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Abstract

Large language models (LLMs) are transform-
ing the way information is retrieved with vast
amounts of knowledge being summarized and pre-
sented via natural language conversations. Yet,
LLMs are prone to highlight the most frequently
seen pieces of information from the training set
and to neglect the rare ones. In biomedical re-
search, latest discoveries are key to academic
and industrial actors and are obscured by the
abundance of an ever-increasing literature cor-
pus (the information overload problem). Sur-
facing new associations between biomedical en-
tities, e.g., drugs, genes, diseases, with LLMs
becomes a challenge of capturing the long-tail
knowledge of the biomedical scientific produc-
tion. To overcome this challenge, Retrieval Aug-
mented Generation (RAG) has been proposed to
alleviate some of the shortcomings of LLMs by
augmenting the prompts with context retrieved
from external datasets. RAG methods typically
select the context via maximum similarity search
over text embeddings. In this study, we show that
RAG methods may leave out a significant pro-
portion of relevant information due to clusters of
over-represented concepts in the biomedical liter-
ature. We introduce a novel information-retrieval
method that leverages a knowledge graph to down-
sample these clusters and mitigate the informa-
tion overload problem. Its retrieval performance
is about twice better than embedding similarity
alternatives on both precision and recall. Finally,
we demonstrate that both embedding similarity
and knowledge graph retrieval methods can be
combined into a hybrid model that outperforms
both, enabling potential improvements to biomed-
ical question-answering models.
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1. Introduction
The field of biomedical research is expanding rapidly, lead-
ing to an accelerated pace of discoveries and an overwhelm-
ing surge in associated literature but contains extensive re-
dundancies. Keeping track of the evolving landscape is thus
increasingly challenging and will only be achieved with
technologically advanced tools capable of filtering, summa-
rizing, and elucidating this vast body of knowledge.

Of particular interest in the realm of summarization is Query-
Based Text Summarization (QS). Unlike traditional summa-
rization, QS tailors the summary to a user-specified ques-
tion (Yu, 2022)(Yang et al., 2023). As with general text
summarization (Retkowski, 2023), (Zhang et al., 2023),
QS has been predominantly attempted using pre-trained
models (Yu, 2022), involving zero-shot approaches (Zhang
et al., 2023) and Retrieval-Augmentation Generation (RAG)
(Lewis et al., 2020). QA tasks, where specific text 'chunks'
need to be retrieved with high accuracy, require a broader
pull of information that cover a wider spectrum of the
query's nuances. While the LLM's reasoning capability
and increased context length enables the ability to respond
to more comprehensive queries, retrieving larger amount
of information into the synthesizer context presents a dis-
tinct challenge, e.g., multi-document question-answering
performance is degraded as the context grows longer (Liu
et al., 2023). While new architectures designed to deal
with very large context window may prevent performance
drops (Yu et al., 2023), an efficient selection of the most
relevant information would also reduce latency, cost, and
energy consumption. This biomedical research text cor-
pus also presents an information overload problem, where
rare and recent yet important information is dominated by
over-represented older concepts.

In this study, leaving aside the generative side of RAG, we
introduce a novel knowledge-graph-based retrieval approach
that enables access to the long tail of biomedical knowledge.
We demonstrate that RAG retrieval approaches, leave out
a significant proportion of relevant information because of
the data imbalance in a queried text corpus such as Pubmed.
Some over-represented topics can preclude the RAG synthe-
sizer to access more recent discoveries by monopolizing the
list of most similar text chunks. We propose to perform a
rebalancing of the retrieved text chunks by under-sampling
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these larger clusters of information, and to do so by struc-
turing the text corpus with a Knowledge Graph (KG) of
biomedical entities (genes, diseases and diseases). In ad-
dition, our method also provides control mechanisms to
prioritize the retrieval of recent and impactful discoveries.
Finally, we built a hybrid approach combining the strengths
of LLM embedding semantic relationships and structured
knowledge graph and show that it outperforms both embed-
ding similarity (ES) and KG based methods for biomedical
information retrieval (IR).

To the best of our knowledge, while KGs have been com-
bined with LLMs for a variety of tasks including halluci-
nation reduction (Ji et al., 2022)(Feng et al., 2023), LLM
interpretability (Lin et al., 2019), pre-training and inference
enhancement (Zhang et al., 2019)(Yasunaga et al., 2021),
entity embedding (Zhang et al., 2020), link prediction (Yao
et al., 2019)(Xie et al., 2022), multiple-choice QA tasks
(Lin et al., 2019) (Feng et al., 2020) (Yasunaga et al., 2021)
(Sun et al., 2021) (Zhang et al., 2022)), this study is the
first to highlight the information overload problem in text
chunk ES IR and to propose a KG IR approach to mitigate
its effect.

