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ABSTRACT

We present TexTailor, a novel method for generating consistent object textures
from textual descriptions. Existing text-to-texture synthesis approaches utilize
depth-aware diffusion models to progressively generate images and synthesize
textures across predefined multiple viewpoints. However, these approaches lead
to a gradual shift in texture properties across viewpoints due to (1) insufficient in-
tegration of previously synthesized textures at each viewpoint during the diffusion
process and (2) the autoregressive nature of the texture synthesis process. More-
over, the predefined selection of camera positions, which does not account for the
object’s geometry, limits the effective use of texture information synthesized from
different viewpoints, ultimately degrading overall texture consistency. In TexTai-
lor, we address these issues by (1) applying a resampling scheme that repeatedly
integrates information from previously synthesized textures within the diffusion
process, and (2) fine-tuning a depth-aware diffusion model on these resampled
textures. During this process, we observed that using only a few training im-
ages restricts the model’s original ability to generate high-fidelity images aligned
with the conditioning, and therefore propose an performance preservation loss to
mitigate this issue. Additionally, we improve the synthesis of view-consistent tex-
tures by adaptively adjusting camera positions based on the object’s geometry.
Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset
demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing
view-consistent textures.

1 INTRODUCTION

Realistic, high-quality 3D creatures are critical for creating immersive experiences in video games,
films, and AR/VR applications, making them an essential part of modern digital media. While ad-
vancements in graphics engines and technical expertise have enabled the production of high-quality
3D content, the process remains labor-intensive, requiring multiple iterations and adjustments as
well as substantial creative input.

To alleviate these challenges, the computer vision community has focused on breakthroughs in im-
plicit neural representations (Mildenhall et al., 2021; Barron et al., 2021; Chen et al., 2022; Wang
et al., 2021) and diffusion models based on textual descriptions, which provide an intuitive approach
to 3D content generation (Rombach et al., 2022; Saharia et al., 2022; Nichol et al., 2021). No-
tably, the introduction of the score distillation sampling (SDS) loss function (Poole et al., 2022) has
enabled the generation of diverse, high-quality 3D content by combining implicit neural representa-
tions with the strong priors provided by diffusion models (Wang et al., 2024; Lin et al., 2023).

While these methodologies provide both geometry and texture, converting implicit neural represen-
tations into explicit formats, such as meshes, remains necessary for integration into graphics engines
and real-time applications. Recently, DMTet (Shen et al., 2021) has enabled precise mesh geome-
try extraction from implicit representations by leveraging a signed distance field and the Marching
Tetrahedra algorithm. However, in texture synthesis, texture unwrapping often leads to inconsis-
tent mappings, which can degrade the visual quality of the output or necessitate additional texture
synthesis steps (Lin et al., 2023; Chen et al., 2023b).

With significant advances in 3D geometry generation (Shen et al., 2021; Vahdat et al., 2022; Chen &
Zhang, 2019; Nash et al., 2020; Müller et al., 2023) and geometry optimization process (Shen et al.,
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Figure 1: (a): The illustration of definition of viewpoint. Following the red arrow, the pencil case
mesh is painted from left to right in each row in (b). (b): This visualization illustrates the gradual
shift in texture properties that becomes more pronounced as the viewpoint changes. Compared to
Text2Tex (Chen et al., 2023a) and TEXTure (Richardson et al., 2023), TexTailor exhibits signifi-
cantly less of this gradual shift.

2021), recent research (Chen et al., 2023a; Richardson et al., 2023; Tang et al., 2024; Youwang et al.,
2024; Metzer et al., 2023) has focused on texture synthesis strategies for textureless meshes using
language cues. Among these approaches, several works (Tang et al., 2024; Chen et al., 2023a;
Richardson et al., 2023) utilize inpainting techniques (Lugmayr et al., 2022) within pre-trained
depth-aware image diffusion models (Zhang et al., 2023; Rombach et al., 2022) to progressively
generate images, projecting them back onto the mesh for specific regions from predefined view-
points. However, achieving coherent texture synthesis across all viewpoints remains a challenge for
two key reasons: (1) The current inpainting techniques applied to texture synthesis are incomplete,
as information from previously synthesized visible textures at the current viewpoint is reflected onto
the untextured areas only once per timestep in the diffusion process. This results in inconsisten-
cies between adjacent viewpoints. (2) Additionally, progressively generating textures from multiple
viewpoints introduces inherent sequential and temporal biases, gradually obscuring the texture infor-
mation from the initial viewpoint. As a result, the characteristics of the texture synthesized from the
initial viewpoint gradually degrade as the viewpoints shift, a phenomenon similar to the short-term
dependency problems (Sutskever, 2014) observed in language models.

