Under review as a conference paper at ICLR 2026

THE FREE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an extension of the decoder Transformer that conditions its generative
process on random latent variables. Those variables are learned without supervi-
sion thanks to a variational procedure. Experimental evaluations show that allow-
ing such a conditioning translates into substantial improvements on downstream
tasks.

1 INTRODUCTION

Since their invention, the Transformer (Vaswani et al.,[2017), and more specifically the decoder-only
Transformers used originally for the GPT series of models (Radford et al.| 2018]), have become the
core components of Al systems.

It is remarkable that, after almost a decade, and in spite of improvements on many aspects of this
class of methods, the autoregressive modelling of Transformers remains essentially unchallenged.
‘We propose in this paper to revisit this key design aspect by allowing richer and more natural density
models to emerge:

* We extend the auto-regressive model of the decoder Transformer by allowing the condition-
ing on latent variables, thanks to a formulation as a conditional Variational Autoencoder
($B.I).

* We propose an implementation that requires a very modest computational and memory
usage overhead (§ [3.2).

The benefits of the proposed method are shown by training 1.5B and 8B models from scratch and
assessing performance on multiple downstream benchmarks (§ [4).

2 MOTIVATION

Decoder Transformers are auto-regressive discrete density approximators. They model a sequence
of tokens S1,..., ST by estimating the conditional distribution of each given those preceding it.
Sampling is done by generating one token after another, each time computing the distribution of the
next symbol given those generated so far.

The only density modelling and sampling that such models implement is that of the generated tokens.
In particular, a decoder Transformer does not make additional latent decisions about the stream of
symbols to generate. Its only decisions are the choices of the tokens themselves.

Consider, for instance, that we train such a model to generate movie reviews and that we want to
have two clearly separated categories of negative and positive reviews. Given a large enough model
and the necessary amount of training data, there is no doubt that a decoder Transformer trained on a
dataset of that form would work perfectly and would generate these two types of reviews. However,
to do so, it would generate tokens one after another and decide, based on the words generated so far,
whether the review it is currently generating is a positive or a negative one, and continue the process
accordingly. In particular, the model would not make the explicit decision to generate a negative or
a positive review. It would produce tokens, and this notion of a negative or positive review would be
implicit in their posterior probabilities.

Due to the chain rule, any density can be modelled as autoregressive. However, in particular when
the “natural” structure involves conditioning on latent variables, the autoregressive model of the
signal may be a great deal more complex than the full joint model including the latent.

Under review as a conference paper at ICLR 2026

We can consider a simple example illustrating that point. Let Z ~ B(0.5) be a latent “coin flip”,
and X1, ..., X7 be equal to Z with independent flips of probability e.

The X;s are conditionally independent given Z, and we have

PXi=1|Z=2z)=ez+(1—¢€)(1—2) (D
however, expressed as an auto-regressive model without Z, we get:
EZ: Ts t T
()77 -9t (29T e - g
PXepr=1X1=21,.... Xp =a¢) =

2

We could easily come with worse examples when expressed autoregressively, for instance when the
latent variables are positions in the sequence, e.g. indexes where certain patterns occur as in the
example of § .1l What we observe in such cases is that it requires running estimates of proba-
bilities (“probability that the target appears here”) for which estimation errors are unavoidable and
problematic.

The consequence is that a purely auto-regressive density model suffers potentially from several
drawbacks:

* It requires an unnecessarily complicated computation, and greater capacity, to implicitly
make post-hoc decisions or infer latent quantities from the generated tokens.

* It may be sent off track during the process if, by mistake, a few tokens generated are
erroneous, ambiguous or contradictory with those generated previously.

» Key concepts do not appear spontaneously due to the “’natural” factorization of the distri-
bution, but are built post-hoc by necessity to fit the training samples better. This may be a
fundamental weakness when operating out of distribution.

The main objective of the present work is to address these issues by providing the model with the
freedom of conditioning its auto-regressive process on latent random quantities that are not imposed
by the training examples.

For instance, for the review generator example above, the model could use a random Boolean value
to decide once for all whether the tokens it produces are from the distribution of negative or positive
reviews, removing the need for a complicated posterior estimate from the tokens already generated.

3 METHOD

Any latent random value Y,, whatever its statistical dependency with the tokens Sy,...,.S; and
other latent Yp,...,Y,._1 sampled so far, can be expressed under reasonable assumptions as
fr(S1,..., 8, Y1, ..., Y1, Z,) where Z, is a value coming from a random generator.

Hence, if we provide the model with enough random values Z;, Z5,... sampled independently
during generation, a proper training procedure could in principle build families of latent variables
with arbitrary dependency structure, as long as the model’s capacity allows it to encode f;..

In the same way that the choice of a token during sampling can be expressed as a function of
a random value and the logits, any activation which is a function of a random value and other
activations can be interpreted as a decision made by the model during the generative process. Such
decisions make the latent activation non-deterministic functions of the tokens, and observing the
latter only gives a partial information about the former.

3.1 CONDITIONAL VARIATIONAL AUTOENCODER

Generating a full sequence from scratch with a model that depends on a random variable Z is trivial:
sample Z ~ P(Z) and then run the standard auto-regressive process, with the computation of the
logits modulated by Z.

Under review as a conference paper at ICLR 2026

Logits So.1

N
T XV

Decoder read-out FC

T x D

Decoder Causal _
Transformer Block xLj2 -1

TTXD

Decoder Causal
Transformer Block

L) KVT

—> +

T x D

Post-sampler FC

N

T x 21

Encoder read-out FC

T x D

Encoder Non-Causal
Transformer Block

L) A

T x D

¢

T x D

Decoder Causal
Transformer Block xL/2

N
T x D

Embeddings

T

Slszl

Figure 1: The Free Transformer. We omit the normalization layers and residual connections from the
model and the batch size from the tensor shapes for clarity. The operators in orange are specific to
the encoder and are evaluated only for training or KV cache pre-filling, those with a dashed contour
have no trainable parameters. The Binary Mapper is described in § 3.4 During generation, the
encoder is not evaluated and Z is sampled uniformly among the one-hot vectors of dimension 2.