2. Methods
A typical RAG workflow is composed of two sequential
steps: the retrieval step and the synthesis step. We detail
two alternative approaches to perform the retrieval step: i)
IR using a similarity function between dense embeddings of
the user question and the text corpus and ii) IR using a novel
KG approach relying on entity recognition and relationship
extraction (RE) performed by a model trained and fine-tuned
for biomedical literature.

2.1. IR with text embedding similarity

2.1.1. EMBEDDING INDEXING

We built an embedding index from a subset of the ˜35M
articles available on Pubmed (NCBI FTP site1). Only the
article having an abstract were retained. For each exper-
iment, a different subset was used and is specified in the
associated experiment section (about 100k documents were
indexed per experiment). In all cases, each selected arti-
cle’s title and abstract were split into individual sentences
using en core sci md, a sentence tokenizer trained on large
biomedical dataset (Neumann et al., 2019).

Embeddings for each sentence were obtained using Ope-
nAI’s second generation embedding model text-embedding-
ada-002 into a 1536-dimension vector. While specifications
are unknown, text-embedding-ada-002 ranks among the
top-8 retrieval text embedding models on scientific facts

1https://ftp.ncbi.nlm.nih.gov/pubmed/

benchmark (e.g. SciFact benchmark on MTEB2), offers a
larger input size (8191 tokens) and shows clear semantic
pattern on the datasets analysed in this study (Fig. 2A-B).
In rare occasions (<.01%), sentences longer than the input
token limit were split in chunks of fixed length.

2.1.2. RETRIEVAL

While complex approaches have been developed (Khattab
& Zaharia, 2020), in this study we use cosine similarity to
rank the embedded text chunks for each query.

2.2. IR with knowledge graph support

The rationale behind using a KG for IR is that traditional
text ES approaches are limited by the imbalance of pieces
of information in a large corpus of text such as Pubmed.
While topics are often over-represented because of their im-
portance for a field information (e.g. 84k+ EGFR references
for cancer), they can hide other relevant information by their
sheer number when semantic similarity is used for retrieval.

Rebalancing the retrievable text chunks can be done by un-
dersampling the larger clusters of information. The problem
then becomes how to define these clusters. While these
clusters could be defined by the text chunk distributions
in semantic space, biomedical literature has produced nu-
merous ontologies covering all types of entities that can be
used to organise the information. We leverage this exist-
ing knowledge to undersample clusters of information built
around three types of biomedical entities (genes, diseases
and chemical compounds).

2.2.1. BUILDING THE BIOMEDICAL KNOWLEDGE
GRAPH

To build the knowledge graph we performed 2 steps sequen-
tially: i) The KAZU framework was used to extract entities:
gene, diseases and chemical compounds(Yoon et al., 2022).
It performs NER using TinyBERN2 (Sung et al., 2022) fol-
lowed by entity normalization step that link single entity
variations to a reference vocabulary provided by the fol-
lowing ontologies: Ensembl (genes), MONDO (diseases)
and ChEMBL (chemical compounds). Finally, it disam-
biguates and/or merges overlapping candidate entities in
input text chunks. ii) The PubmedBERT model (Gu et al.,
2020),a BERT architecture based encoder pre-trained on
Pubmed abstracts and PMC full-text articles and fine-tuned
on the BioRED dataset, was used for RE from scientific ab-
stracts(Luo et al., 2022). Pairs of disease, gene or chemical
compound entities annotated by KAZU are linked in a KG
if the RE model predicts a relationship between them.

2https://huggingface.co/spaces/mteb/leaderboard

https://ftp.ncbi.nlm.nih.gov/pubmed/
https://huggingface.co/spaces/mteb/leaderboard
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2.2.2. KNOWLEDGE GRAPH INDEXING

We mapped all the text chunks produced for the embedding
index onto the nodes and edges of the knowledge graph.
The following rules were applied to perform the mapping:
i) Only text chunks with at least one annotation are mapped
ii) Text chunks with a single annotated entity are associated
with the node of that entity iii) Text chunks with two anno-
tated entities are associated with the corresponding edge if
the pair has been labelled by the RE model iv) Text chunks
with two annotated entities are associated with both entity
nodes if the pair has not been labelled by the RE model v)
Previous two rules are applied to all combinatorial entity
pairs in text chunks with 3+ entities.

2.2.3. RETRIEVAL

Following the construction of the KG, we exploit graph dis-
tances to retrieve the chunks that are the most relevant to the
user question. The first step is to identify which entity(ies)
are the starting point of the graph-based retrieval. We lever-
age the KAZU pipeline to identify entities present in the
user question. We then build the shortest path relating these
entities in the graph and retrieve text chunks mapped to the
shortest path entities and their neighbouring edges allowing
retrieval of additional non-trivial answers. For example,
to explain the relationship between two entities whose in-
teraction is not directly documented in the literature, text
chunks from neighboring entities are presented, allowing
for building indirect connections.

