used to test cross-schema ro- 174

bustness are not mutually exclusive from (and may 175

overlap with) cross-domain train-test data pairs. 176
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Type Training Data Tested On F-1
(BL)

F-1
(EAAlpaca)

F-1
(EAMistral)

∇(EAMistral-7B − BL) (↑)

X-Domain

Amazon-Google Beer 70.27 90.80 92.30 22.03
Abt-Buy Beer 68.86 85.11 89.66 21.01
Walmart-Amazon Beer 77.77 85.62 89.65 11.88

WDC-Computers
WDC-Shoes 69.95 76.16 79.18 9.23
WDC-Watches 80.07 87.23 87.02 6.94
WDC-Cameras 73.26 91.26 93.77 20.57

WDC-Shoes
WDC-Computers 67.90 84.01 84.13 16.23
WDC-Watches 70.34 81.49 84.89 14.55
WDC-Cameras 73.26 82.27 84.74 11.48

WDC-Watches
WDC-Computers 73.37 85.43 86.20 12.83
WDC-Shoes 67.26 80.99 81.70 14.44
WDC-Cameras 82.59 88.47 89.96 7.37

WDC-Cameras
WDC-Computers 76.33 86.92 87.71 11.38
WDC-Watches 74.21 80.20 81.77 7.55
WDC-Shoes 69.15 78.52 78.04 8.89

X-Schema
iTunes-Amazon Amazon-Google 21.29 43.45 44.61 23.32

Walmart-Amazon 20.04 41.81 43.09 23.05
Walmart-Amazon iTunes-Amazon 51.72 72.19 75.63 23.91
Amazon-Google 72.22 91.25 91.21 18.99

X-Distribution

Abt-Buy Amazon-Google 22.25 38.88 41.42 19.17
Walmart-Amazon 25.77 46.04 45.09 19.32

Amazon-Google Abt-Buy 26.72 49.73 44.64 17.92
Walmart-Amazon 33.10 47.22 51.61 18.51

Walmart-Amazon Abt-Buy 63.75 72.84 67.52 3.77
Amazon-Google 52.05 55.71 60.20 7.97

WDC-All
Abt-Buy 69.16 76.58 76.44 7.28
Amazon-Google 46.12 56.12 59.13 13.01
Walmart-Amazon 64.09 75.55 76.37 12.28

Table 2: Comparison of FlanT5-base performance when trained without (BL) and with explanation-augmented
(EA) training data. Broadly, we observe significant gain in model performance when trained with chain-of-thought
style explanations elicited from large language models.

Cross Distribution Train and test the model on the177

same domain (e.g., consumer electronics products)178

but on entity pairs derived from different sources.179

For example: Train on Walmart-Amazon dataset,180

test on the entity pairs of Abt-Buy data.181

In every setting we observe, unsurprisingly,182

degraded model performance (F-1(BL) in Table183

2) compared to in-domain test sets (Table 1).184

For instance, a model trained on a dataset of185

WDC-Cameras suffers a drop of ∼15 points when186

tested on a dataset of WDC-Computers. We pro-187

vide additional results in Appendix D for non-188

generative models under this cross testing frame-189

work. Broadly, consistent with prior work (Tu et al.,190

2022b), we find that non-generative models fare191

poorly when tested on out-of-domain data.192

We emphasize here that the aforementioned set-193

tings frequently occur and are a representative of194

the practical use-cases of entity matching models.195

It is often cost-prohibitive to collect and annotate196

data in large volumes for training domain, distribu-197

tion, or schema-specific models. 198

2.3 Eliciting explanations from LLMs to 199

improve smaller LMs 200

To improve out-of-domain model performance un- 201

der our testing framework, we propose augment- 202

ing the binary labeled training data (BL) used to 203

fine-tune small generative models with Chain-of- 204

Thought (CoT) style reasoning explanations (Wei 205

et al., 2022) elicited from much larger language 206

models Mistral-Instruct (Jiang et al., 2023) and Al- 207

paca (Taori et al., 2023). We call this explanation- 208

augmented training data (EA). 209

We use ICL few-shot prompting strategy to elicit 210

meaningful generalizable CoT-style explanations 211

given a pair of input entities and their correspond- 212

ing matching label. Consider the following illustra- 213

tive example from the WDC-Shoes dataset used as 214

a prompt to elicit a CoT-explanation. 215

Input [entitya] [COL] <Title> [VAL] Nike Air 216
Jordans 2007 ... [entityb] [COL] <Title> Air 217
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Jordans by Nike [COL] <MANUF_YEAR> [VAL] 2007218
...219
Target Match [explanation] Both entities refer220
to Nike Air Jordans from 2007, therefore they’re221
a match.222

Input [entitya] [COL] <Title> [VAL] New Balance223
1080 Running [COL] <MANUF_YEAR> [VAL] 2016 ...224
[entityb] [COL] <Title> NB Fresh Foam X 1080v13225
[COL] <MANUF_YEAR> [VAL] 2016 ...226
Target Match [explanation] –227