For instance, assuming the Y-axis is the vertical axis in the world coordinate system, we define the
viewpoint as v = (θ, ψ, ρ), as shown in Fig.1 (a). Fig.1 (b) shows the generated texture images
of ‘a pencil box’ mesh as θ decreases, with ψ and ρ fixed, following red arrow in Fig. 1 (a). In
comparison to TexTailor in Fig. 1(b), the texture properties (e.g., color and pattern) of the other
methods, synthesized from the initial viewpoint, progressively degrade as θ decreases. This gradual
degradation intensifies over time, ultimately undermining texture consistency.

To address these challenges, we present a novel texture synthesis method, TexTailor. (1) TexTailor
utilizes the resampling scheme proposed by Lugmayr et al. (2022) for texture synthesize fields,
which helps to repeatedly integrate information from previously synthesized textures. To enhance
its effectiveness, we implement this scheme within the non-Markovian diffusion process (DDIM,
Song et al. (2020)). And (2) we finetunes a depth-aware text-to-image diffusion model using images
generated through this resampling. During this process, we observe that finetuning with a limited
sample set risks reducing the model’s ability to generate high-fidelity images conditioned on depth
maps and textual descriptions. To mitigate this, we introduce an performance preservation loss,
ensuring that the model learns the resampled distributions without compromising its generalization
capabilities. Additionally, since the inpainting technique relies on previously synthesized visible
textures, poorly predefined viewpoint locations that fail to consider the complexity of the mesh ge-
ometry can lead to suboptimal texture generation for the current viewpoint. To resolve this, we
propose an adaptive viewpoint refinement scheme, which dynamically adjusts the viewpoint based
on the amount of previously generated texture. This method enables the synthesis of coherent tex-
tures across all viewpoints by adaptively positioning the viewpoint according to the geometry of the
mesh.
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Experiments on a subset of the Objaverse dataset (Deitke et al., 2022) and the ShapeNet car
dataset (Chang et al., 2015) demonstrate the superior performance of TexTailor in synthesizing
coherent 3D textures guided by textual descriptions. It surpasses state-of-the-art texture synthesis
methods driven by language cues, achieving better results in terms of LPIPS (Zhang et al., 2018)
and FID (Heusel et al., 2017) on a subset of the Objaverse dataset. Our contributions are as follows:

• We extend the resampling technique, previously used only in 2D image inpainting, to the
field of 3D texture synthesis by applying it to the DDIM non-Markovian process, enabling
consistent texture generation within a single view with significantly fewer steps.

• We analyze the gradual shift phenomenon in the texture synthesis process and propose a
novel approach that trains the model using only a few resampled images, removing the need
for an external dataset of 3D meshes, textures, or text. By incorporating the performance
preservation loss, this method effectively mitigates the gradual shift across multiple angles.

• To address the catastrophic forgetting phenomenon, we propose the performance preserva-
tion loss to mitigate this issue and maintain the model’s performance. Experimental results
demonstrate that this loss effectively prevents forgetting and maintains high texture quality
across diverse viewpoints.

• We introduce an adaptive method that dynamically adjusts camera positions based on tex-
ture coverage, eliminating manual configuration and ensuring consistent texture synthesis
for complex geometries.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models generate high-fidelity images by learning to iteratively convert a sample from a
simple Gaussian distribution xT ∼ N (0, I) into a complex data distribution x0 ∼ q(x0) through a
forward and generative(diffusion) process (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song et al.,
2020). The forward process, which approximates the posterior q(x1:T |x0), is modeled as a Markov
chain that progressively adds Gaussian noise to the data using coefficients ᾱ1:T ∈ (0, 1]T :

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1),where q(xt|xt−1) := N
(√

ᾱt

ᾱt−1
xt−1,

(
1− ᾱt

ᾱt−1

)
I

)
. (1)

The generative process, modeled by the joint distribution pθ(x0:T ), gradually denoises noisy data,
starting from p(xT ) := N (xT ;0, I). During this process, a noise predictor ϵϕ(xt; t), typically
implemented using a U-Net architecture (Ronneberger et al., 2015), predicts the noise in xt. Song
et al. (2020) introduce DDIM, a non-Markovian diffusion process that enables different generative
samplers by adjusting the generative noise variance, allowing for deterministic mappings. This
approach reduces the number of sampling steps while maintaining the same marginals as DDPM.