To prioritize the most relevant text chunks that gives a fair
chance to each concept mapped along the shortest path, we
introduce a scoring metric that factors in both the recency
and the impact of a text chunk. The impact of a text chunk is
measured as the total number of citations of the associated
document. Because recent articles have less citations but
are more likely to contain new discoveries, we solve the
trade-off between these two objectives by using the Pareto
front of the recency/impact space. The combination of this
ranking algorithm with the graph-distance approach is key
to improving upon ES IR by rebalancing the twin objec-
tives of impact vs recency, helping surface latest significant
discoveries.

3. Experiments
3.1. Comparing KG and ES IR performance

To compare the performance of ES IR vs KG IR strategies,
we purposely use an open question that requires to explo-
ration a wide range of documents: “What are the known
drug targets for treating <disease>?” and compared the
retrieved information of both approaches with curated an-
notations produced by biomedical experts. We repeated the
experiment over 8 diseases selected to cover the different
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Figure 1. Performance comparison between ES IR, KG IR and
hybrid method. Solid lines indicate the metric averages and trans-
parent ribbon 95% confidence intervals.

therapeutic areas: asthma, pulmonary arterial hypertension,
heart failure, hypertension, Parkinson’s disease, Alzheimer’s
disease, liver cirrhosis, inflammatory bowel disease.

Text corpus. To ensure a broad landscape, we produced
both embedding and KG indexes using Pubmed articles
belonging to five therapeutic areas (nervous system, respira-
tory tract diseases, digestive system diseases, cardiovascular
diseases, mental disorders). About 1% of the articles were
sampled randomly to produce a corpus of 86166 articles and
731238 sentences. The embedding index is ordered by co-
sine similarity between the question embedding and the text
chunk embeddings. The KG index is built and ordered by
using the 372999 text chunks mapped to the graph entities
or entity edges. For each question, the 1-hop neighbourhood
of the question’s disease entity is available for retrieval as
only one entity is present in the question.

Gold-standard dataset. For each question, we compare
the retrieved documents with a list of documents annotated
by subject experts and containing both an annotation for
the disease and for at least one gene in its full text. Two
annotation sources were leveraged, i) a manually curated
list of Medical Subject Headings (MeSH) terms for each
article indexed in Pubmed/MEDLINE (Aronson et al., 2000).
We selected disease-related items from their tree number
(e.g. starting with C08.127.108 for Asthma and its children
diseases in MeSH). ii) We mapped the potential drug targets
for Asthma using GeneRIF annotations3. On average, ˜23
genes were identified in the subset of articles mapped to the
question disease, leading to a gold-standard dataset of ˜55
documents split into ˜571 embeddings.

Results. To assess the performance of both retrieval mech-
anisms, we adopt two metrics widely used for IR, preci-
sion@K and recall@K, calculated by counting the number
of retrieved documents, as annotations are at the document
level. A document is considered retrieved if at least one of
its text chunks is retrieved.

3https://www.ncbi.nlm.nih.gov/gene/about-generif

https://www.ncbi.nlm.nih.gov/gene/about-generif
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Overall, KG IR strongly outperforms ES IR on both metrics,
though the precision is low in both models, mainly because
the annotations are incomplete due to being voluntarily sub-
mitted. As the retrieval window increases from K=0 to
K=1000, ES IR reaches a peak value of ˜5% at K=250 while
KG IR progressively decreases from ˜12% to ˜8% (Fig. 1A).
Less affected by missing, yet relevant, documents in the
gold-standard dataset, recall in KG IR shows a large gap of
performance over ES IR (Fig. 1B). Nearly 43% of the gold-
standard documents are retrieved by KG IR when K=250
text chunks are queried. In contrast, ES IR has only 17% of
the gold-standard documents for the same retrieval volume.
We observe ES IR recall keeps on increasing and eventually
exceeds KG IR recall for a very large set of retrieved doc-
uments (K > 1000). This is because the KG IR approach
only retrieves documents that have been mapped by NER
to the KG while ES IR has access to the whole embedded
corpus.

3.2. KG IR accesses the long tail of knowledge

To explain the gap in performance between both approaches,
we hypothesized that KG IR is able to access the long-
tail knowledge of the corpus that ES IR is missing. We
investigated this hypothesis by comparing the distribution
of retrieved information for both methods with the gold-
standard dataset in embedding space.

Landscape projection. To visualise the distributions of
retrieved information over the experiment text corpus, we
used a non-linear dimension reduction technique, Uniform
Manifold Approximation and Projection (UMAP), on all
˜731k 1536-dimensional embedding vectors that learns a
projection transformation that aims at maintaining the sam-
ples’ local neighbourhood in low dimensional space (here
2D). Once trained and applied to the text corpus, we also
transformed the embedding of one of the questions from
the previous experiment (What are the known drug targets
for treating Asthma?), allowing us to compare the question
location.