The actual prompts we use consist of two ICL228

examples (one for each target label type), in ad-229

dition to the new instance for which we want the230

model to generate an explanation. An author of231

this paper wrote the explanations for the two ICL232

examples used in the prompt. We reproduce these233

prompts in their entirety in Appendix C. For gen-234

erating CoT-style explanations we used publicly235

available checkpoints for both Mistral-7B-Instruct4236

and Alpaca.5 We generated explanations with a237

maximum length of 128 tokens (minimum of 5 to-238

kens) with topk sampling (k = 50) and nucleus239

sampling (p = 0.95). For every dataset, we found240

that generating explanations took approximately241

2-5 seconds for Mistral-7B-Instruct, and 7-12 sec-242

onds on Alpaca-based models.243

We consider these model generated CoT-style244

explanations analogous to summaries generated245

by a model given entity text and a corresponding246

matching label. We then use these explanations to247

fine-tune a smaller model (FlanT5-base in our case)248

and observe considerable gains in cross-domain,249

cross-schema, and cross-distribution performance250

(Table 2). We find on average the F-1 score un-251

der cross-schema setting increases by 22.32, while252

for cross-domain and cross-distribution setting the253

average F-1 score increases by 14.47 and 13.67 re-254

spectively. In some instances (e.g., a model trained255

on WDC-Computers → tested on WDC-Cameras),256

we observe that augmenting the training set with257

CoT-style explanations enables OOD performance258

comparable to in-domain performance6.259

3 Assessing the usefulness of explanations260

through ablations261

We conduct several ablations, both automated (la-262

beled A–E) and through manual human annotations263

(H1 and H2), to assess the usefulness of generated264

explanations (which appear to improve the perfor-265

mance of smaller entity-matching models). Table 3266

4huggingface.co/mistralai/
Mistral-7B-Instruct-v0.1

5crfm.stanford.edu/2023/03/13/alpaca.html
6Details on reprehensibility are provided Appendix A.

summarizes findings from our automated ablations. 267

We will use the following instance from the Abt- 268

Buy dataset as a running example to demonstrate 269

ablations A–E: 270

Entity A: WD Red 3TB SATA III 3.5" Hard Drive - 271
IntelliPower 64MB Cache WD30EFRX 272
Entity B: CCL Computers WD Red 1 - 64Mo (NAS) HDD 273
Label: Not a Match 274

For this instance, the language model (Mistral- 275

7B-Instruct) generates the following explanation: 276

Generated: While both entities refer to “WD Red” 277
hard drive, Entity A specifically refers to 3TB 278
SATA III 3.5" drive, while Entity B refers to a 279
drive for use in a Network Attached Storage (NAS) 280
and therefore they are not a match. 281

For each of the following ablations (A–E), we make 282

targeted changes to the original LLM-generated 283

explanations and then retrain the smaller LM to 284

test the corresponding effects. 285

A. Junk Substituion We start by substituting 286

LLM-generated explanations by sentences com- 287

prising random ‘junk’ tokens, which are generated 288

at random7 from the English language vocabulary. 289

We retain the original length of the explanation, 290

e.g., in the example above the LLM-generated ex- 291

planation is substituted with the following text 292

Substituted: contour fix nap egregious text 293
nimble perhaps 294

The aim is to assess whether it is the presence of 295

meaningful text (rather than any text) that leads to 296

performance gains under the above settings. Aggre- 297

gate performance under Ablation A drops 28.17%, 298

and this is consistent across train-test pairs. 299

B. Random Token-Drop We alter the LLM- 300

generated explanations by reducing their length. 301

We start by removing all stop-words from the ex- 302

planation, then randomly drop tokens to further 303

reduce its length until we reduce the total length 304

by half (50%). In the running example, the LLM- 305

generated explanation might be replaced by the 306

following text 307

Substituted: entities Red “hard 3TB SATA 3.5” use 308
Attached Storage NAS match. 309

C. TF-IDF Here we attempt to sample tokens 310

from the LLM-generated explanation to assess if 311

the presence of certain key tokens is all that is 312

needed to realize the observed performance gains. 313

We use TF-IDF (Salton and McGill, 1986) as a 314

measure of word importance. Specifically, we treat 315

entity descriptions and their corresponding labels 316

7via NLTK (www.nltk.org)
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Type Training Data Tested On F-1
(EAMistral)

Ablations
A B C D E

X-Domain

Amazon-Google Beer 92.30 72.35 88.94 89.33 79.59 89.85
Abt-Buy Beer 89.66 62.99 88.81 87.93 70.01 87.50
Walmart-Amazon Beer 89.65 75.25 89.30 91.47 76.29 83.33

WDC-Computers
WDC-Shoes 79.18 71.31 78.04 72.28 75.37 76.92
WDC-Watches 87.01 80.12 87.06 82.07 82.99 86.12
WDC-Cameras 93.77 69.15 91.92 89.86 88.56 90.18

WDC-Shoes
WDC-Computers 84.13 61.75 79.45 72.07 73.29 81.64
WDC-Watches 84.89 64.76 78.07 77.63 77.62 81.11
WDC-Cameras 84.74 72.23 77.61 74.95 77.03 82.61

WDC-Watches
WDC-Computers 86.20 78.18 84.64 84.99 76.05 85.71
WDC-Shoes 81.70 64.82 83.25 77.71 73.97 78.62
WDC-Cameras 89.96 85.92 89.36 88.61 85.25 89.18

WDC-Cameras
WDC-Computers 87.71 75.58 79.50 79.14 79.83 86.99
WDC-Watches 81.77 73.36 79.67 78.20 79.16 77.21
WDC-Shoes 78.04 68.60 74.92 74.09 72.60 75.32

