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ABSTRACT

In policy gradient reinforcement learning, access to a differentiable model enables
1st-order gradient estimation that accelerates learning compared to relying solely
on derivative-free 0th-order estimators. However, discontinuous dynamics cause
bias and undermine the effectiveness of 1st-order estimators. Prior work addressed
this bias by constructing a confidence interval around the REINFORCE 0th-order
gradient estimator and using these bounds to detect discontinuities. However, the
REINFORCE estimator is notoriously noisy, and we find that this method requires
task-specific hyperparameter tuning and has low sample efficiency. This paper asks
whether such bias is the primary obstacle and what minimal fixes suffice. First, we
re-examine standard discontinuous settings from prior work and introduce DDCG,
a lightweight test that switches estimators in nonsmooth regions; with a single
hyperparameter, DDCG achieves robust performance and remains reliable with
small samples. Second, on differentiable robotics control tasks, we present IVW-H,
a per-step inverse-variance implementation that stabilizes variance without explicit
discontinuity detection and yields strong results. Together, these findings indicate
that while estimator switching improves robustness in controlled studies, careful
variance control often dominates in practical deployments.

1 INTRODUCTION

Policy gradient methods seek to optimize a parameterized policy θ by estimating the gradient of the
expected return, ĝ ≈ d

dθEp(τ ) [R(τ )] . In the most general setting—where the environment is treated
as a black box—0th-order estimators such as REINFORCE (Williams, 1992) are often used. While
broadly applicable, these estimators suffer from high variance and poor sample efficiency. When a
differentiable simulator is available, 1st-order gradient estimators (e.g., via the reparameterization trick
(Kingma et al., 2015)) can substantially reduce variance and accelerate convergence. However, real-
world systems often involve contacts, friction, or other non-smooth effects, producing discontinuities
that bias 1st-order estimates (Lee et al., 2018; Parmas and Sugiyama, 2021).

Each approach has its own advantages and disadvantages, and one way to leverage their strengths is
by mixing the estimators (Parmas et al., 2018; 2023). Specifically, these methods compute

ĝ = αĝ1 + (1− α)ĝ0,

where ĝ0 and ĝ1 are 0th- and 1st-order estimates respectively, and α ∈ [0, 1] is a weighting parameter.
One elegant choice is inverse variance weighting (IVW), where α = V[ĝ0]

V[ĝ0]+V[ĝ1]
. When the variances

are estimated accurately, IVW can improve performance by reducing variance. Despite its appeal,
IVW may fail in domains with discontinuities or contact dynamics. As the work of Suh et al. (2022)
shows, sharp changes in the reward landscape create situations where the 1st-order gradient exhibits
large errors but spuriously shows low empirical variance in finite samples. This phenomenon, called
“empirical bias,” leads IVW to overweight corrupt 1st-order estimates, harming performance. To
address this issue, they propose detecting discontinuities by constructing confidence intervals around
the REINFORCE estimator. However, since REINFORCE can be extremely noisy, these intervals
are broad, reducing sample efficiency and necessitating extensive task-specific parameter tuning.
Moreover, while prior reports discuss AoBG behavior, they do not establish robust success on standard
robotic control benchmarks (Gao et al., 2024).
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In this paper, we pursue two concrete goals focused on reassessing composite gradient methods and
examining whether the variance or empirical bias is the main obstacle to practical performance.

First, we reassess existing work and expose fundamental shortcomings. Specifically, we re-establish
the existence of the finite-sample bias phenomenon—where 1st-order gradients can appear low-
variance yet be inaccurate—and introduce Discontinuity Detection Composite Gradient (DDCG),
which uses a lightweight statistical test to decide when to trust 1st-order information. We reproduce
and re-evaluate all experiments from the AoBG paper under the same settings (Suh et al., 2022) and
show that DDCG achieves results comparable to or better than AoBG, with substantially improved
robustness to hyperparameters and reliable behavior in small-sample regimes.

Second, we ask whether this bias is actually the primary obstacle in practical robotics control. Prior
studies (Son et al., 2023; Gao et al., 2024) reported limited performance or incomplete realizations
of inverse-variance mixing; we therefore provide a clear, per–time-step implementation, IVW-H, to
isolate the role of variance control in practice. On standard robotics tasks, IVW-H attains strong
performance without explicit discontinuity detection, suggesting that stabilizing variance at the step
level can be sufficient, while the role of empirical bias was minimal in these settings.

2 RELATED WORK

Differentiable Simulators. Recent advances in differentiable simulators enable gradient-based
policy optimization with either automatic differentiation (Griewank and Walther, 2003; Heiden et al.,
2021; Freeman et al., 2021) or analytic derivatives (Carpentier and Mansard, 2018; Geilinger et al.,
2020; Werling et al., 2021). These methods reduce variance in gradient estimates and often accelerate
learning. However, contact-rich or discontinuous dynamics remain challenging because the inherent
non-smoothness introduces bias or instability in 1st-order gradient estimates, undermining their
reliability for optimization tasks.

Composite Gradient Estimators. Combining 0th-order and 1st-order gradients can balance ro-
bustness and efficiency. Parmas et al. (2018) propose Total Propagation (TP), which uses inverse
variance weighting (IVW) to mix gradients. However, discontinuities can introduce biased 1st-order
gradients (Lee et al., 2018; Parmas and Sugiyama, 2021), and IVW can fail when these biases
are underestimated. Suh et al. (2022) address this “empirical bias” phenomenon by a scheme that
constructs confidence intervals around 0th-order gradient estimates to detect bias.

Policy Optimization with Differentiable Simulation. Analytic Policy Gradient (APG) (Freeman
et al., 2021) computes policy gradients directly from simulator-provided derivatives, accelerating
learning but not explicitly addressing discontinuities. Short-Horizon Actor-Critic (SHAC) (Xu
et al., 2022) reduces variance by truncating rollouts and using a terminal value to smooth the
objective, enabling effective use of analytic gradients. Adaptive-Gradient Policy Optimization
(AGPO) (Gao et al., 2024) mitigates non-smoothness by adapting weights based on batch-gradient
variance, while Gradient-Informed PPO (GIPPO) (Son et al., 2023) introduces an α-policy that
downweights unreliable analytic gradients within a PPO framework.

3 BACKGROUND

Notation. Throughout this paper, we use bold font (e.g., x) to represent tensors unless otherwise
stated. Here, Ê denotes the sample mean of the corresponding quantity. We define the empirical
variance of a set of N samples as

V̂[·] = 1

N − 1

N∑
i=1

(
(·)i − Ê[·]

)2

.

Task setting. We consider finite horizon control tasks with state variables s, and actions a that
are computed from a policy πζ . States transition according to the dynamics p(s′|s,a); following
actions according to the policy πζ leads to trajectories τζ = (s0,a0, s1, . . . , sH). We consider the
objective E [R(τζ)], where R(τζ) is a cumulative sum of scalar rewards computed by the reward
function r(s,a). We aim to maximize this objective using gradient ascent.
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Bias-Variance Error Decomposition. A central theme in estimating gradients or any statistical
inference is the interplay between bias and variance. For an estimator Ẑ of Z, the mean squared error
(MSE) can be expressed as

E
[
(Ẑ − Z)2

]
︸ ︷︷ ︸

Error

=
(
E[Ẑ]− Z

)2

︸ ︷︷ ︸
Bias

+E
[
(Ẑ − E[Ẑ])2

]
︸ ︷︷ ︸

Variance

. (1)

An estimator is unbiased if E[Ẑ] = Z. In gradient-based methods, a low-bias estimator may still
exhibit high variance, hindering learning efficiency. Conversely, reducing variance may introduce
systematic bias. Balancing bias and variance is therefore a key challenge in designing gradient
estimators, motivating strategies to control variance without incurring significant bias.