Under review as a conference paper at ICLR 2026

Training the model, however, is far more involved. Given a training sample .S, the objective is to
maximize

P(S) = /P(S | Z = 2)P(Z = 2)dz, 3)

which can be estimated only if we can get Zs consistent with S, that is Zs that we would sample if
the overall process was generating S. This amounts to a complex inference problem if we want Z
to capture meaningful structural properties of the sequence.

Providing those Zs is the role of the encoder of a Variational Autoencoder (Kingma & Welling,
2013), whose main purpose is to sample from a “good” distribution Q(Z | S) so that a sampled Z
modulates the decoder in a way that leads it to generate S.

We follow this approach and optimize jointly the parameters of the decoder and the parameters of a
second model, which is an encoder in the VAE sense.

Even though the noise Z has no relation to S initially, if the training succeeds, the model will use
it to structure the generative process. In the example of a movie review generator of the previous
section, for instance, given a review from the training set, the encoder would implicitly classify it
as positive or negative, and generate a consistent Z. Increasing P(S | Z) with that Z could be
interpreted as improving the “negative review generator” or the “positive review generator’” that are
implicitly encoded in the decoder’s weights.

A key element of this approach is to limit the amount of information flowing from the encoder to
the decoder through Z, so that the encoder does not provide quantities that should be computed by
the decoder. At the limit the encoder could copy entirely S into Z so that a trivial decoder, useless
without the encoder, hence in inference, would score perfectly in training.

The formal derivation of the VAE shows that the proper measure of information is the Kullback-
Leibler divergence between Q(Z | S) and P(Z), and that the loss to minimize should sum it with
the reconstruction loss, which here is the usual cross-entropy.

3.2 MODEL STRUCTURE

In what follows, we call “Transformer Block” the usual combination of a Multi-Head Attention layer
and a MLP-like tokenwise module, with normalisation layers and residual connections.

As pictured on Figure |1} the Free Transformer is a standard decoder with a noise Z injected in its
middle layer. This allows to share half of the Transformer blocks of the decoder with the encoder,
cutting down drastically the computational overhead by having a single Transformer block that has
to be computed specifically for the encoder. Hence, as we will see, this model possesses all the
components of a decoder Transformer and has an additional non-causal block and two linear layers
for the encoder. While we did not investigate what is the best depth to inject Z, doing it too early
would reduce the encoder’s capacity, and doing it too late would reduce the decoder’s capacity to
process the latent variables.

For clarity, we omit in what follows the batch size in the tensor shapes.

As a standard decoder Transformer, the Free Transformer processes a sequence of tokens by first
encoding them with the embedding table into a tensor X of shape 7" x D.

Then it evaluates sequentially the first L/2 Transformer blocks to get X, /2 of same shape, and
at this point, it samples a sequence of one-hot vectors Z = (Zy,...,Z7) € {0,1}T*C. During
generation, this is done by sampling, for each Z;, an index ¢ uniformly in {0, ...,C — 1}, and then
encoding it as a one-hot vector of dimension C'. During training or KV cache pre-filling, Z has to
be consistent with the tokens of S already fixed, and the sampling is done with the encoder instead,
as described in §[3.3]

This tensor Z is processed by a linear layer to obtain a tensor R of shape T x D. Then, the L/2+ 1th
Transformer block gets as input for queries the tensor Xy /o and as input for keys and values the
tensor X7y, /5 + 2. The rest of the Transformer blocks are evaluated in sequence to get X which is
processed by the read-out linear layer to obtain the logit tensor L of shape 7" x V, where V is the
vocabulary suze.

Under review as a conference paper at ICLR 2026

3.3 ENCODER AND LOSS

As stated in the previous section, during training or KV cache pre-filling, the tensor Z is sampled
with the encoder.

The Free Transformer possesses one Transformer block specific to the encoder, which is non-causal,
making the encoder as a whole non-causal. This is necessary since the conditioning by the decoder
may have long-range effects, requiring the full sequence to be taken into account to get a proper
conditional distribution of the latent.

This encoder-specific block gets as input for the queries a trained token embedding ¢ replicated to
match the sequence length, and for the keys and values the output of the first half of the decoder’s
blocks. The motivation for using a learned constant input for the queries instead of the standard
representation of the input sequence is to prevent the encoder from building a token-wise mapping
and make it instead capture global properties of the sequence that may be more transferable across
tasks and data-sets.

A linear readout computes from the encoder block’s output a vector of dimension H = 16 for
every token. These components are interpreted as logits of individual bit, used to sample a value in
{0,...,2H — 1} which is encoded into a one-hot vector of dimension 27 = 65, 536, with gradient
pass-through, as described in § 3.4}

Hence, the random embedding Z is a sequence of T one-hot vectors Z; of dimension 277. The
prior distribution used for generation is uniform P(Z; = z) = 1/2, and Q(Z | S = s) is the
distribution corresponding to the sampling with the encoder described above. The KL divergence is
then equal to

2H
DHOW&|&w“ﬂﬂHH&D:JH%Q+XXXZ:ﬂSﬂ%Q@:zL$.(@
z=1

We control it by adding it to the loss, and prevent its collapse by using a token-wise free bits method
(Kingma et al.l 2016)). This means that we sum the KL divergence of individual Z; that are above a
threshold « and ignore the others.