X-Schema
iTunes-Amazon Amazon-Google 44.61 20.89 32.44 35.57 35.58 35.05

Walmart-Amazon 43.09 17.14 40.49 39.08 41.16 25.64
Walmart-Amazon iTunes-Amazon 75.63 49.53 73.33 77.71 60.21 76.41
Amazon-Google 91.21 69.56 83.65 83.23 73.07 89.97

X-Distribution

Abt-Buy Amazon-Google 41.42 24.73 36.56 42.04 27.76 39.64
Walmart-Amazon 45.09 22.01 44.09 43.84 27.84 40.75

Amazon-Google Abt-Buy 44.64 23.31 32.05 45.08 31.29 33.61
Walmart-Amazon 51.61 29.55 35.47 42.54 36.55 45.08

Walmart-Amazon Abt-Buy 67.52 62.81 68.99 68.11 64.91 67.55
Amazon-Google 60.20 51.92 60.47 58.83 54.27 58.84

WDC-All
Abt-Buy 76.44 68.48 71.28 72.36 70.21 75.51
Amazon-Google 59.13 49.74 55.49 55.12 50.56 53.99
Walmart-Amazon 64.09 62.19 73.81 72.43 67.23 75.28

∇ Aggregate comparison against F-1 (EAMistral) −26.99 −5.57 −5.69 −14.35 −4.98

Table 3: Comparison of FlanT5-base performance when LLM-generated explanations used during model training
are ablated under various conditions – A. Junk text substitution, B. Random reduction in length, C. TF-IDF reduction
in length, D. Substitution with non-instance specific explanation, E. Random corruption of tokens in explanation.

as documents, and LLM-generated explanations317

as a summary of these. We then sample tokens318

from the explanation based on the TF-IDF scores319

of individual tokens until we retain 50% of the320

original length of the explanation. In the running321

example, the LLM-generated explanation might be322

replaced by the following text:323

Substituted: drive to entity refers while 3tb and324
are attached both entities for hard iii in match325
nas network not red refer sata specifically326
storage327

Perhaps surprisingly, sampling tokens in this way328

does not help, compared to randomly sampling329

them like as in (B); the performance degradation is330

about the same (5.57% vs 5.69%; Table 3).331

D. Generic Explanations In this ablation we332

evaluate whether a dataset-level (as opposed to333

instance-level) explanation yields performance334

gains. These dataset-wide explanations may or may335

not be model generated. For our experiments, we336

use the following manually written explanations: 337

WDC-Cameras Based on the description of two 338
cameras in Entity A and Entity B, they are (or 339
are not) a match. 340
WDC-Shoes Based on the color, brand, size and 341
make of the two shoes in Entity A and Entity B 342
respectively, they are (or are not) a match. 343
iTunes-Amazon Based on the artist, genre and 344
song titles, the two entities here are (or are 345
not) a match. 346

We find that the aggregate performance (Table 3) 347

declines by ∼14%, compared to ∼25% when we 348

do not use any explanations, and ∼27% using junk 349

text as a substitute (Ablation A). 350

E. Random Corruption Finally, we evaluate the 351

results when we randomly replace half of the to- 352

kens in LLM-generated explanation by a reserved 353

token (<unk>) to gauge whether the performance 354

gains observed with explanations owe to the effec- 355

tive additional compute they permit at inference 356

time. In our example, the LLM-generated explana- 357
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Figure 3: Average F1 on out-of-domain test data when
training data is ablated under varying conditions.

tion is modified to:358

Substituted: While <unk> <unk> <unk> to359
<unk> <unk> <unk> <unk>’ hard drive, <unk>360
<unk> A specifically refers <unk> 3 <unk>361
SATA III <unk> 3.5 <unk> <unk> <unk> <unk>362
ity B refers <unk> <unk> drive <unk> <unk>363
<unk> <unk> <unk> Network <unk> <unk> d364
<unk> (NAS) <unk> therefore <unk> are not365
<unk> <unk> match <unk>366

While we observe a performance difference on av-367

erage (Table 3), these differences are inconsistent368

across settings, contrary to our other ablation re-369

sults. For instance, under cross-domain setting370

for WDC-Cameras → WDC-Computers, we observe371

that Ablation E outperforms both Ablations B and372

C and is comparable to using unaltered explana-373

tions. However, under a cross-schema setting for374

iTunes-Amazon → Walmart-Amazon, ablation E375

performs substantially worse than using unaltered376

explanations. We leave a more comprehensive anal-377

ysis of this behavior for future work.378

In addition to ablations A–E, we conduct two379

additional experiments with human-interventions380

to test (1) robustness of models trained with aug-381

mented data; and (2) faithfulness of the generated382

reasoning explanations themselves. Because we383

generate tens of thousands of explanations (i.e., in-384

stance specific explanations for the entire training385

set for every dataset), collecting human annota-386

tions on all instances is cost prohibitive. Instead,387

we manually select 300 instances from the Abt-Buy388

dataset to conduct the following two tests.389

H1 Test of Robustness First, we test robust-390

ness by randomly selecting 300 entity pairs with a391

“match” label from the test set. We then make mini- 392

mal changes to the entity data (descriptions) to con- 393

vert a “matched” to a “non-matched” pair. These 394

changes are quite minimal, often involving only a 395

token or two (e.g., Nike→Adidas) while retaining 396

a majority of token overlap between the entity pair 397

descriptions. This intervention is motivated by the 398

fact that matching models may over-rely on token 399

overlap to classify whether or not the entity pair 400

is match, and whether a trained model is robust to 401

minor perturbations when tested on in-domain data. 402

Consider the following example: 403

Original: [entitya] Kingston 128GB DataTraveler 404
G3 USB 3.1 Flash drive [entityb] Kingston 128G DT 405
G3 USB 3.1 Flash Drive 406
Label Match 407