Elementary Gradient Estimators. We perform randomized smoothing and sample policy pa-
rameters ζ ∼ p(ζ;θ). Let θ denote the parameters to be optimized, and let τζ represent a random
trajectory or episode whose distribution depends on θ. In particular, in the current work p(ζ;θ) will
always be Gaussian, with θ as the mean of this Gaussian. That is, we can write

ζ = θ + σ ϵ, ϵ ∼ N (0, I). (2)

A gradient estimator ĝ is unbiased if

E[ĝ] =
d
dθ

Ep(τζ ;θ) [R(τζ)] . (3)

0th-order estimator. A widely used unbiased method is the score function or likelihood ratio
approach (Glynn, 1990), often referred to as REINFORCE (Williams, 1992). It can be written as

ĝ0 =
d
dθ

log p(τ )(R− b), (4)

where τi represents a sample from p(τ ;θ), and b is a baseline that can reduce variance (Berahas
et al., 2022). Despite being unbiased, this estimator often suffers from high variance, which can
significantly increase the number of samples required for effective learning.

1st-order estimator. An alternative approach, known as the reparameterization trick (Kingma
et al., 2015) or pathwise derivative (Schulman et al., 2015), avoids directly differentiating through a
probability distribution by defining a deterministic transformation

τ = Tθ(ϵ), ϵ ∼ p(ϵ). (5)

Because τ still has distribution p(τ ;θ) by construction, one obtains the 1st-order estimator:

ĝ1 =
dR

dτ

dT (ϵ)
dθ

. (6)

This estimator remains unbiased if R is continuous, and in practice, it often exhibits lower variance
than ĝ0. Consequently, it tends to be more sample-efficient for continuous parameter and action
spaces. For instance, if we reparameterize ζ as in Eq. (2), then ∂ζ

∂θ = I and ∂ζ
∂σ = ϵ, which simplifies

ĝ1 to dR
dζ with respect to θ. However, when R is discontinuous, the 1st-order estimator can be biased.

Composite Gradient Estimators. Although the 1st-order estimator ĝ1 typically has lower variance
than the 0th-order ĝ0, it may be biased in the presence of discontinuities. A practical approach by
Parmas et al. (2018) mixes these estimators via a linear combination:

ĝα = αĝ1 + (1− α)ĝ0, α ∈ [0, 1], (7)

where α close to 1 emphasizes the 1st-order estimator while α near 0 relies more on the 0th-order
method. Additionally, they propose leveraging Inverse Variance Weighting (IVW) to optimally select
α in their Total Propagation (TP) framework. Under the simplifying assumption that ĝ0 and ĝ1 are
uncorrelated, the theoretically optimal weight αopt that minimizes the variance of ĝα is

αopt =
V [ĝ0]

V [ĝ0] + V [ĝ1]
. (8)
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Figure 1: Sigmoid Function

If the covariance between ĝ0 and ĝ1 is non-negligible, the above expression must be adjusted
accordingly, as discussed in (Parmas et al., 2023). Nevertheless, in the uncorrelated case,

1

V [ĝα]
=

1

V [ĝ0]
+

1

V [ĝ1]
, (9)

indicating that the combined estimator can achieve a strictly lower variance than either ĝ0 or ĝ1 alone.

In practice, the true variances V [ĝ0] and V [ĝ1] are generally unknown and must be approximated
from sample data. Explicitly, one computes V̂[ĝ0] and V̂[ĝ1] to obtain α̂opt. This creates difficulties
whenever the empirical variance estimates are poor, notably in discontinuous environments.

Limitations of Empirical Variance Estimation While IVW often performs well, Suh et al. (2022)
points out that certain practical factors —such as contact, friction, or discontinuities in physics
simulations— can cause an “empirical bias” phenomenon, resulting in gradients that exhibit low
empirical variance yet remain highly inaccurate. An illustrative example involves the Sigmoid
function, Sigmoid(x) = 1

1+exp(− x
T )

. As shown in Figure 1a, when the temperature T is large,

the function is fairly smooth. However, at very small T , it transitions sharply and resembles a
discontinuity. Although Sigmoid(x) is mathematically continuous for any finite T , its narrow
transition region makes finite-sample gradient estimates prone to large, sporadic errors.

From the perspective of the bias-variance decomposition Eq. (1), an unbiased estimator’s error
coincides exactly with its variance (since Bias = 0). In principle, this means that the true variance of
the Sigmoid gradient should match the observed error. However, as Figure 1b shows, the empirical
variance computed from a small batch often fails to reflect the true error. The reason is that very large
gradients occur with small probability, causing the true variance to be very large (sometimes viewed
as “infinite variance” in the limit of vanishing probability). A mathematical example illustrating how
this “infinite variance” phenomenon arises is given in Appendix B. In practice, a finite sample may
overlook those rare but significant gradients, leading to a systematic underestimation of the variance.
This phenomenon underscores a fundamental challenge: when an unbiased gradient estimator has
heavy-tailed or rare large-magnitude events, the empirical variance can severely underestimate the
true variance.

Interpolation Protocol (AoBG) The AoBG method proposed by Suh et al. (2022) builds upon the
IVW framework by introducing additional safeguards against discontinuities. AoBG starts with αopt
but modifies it based on a measure of potential bias B = ∥ĝ1 − ĝ0∥2:

αγ :=

{
αopt if αoptB ≤ γ − ε,
γ−ε
B otherwise.

(10)

This formulation introduces a precision threshold γ to control acceptable bias and a confidence term
ε to account for uncertainty in the 0th-order estimator. When potential bias is too large, the method
reduces α to maintain precision, effectively reverting to the reliable 0th-order estimator in challenging
areas. For small sample sizes, a conservative approach uses only the 0th-order gradient (α = 0),
though this raises several concerns.

First, with small sample sizes, the 1st-order estimator is typically more effective due to its lower
variance. Thus, relying on the 0th-order gradient seems counterintuitive, potentially leading to subop-
timal outcomes. Second, selecting the parameter γ for each task requires task-specific tuning, limiting
the method’s generalizability and usability. Eliminating the need for such parameter adjustments
would make the method more robust and practical across diverse scenarios.

4
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4 PROPOSAL

4.1 DISCONTINUITY DETECTION COMPOSITE GRADIENT (DDCG)

We propose Discontinuity Detection Composite Gradient (DDCG), which keeps the usual inverse-
variance mix of 0th- and 1st-order estimators but gates the use of the 1st-order term by a simple
statistical test. The gate is derived from two standard conditions under which IVW is trustworthy:

• (A1) Reliable variance: the empirical variance of the 1st-order gradient is close to its true
variance (so IVW weights are meaningful).

• (A2) Local smoothness: f is locally well-behaved (e.g., near-quadratic), making the 1st-order
gradient accurate and low-variance (Xu et al., 2019; Domke, 2019).

