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Abstract

RNA molecules provide an exciting frontier for novel therapeutics. Accurate
determination of RNA structure could accelerate development of therapeutics
through an improved understanding of function. However, the extremely large
conformation space has kept the RNA 3D structure space largely unresolved.
Using recent advances in generative modeling, we propose DiffRNAFold, a latent
space diffusion model for RNA tertiary structure design. Our preliminary results
suggest that DiffRNAFold generated molecules are similar in 3D space to true
RNA molecules, providing an important first step towards accurate structure and
function prediction in vivo.

1 Introduction

1.1 Why RNA?

RNA tertiary structure design is vital for drug discovery and therapeutics.The rapid development of
mRNA vaccines during the COVID pandemic highlights the significance of RNA-based therapies.
Over 400 RNA-targeting drug programs are underway[26], targeting various diseases. Understanding
RNA function and 3D structure is essential for effective therapeutics. However, determining RNA
structure has been denoted a grand challenge and even stated to be more difficult than protein
structure prediction [25]. The reason for this is simply the flexibility of RNA molecules. While
protein molecules, with three torsional angles at each residue, generate enough diversity to make
structure prediction difficult, RNA molecules have seven torsional angles at each nucleotide [17]. Due
to this large conformational sample space, traditional Monte-Carlo approaches that aim to randomly
sample and choose the molecules with lowest free energy, often fail to converge in reasonable time.
To overcome this issue, and partly due to the recent success of protein structure prediction with
AlphaFold [12], deep learning based methods have been proposed [18, 22]. These methods have
shown promising results in structure prediction. With DiffRNAfold, we propose a framework that
takes this one step forward with RNA structure generation and design.

1.2 Why Diffusion?

Score based generative modeling and diffusion denoising models [24, 23, 13, 9, 8] are architectures
that iteratively add noise to the input samples following the diffusion stochastic differential equation
until the sample represents pure noise. The model then seeks to learn the incremental reverse
diffusion (denoising) steps and reconstruct the input. After training, the denoising diffusion part of
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the model can be use to construct high quality samples from pure noise. These models have had
major success in the computer vision domain beating GANs in image and 3D shape synthesis [6, 30]
and also with the advent of stable-diffusion [19] that utilizes latent space diffusion for high quality
text-to-image generation. More recently, diffusion has achieved great results in the computational
chemistry domain, specifically for molecular docking, small molecule generation, and even protein
structure generation/dynamics [4, 10, 11, 3, 28, 27]. Due to the recent positive results of diffusion
models for chemical structure generation, we find it a fitting model for RNA structure generation
as well. However, as RNA molecules are much larger than small molecule drugs, we seek to use a
latent space diffusion model, where we first encode the molecule’s into latent representations before
diffusing and denoising. This architecture allows for conditional generation (based on linear sequence
of nucleotides) analogous to the aforementioned text-to-image model.

2 Methods

2.1 DiffRNAFold Architecture

DiffRNAFold (see Figure 1) consists of three major parts: (a) a graph autoencoder, (b) the latent space
diffusion denoising layers, and c) an optional language model for conditional input. At a high level,
the pipeline is as follows. The autoencoder takes RNA features and points (X) as input (Section 2.2),
and embeds them into a robust latent space that contextualizes the RNA molecule and simultaneously
learns how to decode the latent vector back into the RNA point cloud. Next, to enable high quality
generation of RNA molecules, we diffuse (step (b)) on the latent vector by adding Gaussian noise
incrementally. The denoising layers then learn to reconstruct the original latent vector from noise. If
conditional input (step (c)) is provided, then the linear sequence of an RNA, embedded by a language
model, is concatenated with the noisy vector before denoising. This “conditional" generation guides
the denoising layers to reconstruct a latent that describes the structure and condition simulateneously.
All of these working parts are detailed below.