Edited: [entitya] Kingston 128GB DataTraveler G3 408
USB 3.1 Flash drive [entityb] Kingston 32G DT G3 409
USB 3.1 Flash Drive 410
Corrected Label Not a Match 411

Here we have minimally changed the storage ca- 412

pacity of two USB Flash Drives manufactured by 413

the same company, under the same brand/model. 414

We then run these substituted instances through 415

our models – trained both with and without LLM- 416

augmented explanations. Our goal here is was to 417

test what percentage of labels correctly flip from 418

“match” to “no-match” in both instances. We’re 419

motivated to test this aspect of robustness to deter- 420

mine the degree to which smaller trained models 421

rely on raw token overlap vs the reasoning in LLM- 422

generated explanations. 423

For the models trained without explanations, we 424

find that 71/300 (23%) of labels flip, while for the 425

models trained with LLM-augmented explanations, 426

we find that 164/300 (54%) labels successfully flip 427

to a non-match; this indicates that augmented rea- 428

soning in training data makes smaller models more 429

robust to subtle but critical input perturbations. 430

H2 Test of Factuality Finally, we investigate the 431

extent to which LLM-generated explanations relate 432

to the underlying entity pair descriptions. To this 433

end we consider generated explanations as analo- 434

gous to document summaries, i.e., we consider the 435

input entity pair descriptions and their matching 436

label as a document, and treat the model generated 437

explanation of the summary. We then annotate 438

these explanations for inconsistencies. 439

Three authors of this paper serve as human an- 440

notators and we use the Amazon Mechanical Turk 441

(MTurk) sandbox as our preferred annotation plat- 442

form. For every instance, we ask annotators the 443
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following two questions related to the types of ob-444