This leads us to use for training loss the sum of the standard cross-entropy and the following quantity

T
1
*ZHI&X (07 DKL(Q(Zt ‘ Sl,...,ST) HP(Zt)) —Kl), (5)
T t=1

where the threshold « is an hyperparameter.

3.4 BINARY MAPPER

The last linear layer of the encoder computes for every index ¢ of the sequence being processed a
vector Ly = (Ly,...,Lym) € R, whose components are interpreted as the logits of individual
bits of a binary encoding.

The Binary Mapper samples those bits By 1, ..., By i independentely with

1
PBip=1)=——+— 6
(t,h) 1_|_6—Lt,h’ ()
and outputs a one-hot vector Y; of dimension 27 corresponding to the resulting value:
1 ifd=14+31,2"1By,
Yia= . h=1 ,
td { 0 otherwise. @

Under review as a conference paper at ICLR 2026

During training, the computation also propagates the gradient of the probabilities of the 2/ values.
IfU(d) = (Uy(d),...,Ur(d)) € {0,1} is the binary encoding of d, and we define G; as

Girqg=P(B,=U(d—1))

= exp (Z log P(By,, = Up(d — 1)))
h

— exp (Z(l — Up(d — 1)) log (1 - 1+€1th) + Up(d — 1) log (1+61L,h>> ;

h
then the Binary Mapper outputs

Y;g’d + Gt,d — detach(Gt,d), ()
where Vz, detach(z) = x and Jgetach () = 0.

The motivation for using a binary encoding instead of having the encoder output 2 logits directly
is to facilitate the gradient pass-through thanks to the monotonicity of the sigmoid.

4 EXPERIMENTS

We first test the qualitative behavior of the Free Transformer on a synthetic task in § then
compare it on multiple benchmarks to baselines with 1.5B and 8B parameters models for various
KL divergence thresholds in § .4] and finally assess the performance gain of a 8B parameter model
trained on 1T tokens in § {.5]

4.1 SYNTHETIC DATASET

To confirm that the Free Transformer indeed utilizes Z to condition its generative process, we de-
signed a synthetic dataset and trained a small Free Transformer with different free-bits thresholds.
Doing so allows to observe what aspects of the modeling are packed by the encoder in Z.

Each sequence in our synthetic training set is generated as follows:

w9

* start with a string of 64 underscores “_",

* pick an upper case letter and a position in the sequence at random, and replace the under-
scores there with a “target” made of the selected letter repeated 8 times,

* replace any character with an exclamation mark with probability 1/16

T3¢

* concatenate a prompt made of the target’s letter followed by a “>".

A few sequences generated with that process are shown in Figure 2| Appendix B.

We trained a Free Transformer on this data for four different values of the free bits threshold ~, and
generated with the same random prompt three groups of sequences with each model, as pictured in
Figure 3] Appendix B. For each model, in the blue group, the noise Z is sampled independently for
each sequence, whereas we sampled one Z only for each of the green groups, used to generate all
its sequences.

For very low values of the KL divergence, the model behaves like a vanilla model (Figure[3] top left),
and when the value increases, the model encodes initially the position of the target alone in the latent
state (Figure[3] top right), then encodes both the target position and the noise (Figure[3] bottom left),
and finally encodes the full sequence, resulting in incorrect generation (Figure [3] bottom right).

4.2 BASELINE ARCHITECTURES

For assessing performance on standard benchmarks we used decoder-only Transformers imple-
mented in a sota proprietary Transformer codebase. Those are well optimized models using the
SwiGLU non-linearity (Shazeer, 2020), pre-normalization with RMSNorm (Zhang et all 2019),
Rotary Positional Embedding (RoPE, |Su et al|2021), and Group Query Attention (GQA, |Ainslie
et al.2023). The vocabulary size is 2!7 ~ 130k.

Under review as a conference paper at ICLR 2026

We used two sizes of models:

* A 1.5B model, with 28 layers, weight tying between the embeddings and the logit readout,
model dimension 1536, 12 query heads, and 2 key-value heads. It is trained with 47B
tokens, which requires 32 H100s for ~ 12 hours.

* A 8B model with the structure of a Llama-3, which is 32 layers, model dimension 4096,
32 query heads, and 8 key-value heads. It is trained with 200B tokens which requires 256
H100s for ~ 24 hours, or with 1T tokens, which takes 5 days.

We compare those baselines to the equivalent Free Transformers, which require one additional layer
for the encoder during training and KV cache pre-filling, resulting in a compute and memory over-
head of 1/28 ~ 3.6% for the 1.5B and 1/32 ~ 3.1% for the 8B.

4.3 SETUP AND HYPERPARAMETERS
We kept our findings as clear as possible by avoiding other sources of performance improvement:

* We stuck to the baseline architecture, optimizer, and learning rate schedule that were used
to train the baselines, and did not optimize any hyperparameter for our setup.

* We avoided any recipes for the VAE components, such as removing sampling in inference.
We followed the formal expressions rigorously.

» We fixed H to 16 so that the dimention of Z, was comparable to the vocabulary size of 217.

We stress that the optimization hyperparameters were highly tuned for the baselines, and it is prob-
able that a combination of an encoder and a decoder has specific requirements that would greatly
benefit from an adapted training procedure.

4.4 EXPLORATORY RESULTS

We ran a series of experiments to assess the general behavior of the Free Transformer, and to cali-
brate the x threshold.

For any value of , the cross-entropy goes down regularly during training, with no more instability
and spikes than what happens with the baselines. The KL divergence rapidly goes under x and
stays there. When we compare the cross-entropies for various «, they go down when £ increases
as expected, but the values remain extremely close, with a difference of the order of 0.01 for a
cross-entropy of ~ 2 for the 1.5B and ~ 1.8 for the 8B.