However, training diffusion models in high-dimensional pixel space can be computationally ex-
pensive. To address this, Rombach et al. (2022) proposed Stable Diffusion Model, which first use
auto-encoding models to transform the data into a lower-dimensional semantic space before apply-
ing the forward and generative processes. This dimensionality reduction significantly decreases the
computational cost. Consequently, the noise predictor is trained in the semantic space as follows:

LLDM (ϕ, z0) := Ez0,ϵ∼N (0,I),t∼U(0,1)

[
w(t)∥ϵϕ(

√
ᾱtz0 +

√
1− ᾱtϵ; t, c)− ϵ∥22

]
, (2)

where z0 is the latent vector of the input image x0, obtained from the auto-encoder, c is a condi-
tioning vector (e.g., from textual descriptions), and w(t) is a weighting term indexed by timestep t.
Zhang et al. (2023) extends this approach by adding trainable encoder blocks connected to convolu-
tional layers with zero weights (ControlNet) to the pre-trained noise predictor network ϵϕ(zt, t, c).
This architecture ensures that the pre-trained diffusion model remains fixed during training, while
the newly added trainable blocks and layers learn conditional information, such as depth, normal,
and edge maps. This approach enables the model to generate data distributions controlled by addi-
tional 2D spatial inputs including depth maps, allowing training with fewer parameters on smaller
datasets without compromising pre-trained capabilities. In this paper, we utilize Stable Diffusion
with ControlNet as a depth-aware T2I diffusion model, fine-tuning only the ControlNet component
to synthesize partial textures conditioned on depth maps.
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2.2 TEXT-TO-TEXTURE GENERATION

Figure 2: Left: The image x0 rendered from the current
viewpoint before being processed by the depth-aware dif-
fusion model. Right: An illustration of the four regions
on the partial mesh surface.

Texture synthesis procedure. In re-
cent works (Richardson et al., 2023;
Chen et al., 2023a; Tang et al., 2024),
the partial mesh surface viewed from
a single viewpoint are segmented into
several regions and undergo incremen-
tal texturing from one viewpoint to the
next to ensure both local and global
consistency. Specifically, Chen et al.
(2023a) divides the partial surface into
four regions (“keep”, “new”, “update”,
and “ignore”) as illustrated in Fig. 2 (b),
and synthesizes partial texture using an
image inpainting technique. The portion
of the surface in the current viewpoint
that has already been textured from the previous viewpoint(see Fig. 2(a)) is labeled the “keep” re-
gion, while the part that lacks texture is called the “new” region. Only the “new” region undergoes
partial texturing using the inpainting strategy, while the “keep” region remains unchanged. Addi-
tionally, from the same viewpoint, surfaces where view direction is parallel to the normal vector of
the object’s visible faces are categorized as the “update” region. This “update” region is re-textured
and projected again since it is viewed from a better angle than other regions. Consequently, partial
mesh surfaces corresponding to the “new” region are textured using information from the “keep”
region across multiple viewpoints.

Image inpainting for texturing. During the texture synthesize process, an image inpainting strat-
egy (Lugmayr et al., 2022) is applied to a depth-aware diffusion model (Rombach et al., 2022;
Zhang et al., 2023) to effectively texture the missing regions of the mesh surface corresponding to
the “new” region:

zknown
t−1 ∼ N (

√
ᾱtz0, (1− ᾱt)I), (3)

zunknown
t−1 ∼ N (µϕ(zt, t), σϕ(zt, t)), (4)

z̃t−1 := zknown
t−1 ⊙ (1−Mlatent) + zunknown

t−1 ⊙Mlatent, (5)

where z0 is the latent vector of the input image x0, which is rendered from the current viewpoint of
an object with texture applied from a previous viewpoint (see Fig. 2(a)). zknown

t−1 is the latent vector
sampled at timestep t − 1 by adding noise to z0, while zunknown

t−1 is the model’s output at the same
timestep. Mlatent represents a mask, with a value of 1 for parts corresponding to the unknown
region(“new” ∪ “ignore”) on the image plane(see Fig. 2), resized to match the size of the latent
space. In the latent space, by combining zunknown

t−1 for the unknown region and zknown
t−1 for the known

region(“keep”), the result is the composite z̃t−1.

This process generates a partial texture for the current viewpoint based on information from previous
viewpoints. However, simply merging the known and unknown regions once at each timestep is
insufficient to fully harmonize the texture information synthesized from previous viewpoints during
the denoising process of the diffusion model.

3 METHOD

3.1 RESAMPLING

As mentioned in Sec. 2, texturing an object involves progressively generating images using a depth-
aware diffusion model and compositing them across multiple viewpoints. During the denoising
process at each timestep, simply merging the known and unknown regions once is insufficient to
seamlessly harmonize the unknown regions with the known ones, leading to inconsistencies be-
tween adjacent viewpoints. Additionally, discordant textures synthesized from a single viewpoint
can accumulate through subsequent viewpoints, further degrading overall 3D texture consistency.
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Figure 3: Overview of TexTailor. TexTailor synthesizes textures for a given 3D mesh without tex-
tures, based on a textual description, such as “a hippopotamus”. We add additional camera positions
to the predefined set to properly condition the previously synthesized textures from each viewpoint,
eliminating the need for manually coordinating camera locations. Based on these viewpoints, we
progressively generate textures using image inpainting techniques, including a resampling scheme
within a non-Markovian process. To prevent the gradual shift in texture properties, we fine-tune
ControlNet with a small set of resampled images, incorporating an performance preservation loss.