If (A1) holds, IVW already downweights noisy 1st-order terms; but (A2) is also needed to avoid
using biased 1st-order estimates near discontinuities. We therefore run a statistical test that passes
with probability at least 1− δ when (A1) and (A2) hold; if it passes we apply IVW, otherwise we fall
back to the 0th-order estimator. Importantly, these assumptions are not required for the algorithm to
run: they are only checked to decide whether to trust IVW.

Step 1: Variance Reliability The first (A1) concerns the accuracy of the empirical variance estimate
of 1st-order gradients. If this assumption holds, we can rely on the sample-based variance used by
IVW to be close to the true variance.

Formally, suppose we have N samples {xi}Ni=1 from a function f , along with their function values
{f(xi)}Ni=1 and gradients {∇f(xi)}Ni=1. Denote:

v̂ =
1

N − 1

N∑
i=1

∥∥∇f(xi) − ∇f
∥∥2
2
, (11)

where∇f = 1
N

∑N
i=1∇f(xi) is the empirical mean of the gradients. We assume that v̂ differs from

the true variance of ∇f(x) by at most εv:∣∣∣ v̂ − Ex

[
∥∇f(x)− Ey[∇f(y)]∥22

]∣∣∣ ≤ εv. (12)

Such a bound can be derived via standard statistical results (e.g., chi-squared-based confidence
intervals). By enforcing a maximal floor on v̂, we reduce the risk of underestimating gradient
variance, and thus overweighting a potentially high-variance 1st-order estimator.

Step 2: Discontinuity Detection To derive the statistical test, we assume that f is sufficiently
smooth so that 1st-order gradients remain accurate. In practice, smoothness ensures that the variance
of 1st-order estimates does not explode.

To merge (A1) and (A2) into a single test, we assume a Lipschitz-like condition on gradient changes:

∥∇f(x)−∇f(y)∥ ≈ L∥x− y∥, (13)

where L is a local curvature constant. We then compare the variance of a quadratic approximation
of f with the empirical gradient variance. Under smoothness and bounded residuals, a condition
emerges (detailed in Appendix C):

v̂ + εv
?
≥ 2(1− c)

V [f(x)]

σ2
− 2∥∇f∥2, (14)

Interpretation of c. In Eq. (14), the parameter c relaxes the requirement that f be perfectly quadratic.
If f were exactly quadratic, then taking c = 0 would make the inequality tight in that ideal case. As c
increases above 0, we allow more deviation of f from perfect quadratic behavior, permitting greater
nonlinearity or mild discontinuities. Thus, a smaller c imposes stricter smoothness requirements on
f , while a larger c offers more flexibility for f to deviate from a purely quadratic shape.

Step 3: Adaptive Weighting Given the test in Eq. (14), we define the composite gradient estimator
by adaptively selecting weight α between 0th- and 1st-order estimators:

α̂ :=

{
α̂opt if Eq. (14) holds,
0 otherwise.

(15)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, α̂opt is the inverse-variance-optimal weight computed from the empirical variances of the
0th-order and 1st-order gradients. In other words: If the test passes, we assume that (A1) and (A2)
both hold and can therefore exploit the lower variance of the 1st-order estimator through IVW. If the
test fails, we set α = 0, reverting to a purely 0th-order estimator to avoid biased 1st-order gradients.

Summary. DDCG utilizes the 1st-order gradient’s lower variance wherever it is safe to do so. Our
two assumptions—(A1) accurate empirical variance estimation and (A2) local smoothness—ensure
that IVW is likely reliable. By checking Eq. (14), we detect plausible violations of either assumption.
Failing this test triggers a fallback to safe 0th-order methods. In practice, this mechanism obviates
the need for extensive hyperparameter tuning; aside from δ (which controls confidence) and c (which
bounds how non-quadratic the function may be), the method remains largely automatic.

Comparison with AoBG. Our DDCG method and AoBG share the idea of constructing a statistical
estimator for biases; however, a crucial difference is that AoBG uses the d log p(τ ;θ)

dθ terms in the
notoriously noisy REINFORCE estimator to construct a confidence interval. In contrast, our estimator
in Eq. (14) uses only the function value and gradient variances. Consequently, in motivational toy
tasks, the estimation of our bounds is d times more efficient than that of AoBG (Appendix D), where
d denotes the number of dimensions.

4.2 IVW-H

We adopt a stepwise (per–step, per–action) inverse-variance weighting scheme. Let t ∈ {0, . . . , H −
1} index time steps, n index actors (parallel rollouts), and let bold symbols denote action-dimensional
vectors in RA. For each (t, n), let ĝ0,t,n and ĝ1,t,n be the 0th- and 1st-order gradient vectors. We
estimate empirical variances across actors at fixed t elementwise,

v̂0,t,a = V̂n[ĝ0,t,n,a] , v̂1,t,a = V̂n[ĝ1,t,n,a] . (16)

IVW-H assigns a per-step, per-dimension IVW weight

α̂t,a =
v̂0,t,a

v̂0,t,a + v̂1,t,a
∈ [0, 1], (17)

and forms the combined gradient elementwise as

ĝα,t,n,a = α̂t,a ĝ1,t,n,a +
(
1− α̂t,a

)
ĝ0,t,n,a. (18)

The combination is applied elementwise over (t, n, a) and then backpropagated through the policy
network parameters. Following prior practice in total propagation-style estimators (Parmas, 2020),
variance across actors at fixed (t, a) yields an efficient and stable estimate that aligns with per-step
aggregation in trajectory optimization. The pseudocode of the algorithm is provided in Appendix E.

5 EXPERIMENTS

5.1 OVERVIEW

We pursue two goals: (i) re-examine AoBG in explicit empirical-bias settings and evaluate DDCG
in the same regimes; (ii) test whether variance—not bias—is the practical bottleneck on standard
continuous-control benchmarks via IVW-H.

Part I: Empirical-bias regimes (re-evaluating AoBG and validating DDCG). We revisit settings
where empirical bias is known to arise and analyze AoBG’s behavior (including the trajectory of the
weighting parameter α) alongside IVW and baselines. We then evaluate whether DDCG improves
outcomes under the same conditions. Following the original setup, we compare five approaches:
0th-order grad, 1st-order grad, AoBG (parameter γ), IVW, and DDCG (parameter c with statistical
test confidence δ = 0.05). Unless otherwise noted, DDCG uses a unified hyperparameter c = 0.3;
sensitivity is reported in Appendix H. The function-optimization (toy) experiments supporting the
landscape analysis and α-selection diagnostics are in Appendix F.

Part II: Practical continuous control (IVW-H). To probe whether empirical bias is the primary
issue in practical settings, we conduct experiments in differentiable physics with MuJoCo tasks
(CartPole, Hopper, Ant), following prior usage in GIPPO and SHAC. We compare 1st-order grad,
0th-order grad, IVW, IVW-H (our per-step, per-action IVW), and GIPPO.
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(a) Ball with Wall Landscape (1000 samples)
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(b) Ball with Wall Landscape (10 samples)
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Figure 2: Ball with Wall. Columns 1, 2: top row shows the square root of estimation errors (scaled to
match the previous study), middle row shows the cost function, and bottom row shows α selection.
Column 3: optimization cost and α selection.