2.1.1 Graph Autoencoder

See Figure 1a. We use Graph Neural Networks (GNNs). GNN layers essentially involve a series of
message passing and aggregation steps. We can think of this process as a function Z = f(X,A),
where the graph’s vertex features X and adjacency matrix A are used to transmit messages among
neighboring vertices. We specifically used graph convolutional neural networks (GCNs) [15]. These
layers can be stacked similar to traditional convolutional neural networks. Furthermore, we utilize
stacked graph convolutional layers, incorporating the following message-passing rule([15]) :

Z(l+1) = σ

(
D̃

1
2 ÃD̃− 1

2Z(l)W (l)

)
, Z(0) = X (1)

At GCN layer 0, Z(0) is the initial input node features X . The graph’s input adjacency matrix is
symmetrically normalized shown in (1). Note that Ã = A + In and D̃ is the degree matrix of Ã.
At each layer l, there is a learnable weight parameter W (l). Finally, the representations are passed
through the sigmoid σ(·) nonlinearity.

Following the canonical autoencoder structure [21], we define a GNN encoder E(·) and decoders
D1(·),D2(·). Incorporating the GCN layers, the encoder (Z = E(X,A)) takes as input the molecule
points and features X and uses the edges A in the message passing scheme defined in (1), resulting
in a refined latent representation Z.

Z is then used as input to both decoders where one reconstructs the RNA atomic point cloud P ′ via
Multilayer Perceptrons (MLP) and the other reconstructs the adjacency matrix A′ via inner product.

P ′ = D1(Z) = MLP (Z) A′ = D2(Z) = σ(ZZT ) (2)

To measure the Graph Autoencoder’s reconstruction capabilities, we incorporate two methods of loss.
First, we use Chamfer Distance (CD) as the loss between the ground truth atomic coordinates P and
reconstructed coordinates P ′. This loss is standard in point cloud reconstruction tasks [30] and is
formally described as such,

LCD =
∑
x∈P

min
y∈P ′

||x− y||22 +
∑
y∈P ′

min
x∈P

||x− y||22 (3)
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Figure 1: DiffRNAFold architecture visualization, inspired by [19]. (a) Graph Autoencoder to encode
RNA molecule graphs into latent representations. (b) Latent Space Diffusion and Denoising layers to
generate high quality latents. (c) Optional conditional input to guide the diffusion process.

Secondly, we use binary cross entropy (BCE) loss between the ground truth A edges and reconstructed
edges A′. Both are summed up for the final loss of the GAE.

2.1.2 Denoising Diffusion Layers

We utilize diffusion (see Figure 1b) on the latent representations of the RNA molecule from Sec-
tion 2.1.1, to enable high quality latent vector generation (which can then be decoded into RNA
molecules). In the forward process, the latent vector at timestep 0 (z0) is injected with noise over
many iterations until at timestep T, zT essentially represents only noise. zT is then passed through
the denoising layers where from each timestep t to t− 1, the latent vector is denoised by means of
a 1D UNet convolutional layer [20]. The model learns to reconstruct the original latent z0′, which
can then be decoded into the original RNA molecule. During training, both the forward process of
adding noise and the reverse process of denoising is utilized, and is optimized with a canonical loss
function among the successful diffusion models. Using the reparameterization trick [14], it has been
shown that predicting the original latent z0 is equivalent to predicting the source noise added at each
timestep. Let ϵ0 ∼ N (ϵ;0, I) be the added noise. We constructed a 1D UNet that predicts this noise,
denoted using ϵ̂θ(zt, t). Thus, according to [8, 16, 19], the loss at from the denoising diffusion layers
can be generalized to matching the noise as such:

Ldiff = Ez,ϵ∼N (0,1),t

[
||ϵ0 − ϵθ(zt, t)||22

]
(4)

Note that the forward process of injecting noise is not utilized during generation. Rather, sampling a
vector of Gaussian noise and passing it through the denoising layers results in a high quality latent
that is ready for decoding.