In 2D image inpainting field, Lugmayr et al. (2022) propose a resampling method that iteratively
repeats adding noise and denoising, along with a merging step (similar to Eq. 5), multiple times at
each timestep to more thoroughly mix the known and unknown regions. However, directly apply-
ing this method to texture synthesis requires a large number of timesteps, as it operates within a
Markovian process, similar to DDPM, and must be repeated across multiple viewpoints. To gen-
erate higher quality, harmonious images in fewer steps, we propose a resampling method within a
non-Markovian process using the following formula:

z̃r
t ∼ N

(√
ᾱt

ᾱt−1
z̃r−1
t−1 , (1−

ᾱt

ᾱt−1
)I

)
, (6)

z̃r
t−1 ∼ N

(
√
ᾱt−1z̃

r
0 +

√
1− ᾱt−1 − σ2

t ·
z̃r
t −

√
ᾱtz̃

r
0√

1− ᾱt
, σ2

t I

)
, (7)

z̃r
t−1 = zknown

t−1 ⊙ (1−Mlatent) + z̃r
t−1 ⊙Mlatent, (8)

where r denotes the resampling step at each timestep, r ∈ {1, ..., R}, and z̃0
t−1 corresponds to z̃t−1

from Eq. 5. The resampling process at each timestep, as described in the equations above, occurs
after the merging process defined by Eq. 5. Specifically, in the r-th resampling, z̃r

t is sampled by
adding noise to z̃r−1

t−1 , the previously merged sample at timestep t− 1, as shown in Eq. 6. In Eq. 7,
z̃rt−1 is sampled by denoising z̃rt according to the DDIM non-Markovian process. The resulting
z̃rt−1 is then combined with zknown

t−1 , as described in Eq. 8, where zknown
t−1 is derived from Eq. 3. The

timestep t is part of the sequence {τs, ..., τ1}, which is a sub-sequence of {T, ..., 1}. This approach
allows high-quality texture synthesis by merging the “known” regions and “unknown” regions R
times with only 30 steps. This is significantly fewer than the 250 steps required by the original
resampling method (Lugmayr et al., 2022) for a single view.
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3.2 FINE-TUNING WITH ORIGINAL CAPABILITIES PRESERVED

Figure 4: Illustration of the loss of original gen-
erative ability when fine-tuning ControlNet with-
out the performance preservation loss.

Using the resampling method (Sec. 3.1) within
the depth-aware diffusion model, the partial
mesh surface from the current viewpoint are
coherently painted based solely on the pre-
viously synthesized textures visible from that
same viewpoint(corresponding to “keep” re-
gion). However, the autoregressive nature
of the texture synthesis process, which relies
only on previously synthesized visible textures,
leads to a gradual shift in texture properties,
such as material or pattern (see Fig.1(b)), ul-
timately compromising the consistency of the
texture. This is because, as the synthesis pro-
gresses from the first viewpoint across multiple
viewpoints, the texture information from the
first viewpoint becomes increasingly obscured.

Furthermore, ControlNet (Zhang et al., 2023) is
responsible for extracting data distributions that
align with depth maps in the output domain of
the diffusion model. However, it is challenging
to guide resampled data distributions from the
diffusion model through ControlNet without in-
corporating previously synthesized visible tex-
tures (i.e., without using image inpainting techniques) in the current viewpoint. In other words,
ControlNet itself does not retain or reflect the characteristics of previously synthesized resampled
textures at the current viewpoint.

These limitations hinder the ability to infer texture information for viewpoints distant from the first
viewpoint using resampled textures from viewpoints close to the first viewpoint. To address this
challenge, we fine-tune ControlNet with a small set of resampled images near the first viewpoint to
extract images of the same object from different angles in the output domain of the diffusion model,
allowing it to retain the texture properties across multiple viewpoints:

LFine := EzR
0 ,ϵ∼N (0,I),t∼U(0,1),ct,cd

[
w(t)∥ϵϕ(zR

t , t, ct, cd)− ϵ∥22
]
, (9)

where ct and cd are the text prompts and depth condition, respectively.

While this approach helps preserve texture properties during synthesis, it compromises ControlNet’s
original capability to extract images aligned with depth conditions and text prompts, a phenomenon
known as catastrophic forgetting. For instance, the generated textures from the depth-aware diffu-
sion model finetuned with Eq.9 exhibit significant noise and reduced quality, as shown in Fig.4. To
address this issue, we introduce an performance preservation loss:

Lpre := EzR
0 ,ϵ∼N (0,I),t∼U(0,1),ct,cd

[
w(t)∥ϵϕ(zR

t , t, ct, cd)− ϵorig(z
R
t , t, ct, cd)∥22

]
, (10)

where ϵorig is the output of the fixed pre-trained network. This loss ensures that the noise prediction
network does not deviate significantly from the original pre-trained parameters.