5.2 DIFFERENTIABLE SIMULATION TASKS

First, we examine tasks that model physical systems with contact and friction. The setup was repli-
cated using Suh (2021)’s code, implemented in Suh et al. (2022), enabling direct comparison. Tasks
fall into three categories: Landscape Analysis, Trajectory Optimization, and Policy Optimization.
AoBG relies on tuned parameters; DDCG fixes c = 0.3. Since their paper lacks specifics, we set
AoBG to the default parameters in the code. Refer to Appendix K for detailed parameter settings.

5.2.1 LANDSCAPE ANALYSIS

Experimental Setup. We study discontinuous landscapes to quantify estimation error and α selection,
and we perform landscape optimization while visualizing cost convergence and α for AoBG, IVW,
and DDCG (the α visualization and IVW comparison were not included in Suh et al. (2022)). We use
two tasks that exhibit collision-induced discontinuities: Ball with Wall (maximize travel distance with
impacts) and Momentum Transfer (maximize angular momentum transfer). For brevity we report
Ball with Wall in the main text and defer Momentum Transfer to Appendix G. Both tasks follow the
setup of Suh et al. (2022) for fair comparison with AoBG.

Findings. For larger sample sizes (N = 1000) in Figure 2(a), IVW remains biased near collisions
due to an overconfident 1st-order component. Both AoBG (γ = 0.005) and DDCG detect these
discontinuities and reduce the weighting parameter α. For smaller sample sizes (N = 10), Figure 2(b)
shows that AoBG’s fixed γ becomes overly conservative, with α dropping to zero, underutilizing
available gradient information. In contrast, DDCG continues to detect discontinuities robustly using
the same parameters. The cost convergence in Figure 2(c) confirms that both AoBG and DDCG avoid
collisions by shifting toward the 0th-order estimator. Similar trends are observed in the Momentum
Transfer task. A detailed analysis—including the variance and bias of the estimators, as well as
complete results for Momentum Transfer—is provided in Appendix G.

5.2.2 TRAJECTORY OPTIMIZATION

In trajectory optimization, a sequence of control inputs is optimized for a known environment and
initial conditions. We evaluated two tasks, Pushing and Friction, where contact and friction can make
1st-order gradients inaccurate.

Pushing. Two rigid bodies collide with varying spring constants k: a smaller k results in “soft”
collisions, while a larger k leads to “stiff” ones. We apply force to the first body to minimize
the second body’s distance to the destination. AoBG was tuned per stiffness. For soft collisions,
γ = 1000 (the original parameter was extremely large and mainly loosened constraints so that AoBG
always used IVW, so we used a smaller value). For stiff collisions, we set γ = 108. For DDCG,
c = 0.3. Figure 3(a) and (b) show that under soft collisions, both AoBG and DDCG favor 1st-order
gradients. In the low-sample setting (Figure 3(b)), AoBG conservatively relies on the 0th-order
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Figure 3: Pushing. Columns 1, 2: soft collisions with different samples; Column 3:
stiff collisions.
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Figure 4: Columns 1, 2: Friction with different samples; Column 3: Tennis.

component, failing to leverage faster 1st-order convergence, while DDCG continues using 1st-order
gradients. Under stiff collisions, shown in Figure 3(c), we initially expected first-order gradients to
be biased. However, we see that both AoBG and DDCG optimized by selecting α values near IVW
indicating that the stiffness caused variance instead.

Friction. Two overlapping objects interact under Coulomb friction, where static and dynamic friction
cause abrupt transitions at near-zero relative velocity. A force is applied to object 1 to move object
2 toward the goal. In the original code, AoBG was not properly tuned, preventing effective use of
1st-order estimator; consequently, we re-tuned AoBG (γ=30000). Furthermore, to enable clearer
sample comparisons, we assumed a larger sample size than in the code (N=100). For DDCG, we set
c = 0.3. Figure 4(a) and (b) show that the 1st-order estimator and IVW stall once friction thresholds
are crossed. AoBG and DDCG detect and mitigate these discontinuities by shifting more weight
to the 0th-order. When reducing the sample size, as in Figure 4(b), AoBG’s performance degrades
unless γ is re-tuned, while DDCG maintains robustness against small-sample noise.

5.2.3 POLICY OPTIMIZATION

Tennis. Policy optimization adjusts the parameters θ of a state–feedback controller πθ. The policy
gradient obeys ∇θJ = ∇uJ Jπ, where Jπ = ∂u/∂θ is the policy Jacobian. In Tennis, the agent
steers a paddle to bounce an incoming ball toward a target. We optimize a linear policy of dimension
d = 21 over horizon H = 200. Ball–paddle impacts create discontinuities, making the gradient
unreliable in rough regions. Within DDCG (Sec. 4.1), each ∇f is instantiated as ∇uJ , and the
empirical variance v̂ in Eq. (12) is computed over samples of∇uJ . We compare AoBG (γ = 1000)
and DDCG (c = 0.3). Figure 4(c) shows that 1st-order and IVW stall, whereas AoBG and DDCG
detect nonsmooth regimes, revert to 0th-order updates, and continue improving. AoBG and DDCG
achieve identical final performance.
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Figure 5: Episodic reward vs. environment steps on three MuJoCo tasks. Curves show the mean
across seeds; shaded bands indicate the empirical standard error.

5.3 CONTINUOUS CONTROL BENCHMARKS

Experimental Setup. We evaluate 0th-order grad, 1st-order grad, IVW, IVW-H, and GIPPO on
MuJoCo tasks (CartPole, Hopper, Ant). Simulator and training hyperparameters follow GIPPO
(Son et al., 2023). To probe whether empirical bias is the dominant issue under harder contacts, we
modify only the normal contact stiffness (contact_ke). Specifically, for Ant we set contact_ke
= 4.0× 105 (10× the GIPPO value), and for Hopper we set contact_ke = 1.0× 106 (50×). For
completeness, we also report results under the original (unmodified) contact parameters in Appendix J,
where both GIPPO and IVW optimize reliably and IVW-H matches or slightly improves upon IVW.

Experimental Results. CartPole (Figure 5(a)): the 0th-order baseline underperforms, while 1st-order,
IVW, IVW-H, and GIPPO reach similar final rewards. Ant (Figure 5(b)): IVW-H attains the best
returns; IVW and GIPPO are comparable and clearly above 1st-order-only and 0th-order-only, which
struggle. Hopper (Figure 5(c)): 0th-order surpasses 1st-order-only; GIPPO fails to optimize; IVW
performs well, and IVW-H further improves upon IVW. Overall, these results indicate that variance
control via stepwise IVW-H is often more critical than explicit bias detection on these benchmarks.

5.4 SUMMARY OF EXPERIMENTAL FINDINGS

Empirical-bias settings. In explicitly discontinuous regimes, IVW and the 1st-order estimator
exhibit clear accuracy degradation near nonsmooth events. By contrast, AoBG and DDCG avoid
failures by down-weighting 1st-order information in such regions. However, inspecting AoBG’s α
trajectories indicates that its behavior is largely governed by heuristic parameter choices, with a wide
operating range across tasks. In particular, AoBG requires task-specific γ values that vary widely
across our setups, with γ ∈ [5× 10−3, 108]. DDCG maintains robustness under a unified parameter
and continues to function reliably even with small sample sizes; in fact, performance was essentially
unchanged for any c ∈ [0.1, 0.9].

Practical continuous control. In MuJoCo experiments with elevated contact, the IVW-H implemen-
tation achieves strong performance and consistently improves over standard IVW. Contrary to the
explicit empirical-bias settings above, these results suggest that variance, rather than empirical bias,
is the dominant issue in these benchmarks; a practical per-step implementation such as IVW-H is
sufficient to solve the problem effectively.

