
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE FREE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an extension of the decoder Transformer that conditions its generative
process on random latent variables. Those variables are learned without supervi-
sion thanks to a variational procedure. Experimental evaluations show that allow-
ing such a conditioning translates into substantial improvements on downstream
tasks.

1 INTRODUCTION

Since their invention, the Transformer (Vaswani et al., 2017), and more specifically the decoder-only
Transformers used originally for the GPT series of models (Radford et al., 2018), have become the
core components of AI systems.

It is remarkable that, after almost a decade, and in spite of improvements on many aspects of this
class of methods, the autoregressive modelling of Transformers remains essentially unchallenged.
We propose in this paper to revisit this key design aspect by allowing richer and more natural density
models to emerge:

• We extend the auto-regressive model of the decoder Transformer by allowing the condition-
ing on latent variables, thanks to a formulation as a conditional Variational Autoencoder
(§ 3.1).

• We propose an implementation that requires a very modest computational and memory
usage overhead (§ 3.2).

The benefits of the proposed method are shown by training 1.5B and 8B models from scratch and
assessing performance on multiple downstream benchmarks (§ 4).

2 MOTIVATION

Decoder Transformers are auto-regressive discrete density approximators. They model a sequence
of tokens S1, . . . , ST by estimating the conditional distribution of each given those preceding it.
Sampling is done by generating one token after another, each time computing the distribution of the
next symbol given those generated so far.

The only density modelling and sampling that such models implement is that of the generated tokens.
In particular, a decoder Transformer does not make additional latent decisions about the stream of
symbols to generate. Its only decisions are the choices of the tokens themselves.

Consider, for instance, that we train such a model to generate movie reviews and that we want to
have two clearly separated categories of negative and positive reviews. Given a large enough model
and the necessary amount of training data, there is no doubt that a decoder Transformer trained on a
dataset of that form would work perfectly and would generate these two types of reviews. However,
to do so, it would generate tokens one after another and decide, based on the words generated so far,
whether the review it is currently generating is a positive or a negative one, and continue the process
accordingly. In particular, the model would not make the explicit decision to generate a negative or
a positive review. It would produce tokens, and this notion of a negative or positive review would be
implicit in their posterior probabilities.

Due to the chain rule, any density can be modelled as autoregressive. However, in particular when
the “natural” structure involves conditioning on latent variables, the autoregressive model of the
signal may be a great deal more complex than the full joint model including the latent.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We can consider a simple example illustrating that point. Let Z ∼ B(0.5) be a latent “coin flip”,
and X1, . . . , XT be equal to Z with independent flips of probability ϵ.

The Xts are conditionally independent given Z, and we have

P (Xt = 1 | Z = z) = ϵz + (1− ϵ)(1− z) (1)

however, expressed as an auto-regressive model without Z, we get:

P (Xt+1 = 1 | X1 = x1, . . . , Xt = xt) =

(
ϵ

1−ϵ

)∑t
s=1 xs

(1− ϵ)tϵ+
(
1−ϵ
ϵ

)∑t
s=1 xs

ϵt(1− ϵ)(
ϵ

1−ϵ

)∑t
s=1 xs

(1− ϵ)t +
(
1−ϵ
ϵ

)∑t
s=1 xs

ϵt
.

(2)

We could easily come with worse examples when expressed autoregressively, for instance when the
latent variables are positions in the sequence, e.g. indexes where certain patterns occur as in the
example of § 4.1. What we observe in such cases is that it requires running estimates of proba-
bilities (“probability that the target appears here”) for which estimation errors are unavoidable and
problematic.

The consequence is that a purely auto-regressive density model suffers potentially from several
drawbacks:

• It requires an unnecessarily complicated computation, and greater capacity, to implicitly
make post-hoc decisions or infer latent quantities from the generated tokens.

• It may be sent off track during the process if, by mistake, a few tokens generated are
erroneous, ambiguous or contradictory with those generated previously.

• Key concepts do not appear spontaneously due to the ”natural” factorization of the distri-
bution, but are built post-hoc by necessity to fit the training samples better. This may be a
fundamental weakness when operating out of distribution.

The main objective of the present work is to address these issues by providing the model with the
freedom of conditioning its auto-regressive process on latent random quantities that are not imposed
by the training examples.