served errors in reasoning explanations:445

Instrinsic Errors Is the explanation446

fully derivable from the input entities447

and their corresponding matching label,448

irrespective of whether it contains449

excess information?450

Extrinsic Errors Does the explanation451

contain information in excess of the452

entity descriptions and their453

corresponding matching labels? These454

inconsistencies are often called455

“hallucinations”.456

We collected three annotations per instance and457

take the majority vote as reference where there458

is not unanimous agreement. We find that 10.9%459

of instances contain instrinsic errors, and 15.1%460

of explanations contain elements unsupported by461

inputs (“hallucinations”). We observe an inter-rater462

agreement (Fleiss’s κ) of 0.75 for the question on463

instrinsic errors and an agreement of 0.86 on the464

question of extrinsic errors. We provide details on465

the annotation interface in Appendix F.466

4 Related Work467

4.1 Deep learning in Entity Resolution468

With respect to entity resolution, the core process469

involves pairwise comparisons to ascertain match-470

ing entities. Recent efforts have capitalized on neu-471

ral methods (including LLMs), including DeepER472

(Ebraheem et al., 2018), a deep learning-based473

framework, and DeepMatcher (Mudgal et al.,474

2018), which exemplifies the integration of deep475

learning in entity matching. Additionally, active476

learning strategies have been adapted for entity res-477

olution as detailed in (Kasai et al., 2019).478

Other significant contributions include479

Seq2SeqMatcher (Nie et al., 2019), focusing on480

sequence-to-sequence matching, and HierMatcher481

(Fu et al., 2021), which adopts a hierarchical482

approach. The use of pre-trained language483

models has also gained traction, as evidenced by484

methods such as R-SupCon, Ditto, Rotom, and485

Sudowoodo, discussed in various studies (Brunner486

and Stockinger, 2020; Peeters et al., 2020; Li et al.,487

2021; Miao et al., 2021; Wang et al., 2023b). These488

methods collectively represent the cutting-edge489

techniques in the realm of entity matching.490

Domain Adaptation aims to allow a model491

trained in one domain to generalize to other do-492

mains (Trabelsi et al., 2022; Tu et al., 2022c,a; 493

Sachidananda et al., 2021). 494

4.2 Reasoning in LLMs 495

Most recently, Entity Matching via LLMs has 496

shown promising results (Peeters and Bizer, 497

2023c,b). In these works, both zero-shot and fine- 498

tuning approaches have been explored. Beyond en- 499

tity matching, in-context learning (ICL) with LLMs 500

has become a dominant strategy, enabling these 501

models to perform tasks with task conditioning and 502

minimal task demonstrations (Brown et al., 2020; 503

Xie et al., 2021). This approach has demonstrated 504

strong performance (Zhao et al., 2021; Liu et al., 505

2021) and streamlined experimentation with LLMs, 506

as it eliminates the need for model training. How- 507

ever, the adoption of ICL has highlighted the sensi- 508

tivity of LLMs to prompt selection (Lu et al., 2021; 509

Margatina et al., 2023), making prompt engineering 510

for various tasks a challenging and time-consuming 511

process. Nonetheless, data-driven signals, such as 512

selecting semantically similar demonstrations us- 513

ing text retrievers, have proven to be effective (Lu 514

et al., 2021; Margatina et al., 2023), offering a more 515

systematic approach to prompt engineering. 516

Chain-of-Thought (CoT) reasoning (Wang et al., 517

2022; Hoffmann et al., 2022; Chowdhery et al., 518

2022) has lately emerged as a means to allow LLMs 519

to better perform certain tasks. This approach— 520

which can be elicited via prompting few-shot ex- 521

amples (Kojima et al., 2022)—involves guiding 522

LLMs to generate a sequence of intermediate rea- 523

soning steps. Recent efforts have demonstrated 524

the benefits of distilling “reasoning” capabilities in 525

smaller LMs (Shridhar et al., 2023; Wadhwa et al., 526

2023); our results contribute to this line of work. 527

5 Conclusions 528

We proposed a novel model distillation approach to 529

train a small, more-robust model for generalizable 530

entity matching. Eliciting target label rationales 531

from LLMs enables transfer of grounded “reason- 532

ing” to the smaller models. Our experiments show 533

this translates to strong performance in diverse set- 534

tings, outperforming existing models designed for 535

domain adaptation that struggle to generalize. Ab- 536

lation studies provide insight into the importance of 537

explanation generation for achieving robust match- 538

ing performance. 539
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Limitations540

We have shown that augmenting training data used541

to train smaller models with natural language expla-542

nations elicited from much larger models can yield543

substantial improvements in out-of-domain test set-544

tings. We then assessed the quality and usefulness545

of said explanations through automated ablations.546

Finally, we conducted human annotations on a sam-547

ple of these explanations to quantify error they may548

contain.549

There are some important limitations to these550

findings. First, we have considered training a551

model on one domain (or distribution/schema), and552

then testing it on a set of N − 1 datasets to eval-553

uate model performance in an OOD setting. This554

(somewhat extreme) setting sharply exemplifies the555

sort of domain shift we are interested in studying.556

But we have not comprehensively considered the557

more traditional OOD setting of training on N − 1558

datasets, and testing on the held out domain (distri-559

bution/schema), except while training on WDC-All560

and testing on Abt-Buy, Amazon-Google, and561

Walmart-Amazon. However, even under the lim-562

ited circumstances we considered, we saw substan-563

tial gains in OOD performance (↑10.86 F-1).564

Second, we rely on LLM-generated reasoning565

explanations to augment our training data. This566

dependence on externally hosted, proprietary large567

models could be problematic in certain sensitive568

domains, for example when working with entity569

descriptions that contain personally identifiable in-570

formation (PII) since there is an extensive body571

of prior research (Hossain et al., 2023; Prakash572

and Lee, 2023) documenting social biases inher-573

ent to LLMs. That said, this dependence is only574

for training data, and one could conceivably use575

open source LLMs, like we have, capable of CoT576

in place of proprietary models (e.g. OpenAI).577

Third, while we find that distilling CoT-style578

explanations meaningfully improves small LM per-579

formance, our attempts to evaluating the usefulness580

of said explanations (if any) will require substantial581

future work. Our ablations do not provide a clear582

answer as to which aspects of these explanations583

are useful for downstream performance improve-584

ments. For instance, in ablation D we use a con-585

stant non-instance specific explanation appended586

to all target outputs (as opposed to instance spe-587

cific explanation generated from a LLM). In theory,588

this provides no meaningful ability to classify a589

given instance over say, junk text. However, we590

still observe some gains in downstream OOD test 591

performance. 592

Lastly, we only experiment with datasets curated 593

(and sourced) in English and therefore we do not 594

have any insight into the issues that may result in 595

other languages. 596

Ethical Considerations 597

Statement of Intended Use Our work broadly 598

relies on open-source datasets derived from e- 599

commerce platforms, where entity attributes con- 600

sist of heterogeneous descriptive sentences of com- 601

mon everyday consumer products. However, in 602

certain applications of entity resolution like cus- 603

tomer profile de-duplication, where entity descrip- 604

tors involve human population-level attributes, the 605

underlying data must be appropriately de-identified 606

(i.e. anonymized) in the interest of individual pri- 607

vacy. As stated in limitations, we make no attempt 608

to manually edit/oversee the LLM-generated expla- 609

nations before using them to train smaller LMs, and 610

therefore there is a downstream risk of propagating 611

large model biases. 612
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Appendix849