6 CONCLUSION AND DISCUSSION

This work primarily re-examines AoBG’s claims under explicit empirical-bias regimes. Reproducing
the original settings, we confirm that empirical bias indeed creates failure cases for variance-based
mixing, and we show that DDCG—while following the same protocol—achieves more robust
behavior with a unified hyperparameter by statistically detecting nonsmooth regions and switching
estimators accordingly. As a practical complement, we introduce IVW-H, a faithful per-step IVW
implementation. On MuJoCo benchmarks, IVW-H performs strongly without an explicit bias-
detection scheme, indicating that in these tasks variance control, rather than bias handling, is often
the dominant concern. Future work will broaden the task suite and deepen diagnostics to further
delineate when bias-focused mechanisms are necessary beyond such practical implementations.
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A EXTENDED RELATED WORKS

Policy Optimization with Differentiable Simulation. In this appendix, we review additional
research that leverages differentiable simulators for policy optimization and clarify the positioning of
our work within this broader context.

Policy Optimization via Differentiable Simulators (PODS) (Mora et al., 2021) refines policies using
1st- and 2nd-order updates derived from analytic gradients of the value function with respect to the
policy actions. Analytic Policy Gradient (APG) (Freeman et al., 2021) directly computes policy
gradients from simulator-provided analytic derivatives. These approaches do not explicitly consider
discontinuities.

Several methods attempt to smooth the objective itself. Short-Horizon Actor-Critic (SHAC) (Xu
et al., 2022) truncates trajectories to a short horizon and uses a terminal value function to smooth
the objective while exploiting analytic gradients. Soft Analytic Policy Optimization (SAPO) (Xing
et al., 2024) adopts a maximum-entropy RL framework and scales SHAC-style differentiable RL to
deformable-body tasks, achieving superior performance over other methods on manipulation and
locomotion benchmarks.

Other studies mitigate the effects of discontinuities by re-weighting analytic gradients rather than
detecting them directly. Adaptive-Gradient Policy Optimization (AGPO) (Gao et al., 2024) analyzes
batch-gradient variance and switches to a surrogate Q-function, ensuring convergence and robust-
ness under non-smooth MuJoCo-style dynamics. Gradient-Informed Proximal Policy Optimization
(GIPPO) (Son et al., 2023) introduces an adaptively weighted α-policy to attenuate high-variance or
biased analytic gradients, yielding consistent gains over PPO in function optimization, physics, and
traffic control domains. While these methods alleviate discontinuity issues, they do not explicitly
detect discontinuities.

A complementary line of work introduces explicit smoothing to handle non-smooth dynamics.
Adaptive Barrier Smoothing (ABS) (Zhang et al., 2023) alleviates stiffness in complementarity-
based contact models by adding barrier-smoothed objectives with an adaptive central-path parameter,
jointly controlling gradient variance and bias for stable 1st-order policy gradients. By smoothing
contact interactions, analytic-gradient methods such as SHAC have been applied successfully to learn
physically plausible quadrupedal locomotion (Schwarke et al., 2024).

B INFINITE VARIANCE EXAMPLE

In this appendix, we provide a simplified example illustrating how a gradient estimator can exhibit
infinite variance under a small-probability event. Suppose we have a random gradient g(ω) taking
value g1 with probability p and 0 otherwise (with probability 1 − p). Let G be the mean of this
random gradient. Then,

E[g] = p · g1 = G =⇒ g1 =
G

p
. (19)

Next, compute the second moment:

E
[
g2
]
= p · g21 + (1− p) · 02 = p ·

(
G

p

)2

=
G2

p
. (20)

The variance V[g] is given by:

V[g] = E[g2]−
(
E[g]

)2
=

G2

p
− G2 = G2

(
1

p
− 1

)
. (21)

As p → 0, the term 1
p goes to infinity, causing V[g] to blow up without bound. In practice, this

situation occurs when the estimator’s nonzero gradients occur only in a very small region of the
parameter or state space, but those gradients can be extremely large. Although the unbiasedness
condition p g1 = G still holds, the variance is unbounded when p approaches zero. This example
closely parallels the situation where a Sigmoid gradients are near zero for most inputs (large |x|) and
very large for a small range (near x = 0 with small temperature T ).
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C PROOFS

This appendix provides a step-by-step derivation of the key inequality Eq. (14) used in our proposed
discontinuity-detection mechanism. We introduce a linear model for changes in gradient magnitude
and then construct a quadratic model of f(x). These assumptions collectively yield a condition
under which IVW is expected to work well. If the condition fails, we revert to the 0th-order gradient
estimator to avoid potential bias or misleading variance estimates.

FIRST INEQUALITY:

Define a linear model on the change in gradient magnitude between two points x and y:

L ∥x− y∥2 ≈ ∥∇f(x)−∇f(y)∥2, (22)

such that the squared difference is minimized in expectation. We thus have:

E
[ ∂

∂L

(
L∥x− y∥2 − ∥∇f(x)−∇f(y)∥2

)2]
= 0,

⇒ E
[
∥x− y∥2

(
L∥x− y∥2 − ∥∇f(x)−∇f(y)∥2

)]
= 0.

(23)

Define
∆xy = ∥∇f(x)−∇f(y)∥2 − L∥x− y∥2. (24)

Noting that
2V[x] = E

[
∥x− y∥22

]
, (25)

for arbitrary random variables, we can construct another equation involving the gradient differences
and the above definition:

2V
[
∇f(x)

]
= E

[
∥∇f(x)−∇f(y)∥22

]
= E

[
(L∥x− y∥2 +∆xy)

2
]

= L2 E
[
∥x− y∥22

]
+ E

[
∆2

xy

]
+ 2LE

[
∥x− y∥2∆xy

]︸ ︷︷ ︸
=0 from Eq. (23)

.
(26)

Using Eq. (25) again, and noting that E
[
∆2

xy

]
≥ 0, we obtain

2V
[
∇f(x)

]
≥ L2 E

[
∥x− y∥22

]
⇒ L2 ≤ V[∇f(x)]

V[x]
.

(27)

Furthermore, using V[x] = Dσ2, we get

L2 ≤ V[∇f(x)]
Dσ2

, (28)

where σ2 is the variance of x, and D is the dimension.

SECOND INEQUALITY:

Using the same quantity L, we will construct another inequality by making a quadratic approximation
of f(x). Specifically, we define a quadratic function with curvature L, given by

h(x) = E [f(x)] +∇fT
(x− µ) +

1

2
L ∥x− µ∥22 , (29)

where ∇f = E [∇f(x)]. We also define ∆f(x) := f(x)− h(x). Then, we have the equation

V [f(x)] = V [h(x) + ∆f(x)]

= V [h(x)] + V [∆f(x)] + 2cov(∆f(x), h(x))︸ ︷︷ ︸
:=σ2

∆

= V
[
∇fT

x
]
+ V

[
1

2
L ∥x− µ∥22

]
+ cov

(
∇fT

(x− µ),
1

2
L ∥x− µ∥22

)
︸ ︷︷ ︸

=0 Covariance between odd and even.

+σ2
∆.