For instance, for the review generator example above, the model could use a random Boolean value
to decide once for all whether the tokens it produces are from the distribution of negative or positive
reviews, removing the need for a complicated posterior estimate from the tokens already generated.

3 METHOD

Any latent random value Yr, whatever its statistical dependency with the tokens S1, . . . , St and
other latent Y1, . . . , Yr−1 sampled so far, can be expressed under reasonable assumptions as
fr(S1, . . . , St, Y1, . . . , Yr−1, Zr) where Zr is a value coming from a random generator.

Hence, if we provide the model with enough random values Z1, Z2, . . . sampled independently
during generation, a proper training procedure could in principle build families of latent variables
with arbitrary dependency structure, as long as the model’s capacity allows it to encode fr.

In the same way that the choice of a token during sampling can be expressed as a function of
a random value and the logits, any activation which is a function of a random value and other
activations can be interpreted as a decision made by the model during the generative process. Such
decisions make the latent activation non-deterministic functions of the tokens, and observing the
latter only gives a partial information about the former.

3.1 CONDITIONAL VARIATIONAL AUTOENCODER

Generating a full sequence from scratch with a model that depends on a random variable Z is trivial:
sample Z ∼ P (Z) and then run the standard auto-regressive process, with the computation of the
logits modulated by Z.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

S1:T−1

Embeddings

Decoder Causal
Transformer Block

Encoder Non-Causal
Transformer Block

Q KV

Encoder read-out FC

Binary mapper

Z

Post-sampler FC

Decoder Causal
Transformer Block

Q KV

Decoder Causal
Transformer Block

Decoder read-out FC

Logits S2:T

ζ

T

T × D

T × D

T × D

T × V

T × D

T × D

T × H

T × 2H

T × 2H

+

T × D

T × D

×L/2

×L/2− 1

Figure 1: The Free Transformer. We omit the normalization layers and residual connections from the
model and the batch size from the tensor shapes for clarity. The operators in orange are specific to
the encoder and are evaluated only for training or KV cache pre-filling, those with a dashed contour
have no trainable parameters. The Binary Mapper is described in § 3.4. During generation, the
encoder is not evaluated and Z is sampled uniformly among the one-hot vectors of dimension 2H .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Training the model, however, is far more involved. Given a training sample S, the objective is to
maximize

P (S) =

∫
z

P (S | Z = z)P (Z = z)dz, (3)

which can be estimated only if we can get Zs consistent with S, that is Zs that we would sample if
the overall process was generating S. This amounts to a complex inference problem if we want Z
to capture meaningful structural properties of the sequence.

Providing those Zs is the role of the encoder of a Variational Autoencoder (Kingma & Welling,
2013), whose main purpose is to sample from a “good” distribution Q(Z | S) so that a sampled Z
modulates the decoder in a way that leads it to generate S.

We follow this approach and optimize jointly the parameters of the decoder and the parameters of a
second model, which is an encoder in the VAE sense.

Even though the noise Z has no relation to S initially, if the training succeeds, the model will use
it to structure the generative process. In the example of a movie review generator of the previous
section, for instance, given a review from the training set, the encoder would implicitly classify it
as positive or negative, and generate a consistent Z. Increasing P (S | Z) with that Z could be
interpreted as improving the “negative review generator” or the “positive review generator” that are
implicitly encoded in the decoder’s weights.

A key element of this approach is to limit the amount of information flowing from the encoder to
the decoder through Z, so that the encoder does not provide quantities that should be computed by
the decoder. At the limit the encoder could copy entirely S into Z so that a trivial decoder, useless
without the encoder, hence in inference, would score perfectly in training.

The formal derivation of the VAE shows that the proper measure of information is the Kullback-
Leibler divergence between Q(Z | S) and P (Z), and that the loss to minimize should sum it with
the reconstruction loss, which here is the usual cross-entropy.

3.2 MODEL STRUCTURE

In what follows, we call “Transformer Block” the usual combination of a Multi-Head Attention layer
and a MLP-like tokenwise module, with normalisation layers and residual connections.