Retrieved text localisation. To highlight the location of
the retrieved text chunks in embedding space, we query the
top-200 text chunks for both ES IR and KG IR methods. We
apply Gaussian kernels (bandwidth factor set to 0.25) onto
the UMAP coordinates of the retrieved text chunks in order
to estimate the probability density function of retrieval for
both methods. We then visualise the higher density regions
in UMAP space by drawing filled contours for p > 0.02
(Fig. 2D). To assess the spread of the retrieved chunks in
embedding space, we performed a k-means clustering of the
˜731k chunk embeddings (k=200) and counted the number
of clusters containing at least one chunk for all retrieval
parameters (Fig. 1C).

Results. Overall, the projected embedding landscape

presents many high-density regions corresponding to over-
represented concepts in the corpus (Fig. 2A-D). To assess
the relevance and complexity of the landscape, we mapped
the regions linked to the five covered disease areas and the
various types of entities stored in the text chunks. The land-
scapes reveal a clear pattern of localised disease areas in
embedding space (ordered from top-left to bottom-right in
Fig. 2B), as well as an orthogonal pattern for the types
of entities expressed in each text chunk (concentric region
centred around genes top-right corner, followed by chemical
compounds/drugs and diseases at the periphery Fig. 2A).

To assess whether ES IR can link the question with a diverse
range of concepts, we overlayed the landscape with the
cosine similarity between the question embedding and the
text corpus embeddings. This reveals that most of the most
similar text chunks are localized in the region surrounding
the question embedding (blue cross in Fig. 2C), but also
that different parts of the landscape are semantically linked
to the question (black arrows in Fig. 2C). This indicates that
the poor performance of ES IR is not due to its inability to
build non-trivial semantic relationships but rather to access
the longtail knowledge.

We hypothesized that the cause is rather the lack of data
balancing that makes ES IR retrieve text chunks predomi-
nantly from the closest high-density region. This hypothesis
is supported by two observations. First, comparing the re-
gion of ES IR retrieved text chunks (blue region in Fig.
2D) and from the distribution of gold-standard embedding
(grey dots), we observe that the ES IR retrieval region is
densely localized in the vicinity of the question embedding.
In contrast, KG IR retrieval region is multipolar and covers
a wider range of curated documents. A more granular com-
parison of the retrieved articles’ text chunks in the landscape
shows that KG IR also captures other smaller clusters of
curated documents that were not part of the dense retrieval
regions (Data not shown). Second, we quantified the spread
of retrieval in embedding space by counting the number of
k-means clusters that each retrieved chunk sets belong to
(Fig. 2C). For the same retrieval volume, ES IR reaches less
than half the number of clusters compared to KG IR. These
observations lead us to the conclusion that, in contrast to
ES IR, the data balancing mechanism of KG IR allows it
to go beyond the immediate surrounding of the question
neighborhood to retrieve relevant information thus facilitat-
ing the capture of the long-tail knowledge of biomedical
information.

3.3. ES and KG IR are highly complementary

To combine the strengths of both methods in order to max-
imize the retrieval performance, we used a new ranking
score averaging the min-max-normalized ES IR and KG IR
scores.
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Figure 2. Characterization of differences between the ES IR and KG IR methods over the text embedding landscape. Each plot represents
the ˜731k 1536-dimensional text chunk embeddings in two dimensions via UMAP transformation.

Performing the same experiments as in 3.1., we observe that
Hybrid IR strongly outperforms both ES IR and KG IR for
smaller volume of retrieved information (K<100) and mod-
erately when the retrieval window increases beyond K=250
(Fig.1A-B). Both recall and precision are about twice higher
for Hybrid IR compared to KG IR for K=50. This indicates
that each base retrieval method provides a complementary
mechanism: data rebalancing from KG IR is not sufficient to
identify the most relevant pieces of information and benefits
from adding the semantic filter provided by ES.

4. Conclusion
To aid contextual synthesis by LLMs, IR plays a pre-eminent
role to maintain a balanced and unbiased selection of re-
trieved information which entails extracting the long tail
of biomedical information. Here, we study the strengths
of a KG based information retrieval system, compare it
against the more standard vector ES based retrieval system.
Our findings strongly suggest that the KG based system
has significantly better performance overall but is also com-
plementary to the ES approach. Our findings further show
that the tendency of ES IR to oversample the immediate
neighbourhood of the question embedding due to its lack
of data balancing. On the other hand, the presence of a
mechanism in KG to balance the data enables the search to
extend beyond the immediate neighbourhood and thereby
identify a more diverse set of relevant documents. This
fundamental difference between the retrieval mechanism of
these two methods, also therefore spawns mutual comple-
mentarity leading to a hybrid approach being superior to
both individual ones.
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