A Experimental settings and850

reproducibility851

We performed all of our experiments on two AWS852

EC2 P3 instances, each containing 8 NVIDIA853

V100 (16GB) GPUs. We used the Huggingface854

library (v4.26.1; Wolf et al. 2020) and publicly855

available checkpoints of models we used in our ex-856

periments. On all datasets except for WDC our best857

performing models were trained with batch size858

16, while for WDC datasets we used a batch size859

of 8. We use default hyperparameters8 for model860

fine-tuning except for learning rate (10−2 − 10−6),861

which we vary through hyperparameter tuning. We862

used the Adam optimizer and set the max epochs863

to 100 with an early stopping patience of 10 and864

a validation set F-1 score increase threshhold of865

0.02. None of the trained models in any of our866

experiments required more than 60 epochs.867

B Datasets868

We select commonly used entity matching datasets869

in our work. Each dataset is split into training, val-870

idation, and test sets using the ratio 3:1:1 – same871

splits as Li et al. (2020) to provide direct compar-872

isons in our OOD baselines (Table 4):873

Abt-Buy This dataset contains product descrip-874

tions from e-commerce platforms Abt.com and875

Buy.com. A majority of products on either plat-876

form can be categorized as consumer electronics.877

There are a total of 9, 575 instances in the Abt-Buy878

dataset.879

Amazon-Google The Amazon-Google dataset880

consists mainly of software product offerings e.g.881

MS Office/Windows. The relevant entity attributes882

in Amazon-Google include brand, title and price.883

There are a total of 11, 460 product pairs.884

Walmart-Amazon This is a structured bench-885

mark entity matching dataset in the general con-886

sumer products domain containing textual product887

attributes like brand, title, model number, and price.888

Walmart-Amazon consists of 10, 242 product pairs.889

iTunes-Amazon Unlike our other datasets,890

iTunes-Amazon consists of strutured descriptions891

of songs in the form of textual attributes like artist,892

8huggingface.co/docs/transformers/model_doc/
flan-t5

album year, and title. iTunes-Amazon is a relatively 893

small dataset made up of 539 instance pairs. 894

Beer This dataset contains structured textual at- 895

tributes of beers from BeerAdvocate and RateBeer. 896

We use the processed version9 of this dataset with 897

the same train-dev-test splits as Li et al. (2020). 898

There are only 450 pairs in the Beer dataset. 899

WDC Products The Web Data Commons 900

datasets span a variety of product categories like 901

electronics, apparel, and accessories. WDC pro- 902

vides 4400 manually annotated gold labels from 903

four categories: computers (68, 461), cameras 904

(42, 277), watches (61, 569), and shoes 905

(42, 989). Each category contains 800 negative 906

and 300 positive test pairs. Each instance in all 907

WDC datasets consists of four attributes - title, de- 908

scription, brand, and specTable. 909

C Prompts 910

We use the following prompts as few-shot exem- 911

plars corresponding to each dataset type to elicit 912

natural language explanations. Inputs and target 913

references are directly extracted from the original 914

training sets while the explanations are human- 915

written (by the authors) and were added for the 916

experiments described in section 2.3. 917

Consumer Electronic Products We use the fol- 918

lowing prompt for all of the following datasets 919

– Abt-Buy, Amazon-Google, Walmart-Amazon, 920

WDC-Computers, and WDC-Cameras. 921

<s>[INST] Given the following two examples, 922
provide an explanation for the third example for 923
why the two entities do or do not match. [\INST] 924
Entity A: [NAME] samsung dlp tv stand in black 925
tr72bx [DESCRIPTION] samsung dlp tv stand in 926
black tr72bx designed to fit samsung hlt7288 927
hlt7288 , hl72a650 , and hl67a650 television sets 928
tempered 6mm tinted glass shelves wide audio 929
storage shelves to accommodate 4 or more 930
components wire management system easy to 931
assemble high gloss black finish [PRICE] 369.0 932
Entity B: [NAME] samsung tr72b tv stand 933
[DESCRIPTION] glass black [PRICE] 232.14 934
Label: MATCH 935
Explanation: Both entities refer to samsung TV 936
stand in black and therefore have substantially 937
similar specifications, therefore they’re a 938
match. </s> 939
Entity A: [NAME] canon high capacity color ink 940
cartridge color ink cl51 [DESCRIPTION] canon high 941
capacity color ink cartridge cl51 compatible with 942
pixma ip6210d , ip6220d , mp150 , mp170 and mp450 943
printers [PRICE] 35.0 944

9pages.cs.wisc.edu/~anhai/data1/deepmatcher_
data/Structured/Beer/exp_data

12

Abt.com
Buy.com
huggingface.co/docs/transformers/model_doc/flan-t5
huggingface.co/docs/transformers/model_doc/flan-t5
pages.cs.wisc.edu/~anhai/data1/deepmatcher_data/Structured/Beer/exp_data
pages.cs.wisc.edu/~anhai/data1/deepmatcher_data/Structured/Beer/exp_data


Entity B: [NAME] canon pg-40 twin pack black ink945
cartridge 0615b013 [DESCRIPTION] black [PRICE]946
Label: NOT A MATCH947
Explanation: Entity A refers to color ink948
cartridge while Entity B is a blank ink949
cartridge, therefore they are not a match. </s>950

Shoes We use the following prompt for WDC-951

Shoes. The examples here are randomly selected952

from the WDC-Shoes training data.953

<s> [INST]Given the following two examples,954
provide an explanation for the third example for955
why the two entities do or do not match.[/INST]956
Entity A: [NAME] Nike Sportswear Air Force 1 -957
Midnight Navy’en Mens Shoes Nike Navy 488298-436958
en959
Entity B: [NAME] "Nike Air Force 1 ’07 Low960
midnight navy / white (488298-436)"eu961
(488298-436) | Bludshop.com" eu962
Label: MATCH963
Explanation: Both entities refer to Nike Air964
Force shoes, navy in color with the same model965
number 488298-436, therefore they’re a966
match.</s>967
Entity A: [NAME] "Air Jordan 14 Retro Low “Laney”968
Varsity Royal/Varsity Maize-Black-White For969
Sale"en-US Sale | Cheap Jordans 2017"en-US970
Entity B: [NAME] "Cheap Air Jordan 4 Retro971
“Motorsports” White/Varsity Blue-Black Sale"en-US972
Sale | Cheap Jordans 2017"en-US973
Label: NOT A MATCH974
Explanation: While both entities refer to cheap975
Air Jordan shoes, Entity A is a Laney version976
which is Maize-Black-White in color, while Entity977
B is a Motorsports version which is Blue-Black in978
color, therefore they are not a match.</s>979