As pictured on Figure 1, the Free Transformer is a standard decoder with a noise Z injected in its
middle layer. This allows to share half of the Transformer blocks of the decoder with the encoder,
cutting down drastically the computational overhead by having a single Transformer block that has
to be computed specifically for the encoder. Hence, as we will see, this model possesses all the
components of a decoder Transformer and has an additional non-causal block and two linear layers
for the encoder. While we did not investigate what is the best depth to inject Z, doing it too early
would reduce the encoder’s capacity, and doing it too late would reduce the decoder’s capacity to
process the latent variables.

For clarity, we omit in what follows the batch size in the tensor shapes.

As a standard decoder Transformer, the Free Transformer processes a sequence of tokens by first
encoding them with the embedding table into a tensor X0 of shape T ×D.

Then it evaluates sequentially the first L/2 Transformer blocks to get XL/2 of same shape, and
at this point, it samples a sequence of one-hot vectors Z = (Z1, . . . , ZT) ∈ {0, 1}T×C . During
generation, this is done by sampling, for each Zt, an index c uniformly in {0, . . . , C − 1}, and then
encoding it as a one-hot vector of dimension C. During training or KV cache pre-filling, Z has to
be consistent with the tokens of S already fixed, and the sampling is done with the encoder instead,
as described in § 3.3.

This tensor Z is processed by a linear layer to obtain a tensor R of shape T×D. Then, the L/2+1th
Transformer block gets as input for queries the tensor XL/2 and as input for keys and values the
tensor XL/2 + R. The rest of the Transformer blocks are evaluated in sequence to get XL which is
processed by the read-out linear layer to obtain the logit tensor L of shape T × V , where V is the
vocabulary suze.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 ENCODER AND LOSS

As stated in the previous section, during training or KV cache pre-filling, the tensor Z is sampled
with the encoder.

The Free Transformer possesses one Transformer block specific to the encoder, which is non-causal,
making the encoder as a whole non-causal. This is necessary since the conditioning by the decoder
may have long-range effects, requiring the full sequence to be taken into account to get a proper
conditional distribution of the latent.

This encoder-specific block gets as input for the queries a trained token embedding ζ replicated to
match the sequence length, and for the keys and values the output of the first half of the decoder’s
blocks. The motivation for using a learned constant input for the queries instead of the standard
representation of the input sequence is to prevent the encoder from building a token-wise mapping
and make it instead capture global properties of the sequence that may be more transferable across
tasks and data-sets.

A linear readout computes from the encoder block’s output a vector of dimension H = 16 for
every token. These components are interpreted as logits of individual bit, used to sample a value in
{0, . . . , 2H − 1} which is encoded into a one-hot vector of dimension 2H = 65, 536, with gradient
pass-through, as described in § 3.4.

Hence, the random embedding Z is a sequence of T one-hot vectors Zt of dimension 2H . The
prior distribution used for generation is uniform P (Zt = z) = 1/2H , and Q(Z | S = s) is the
distribution corresponding to the sampling with the encoder described above. The KL divergence is
then equal to

DKL

(
Q(Zt | S1, . . . , ST)

∥∥∥P (Zt)
)
= H log 2 +

2H∑
z=1

Q(Z = z | S) logQ(Z = z | S). (4)

We control it by adding it to the loss, and prevent its collapse by using a token-wise free bits method
(Kingma et al., 2016). This means that we sum the KL divergence of individual Zt that are above a
threshold κ and ignore the others.

This leads us to use for training loss the sum of the standard cross-entropy and the following quantity

1

T

T∑
t=1

max
(
0, DKL

(
Q(Zt | S1, . . . , ST)

∥∥∥P (Zt)
)
− κ
)
, (5)

where the threshold κ is an hyperparameter.

3.4 BINARY MAPPER

The last linear layer of the encoder computes for every index t of the sequence being processed a
vector Lt = (Lt,1, . . . , Lt,H) ∈ RH , whose components are interpreted as the logits of individual
bits of a binary encoding.