For both sizes of models, setting x = 4log 2, corresponding to 4 bits of information per token,
resulted in a collapse of the cross-entropy, indicating that the encoder found a way to channel fully
the tokens to predict, and resulting in a collapse of performance on the downstream tasks. It is
noteworthy that the baseline 8B model reaches during training a cross-entropy of 1.8 = 2.591og(2),
hence may explain why allowing 2 bits does not collapse, while allowing 4 bits does.

The performance on downstream tasks are given in Appendix E, Table [2| for the 1.5B models, and
Table [3| for the 8B models, both for four different values of x corresponding to 1/2 to 2 bits of
information per token. Graphs of performance during training are given in Appendix [Fin Figures {]
and

We observe a substantial increase of performance on HumanEval+, MBPP, and GSMS8K which are
arguably the benchmarks requiring some form of reasoning, and there also is a clear improvement
for the 8B model with 1/2 bit of KL divergence on MMLU and CSQA, which are multi-choice
questions.

4.5 RESULTS WITH 1T TOKENS TRAINING

To measure improvement in a more realistic setting, closer to models actually used in real applica-
tions, we trained 8B models on 1T tokens, which improves drastically the performance of both the
baseline and the Free Transformer.

Under review as a conference paper at ICLR 2026

8B models (1T tokens)
Final value Average (last third)
Baseline Free Trans.former Baseline Free Trans.former
1/2 bit 12bit |
Generative code/math
human_eval_plu (pass@1) 0.268 [0.299 [+11.36%| | 0.245 [0.256 +4.22%
mbpp (pass@1) 0.428 [0.440 +2.80% 0.396 [0.421 +6.08%
gsm8k (em) 0.321 (0331 +2.83% 0.280 [0.296 +5.84%
Multi-choice general knowledge / common sense
mmlu (macro_avg/acc_char) 0.592 [0.623 +5.20% 0.567 [0.596 +5.16%
csqa (acc_char) 0.707 |0.748 +5.79% 0.689 |0.733 +6.28%
hellaswag (acc_char) 0.799 10.799 -0.01% 0.787 (0.788 +0.18%
winogrande (acc_char) 0.739 |0.735 -0.53% 0.725 10.727 +0.27%
obga (acc_completion) 0.564 |0.562 -0.35% 0.556 |0.551 -0.86%
arc_challenge (acc_completion)| 0.542 [0.535 -1.42% 0.524 |0.522 -0.40%
arc_easy (acc_completion) 0.721 |0.711 -141% 0.706 |0.711 +0.68%
piqa (acc_char) 0.805 [0.812 +0.88% 0.802 [0.807 +0.61%
Multi-choice text understanding
race.high (acc_char) 0.473 0463 -2.06% 0.467 0460 -1.55%
race.middle (acc_char) 0.632 [0.634 +0.33% 0.623 [0.624 +0.16%
boolq (acc_completion) 0.713 |0.725 +1.63% 0.755 10.754 -0.10%
Culture
nq (em) 0.248 10247 -0.22% 0.229 10.227 -0.76%
tqa (em) 0.583 |0.577 -1.00% 0.549 |0.544 -0.90%

Table 1: Performance of 8B models trained on 1T tokens. We also provide the average over the last
third of the iterations to mitigate the irregularity of the performance increase during training and
get a more accurate estimate of the relative improvement. The optimization hyperparameters were
tuned for the baseline and kept unchanged, but the Free Transformers require 3.1% more compute
and parameters for the encoder. See Figure[6]in Appendix [Ffor the performance during training.

Under review as a conference paper at ICLR 2026

Given the results with 200B tokens, we chose the value x = log(2)/2 corresponding to half a bit of
information per token at most.

The performance on downstream tasks are given in Table [T] and the corresponding graphs during
training in Figure [6] of Appendix [} We provide in the table the performance measured at the end
of the training as for the other configurations, but in addition we also give the average over the last
third of the training. We can observe on the graphs that the rate of improvement tend to be constant
on this interval, which justifies averaging to mitigate the performance fluctuations.

The key result is the boost of performance on HumanEval+, MBPP, GSM8K, MMLU and CSQA,
confirming what we observed in the smaller settings, and a greater stability on other tasks.

5 PREVIOUS WORK

There have been several attempts at combining a VAE and a decoder Transformer, generally with a
focus on improving topic models and providing ways to guide the generation.

The OPTIMUS model (Li et al., |2020) combines a pre-trained BERT as text embedding / encoder,
with a GPT-2 playing the role of decoder, which are fine-tuned with a VAE-like loss.

The latent embedding Z is computed thanks to a CLS token, that is by adding a token to the input
and a read-out to extract its embedding in the output. To modulate the GPT-2 generation with it,
it is either (1) concatenated as an additional token in every layer, or (2) added to the input token
embeddings. Collapse of the KL divergence is prevented during training with the free bits method
(Kingma et al., 2016).

This approach allows for better guided text generation with GPT-2 and better generalization on low-
data languages with BERT.

Xie et al.| (2021) extend OPTIMUS with a multi-objective loss, adding in particular the prediction
of the story topic, using the output of another model as ground truth, to obtain a better embedding
space.

The CVAE proposed by [Fang et al.|(2021)) combines two pre-trained GPT-2, one used as the encoder
without causal masking. The embedding Z is an average of the encoder’s output, and the authors
propose three ways to modulate the decoder with linear images of it: (1) add it to each input token
embedding, (2) concatenate it to the Ks and Vs in every layer, (3) add it before the softmax. Experi-
ments demonstrate that this method allows controlling the generation without hurting the quality of
the result.