(30)
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Now we make another assumption σ2
∆ < cV [f(x)], where c ∈ [0, 1]. Then we have the inequality

V [f(x)] ≤ V
[
∇fT

x
]
+ V

[
1

2
L ∥x− µ∥22

]
+ cV [f(x)]

⇒ (1− c)V [f(x)] ≤ V
[
∇fT

x
]
+ V

[
1

2
L ∥x− µ∥22

]
⇒ V

[
1

2
L ∥x− µ∥22

]
≥ (1− c)V [f(x)]− V

[
∇fT

x
]

⇒ 1

4
L2 V

[
∥x− µ∥22

]
︸ ︷︷ ︸

Gaussian distribution Eq. (34)

≥ (1− c)V [f(x)]− V
[
∇fT

x
]

⇒ 1

4
L2(2Dσ4) ≥ (1− c)V [f(x)]− V

[
∇fT

x
]

⇒ L2 ≥
2(1− c)V [f(x)]− 2V

[
∇fT

x
]

Dσ4

⇒ L2 ≥ 2(1− c)V [f(x)]− 2σ2
∥∥∇f∥∥2

Dσ4

(31)

Combining with Eq. (27), we deduce:

σ2 V[∇f(x)] ≥ 2 (1− c)V[f(x)] − 2σ2 ∥∇f∥2. (32)

We then replace V[∇f(x)] with its empirical estimator v̂ and incorporate the allowed estimation
error εv:

v̂ + εv
?
≥ 2 (1− c)V[f(x)]

σ2
− 2 ∥∇f∥2, (33)

which is the same as Eq. (14) in the main text.

Note on ∥x− µ∥2 and Gaussian assumption. Recall that

V
[
∥x− µ∥22

]
= E

[
∥x− µ∥42

]
−

(
E
[
∥x− µ∥22

])2
. (34)

For a Gaussian distribution, one can derive explicitly that

E
[
∥x− µ∥42

]
= 3σ4, and hence V

[
∥x− µ∥22

]
= 3σ4 − σ4 = 2σ4. Note that in Eq. (31), we used

this particular result for Gaussian distributions. If a different sampling distribution is used, we would
need to re-derive these statistical quantities or estimate them empirically from samples.
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D VARIANCE OF THE AOBG VS. DDCG TEST STATISTICS

Motivation. In the discontinuity detection test,

• DDCG uses the scaled empirical variance;
• AoBG forms a confidence interval for the mean gradient via the score-function statistic.

The reliability of either test is controlled by the sampling variance of its statistic. We therefore
compare their coefficients of variation

CoV(X) =
√
V [X]

/
E [X] .

Our goal is to show

CoVAoBG = Θ(d)CoVDDCG,

meaning that the AoBG statistic is O(d) times noisier.

Toy set-up. Sample a d-dimensional vector x from the isotropic Gaussian N (0, σ2Id) and eval-
uate the linear reward f(x) =

∑d
j=1 xj . AoBG measures bias via the score-function term

∇µ log p(x) f(x), while DDCG measures discontinuity via the (scaled) variance of f .

Score function term. Because log p(x) = −∥x− µ∥2/(2σ2) + const for a Gaussian,

∂

∂µ
log p(x) =

x− µ

σ2

µ=0−−−→ x

σ2
. (35)

Hence AoBG’s per-sample statistic is

g(x) =
f(x)x

σ2
=

(∑
j xj

)
x

σ2
, E [g] = 1. (36)

Step-by-step derivation of V [g]. Let S =
∑

j xj . Then

∥g(x)∥2 =
S2

∑
i x

2
i

σ4
=⇒ E

[
∥g∥2

]
=

E
[
S2

∑
i x

2
i

]
σ4

. (37)

Expanding yields

E

[
S2

∑
i

x2
i

]
=

∑
i

E
[
x4
i

]
+
∑
i̸=k

E
[
x2
ix

2
k

]
(cross terms with odd powers vanish). (38)

For a univariate standard normal z, E
[
z4
]
= 3σ4 and E

[
z21z

2
2

]
= σ4 when z1, z2 are independent.

Hence

E
[
∥g∥2

]
=

d · 3σ4 + d(d− 1)σ4

σ4
= d(d+ 2). (39)

Therefore
V [g] = E

[
∥g∥2

]
− ∥E [g] ∥2 = d(d+ 2)− d2 = d(d+ 1) = Θ(d2). (40)

DDCG statistic. Define Z = V̂[f(x)]
σ2 = f(x)2/σ2. Because f(x) ∼ N

(
0, dσ2

)
,

E [Z] = d, V [Z] = 2d2. (41)

For a batch of size n the statistic used by DDCG is the sample mean

v̂ = 1
n

n∑
k=1

Zk. (42)

Its sampling variance is therefore

V [v̂] =
V [Z]

n
=

2d2

n
. (43)
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Relative precision (coefficient of variation). For any statistic X we define

CoV(X) =
√
V [X]

/
E [X] . (44)

Hence

CoVDDCG =

√
2d2/n

d
=

√
2

nd
, CoVAoBG =

√
d+ 1 /

√
n

1
≈

√
d

n
, (45)

and their ratio scales as
CoVAoBG

CoVDDCG
=

√
d/n√

2/(nd)
=

d√
2
= Θ(d). (46)

Thus AoBG’s statistic is O(d) times noisier than DDCG’s, demonstrating DDCG’s advantage in
high-dimensional settings.

Monte-Carlo confirmation. CoV quantifies the relative estimation error: it is the standard deviation
of the statistic divided by its mean. We ran m = 10000 independent batches of size n = 1000 with
σ = 1; Table 1 reports the empirical CoVs. The ratio CoVAoBG/CoVDDCG decays approximately as
d, confirming the theoretical gap.

Table 1: Precision of the two test statistics (n=1000, m=10000, σ=1).

d CoVDDCG CoVAoBG ratio ratio×
√
2

1 4.49e-2 4.47e-2 1.00 1.41
16 1.11e-2 1.30e-1 11.7 16.6
64 5.56e-3 2.55e-1 45.5 64.4

128 3.90e-3 3.59e-1 92.2 130
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E PSEUDOCODE FOR IVW-H

We implement a practical composite update that combines 0th- and 1st-order policy gradients at the
step and action-dimension level. The procedure is summarized in Alg. 1.

Algorithm 1 IVW-H Policy Update (stepwise IVW)

Require: Horizon H , actors N , action dim. A; policy πθ (Gaussian: µ,σ); target critic V̂ ; ad-
vantages At via GAE; mask grad_start ∈ {0, 1}H×N for first-terms; optional pairwise
noise/initial-state sharing.

1: Define st,n := grad_start[t, n] and M :=
∑H−1

t=0

∑N
n=1 st,n ▷ number of trajectories (episode

starts) in the batch
2: Rollout. For t = 0, . . . , H−1: compute (µt,σt) = πθ(st), sample ϵt ∼N (0, I), act at =

tanh(µt +σt⊙ ϵt), step envs, cache {st,at,µt,σt}, and mark grad_start at episode starts.
3: Advantages. Using {rt, V̂ }, compute GAE At; define the first-term sum over starts.
4: Losses exposing g1 and g0.

• RP/1st-order loss: Lrp ← −
1

M

∑
t,n: st,n=1

At,n. (normalize by number of trajectories M )

• LR/0th-order loss: Llr ← meant,n
(
Ãt,n ⊙ neglogpt,n

)
with optional normalization of Ã.

(batch mean)
5: Parameter-level gradients (per step and per dimension).