Consequently, Our final loss is as follows:

LFinal := LFine + λLpre, (11)

where λ adjusts the strength of the performance preservation loss. Fig. 3 illustrates the entire pro-
cess.

3.3 ADAPTIVE VIEWPOINT REFINEMENT

To achieve consistent texture synthesis using the inpainting method (Sec. 2.2), it is crucial to set
the camera’s position for each viewpoint appropriately. This is because the outcomes of images
generated by the inpainting technique are highly dependent on the previously synthesized visible
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textures at the current viewpoint. A simple solution is to distribute as many viewpoints as possible
evenly around the object in 3D space. However, this approach presents two problems.

First, unnecessary predefined viewpoints make the overall texture synthesis process inefficient. Dis-
tributing too many viewpoints is akin to sequentially painting the entire mesh surface in small,
redundant sections, which adds unnecessary steps and even exacerbates the gradual shift in texture
properties, even with the introduction of Eq.11. Second, complex geometries can lead to camera
positions where textures from previous viewpoints are not sufficiently visible. Finding evenly dis-
tributed viewpoints v = (θ, ψ, ρ) in 3D space often requires numerous trials and errors to achieve
precise viewpoint settings. Furthermore, optimal camera positions vary depending on the object’s
geometry, making manual configuration particularly difficult, especially for large-scale objects.

To select optimal camera positions, we utilize the ratio of the “keep” region to the “new” region at
each viewpoint. We render each region from the meshes onto the image planes and convert them into
masks where a value of one represents the corresponding region. Then, we calculate the proportion
of pixels corresponding to the “keep” region relative to the total of the “keep” and “new” regions on
the image plane:

p :=
Σi,j1{(i,j)∈keep}

Σi,j1{(i,j)∈new} +Σi,j1{(i,j)∈keep}
. (12)

If the proportion p calculated in Eq. 12 is smaller than a threshold β, we add an additional camera
position(v = (θprev+γ(θcurrent−θprev), ψprev+γ(ψcurrent−ψprev), ρ)) to the predefined camera
position sequence {v1, ...,vn}. Here, γ ∈ (0, 1) is an interpolation parameter, and we interpolate
the azimuth (θ) and elevation (ψ) angles between the previous and current viewpoints. This adaptive
approach ensures that the camera positions are optimized based on the object’s geometry and the
amount of previously generated texture.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Implementation Details. We select a subset of the Objaverse dataset (Deitke et al., 2022) to eval-
uate our model, following the approach of Chen et al. (2023a). In this dataset, Chen et al. (2023a)
filter out low-quality or misaligned meshes from the designated categories, resulting in 410 tex-
tured meshes across 225 categories for our experiments. Notably, the original textures are used
exclusively for evaluation. Recent text-driven texture synthesis methods (Richardson et al., 2023;
Metzer et al., 2023; Youwang et al., 2024), which rely on gradient-based rendering using a differen-
tial renderer (Fuji Tsang et al., 2022), encounter difficulties when optimizing texture synthesis for
‘car’ objects from the ShapeNet dataset (Chang et al., 2015). Therefore, we present only qualitative
results for our approach on this dataset to demonstrate its performance on fine-grained categories
compared to Text2Tex.

For both datasets, the number of resampling steps, as well as the parameters λ, β, and γ, are set
to 3, 2.5, 0.5, and 0.5, respectively. We finetune the ControlNet using five images rendered from
viewpoints close to and including the first viewpoint: v1 = (0◦, 15◦, 1), v2 = (0◦, 35◦, 1), v3 =
(0◦,−5◦, 1), v4 = (20◦, 15◦, 1), and v5 = (340◦, 15◦, 1). For rendering and texture projection, we
utilize the PyTorch framework (Paszke et al., 2017) along with PyTorch3D (Ravi et al., 2020).

Evaluation metrics. To quantitatively measure the view-consistency of synthesized textures, we
report the average LPIPS (Zhang et al., 2018) between images rendered from 3D textured meshes
across multiple viewpoints. A gradual shift in texture properties or the presence of artifacts is as-
sumed to increase the perceptual loss between any two viewpoints. To calculate average LPIPS, We
sample 25 uniformly spaced camera positions from both the upper and lower hemispheres of a fixed-
radius sphere. All cameras within the upper hemisphere share the same elevation, and similarly, all
cameras within the lower hemisphere share the same elevation, with each set directed towards the
center of the sphere. An image is rendered from each viewpoint at a resolution of 512 × 512. We
then compute the average LPIPS values for all pairs of images in the 3D scene and sum the averages
across all evaluated categories.