Music We use the following prompt for iTunes-980

Amazon. The examples here are randomly selected981

from the iTunes-Amazon training data.982

<s> [INST] Given the following two examples, provide an983
explanation for the third example for why the two entities do984
or do not match. [\INST]985
Entity A: [SONG_NAME] Extra Extra Credit986
[ARTIST_NAME] Wiz Khalifa [ALBUM_NAME] Flight987
School [GENRE] Hip-Hop/Rap , Music [PRICE] 0.99988
[COPYRIGHT] 2009 Rostrum Records [TIME] 4:03989
[RELEASED] 17-Apr-09990
Entity B: [SONG_NAME] Extra Extra Credit [991
Explicit ] [ARTIST_NAME] Wiz Khalifa992
[ALBUM_NAME] Flight School [ Explicit ] [GENRE]993
Rap & Hip-Hop [PRICE] 0.99 [COPYRIGHT] 2013 Mad994
Decent [TIME] 4:03 [RELEASED] April 17 , 2009995
Label: MATCH996
Explanation: Both entities are songs with the997
same name, artist and album.</s>998
Entity A: [SONG_NAME] Illusion ( feat . Echosmith )999
[ARTIST_NAME] Zedd [ALBUM_NAME] True Colors1000
[GENRE] Dance , Music, Electronic [PRICE] 1.291001
[COPYRIGHT] 2015 Interscope Records [TIME] 6:301002
[RELEASED] 18-May-151003
Entity B: [SONG_NAME] Papercut [ feat . Troye1004
Sivan ] [ARTIST_NAME] Zedd [ALBUM_NAME] True1005
Colors [GENRE] Dance & Electronic [PRICE] 1.291006
[COPYRIGHT] ( C ) 2015 Interscope Records [TIME]1007
7:23 [RELEASED] May 18 , 20151008
Label: NOT A MATCH1009

Explanation: While both entities refer to songs 1010
with the same artist, they have clearly different 1011
names and therefore, are not a match.</s> 1012

Beer We use the following prompt for Beer 1013

dataset. 1014

<s> [INST] Given the following two examples, provide an 1015
explanation for the third example for why the two entities do 1016
or do not match.[\INST] 1017
Entity A: [NAME] Honey Basil Amber [MANUFACTURER] 1018
Rude Hippo Brewing Company [STYLE] American Amber 1019
/ Red Ale [ABV] 7.40 1020
Entity B: [NAME] Rude Hippo Honey Basil Amber 1021
[MANUFACTURER] 18th Street Brewery [STYLE] Amber 1022
Ale [ABV] 7.40 1023
Label: MATCH 1024
Explanation: Both entities refer to Honey Basil 1025
Amber beer with the same ABV, therefore they’re a 1026
match.</s> 1027
Entity A: [NAME] Brew Kahuna NW Red Ale 1028
[MANUFACTURER] Sky High Brewing [STYLE] American 1029
Amber / Red Ale [ABV] 5.20 1030
Entity B: [NAME] Brew Bus Detour Series : Rollin 1031
Dirty Red Ale - Wood Aged [MANUFACTURER] Cigar 1032
City Brewing [STYLE] Irish Ale [ABV] 5 1033
Label: NOT A MATCH 1034
Explanation: Entity A refers to Beer manufactured 1035
by Sky High Brewing while Entity B refers to Beer 1036
manufactured by Cigar City Brewing, and they have 1037
different names, therefore they are not a 1038
match.</s> 1039

D OOD Performance in Neural Entity 1040

Matching 1041

We conduct baseline experiments using our test- 1042

ing framework (cross-domain, cross-distribution, 1043

and cross-schema) on both generative (FlanT5) 1044

and non-generative (DITTO – based on RoBERTa) 1045

methods. Table 4 summarizes our results. We ob- 1046

serve significant decline in performance under both 1047

methods, with RoBERTa-based DITTO (Avg F-1: 1048

55.28) faring slightly worse than FlanT5 (Avg F-1: 1049

59.28). 1050

Our results on non-generative models like 1051

DITTO are in-line with prior work in the area 1052

where Tu et al. (2022b) first highlight the issue 1053

of domain adaptation and the challenge of reusing 1054

labeled source data where there might be a change 1055

in distribution or domain at test time. 1056

E Zero-Shot Entity Matching with LLMs 1057

In addition to training and testing smaller seq2seq 1058

models we also provide results from few-shot 1059

prompting on larger language models (# param- 1060

eters > 7B). We emphasize here again that in any 1061

practical entity matching context, deployment of 1062

such larger models is infeasible due the sheer num- 1063

ber of comparisons involved. For instance, a small 1064
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Type Training Data Tested On F-1
BLDITTO

F-1
BLFlanT5-Base

X-Domain

Amazon-Google Beer 70.27 63.10
Abt-Buy Beer 68.86 55.29
Walmart-Amazon Beer 77.77 59.12