2.1.3 Language Model for Conditional Input

The graph autoencoder and the latent space diffusion model is already capable of generating RNA
molecules. To guide the diffusion process, we utilized conditioning via concatenation of a representa-
tion of the condition and the random sample (see Figure 1c). Specifically, we conditioned on RNA
sequences using pretrained embeddings from the RNABERT model [2] which uses a bidirectional
transformer language model [5] on RNA linear sequences.
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(a) (b)

Figure 2: (a) Distribution of pairwise euclidean distances between the centroid of each point cloud
(diffrnafold vs. random) and the centroids of real RNA molecule points.(b) Sample reconstructed
RNA point cloud (orange is generated | blue is real atomic points)

2.2 Data & Preprocessing

We obtained 2,500 molecules from the RNASolo database [1]. To overcome the large variance in
RNA sizes (50-2,000 atoms), we selected the 240 RNA molecules with a size range of 100-140 atoms.
The PDB files were then parsed into tensors using the coordinates and features, and each point cloud
was then padded with zeros to the size of 140 atoms and normalized to fit on the unit sphere prior to a
85-5-10 (train, val, test) split. To construct our graph representation of each RNA molecule G(X,A),
the atomic coordinates (P ) along with basic molecular features were organized into the feature matrix
X ∈ Rn×(3+f), where n = 140 is the number of points and f is the number of molecular features.
The adjacency matrix A ∈ Rn×n represents the edges (bonds) between atoms and additional edges
based on nearest-neighbor (k = 5) proximity. These molecular graphs were used as input.

3 Results

DiffRNAFold is a generative model that produces RNA-like structures, and thus it cannot be compared
directly with other methods that predict RNA structure. To assess DiffRNAFold’s generative capabili-
ties, we designed an experiment to explore the 3D space occupied by DiffRNAFold’s molecular point
clouds, and their relationship to (a) real RNA molecules in our data-set, and (b) random molecular
point clouds as baseline. To accomplish this, we sampled 100 RNA molecules from DiffRNAFold,
retrieved 100 real RNA molecules from our dataset at random, and generated 100 random molecular
point clouds as a baseline. We computed the distribution of pairwise Euclidean distances between
the centroid of each DiffRNAFold point cloud to each real RNA point cloud (Figure 2a; pink). We
repeated the computation for the distance between Random and real point cloud centroids (blue).

DiffRNAFold-to-Real distances (in pink) Euclidean distance values (median 0.673) were significantly
closer to zero compared to the Random-to-Real centroid Euclidean distance (median 2.900; Rank-sum
test p-value: 2.06e-16). Thus, DiffRNAFold’s molecular point clouds are indeed much similar in 3D
space to real RNA molecules—a crucial first step in determining RNA molecule validity. Additionally,
while this first experiment indicates the overall 3D space in which DiffRNAFold generated molecules
lie in, we also provide a small proof of concept. Figure 2b shows the atomistic point cloud of a
real RNA molecule in our dataset (in orange) and the autoencoder reconstructed point cloud by
DiffRNAFold (in blue). The remarkable visual similarity suggested that even with a small dataset,
sufficient properties of RNA structures could be obtained.

4 Conclusion & Work in Progress

With DiffRNAFold, we have proposed the first latent space diffusion model for the generation of
novel RNA tertiary structures. However, in parallel work, a latent diffusion model for other non-RNA
molecules was proposed [29] further validating and motivating our strategy. Our preliminary results
indicate a good starting point, but also point to exciting new directions. On the algorithmic side, we
plan to develop a roto-translational equivariant graph autoencoder using [7] to obtain better latent
representations. Secondly, we plan to incorporate a hierarchical diffusion method as many RNA
3D structures can be directly informed by their 2D motifs (hairpin loops, pseudoknots, etc.). Our
work could also be improved through larger data collections, perhaps incorporating training on
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accurately simulated RNA samples, or breaking up larger RNA molecules into smaller functional
domains. Lastly, we plan to incorporate more rigorous analysis of DiffRNAFold’s chemical validity,
especially in regards to the conditional generation. Overall, with this work, we hope to emphasize the
importance of research on designing RNA molecules, and promoting its application to development
of novel drug therapy.
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