Additionally, we assess the quality and diversity of the generated textures using the Frechet Incep-
tion Distance (FID) (Heusel et al., 2017). The synthesized texture distribution consists of rendered
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Figure 5: Qualitative comparisons on Objaverse. We compare TexTailor with state-of-the-art
baselines (Metzer et al., 2023; Chen et al., 2023a; Richardson et al., 2023; Youwang et al., 2024)
on Objaverse meshes. Compared to other methods, TexTailor produces textures that are more view-
consistent and better aligned with object geometries.

images from the above camera points, while the real distribution is composed of renders of the
meshes under the same conditions, using artist-designed textures.

Table 1: Quantitative comparison
on Objaverse subset.

Method LPIPS↓ FID↓
Latent-Paint 54.429 45.334
Text2Tex 38.931 33.487
TEXTure 54.138 43.337
Paint-it 38.316 39.823

Ours 37.889 29.998

Quantitative comparisons. In Tab. 1, we compare our
approach against recent SOTA text-driven texture synthesis
methods: Latent-Paint (Metzer et al., 2023), Text2Tex (Chen
et al., 2023a), TEXTure (Richardson et al., 2023), and Paint-
it (Youwang et al., 2024), on a subset of the Objaverse dataset.
For texture descriptions, template, “a 〈category〉”, is utilized
consistently across all approaches. The results demonstrate
that our method synthesizes high-quality and more consistent
textures than all baselines across various categories.

Qualitative comparisons. In Fig. 5, we present the ren-
dered results using TexTailor alongside other baselines on the Objaverse dataset. The qualitative
results demonstrate that our approach significantly improves texture quality, particularly in terms of
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Figure 6: Qualitative comparisons on ShapeNet car. Our approach synthesizes more view-
consistent and higher-quality textures for fine-grained categories compared to the baseline.

w/ Resampling w/ Training w/Perf.Loss w/ View Refine LPIPS ↓ FID ↓
✓ x x x 38.89 30.924
✓ ✓ x x 39.85 53.855
✓ ✓ ✓ x 38.00 30.567
✓ ✓ ✓ ✓ 37.89 29.998

Table 2: Table of Ablation Studies.

view-consistency. Specifically, some methods based on autoregressive processes for texture synthe-
sis exhibit a gradual shift in texture properties (see Fig. 1), leading to reduced view consistency over-
all. Other approaches that employ score distillation sampling loss (SDS loss) enhance texture quality
by optimizing networks that generate texture maps or the texture maps themselves. However, they
cannot fully overcome the inherent limitations of SDS loss, such as oversaturation, over-smoothing,
and low diversity (Wang et al., 2024; Poole et al., 2022). For example, in the case of “a hammer”
(second column in Fig.5), our method successfully textures both the handle and head of the hammer
mesh without a gradual shift in each part’s texture properties, and avoiding artifacts across multiple
viewpoints. These limitations in the other baselines are also reflected in the quantitative results in
Tab. 1. In Fig. 6, due to optimization problems with the differential renderer, we only report the
texture results for ShapeNet cars using our method and Text2Tex. Notably, even with fine-grained
categories, our results show high-quality, view-consistent textures without the aforementioned prob-
lems. Additional qualitative comparisons for texture synthesis on Objaverse dataset objects and
human meshes can be found in the appendix.

4.2 ABLATION STUDIES

Effects of resampling. First, we incorporate the resampling method into our baseline, as shown in
Fig. 7 (a). The resampling method better preserves the texture properties of the chocolate-covered
cherry and muffin liner from the first viewpoint (v1) at the subsequent viewpoints, v2 and v4, com-
pared to the baseline. However, we still observe a gradual change in the pattern of the muffin liner
from v2 to v4, and this change becomes more pronounced at v10 , which is far from v1, in left ex-
ample of Fig. 7 (b), compromising view-consistency. This tendency is clearly reflected in the results
shown in Tab. 2.

Effects of training with resampled texture. To address this problem, we fine-tune ControlNet on
the resampled textures from five viewpoints (v1, v2, v3, v4, v5) with the performance preservation
loss, as shown in Fig. 7 (b). As a result, the ability to preserve texture properties is significantly
improved. We now observe that the muffin textures from v11—a viewpoint diametrically opposite
to v1 with respect to the origin—are similar to the textures from v1.

Effects of adaptive view refinement. In Fig. 7(c), we illustrate the texture synthesis process from
the side view to the bottom view of the muffin mesh. If the user does not define an appropriate mid-
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Figure 7: Ablation studies. The illustration demonstrates the effectiveness of the key components
of TexTailor. As each component is applied, the muffin’s texture becomes more consistent across
multiple viewpoints, and the overall texture quality improves.

point between these views, as shown in the left example, the model generates a texture that is entirely
misaligned with the previously synthesized one in terms of geometry. Conversely, proper compensa-
tion at predefined viewpoints effectively prevents this phenomenon. Our method eliminates the need
for such cumbersome manual efforts, including tracking and precisely defining camera positions for
different geometries.