AdaVAE (Tu et al [2022) is similarly the combination of two pre-trained GPT-2, the first without
causal masking playing the role of the encoder. The latent embedding Z is extracted from its output
with a slightly modified attention operator. It is then injected into the decoder by either concatenating
an image of it to the keys and values as in OPTIMUS, or before the softmax as in CVAE.

6 CONCLUSION

The Free Transformer is a direct extension of a standard decoder Transformer, with the abstract
structure of a conditional VAE. It is implemented with a single additional non-causal Transformer
block and requires a few percent of computational and memory usage overhead.

Its structure makes it able to learn latent random variables unsupervised, and to condition its gen-
erative process on them. In some ways, this approach aims at achieving in latent space with an
autoencoder what reasoning models do with chains-of-thought in token space and an RL procedure
(DeepSeek-Al et al., [2025). A combination of the two is, of course, promising.

The performance boost without tuning the optimization hyperparameters across multiple bench-
marks and two sizes of models, is a strong signal that the overall approach actually improves the
inductive bias of the vanilla Transformer.

Many properties and design choices should be explored. The performance curves during training
are often unstable, possibly due to the coupling of the optimization of the encoder and the decoder,

Under review as a conference paper at ICLR 2026

and using different optimization methods could be fruitful. The random embedding itself could take
many forms, and the one used in our implementation is arbitrary.

Finally, the behavior in larger scales, both in parameter count and dataset size, remains to be inves-
tigated.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245,

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732,

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piga: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Christopher Clark, Kenton Lee, Ming-Wei Chang, Jennifer Tomoschuk, and Michael Collins. Boolq:
Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,
2019. URL https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carson Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 422—
435,2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing

10

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948,

Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen Dong, and Changyou Chen. Transformer-
based conditional variational autoencoder for controllable story generation, 2021. URL https:
//arxiv.org/abs/2101.00828.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Dawn Tang, Mantas
Lee, Eric Rasmussen, Jerry Sherry, Dawn Zhou, et al. Measuring massive multitask language
understanding. arXiv preprint arXiv:2009.03300, 2021. URL https://arxiv.org/abs/
2009.03300.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2013. URL
http://arxiv.org/abs/1312.6114, arXiv:1312.6114 [stat].

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improving Variational Inference with Inverse Autoregressive Flow, January 2016. URL http:
//arxiv.orqg/abs/1606.04934. arXiv:1606.04934 [cs].

Tom Kwiatkowski, Jenny Palomaki, Olivia Redfield, Michael Collins, Ankur P Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, et al. Natu-
ral questions: A benchmark for question answering research. In Transactions of the Association
for Computational Linguistics, volume 7, pp. 453466, 2019. doi: 10.1162/tacl.a_00276. URL
https://aclanthology.org/Q19-1026/.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785-794,2017. doi: 10.18653/v1/D17-1082. URL
https://aclanthology.org/D17-1082/.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. Op-
timus: Organizing sentences via pre-trained modeling of a latent space, 2020. URL https:
//arxiv.orqg/abs/2004.04092.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URLhttps://arxiv.org/abs/2305.01210.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pp. 2381-2391, 2018. doi:
10.18653/v1/D18-1260. URL https://arxiv.org/abs/1809.02789.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. = Improving lan-
guage understanding by generative pre-training. Technical report, OpenAl, 2018. URL
https://cdn.openai.com/research—-covers/language—unsupervised/
language_understanding_paper.pdf.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2101.00828
https://arxiv.org/abs/2101.00828
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1606.04934
http://arxiv.org/abs/1606.04934
https://aclanthology.org/Q19-1026/
https://aclanthology.org/D17-1082/
https://arxiv.org/abs/2004.04092
https://arxiv.org/abs/2004.04092
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/1809.02789
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. URL
https://arxiv.org/abs/2002.05202.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2021. URL https://arxiv.org/abs/
2104.09864.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A ques-
tion answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pp. 4149-4158, 2019. doi:
10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421/.

Haoqin Tu, Zhongliang Yang, Jinshuai Yang, and Yongfeng Huang. Adavae: Exploring adaptive gpt-
2s in variational auto-encoders for language modeling, 2022. URL https://arxiv.org/
abs/2205.05862.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, August 2017. URL http:
//arxiv.org/abs/1706.03762. arXiv:1706.03762 [cs].

Zhuohan Xie, Trevor Cohn, and Jey Han Lau. Exploring story generation with multi-task objectives
in variational autoencoders, 2021. URL https://arxiv.org/abs/2111.08133.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish
your sentence? arXiv preprint arXiv:1905.07830, 2019. URL https://arxiv.org/abs/
1905.07830.

Jingjing Zhang, Ruoming Xiong, Richard Socher, and Caiming Wang. Root mean square layer
normalization. arXiv preprint arXiv:1910.07467, 2019. URL https://arxiv.org/abs/
1910.07467.

12

https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://aclanthology.org/N19-1421/
https://arxiv.org/abs/2205.05862
https://arxiv.org/abs/2205.05862
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2111.08133
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467

Under review as a conference paper at ICLR 2026

A ALGORITHMS

Algorithm 1 Forward pass of a standard decoder Transformer

1: procedure FORWARD(tokens)
2: x < embeddings(tokens)

3 forn=1,...,Bdo

4: x + blocks[n](in = x)

5: end for

6: logits < linear_readout(RMS_norm(z))
7: return logits

8: end procedure

Algorithm 2 Forward pass of a Free Transformer

1: procedure FORWARD(tokens)
2: x + embeddings(tokens)

3: forn=1,...,B/2do

4: x « blocks[n|(in = x)

5: end for

6: if train or pre fill then

7: y < encoder_block(in_qg = zeta,in_kv = x)
8: o0 + encoder_linear_readout(RMS_norm(y))
9: z binary_mapper (o)
10: else
11: z < one_hot(uniform_sampler())
12: end if
13: r < linear_post_sampler(z)

14: x + blocks[B/2 4+ 1](ing = z,in kv =x + 1)
15: forn=B/2+1,...,Bdo

16: x + blocks[n](in = x)

17: end for

18: logits < linear_readout(RMS_norm(x))
19: return logits

20: end procedure

13

Under review as a conference paper at ICLR 2026

B SYNTHETIC EXPERIMENT

K>! ! ! ! !

c>___ccecceee, ! ' 1

x> 4] 11 XX!XXXXX !