The Binary Mapper samples those bits Bt,1, . . . , Bt,H independentely with

P (Bt,h = 1) =
1

1 + e−Lt,h
, (6)

and outputs a one-hot vector Yt of dimension 2H corresponding to the resulting value:

Yt,d =

{
1 if d = 1 +

∑H
h=1 2

h−1Bh,t

0 otherwise.
(7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

During training, the computation also propagates the gradient of the probabilities of the 2H values.
If U(d) = (U1(d), . . . , UH(d)) ∈ {0, 1}H is the binary encoding of d, and we define Gt as

Gt,d = P (Bt = U(d− 1))

= exp

(∑
h

logP (Bt,h = Uh(d− 1))

)

= exp

(∑
h

(1− Uh(d− 1)) log

(
1− 1

1 + e−Lt,h

)
+ Uh(d− 1) log

(
1

1 + e−Lt,h

))
,

then the Binary Mapper outputs

Yt,d +Gt,d − detach(Gt,d), (8)

where ∀x, detach(x) = x and Jdetach(x) = 0.

The motivation for using a binary encoding instead of having the encoder output 2H logits directly
is to facilitate the gradient pass-through thanks to the monotonicity of the sigmoid.

4 EXPERIMENTS

We first test the qualitative behavior of the Free Transformer on a synthetic task in § 4.1, then
compare it on multiple benchmarks to baselines with 1.5B and 8B parameters models for various
KL divergence thresholds in § 4.4, and finally assess the performance gain of a 8B parameter model
trained on 1T tokens in § 4.5.

4.1 SYNTHETIC DATASET

To confirm that the Free Transformer indeed utilizes Z to condition its generative process, we de-
signed a synthetic dataset and trained a small Free Transformer with different free-bits thresholds.
Doing so allows to observe what aspects of the modeling are packed by the encoder in Z.

Each sequence in our synthetic training set is generated as follows:

• start with a string of 64 underscores “_”,
• pick an upper case letter and a position in the sequence at random, and replace the under-

scores there with a “target” made of the selected letter repeated 8 times,
• replace any character with an exclamation mark with probability 1/16

• concatenate a prompt made of the target’s letter followed by a “>”.

A few sequences generated with that process are shown in Figure 2, Appendix B.

We trained a Free Transformer on this data for four different values of the free bits threshold κ, and
generated with the same random prompt three groups of sequences with each model, as pictured in
Figure 3, Appendix B. For each model, in the blue group, the noise Z is sampled independently for
each sequence, whereas we sampled one Z only for each of the green groups, used to generate all
its sequences.

For very low values of the KL divergence, the model behaves like a vanilla model (Figure 3, top left),
and when the value increases, the model encodes initially the position of the target alone in the latent
state (Figure 3, top right), then encodes both the target position and the noise (Figure 3, bottom left),
and finally encodes the full sequence, resulting in incorrect generation (Figure 3, bottom right).

4.2 BASELINE ARCHITECTURES

For assessing performance on standard benchmarks we used decoder-only Transformers imple-
mented in a sota proprietary Transformer codebase. Those are well optimized models using the
SwiGLU non-linearity (Shazeer, 2020), pre-normalization with RMSNorm (Zhang et al., 2019),
Rotary Positional Embedding (RoPE, Su et al. 2021), and Group Query Attention (GQA, Ainslie
et al. 2023). The vocabulary size is 217 ≈ 130k.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We used two sizes of models:

• A 1.5B model, with 28 layers, weight tying between the embeddings and the logit readout,
model dimension 1536, 12 query heads, and 2 key-value heads. It is trained with 47B
tokens, which requires 32 H100s for ≈ 12 hours.

• A 8B model with the structure of a Llama-3, which is 32 layers, model dimension 4096,
32 query heads, and 8 key-value heads. It is trained with 200B tokens which requires 256
H100s for ≈ 24 hours, or with 1T tokens, which takes 5 days.

We compare those baselines to the equivalent Free Transformers, which require one additional layer
for the encoder during training and KV cache pre-filling, resulting in a compute and memory over-
head of 1/28 ≈ 3.6% for the 1.5B and 1/32 ≈ 3.1% for the 8B.

4.3 SETUP AND HYPERPARAMETERS

We kept our findings as clear as possible by avoiding other sources of performance improvement:

• We stuck to the baseline architecture, optimizer, and learning rate schedule that were used
to train the baselines, and did not optimize any hyperparameter for our setup.

• We avoided any recipes for the VAE components, such as removing sampling in inference.
We followed the formal expressions rigorously.