Backprop Lrp ⇒ ĝ 1
t,n,a,ϕ ≡ ∂Lrp/∂ϕt,n,a, Backprop Llr ⇒ ĝ 0

t,n,a,ϕ ≡ ∂Llr/∂ϕt,n,a,

where ϕ ∈ {µ, σ} and (t, n, a) index time, actor, and action dim.
6: Stepwise variance across actors. v̂ 0

t,a,ϕ = V̂n

[
ĝ 0
t,n,a,ϕ

]
, v̂ 1

t,a,ϕ = V̂n

[
ĝ 1
t,n,a,ϕ

]
.

7: IVW-H fusion (per step, per dimension).

α̂t,a,ϕ =
v̂ 0
t,a,ϕ

v̂ 0
t,a,ϕ + v̂ 1

t,a,ϕ

, Gt,n,a,ϕ = α̂t,a,ϕ ĝ
1
t,n,a,ϕ +

(
1− α̂t,a,ϕ

)
ĝ 0
t,n,a,ϕ,

with α̂t,a,ϕ←0 wherever the DDCG gate suppresses g1.
8: Push to policy weights. Treat {Gt,n,a,ϕ} as the target gradient on distribution parameters and

perform a vector–Jacobian product through πθ to obtain ∇θL. Apply clipping if needed and
update θ with Adam.

9: Critic. Fit V̂ by MSE to targets At + V̂ (st).
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F FUNCTION OPTIMIZATION TASKS

We measure the gradient estimation error on simple functions, revealing how each method adapts α
under varying degrees of discontinuity and sample sizes.

Experimental Setup. We evaluate two functions (Sigmoid and Quadratic). For the sigmoid function,
we vary the temperature T , where smaller T yields near-discontinuities. For both, we also vary the
sample size N to evaluate how each method performs with limited samples. For AoBG and BoG,
the parameters γ is tuned separately for each function so that the methods perform well when the
sample size is sufficiently large (around 100). Specifically, for the Sigmoid, we set γ = 0.1, and for
the Quadratic, we set γ = 1.4. In contrast, DDCG uses the same settings (c = 0.3) across all toy
tasks. For detailed parameter settings, see Appendix K.

Findings. In Figure 6(a), as the Sigmoid transitions become sharper (i.e., for smaller T ), IVW
starts to over-rely on 1st-order gradients and becomes biased. Both AoBG and DDCG detect these
discontinuities and shift more weight to 0th-order, reducing error. However, as shown in Figure 6(b)
and (c), AoBG tends to assign conservative weights to the 0th-order component when sample sizes
are small, causing the weighting parameter α to drop. This behavior arises from its sensitivity to the
hyperparameter γ; without re-tuning, AoBG may underutilize useful 1st-order gradients, missing
potential performance gains. DDCG, in contrast, maintains robust performance across both smooth
and near-discontinuous regimes, achieving comparable or better error reduction with a fixed parameter
setting.
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Figure 6: Performance analysis for Sigmoid (Columns 1, 2) and Quadratic (Column 3) functions
under varying temperatures and sample sizes. Top row: estimation errors (log scale) between true and
estimated gradients for each method. Bottom row: weighting parameter α for each method, showing
selection between 0th- and 1st-order gradients.
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G ADDITIONAL EXPERIMENTS

In this appendix, we provide more detailed results from the landscape analysis in Section 5.2.1 for
the Ball with Wall task, including variance and bias components of the gradient estimation error. We
also present analogous results for the Momentum Transfer task, which could not be shown in the
main text.

G.1 BALL WITH WALL TASK

As shown in Figure 7, near discontinuities, the 1st-order gradient estimator exhibits a large bias
that dominates the overall error. When the sample size is sufficiently large (N = 1000), variance
does not pose a significant problem. However, with fewer samples, the 0th-order estimator tends to
have higher variance, making it crucial to switch adaptively between 1st- and 0th-order estimates.
DDCG achieves this by emphasizing the 1st-order gradient in smooth regions to reduce variance
while switching to 0th-order near discontinuities to avoid bias, thus maintaining low error across the
entire landscape.
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Figure 7: Ball with Wall task. Columns 1 and 2: The first to third rows show the square root of
estimation errors, variance, and bias, respectively (scaled to match the previous study). The fourth
row shows the cost function, and the bottom row shows α selection. Column 3: Both the optimization
cost and α selection are shown.
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G.2 MOMENTUM TRANSFER TASK

Figure 8 shows similar results for the Momentum Transfer task. In terms of cost minimization, just
as in Ball with Wall, the 1st-order gradient and IVW struggle with discontinuities, whereas the other
methods successfully circumvent them.
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(b) Moment Transfer Landscape (10 samples)
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(c) Moment Transfer Optimization (50 samples)
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Figure 8: Momentum Transfer task. Columns 1 and 2: The first to third rows show the square root of
estimation errors, variance, and bias, respectively (scaled to match the previous study). The fourth
row shows the cost function, and the bottom row shows α selection. Column 3: Both the optimization
cost and α selection are shown.
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H SENSITIVITY ANALYSIS ON THE PARAMETER c IN DDCG

In this section, we conduct an sensitivity analysis on the parameter c in our proposed DDCG method
to investigate how varying c affects the detection of discontinuities. We also clarify why c = 0.3 was
chosen in this work.

H.1 BALL WITH WALL LANDSCAPE

Figure 9 visualizes the Ball with Wall task landscape while varying c from 0 to 1. Recall that c = 1
means our test condition is always satisfied, so the method consistently applies IVW, disabling
discontinuity detection. Conversely, c = 0 imposes a strong smoothness assumption, frequently
falling back to the 0th-order estimator and leading to more conservative updates. For any c ̸= 1,
the largest cost change near θ = 0.7 is reliably detected. However, detecting a milder discontinuity
around θ = 1.2 depends on c. Balancing these, we set c = 0.3 to avoid being overly conservative or
too permissive, successfully detecting both major and moderate discontinuities.
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Figure 9: Sensitivity analysis on c in the Ball with Wall task. The x-axis represents θ, and different
values of c control the degree of discontinuity detection. Larger values of c are less conservative,
while smaller values lead to more frequent selection of 0th-order gradients.

H.2 SIGMOID FUNCTION

Figure 10 presents a similar sensitivity analysis for the Sigmoid function, where we adjust its
temperature parameter T . Smaller T values yield sharper transitions (stronger discontinuities). For
c = 0, DDCG assumes stronger smoothness and thus tends to remain conservative even in the T = 1
regime, resulting in larger estimation errors compared to larger c values. On the other hand, when
c is close to 1, the method still detects strong discontinuities adequately, though it becomes less
conservative in potentially nonsmooth areas.