5 CONCLUSION

In this paper, We propose TexTailor, a novel method for synthesizing high-quality textures based
on language cues for 3D meshes across multiple categories. Our methodology utilizes a resampling
scheme to successfully harmonize unknown regions with known regions in inpainting techniques,
thereby improving view consistency between adjacent viewpoints. To address the gradual shift
in texture properties, we fine-tune a small set of resampled texture images using ControlNet with
an performance preservation loss. Additionally, the adaptive view refinement technique enhances
quality and view consistency by leveraging previously synthesized textures, eliminating the need for
manual coordination of camera positions based on the object’s geometry. Experiments on datasets
from various categories demonstrate the superior performance of our approach in synthesizing high-
quality, view-consistent textures.
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A APPENDIX

A.1 ADDITIONAL QUALITATIVE COMPARISON

Figure 8: Additional qualitative comparisons on Objaverse. We compare TexTailor with state-
of-the-art baselines (Metzer et al., 2023; Chen et al., 2023a; Richardson et al., 2023; Youwang et al.,
2024) on Objaverse meshes. Compared to other methods, TexTailor produces textures that are more
view-consistent and better aligned with object geometries.

Objaverse Dataset To further validate the effectiveness of our proposed methodology, we provide
qualitative comparisons for four additional objects from the Objaverse dataset, complementing the
four objects already showcased in the qualitative results of the paper (see Fig. 5). Specifically,
methods that rely on auto-regressive processes for texture synthesis often encounter a gradual shift
in texture properties, leading to the emergence of texture seams that significantly degrade overall
texture quality across multiple viewpoints. For instance, in the cases of Text2Tex (Chen et al.,
2023a) and TEXTure (Richardson et al., 2023) with the prompt “a basketball”, the texture patterns,
colors, and materials of the basketball are inconsistently generated, resulting in noticeable variations
within a single viewpoint. Similarly, with the prompt “a desk chair,” the chair exhibits patches of
paint in colors such as white or blue, further emphasizing these inconsistencies.

In contrast, approaches based on SDS loss face challenges stemming from intrinsic limitations of the
loss itself, such as oversaturation and low diversity. For example, while Latent-Paint (Metzer et al.,
2023) generates textures that appear relatively well-synthesized, it frequently displays a strong bias
toward red-dominated textures. Similarly, Paint-it (Youwang et al., 2024) often suffers from visible
oversaturation artifacts, detracting from the overall realism of the generated textures.
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Figure 9: Additional qualitative comparisons on RenderPeople (ren, 2023). Qualitative com-
parison of generated textures for clothed human meshes using various text prompts. Each column
corresponds to a different text prompt: (1st col) ‘A business woman wearing a white blouse with
a ribbon detail, light beige pants, nude-tone heels, and neatly tied blonde hair’, (2nd col) ‘A man,
wearing a white dress shirt, a black vest, black formal trousers, a black tie, a black belt, and dark
formal shoes, with short neatly styled hair’, (3rd col) ‘A man, wearing a gray short-sleeve T-shirt,
blue jeans, white sneakers, and short, dark brown hair styled neatly’, and (4th row) ‘A woman with
medium-dark skin tone, wearing a black blazer, a black top, gray pants with a gray tied belt, black
heels, and having neatly styled dark hair’. The results demonstrate the performance of our method
across diverse prompts and viewpoints.

Clothed Human Dataset we provide qualitative comparison results for clothed human meshes
from RenderPeople (ren, 2023). The text prompts for RenderPeople’s clothed human meshes were
created based on the ground truth images provided by RenderPeople, which were designed by pro-
fessional designers. Texture synthesis for human meshes demonstrates the superiority of our ap-
proach in terms of consistency and quality. For instance, when examining the texture results for the
male mesh corresponding to the prompt in the second column, ‘A man, wearing a white dress shirt,
a black vest, black formal trousers, a black tie, a black belt, and dark formal shoes, with short neatly
styled hair,’ other methods exhibit a phenomenon of textual gradual shift. This results in the clothing
colors shifting inconsistently between white, black, and gray, making it challenging for the models
to faithfully reproduce the clothing described in the prompt. In contrast, TexTailor effectively elim-
inates this issue, accurately representing the prompt with textures like “a black vest” and “a white
dress shirt,” ensuring precise alignment with the described attire. In addition to clothing, the head
region also presents challenges. For instance, in the top view, textures applied to other regions (such
as the face, upper body, or lower body) are often not visible, leading to a decline in texture quality
for the top view. However, TexTailor addresses this issue by utilizing the adaptive view refinement
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technique, which transfers texture information from regions like the face and clothing. This ensures
seamless texture generation without visible texture seams, even in challenging viewpoints like the
top or bottom view.