• We fixed H to 16 so that the dimention of Zt was comparable to the vocabulary size of 217.

We stress that the optimization hyperparameters were highly tuned for the baselines, and it is prob-
able that a combination of an encoder and a decoder has specific requirements that would greatly
benefit from an adapted training procedure.

4.4 EXPLORATORY RESULTS

We ran a series of experiments to assess the general behavior of the Free Transformer, and to cali-
brate the κ threshold.

For any value of κ, the cross-entropy goes down regularly during training, with no more instability
and spikes than what happens with the baselines. The KL divergence rapidly goes under κ and
stays there. When we compare the cross-entropies for various κ, they go down when κ increases
as expected, but the values remain extremely close, with a difference of the order of 0.01 for a
cross-entropy of ≈ 2 for the 1.5B and ≈ 1.8 for the 8B.

For both sizes of models, setting κ = 4 log 2, corresponding to 4 bits of information per token,
resulted in a collapse of the cross-entropy, indicating that the encoder found a way to channel fully
the tokens to predict, and resulting in a collapse of performance on the downstream tasks. It is
noteworthy that the baseline 8B model reaches during training a cross-entropy of 1.8 = 2.59 log(2),
hence may explain why allowing 2 bits does not collapse, while allowing 4 bits does.

The performance on downstream tasks are given in Appendix E, Table 2 for the 1.5B models, and
Table 3 for the 8B models, both for four different values of κ corresponding to 1/2 to 2 bits of
information per token. Graphs of performance during training are given in Appendix F in Figures 4
and 5.

We observe a substantial increase of performance on HumanEval+, MBPP, and GSM8K which are
arguably the benchmarks requiring some form of reasoning, and there also is a clear improvement
for the 8B model with 1/2 bit of KL divergence on MMLU and CSQA, which are multi-choice
questions.

4.5 RESULTS WITH 1T TOKENS TRAINING

To measure improvement in a more realistic setting, closer to models actually used in real applica-
tions, we trained 8B models on 1T tokens, which improves drastically the performance of both the
baseline and the Free Transformer.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

8B models (1T tokens)
Final value Average (last third)

Baseline Free Transformer Baseline Free Transformer
1/2 bit 1/2 bit

Generative code/math
human eval plu (pass@1) 0.268 0.299 +11.36% 0.245 0.256 +4.22%
mbpp (pass@1) 0.428 0.440 +2.80% 0.396 0.421 +6.08%
gsm8k (em) 0.321 0.331 +2.83% 0.280 0.296 +5.84%

Multi-choice general knowledge / common sense
mmlu (macro avg/acc char) 0.592 0.623 +5.20% 0.567 0.596 +5.16%
csqa (acc char) 0.707 0.748 +5.79% 0.689 0.733 +6.28%
hellaswag (acc char) 0.799 0.799 -0.01% 0.787 0.788 +0.18%
winogrande (acc char) 0.739 0.735 -0.53% 0.725 0.727 +0.27%
obqa (acc completion) 0.564 0.562 -0.35% 0.556 0.551 -0.86%
arc challenge (acc completion) 0.542 0.535 -1.42% 0.524 0.522 -0.40%
arc easy (acc completion) 0.721 0.711 -1.41% 0.706 0.711 +0.68%
piqa (acc char) 0.805 0.812 +0.88% 0.802 0.807 +0.61%

Multi-choice text understanding
race.high (acc char) 0.473 0.463 -2.06% 0.467 0.460 -1.55%
race.middle (acc char) 0.632 0.634 +0.33% 0.623 0.624 +0.16%
boolq (acc completion) 0.713 0.725 +1.63% 0.755 0.754 -0.10%

Culture
nq (em) 0.248 0.247 -0.22% 0.229 0.227 -0.76%
tqa (em) 0.583 0.577 -1.00% 0.549 0.544 -0.90%

Table 1: Performance of 8B models trained on 1T tokens. We also provide the average over the last
third of the iterations to mitigate the irregularity of the performance increase during training and
get a more accurate estimate of the relative improvement. The optimization hyperparameters were
tuned for the baseline and kept unchanged, but the Free Transformers require 3.1% more compute
and parameters for the encoder. See Figure 6 in Appendix F for the performance during training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Given the results with 200B tokens, we chose the value κ = log(2)/2 corresponding to half a bit of
information per token at most.