WDC-Computers
WDC-Shoes 69.95 65.18
WDC-Watches 80.07 80.98
WDC-Cameras 73.26 70.51

WDC-Shoes
WDC-Computers 67.90 65.11
WDC-Watches 70.34 74.47
WDC-Cameras 73.26 72.90

WDC-Watches
WDC-Computers 73.37 75.34
WDC-Shoes 67.26 67.22
WDC-Cameras 82.59 81.16

WDC-Cameras
WDC-Computers 76.33 75.83
WDC-Watches 74.21 73.92
WDC-Shoes 69.15 61.73

X-Schema
iTunes-Amazon Amazon-Google 21.29 21.48

Walmart-Amazon 20.04 18.75
Walmart-Amazon iTunes-Amazon 51.72 50.82
Amazon-Google 72.22 76.17

X-Distribution

Abt-Buy Amazon-Google 22.25 19.15
Walmart-Amazon 25.77 28.99

Amazon-Google Abt-Buy 26.72 25.55
Walmart-Amazon 33.10 23.78

Walmart-Amazon Abt-Buy 63.75 58.11
Amazon-Google 52.05 39.18

WDC-All
Abt-Buy 69.16 67.22
Amazon-Google 46.12 41.37
Walmart-Amazon 64.09 64.88

Table 4: Comparison of OOD test performance under our framework for FlanT5-base (Chung et al., 2022) and
non-generative DITTO (Li et al., 2020) when trained on binary labeled (BL) training data. Broadly, we observe
significant degradation in model performance under both models.

product catalog of 1, 000 products can, in worst1065

case scenario, lead to 1, 000, 000 pair comparisons1066

– this requires efficiency and, as a practical matter,1067

low deployment costs. Nevertheless, we feel it is1068

important to contextualize our work under ICL few-1069

shot settings on LLMs given their current relevance.1070

We use the same prompts as provided in Appendix1071

C, with one example of each class and test five1072

(Taori et al., 2023; Jiang et al., 2023; Almazrouei1073

et al., 2023; Chung et al., 2022; Tay et al., 2023)1074

instruction tuned models.1075

Table 5 summarizes these results. Generally,1076

we find that all the models we test under-perform1077

trained smaller LMs. We also observe certain be-1078

haviors while prompting LLMs where in some1079

cases (see Alpaca tested on the Beer dataset) we get1080

unusually high recall while getting very low pre-1081

cision measurements, indicating that models may1082

excessively rely on token overlap as a proxy for en-1083

tity matches. This is in line with prior work where1084

Peeters and Bizer (2023d) use ChatGPT for Entity1085

Matching and observe similar behavior. We do not 1086

experiment with different prompts and/or chain- 1087

of-thought style explanations under these few-shot 1088

settings since that is beyond the scope of this work. 1089

F Human Evaluation (H2) 1090

We conduct Test of Factuality evaluation on Ama- 1091

zon Mechanical Turk (AMT) – a popular platform 1092

for workers (both experts and non-experts) to per- 1093

form “micro-tasks” (in our case, instance annota- 1094

tions) on explanations generated by the Mistral-7B 1095

model on 300 instances of the Abt-Buy dataset. 1096

Figure 4 illustrates the interface provided to anno- 1097

tators where they’re asked the two factuality-related 1098

questions and are presented with binary choices. 1099
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Alpaca (7B) Mistral-7B-Instruct Falcon-Instruct (7B) FlanT5-XXL (11B) Flan-UL2 (20B)

P R F-1 P R F-1 P R F-1 P R F-1 P R F-1

Abt-Buy 12.33 77.61 21.28 16.49 52.6 25.11 14.77 50.81 22.89 15.23 91.30 26.11 85.74 42.41 56.75
Amazon-Google 11.91 89.29 21.02 15.50 72.64 25.54 12.67 70.41 21.48 20.75 80.27 32.98 74.66 48.3 58.65
Walmart-Amazon 10.31 83.81 18.37 10.74 75.40 18.53 11.52 85.36 20.30 18.14 72.09 28.99 92.21 36.88 52.69
Beer 18.91 100.00 31.81 20.01 92.85 32.91 10.58 100.00 19.14 9.65 89.30 17.42 13.5 94.12 23.61
iTunes-Amazon 15.61 95.66 26.84 28.32 87.59 42.80 11.57 98.47 20.71 15.46 77.77 25.79 20.69 85.12 33.29
WDC-Computers 29.74 84.24 43.96 32.49 64.76 43.27 29.59 91.20 44.68 23.71 82.45 36.83 92.55 60.41 73.10
WDC-Cameras 30.57 85.40 45.02 33.08 72.24 45.31 26.99 90.16 41.54 36.05 87.77 51.11 80.51 61.97 70.03
WDC-Watches 35.49 85.36 50.14 34.47 75.68 47.37 11.17 83.18 19.70 34.19 85.44 48.84 84.13 68.82 75.71
WDC-Shoes 32.79 62.24 42.95 32.51 78.35 51.64 36.43 75.19 49.08 29.22 65.09 29.22 75.48 50.17 60.28

Table 5: ICL Few Shot performance without any model training.

Figure 4: Interface to conduct Test of Factuality annotations on instances taken from the Abt-Buy dataset. Each
model-generated (Mistral-7B; Jiang et al. (2023)) explanation is tested for intrinsic and extrinsic errors.
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