A.2 ADDITIONAL QUALITATIVE RESULTS

Figure 10: Additional qualitative comparisons on non-diffuse objects from the Objaverse
dataset. We present the texture synthesis results categorized into three types: (a) Glossy objects, (b)
Metallic objects, and (c) Translucent objects.

We further demonstrate the texture quality of not only diffuse objects but also non-diffuse objects
from the Objaverse dataset, categorized into three types: (a) glossy objects, (b) metallic objects, and
(c) translucent objects. The results generally show satisfactory texture quality across all categories.
However, for regions where light reflection or shadows occur, these features are pre-generated based
on the synthesis process rather than dynamically determined by the lighting direction in the user’s
graphics software. This could pose challenges for practical applications. Nevertheless, this limita-
tion is not unique to our approach and is observed in other methods as well. Developing techniques
to prevent such biases in light effects during the texture synthesis stage will be a focus of our future
work.

A.3 ADDITIONAL ABLATION STUDIES

Effects of resampling. When observing the texture of “a basket,” the transition from v0 to v1

reveals a change in the texture of the inside of the basket in the left part. This occurs in the baseline
method because the previously synthesized texture visible from the current viewpoint is only merged
once per timestep during the diffusion process. In contrast, our methodology improves this by
utilizing the resampling strategy proposed in (Lugmayr et al., 2022), which allows the texture to be
merged multiple times per timestep, resulting in a more consistent outcome.

Effects of training with resampled texture. When observing the object “a briefcase,” applying
the resampling method generates consistent textures for viewpoints that are close to the initial view-
point v0, such as the nearby viewpoint v5. However, as the viewpoint moves further away from v0,
variations in texture properties begin to appear, and at the opposite viewpoint v9, the texture prop-
erties have completely changed. In contrast, when the depth-aware T2I model is fine-tuned using
five resampled texture images from viewpoints adjacent to v0 with performance preservation loss,
the model fits to the distribution of the resampled textures, leading to noticeable improvements in
consistency.
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Figure 11: Ablation studies. The illustration highlights the effectiveness of the key components of
TexTailor. As each component is applied, the textures of various objects become increasingly con-
sistent across multiple viewpoints, demonstrating improved texture quality regardless of the object
type.

Effects of adaptive view refinement. When observing the object “a cappuccino”, transitioning
from v11 to v12 on the left part reveals an issue where the bottom of the cup is generated incorrectly.
Since there is no texture information from the previous viewpoint, the model generates the top of
the cappuccino instead of the bottom. However, by using the adaptive view refinement technique on
the right part, an intermediate viewpoint (v13) is automatically added. This not only provides the
texture information from v11 to guide a more natural texture synthesis but also eliminates the need
for the tedious process of manually configuring optimal camera positions.

A.4 LIMITATIONS

TexTailor faces several limitations. First, the overall texture quality heavily relies on the quality of
the five images used to fine-tune the depth-aware T2I diffusion model. Even with the resampling
method, certain object angles, even from viewpoints close to the initial one, may still produce tex-
tures with inconsistent properties or images misaligned with the depth condition. This reliance on
suboptimal training images can sometimes degrade texture quality rather than enhance it. Addition-
ally, patterns frequently observed in viewpoints near the initial one often repeat across the object,
leading to unrealistic and repetitive textures. For instance, in the case of an alarm clock, the clock
hands learned from the initial viewpoint might appear as texture patterns on the sides or even the
back. Furthermore, TexTailor’s fine-tuning process is time-intensive, requiring approximately an
hour and a half per 3D mesh on an NVIDIA TITAN RTX. Additionally, LPIPS does not adequately
capture consistency across multiple viewpoints due to spatial misalignments in overlapping sections
between adjacent views. To address these limitations, integrating lightweight fine-tuning approaches
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such as LoRA (Hu et al., 2021) and developing improved metrics for measuring consistency between
arbitrary pairs of views offer promising directions for future work.

A.5 HIGHLIGHTING DIFFERENCES: A ZOOMED-IN VIEW

Figure 12: Zoomed-in qualitative comparisons between TexTailor and the baseline Text2Tex
The red boxes highlight regions where visual differences in texture consistency and quality are more
apparent, helping to illustrate the effectiveness of TexTailor in preserving texture properties and
minimizing artifacts.

We aim to enhance the clarity of the qualitative comparisons between TexTailor and the baseline
Text2Tex by providing zoomed-in patches for four challenging cases (“a sushi,” “a hammer,” “a
minivan,” and “a desk chair”) where visual differences are harder to discern in the qualitatve com-
parison sections(Sec. 5 and Sec. 8).
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