R>! 1! !

P>!_ ! -

> !_!LLLLLLLL ' 1" '

v>__! 1! VVVVVV!IV. ! [
P> PPPPPPPP____ ! ! !
2> ' ! ! AAAARAA!
P> '___ PPPPPP!P___ ! ! o
1> !t IITITIIT

D> [' 1DDDDDDD.

A>_ ! AnmAmAA! ' ' !

>, ' ! J1333333 !

Figure 2: The synthetic sequences of § 4.1 are of fixed length, with a “target” made of a random
letter repeated 8 times at a random position, an i.i.d. noise of exclamation marks, and a prompt
indicating the target’s letter.

T>. TTTTTTTT. F>. FFFFFFFF_
T>. TTTTTTTT. F> FFFFFFFF ' '
T>. TTTTTTTT F> FFFFFFFF. ! L
T> I TTTTTTTT. F>. FFFFFFEF. [
T>. ! TTTTTTTT F>. |FFF | FFFF.
T>. TTTTTTTT F> ' FFFFFFFF____
T>. TTTTTTTT F>. FFFFFFFF____
T>. I TTTTTTTT_ F>. FFFFFFFF!
T>. ! TTTTTTTT F>. FFFFFFFF!
T>. TTTTTTTT_ F>. FFFFFFFF___
T> TTTTTTTT F>. FFFFFFEF ! !
T>. TTTTTTTT F>. ! FF | FFFFF.
T>. TTTTTTTT ' [T F> FFFFFFFE. '
T>. TTTTTTTT. F> FFFFFFFF. ' !
T>. TTTTTTTT. F> FFFFFFFF. '

k = log(2)/64 (1/64 bit) k =log(2)/8 (1/8 bit)

> ' ' '
>___ 33313333

3>_t

3> e

3>, JITNIITT__!

3>, JITNIITT__! N -

3> 3313IITT__!

3> JITNIITT__!

J>_ ! JJ'JJgag_ !

J>__33333333. o>_!__ 00, 1__oo!o, 010, o o__!

J>__33333333. 0>0_!__000, 0000, 010, o]

J>_J3333333. o>_!__ 00, 00, 010, o o

J>_J3333333. o>_!__ 00, 00, olo__o o o_t!

J>_J3333333. 0>0_!__000, 100__!__ 00 010, o o 1t

K = 8log(2) (8 bits)

Figure 3: Results with a Free Transformer trained on the synthetic sequences of § 1] for different
prompts and free bit thresholds. To investigate the information encoded in the latent tensor, we
sample a Z per sequence of a blue box, and a Z per green box. For very low values of the KL
divergence, the model behaves like a vanilla model (top left), and when the KL divergence increases,
the model encodes initially the position of the target alone in the latent state (top right), then encodes
both the target position and the noise (bottom left), and finally encodes the full sequence, resulting
in incorrect generation (bottom right).

14

Under review as a conference paper at ICLR 2026

C EVALUATION BENCHMARKS

HellaSwag: Multiple choices. Common sense focusing on physically situated scenarios.
(Zellers et al., 2019)

WinoGrande: Large-scale adversarial Winograd-style pronoun resolution (fill-in-the-
blank) designed to reduce annotation artifacts. (Sakaguchi et al., 2019)

ARC (AI2 Reasoning Challenge): Grade-school science multiple choice. (Clark et al.
2018)

PIQA: Physical commonsense multiple choice about everyday goals and affordances. (Bisk
et al.,|2019)

OpenBookQA (OBQA): Open-book science QA: combines a provided set of core facts
with commonsense/world knowledge to answer questions. (Mihaylov et al.|[2018)

RACE: Multiple-choice reading comprehension from Chinese middle-school English ex-
ams. (Lai et al.,[2017)

MMLU: “Massive Multitask Language Understanding”. Questions spanning STEM, hu-
manities, social sciences, etc. (Hendrycks et al., [2021)

CommonsenseQA (CSQA): Multiple-choice QA requiring commonsense relational knowl-
edge (leveraging ConceptNet relations). (Talmor et al.,|2019)

BoolQ: Yes/mo questions paired with passages to evaluate reading comprehension and
entailment-like inference. (Clark et al.,[2019)

GSMBK: Grade-school math word problems requiring multi-step arithmetic reasoning.
(Cobbe et al.,[2021])

HumanEval+: An augmented version of OpenAI’s HumanEval (Chen et al., [2021) with
many more unit tests per problem to reduce test fragility and overfitting in code generation
evaluation. (L1u et al.||2023)

MBPP: “Mostly Basic Programming Problems.” Short Python programming tasks solvable
by entry-level programmers; includes text spec and example tests. (Austin et al., [2021]))

NQ: “Natural Questions.” Real user queries paired with Wikipedia pages. (Kwiatkowski
et al.,[2019)

D PERFORMANCE MEASURES

For generated answers:
— pass@1 is the proportion of generated pieces of code that produce the expected be-
havior when executed.
— em (“exact match”) is the proportion of generated endings of a sequence that perfectly
match a reference solution.
For multi-choice based on log probabilities:

— acc_completion is the proportion of correct responses when the choice is based on the
sum of the log probabilities normalized with the number of tokens of each possible
choices.