H.3 OPTIMIZATION PROBLEMS

We report a sensitivity sweep of the sole hyperparameter c on the optimization problems: Pushing-
Soft, Pushing-Stiff, Friction, and Tennis. Across these tasks, performance is robust for a wide range
c ∈ [0.1, 0.9]—the optimizer converges reliably and at similar rates. At the extremes, c≈ 0 may
miss discontinuity detection on strongly non-smooth tasks (e.g., Tennis, Friction), while c≈1 can
become overly conservative on smoother tasks (e.g., Pushing-Soft), slowing progress when first-order
gradients are reliable. Hence, choosing c=0.3 is representative rather than critical.
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(b) c = 0.1
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(c) c = 0.3
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(e) c = 0.7
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(f) c = 0.9

Figure 10: Sensitivity analysis on c for gradient estimation error (log scale) and α selection in the
Sigmoid function. The x-axis represents different values of the temperature parameter T , where
smaller T indicates stronger discontinuities. Lower c values lead to conservative choices, while
higher values make the method more permissive in discontinuity detection.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
7.0

7.2

7.4

7.6

7.8

C
os

t(
lo

g
sc

al
e)

0 100 200 300 400 500 600

Iteration

0.00

0.25

0.50

0.75

1.00

α

c = 0.0

c = 0.1

c = 0.2

c = 0.3

c = 0.4

c = 0.5

c = 0.6

c = 0.7

c = 0.8

c = 0.9

c = 1.0

0th-order grad

1st-order grad

(a) Pushing-Soft

0 100 200 300 400 500

6.8

7.0

7.2

7.4

7.6

C
os

t(
lo

g
sc

al
e)

0 100 200 300 400 500

Iterations

0.00

0.25

0.50

0.75

1.00

α

c = 0.0

c = 0.1

c = 0.2

c = 0.3

c = 0.4

c = 0.5

c = 0.6

c = 0.7

c = 0.8

c = 0.9

c = 1.0

0th-order grad

1st-order grad

(b) Pushing-Stiff

0 10 20 30 40 50

9.0

9.2

9.4

9.6

C
os

t(
lo

g
sc

al
e)

0 10 20 30 40 50

Iterations

0.00

0.25

0.50

0.75

1.00

α

0th-order grad

1st-order grad

c = 0.0

c = 0.1

c = 0.2

c = 0.3

c = 0.4

c = 0.5

c = 0.6

c = 0.7

c = 0.8

c = 0.9

c = 1.0

(c) Friction

0 50 100 150 200

102

4 × 101

6 × 101

2 × 102

Co
st

 (l
og

 sc
al

e)

0 50 100 150 200
Iteration

0.00

0.25

0.50

0.75

1.00

0th-order grad
1st-order grad
c=0.0
c=0.1
c=0.3
c=0.9
c=1.0

(d) Tennis

Figure 11: Sensitivity of c on optimization tasks. Each panel shows optimization progress (e.g.,
objective vs. iterations or episodes) for multiple c values. Results indicate that non-extreme c values
yield near-identical performance; c=0.3 is a convenient default rather than a crucial choice.

Takeaway. For all optimization problems considered, DDCG solves the tasks reliably for any
non-extreme c in [0.1, 0.9]. Thus, the method does not rely on a finely tuned c; using c=0.3 is a safe
and representative default.

Overall, we found c = 0.3 effectively balances performance in both highly discontinuous and
smoothly varying scenarios; hence, we adopt it as the default setting.
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I SENSITIVITY ANALYSIS ON THE PARAMETER γ IN AOBG

We conduct the sensitivity analysis on the γ parameter of the previous method AoBG. If γ is large,
AoBG will mainly use the IVW rule, if γ is small, AoBG mainly uses 0th-order estimates. Thus,
in tasks where 0th-order estimates work well, γ should be sufficiently small, and in tasks where
1st-order estimates are better, γ has to be sufficiently large. Ball with Wall (1000 samples) requires
roughly Figure 12 and Momentum Transfer (1000 samples) requires Figure 13. In the 3-sample
Pushing Soft task, 0th-order methods perform poorly, and we find that γ should be above around
50000 for good performance Figure 14. On the other hand, the Tennis task performs poorly when the
gamma is that large, it requires roughly Figure 15. As we can see, the optimal choice of varies widely
between different tasks and also changes with the sample size.

Figure 12: Sensitivity analysis on the parameter γ for AoBG in the Ball with Wall landscape analysis
(1000 samples). The figure shows the error for each input angle θ and the corresponding α selection.
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Figure 13: Sensitivity analysis on the parameter γ for AoBG in the Momentum Transfer landscape
analysis (1000 samples). The figure shows the error for each input angle θ and the corresponding α
selection.
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Figure 14: Sensitivity analysis on the parameter γ for AoBG in the Pushing task with soft contact
(3 samples). The figure shows the cost value evolution and the corresponding α selection across
iterations.

Figure 15: Sensitivity analysis on the parameter γ for AoBG in the Tennis task. The figure shows the
cost value evolution and the corresponding α selection across iterations.
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Figure 16: Episodic reward vs. environment steps on Ant and Hopper with default contact parameters.
Curves show the mean across seeds; shaded bands indicate the empirical standard error.

J MUJOCO RESULTS WITH DEFAULT CONTACTS

Under the default MuJoCo contact settings (no change to contact_ke), both GIPPO and IVW
optimize reliably; IVW-H matches upon IVW across Ant and Hopper, while 0th-order gradients lag
behind (see Figure 16).

K PARAMETERS

The following tables summarize the parameter settings used in our experiments. These parameters
were chosen to ensure consistency and reproducibility across all tasks.

Table 2: Sigmoid, Quadratic parameter settings

Parameter names Sigmoid
(Effect of Temperatures)

Sigmoid
(Effect of Samples)

Quadratic
(Effect of Samples)

Common Parameters
Sample size N 100 - -
Standard deviation σ 1 1 1
Trials 500 500 500

AoBG
γ 0.1 0.1 1.4

DDCG
c 0.3 0.3 0.3
Confidence level δ 0.05 0.05 0.05
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Table 3: Ball With Wall parameter settings

Parameter names Landscape
(1000 samples)

Landscape
(10 samples) Optimization

Common Parameters
Sample size N 1000 10 50
Standard deviation σ 0.1 0.1 0.1
Trials 1000 1000 20
Iterations - - 1000

AoBG
γ 0.005 0.005 0.014

DDCG
c 0.3 0.3 0.3
Confidence level δ 0.05 0.05 0.05

Table 4: Momentum Transfer parameter settings

Parameter names Landscape
(1000 samples)

Landscape
(10 samples) Optimization

Common Parameters
Sample size N 1000 10 50
Standard deviation σ 0.02 0.02 0.02
Trials 1000 1000 20
Iterations - - 5000

AoBG
γ 0.2 0.2 0.2

DDCG
c 0.3 0.3 0.3
Confidence level δ 0.05 0.05 0.05

Table 5: Pushing parameter settings

Parameter names Soft Collisions
(100 samples)

Soft Collisions
(3 samples) Stiff Collisions

Common Parameters
Sample size N 100 3 10
Standard deviation σ 0.1 0.1 0.05
Trials 100 100 20
Iterations 600 600 500
Spring constant k 10 10 1000

AoBG
γ 1000 1000 10000000

DDCG
c 0.3 0.3 0.3
Confidence level δ 0.05 0.05 0.05

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 6: Friction parameter settings

Parameter names Trajectory
(100 samples)

Trajectory
(5 samples)

Common Parameters
Sample size N 100 5
Standard deviation σ 0.1 0.1
Trials 15 15
Iterations 50 50

AoBG
γ 30000 30000

DDCG
c 0.3 0.3
Confidence level δ 0.05 0.05

Table 7: Tennis parameter settings

Parameter names Policy

Common Parameters
Sample size N 1000
Standard deviation σ 0.01
Trials 4
Iterations 200

AoBG
γ 1000

DDCG
c 0.3
Confidence level δ 0.05
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