— acc_char is the same as acc_completion but normalizes with the number of characters.

— macro_avg/acc_char is the average of acc_char over multiple sub-categories of ques-
tions.

15

Under review as a conference paper at ICLR 2026

E EXPLORATORY PERFORMANCE

1.5B models (47B tokens)
Baseline ‘ Fljee Transformer . .
1/4bit | 1/2bit | 1 bit | 2bits
Generative code/math
human _eval plu (pass@1) 0.055 [0.079 [%44.44%0.079 [¥4444% [0.035 [455.56% |0.085 |+55.56%
mbpp (pass@1) 0.112 [0.144 [428:57% |0.143 [$32.14% |0.152 [435.71% [0.122 +8.93%
gsm8k (em) 0.025 [0.028 [#12:12% 0.027 +6.06% |0.033 [#30:30% (0.027 +6.06%
Multi-choice general knowledge / common sense
mmlu (macro_avg/acc_char) 0.252 [0.265 +5.31% |0.261 +3.76% |0.254 +1.07% |0.257 +2.19%
csqa (ace_char) 0.199 [0.175 |BINOREE 0.199 +0.00% [0.187 -6.17% [0.197 -0.82%
hellaswag (acc_char) 0.593 |0.591 -0.40% [0.594 +0.15% |0.592 -0.27% |0.595 +0.32%
winogrande (acc_char) 0.603 |0.604 +0.13% [0.598 -0.79% [0.600 -0.52% |0.597 -1.05%
obga (acc_completion) 0.446 0450 +0.90% [0.468 +4.93% [0.460 +3.14% |0.490 +9.87%
arc_challenge (acc_completion)| 0.400 [0.392 -1.93% |0.386 -3.43% [0.405 +1.29% |0.385 -3.65%
arc_easy (acc_completion) 0.596 |0.602 +0.92% |0.592 -0.64% |0.603 +1.06% |0.592 -0.71%
piga (acc_char) 0.734 (0736 +0.22% |0.738 +0.52% |0.734 +0.07% [0.733 -0.15%
Multi-choice text understanding
race.high (acc_char) 0390 [0.382 -2.20% (0390 +0.00% |0.387 -0.81% [0.386 -1.03%
race.middle (acc_char) 0532 [0.511 -3.93% (0519 -249% [0.522 -1.83% [0.514 -3.40%
boolq (acc_completion) 0.583 [0.632 +8.39% (0.614 +5.35% |0.648 [H11:12% [0.620 +6.29%
Culture
nq (em) 0.081 [0.069 [BISIB6 [0.073 -9.56% [0.075 -7.17% [0.071 |EIOSGE
tqa (em) 0205 [0.191 -6.93% |0.190 -7.58% |0.200 -2.84% [0.197 -4.13%

Table 2: Performance of 1.5B models trained on 47B tokens. The training procedure was tuned
for the baseline and kept unchanged, but the Free Transformers require 3.6% more compute and
parameters for the encoder. See Figure[d]in Appendix [Ffor the performance during training.

16

Under review as a conference paper at ICLR 2026

8B models (200B tokens)
Baseline . Fljee Transformer . .
1/4bit | 1/2bit | 1 bit 2 bits
Generative code/math
human _eval plu (pass@1) 0.159 [0.171 +7.69% [0.189 [#19:23% [0.165 +3.85% |0.177 |#11.54%
mbpp (pass@1) 0278 [0.330 [#18:71% |0.306 [#10.07%0.298 +7.19% [0.318 [$14.39%
gsm8k (em) 0.086 [0.079 -8.77% |0.095 +9.65% |0.104 [¥20.18% (0.096 [$10.53%
Multi-choice general knowledge / common sense
mmlu (macro_avg/acc_char) | 0359 [0.337 -6.13% [0.398 [#10.99% [0.365 +1.81% [0.345 -4.00%
csqa (ace_char) 0356 [0.292 |BIHOREE 0.450 [$2621%0.346 -2.99% [0.324 -8.97%
hellaswag (acc_char) 0.735 |0.737 +0.26% |0.737 +0.26% |0.732 -0.45% |0.738 +0.39%
winogrande (acc_char) 0.680 |0.667 -1.86% [0.664 -2.32% [0.664 -2.32% |0.667 -1.86%
obga (acc_completion) 0522 |0.508 -2.68% [0.484 -7.28% [0.530 +1.53% |0.554 +6.13%
arc_challenge (acc_completion)| 0.465 [0.483 +3.87% |0.468 +0.55% [0.452 -2.95% |0.485 +4.24%
arc_easy (acc_completion) 0.677 |0.676 -0.25% |0.665 -1.81% [0.668 -1.44% |0.679 +0.31%
piqa (acc_char) 0.774 |0.780 +0.77% [0.782 +1.05% [0.785 +1.41% |0.793 +2.46%
Multi-choice text understanding
race.high (acc_char) 0433 0447 +43.30% [0.443 +2.25% [0.444 +2.58% [0.435 +0.53%
race.middle (acc_char) 0594 [0.592 -0.35% [0.591 -0.47% [0.587 -1.17% |0.584 -1.64%
boolq (acc_completion) 0.705 [0.632 |HIOBTGA 0.63> [BOBEG 0687 -2.47% [0.671 -4.82%
Culture
ng (em) 0.181 [0.183 +1.38% [0.167 -7.67% [0.173 -4.14% [0.168 -6.90%
tqa (em) 0440 [0.438 -0.28% 0443 +0.80% [0.434 -1.19% (0446 +1.45%

Table 3: Performance of 8B models trained on 200B tokens. The training procedure was tuned
for the baseline and kept unchanged, but the Free Transformers require 3.1% more compute and
parameters for the encoder. See Figure[5)in Appendix [Ffor the performance during training.

17

Under review as a conference paper at ICLR 2026

F PERFORMANCE DURING TRAINING

Baseline 1.5B FT 1.5B 1/4 bit —— FT 1.5B 1/2 bit —— FT 1.5B 1 bit —— FT 1.5B 2 bits
human_eval_plu (pass@1) mbpp (pass@1) gsm8k (em) mmlu (macro_avg/acc_char)
0.040
0.175
0.035 0.30
0.25
0125 0.025
020
0.100 0.020
015
0075 0015
010
0.050 0010
0.025 0.005 0.05
0.000 0. 0.00
[[3 10k 20k 30k 40k k. 10k 20k 30k 40k 10k 20k 30k 40k 10k 20k 30k 40k
csqga (acc_char) hellaswag (acc_char) winogrande (acc_char) obqga (acc_completion)
o0 " 0.6
0.6 0.6 M.ﬂ 05 -
: = 0s os 0 M
0.4 04
0.3
0.3 03
0.2
0.2 0.2
0.1 01 01
0.0 0. 0.0

k 10k 20k 30k 40k

arc_challenge (acc_completion)

0.4

arc_easy (acc_completion)

08

0.4

02

10k 20k 30k a0k

piga (acc_char)

e

10k 20k 30k 40k

race.high (acc_char)

o

race.middle (acc_char)

boolq (acc_completion)

0.08

10k 20k 30k 40k

tga (em)

Figure 4: Experiments with 1.5B models trained on 47B tokens. Comparison on standard bench-
marks of the baseline and our models. The optimization hyperparameters were tuned for the baseline
and kept unchanged, but the Free Transformers require 3.6% more compute and parameters for the
encoder.

Under review as a conference paper at ICLR 2026

Baseline 8B FT 8B 1/4 bit —— FT 8B 1/2 bit —— FT 8B 1 bit —— FT 8B 2 bits
human_eval_plu (pass@1) mbpp (pass@1) gsm8k (em) mmlu (macro_avg/acc_char)
0.35
0.10 o4
025 008 03
. 02
0.04
0.10
0.1
0.00 0. 0.0

csqga (acc_char)

hellaswag (acc_char)

winogrande (acc_char)

obga (acc_completion)

08
05
08 0.6
07
0.4 0.6 05
06
05 0.4
03
04
04 03
02 03
02
02 02
01
01
01
0.0 00 o 0.0
k 10k 20k 30k 40K 50k 10k 20k 30k 40k 50k 10k 20¢ 30k 40k 50k 10k 20k 30k 40K

arc_easy (acc_completion)

piga (acc_char)

race.high (acc_char)

0.6
0.8
05
05 07 . 0s
) /’_ﬁ y
04
05 0.6
03
0.3
0.4
04
02
0.2 03
0.2
02
01 0.1
01
00 00 3 00
K« 0k 20k 30K 20 S0k 10 20k 30k a0k S0k 10k 206 306 a0 0 10k 20k 30K 20k
race.middle (acc_char) boolq (acc_completion) ng (em) tga (em)
07
0.8 0.5
020
0.6
07
04
05 06 0.15
0.4 05 03
0.4 0.10
03
02
03
02
0.2 0.05
0.1
0.1
01
00 00 o 00
« 10 20 30K a0 S0k 10K 20k 30K a0k S0k 10k 20k 30k a0k S0 10k 20 30K a0k

Figure 5: Experiments with 8B models trained on 200B tokens. Comparison on standard bench-
marks of the baseline and our models. The training procedure was tuned for the baseline and kept
unchanged, but the Free Transformers require 3.1% more compute and parameters for the encoder.

19

Under review as a conference paper at ICLR 2026

Baseline 8B —— FT 8B 1/2 bit —— FT 8B 1 bit
human_eval_plu (pass@1) mbpp (pass@1) gsm8k (em) mmlu (macro_avg/acc_char)
07
05 04
0.6
04
03 0.5
03 0.4
02
03
02
0.2
01
01
01
0.0 0. 0.0
o 100k 200k o 100k 200K o 100k 200K o 100k 2006

csga (acc_char)

~

08

06

04

02

hellaswag (acc_char)

——

winogrande (acc_char)

obga (acc_completion)

ok 100k 200k

arc_challenge (acc_completion)

0.0

08

0.4

02

ok 100k 200k

arc_easy (acc_completion)

ok 100k 200k

piga (acc_char)

PRI

ok 100k 200k

race.high (acc_char)

0.0

o 100k 2006 o 100k 200K o 1006 200k o 100K 200
race.middle (acc_char) boolq (acc_completion) ng (em) tga (em)
1.0
0.30 0.7
0.6
0.8 0.25
0.5
020
0.6
04
0.15
s 03
010
0.2
0.2
0.05
0.1
o o 00
0k 100k 200k Ok 100k 200k 0k 100k 200k 0Ok 100k 200k

Figure 6: Experiments with 8B models trained on 1T tokens. Comparison on standard benchmarks
of the baseline and our models. The training procedure was tuned for the baseline and kept un-
changed, but the Free Transformers require 3.1% more compute and parameters for the encoder.

	Introduction
	Motivation
	Method
	Conditional Variational Autoencoder
	Model structure
	Encoder and Loss
	Binary Mapper

	Experiments
	Synthetic Dataset
	Baseline architectures
	Setup and hyperparameters
	Exploratory Results
	Results with 1T tokens training

	Previous work
	Conclusion
	Algorithms
	Synthetic experiment
	Evaluation Benchmarks
	Performance measures
	Exploratory Performance
	Performance during training