The performance on downstream tasks are given in Table 1 and the corresponding graphs during
training in Figure 6 of Appendix F. We provide in the table the performance measured at the end
of the training as for the other configurations, but in addition we also give the average over the last
third of the training. We can observe on the graphs that the rate of improvement tend to be constant
on this interval, which justifies averaging to mitigate the performance fluctuations.

The key result is the boost of performance on HumanEval+, MBPP, GSM8K, MMLU and CSQA,
confirming what we observed in the smaller settings, and a greater stability on other tasks.

5 PREVIOUS WORK

There have been several attempts at combining a VAE and a decoder Transformer, generally with a
focus on improving topic models and providing ways to guide the generation.

The OPTIMUS model (Li et al., 2020) combines a pre-trained BERT as text embedding / encoder,
with a GPT-2 playing the role of decoder, which are fine-tuned with a VAE-like loss.

The latent embedding Z is computed thanks to a CLS token, that is by adding a token to the input
and a read-out to extract its embedding in the output. To modulate the GPT-2 generation with it,
it is either (1) concatenated as an additional token in every layer, or (2) added to the input token
embeddings. Collapse of the KL divergence is prevented during training with the free bits method
(Kingma et al., 2016).

This approach allows for better guided text generation with GPT-2 and better generalization on low-
data languages with BERT.

Xie et al. (2021) extend OPTIMUS with a multi-objective loss, adding in particular the prediction
of the story topic, using the output of another model as ground truth, to obtain a better embedding
space.

The CVAE proposed by Fang et al. (2021) combines two pre-trained GPT-2, one used as the encoder
without causal masking. The embedding Z is an average of the encoder’s output, and the authors
propose three ways to modulate the decoder with linear images of it: (1) add it to each input token
embedding, (2) concatenate it to the Ks and Vs in every layer, (3) add it before the softmax. Experi-
ments demonstrate that this method allows controlling the generation without hurting the quality of
the result.

AdaVAE (Tu et al., 2022) is similarly the combination of two pre-trained GPT-2, the first without
causal masking playing the role of the encoder. The latent embedding Z is extracted from its output
with a slightly modified attention operator. It is then injected into the decoder by either concatenating
an image of it to the keys and values as in OPTIMUS, or before the softmax as in CVAE.

6 CONCLUSION

The Free Transformer is a direct extension of a standard decoder Transformer, with the abstract
structure of a conditional VAE. It is implemented with a single additional non-causal Transformer
block and requires a few percent of computational and memory usage overhead.

Its structure makes it able to learn latent random variables unsupervised, and to condition its gen-
erative process on them. In some ways, this approach aims at achieving in latent space with an
autoencoder what reasoning models do with chains-of-thought in token space and an RL procedure
(DeepSeek-AI et al., 2025). A combination of the two is, of course, promising.

The performance boost without tuning the optimization hyperparameters across multiple bench-
marks and two sizes of models, is a strong signal that the overall approach actually improves the
inductive bias of the vanilla Transformer.

Many properties and design choices should be explored. The performance curves during training
are often unstable, possibly due to the coupling of the optimization of the encoder and the decoder,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and using different optimization methods could be fruitful. The random embedding itself could take
many forms, and the one used in our implementation is arbitrary.

Finally, the behavior in larger scales, both in parameter count and dataset size, remains to be inves-
tigated.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points, 2023. URL https://arxiv.org/abs/2305.13245.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Jennifer Tomoschuk, and Michael Collins. Boolq:
Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,
2019. URL https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carson Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 422–
435, 2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing

10

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen Dong, and Changyou Chen. Transformer-
based conditional variational autoencoder for controllable story generation, 2021. URL https:
//arxiv.org/abs/2101.00828.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Dawn Tang, Mantas
Lee, Eric Rasmussen, Jerry Sherry, Dawn Zhou, et al. Measuring massive multitask language
understanding. arXiv preprint arXiv:2009.03300, 2021. URL https://arxiv.org/abs/
2009.03300.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December 2013. URL
http://arxiv.org/abs/1312.6114. arXiv:1312.6114 [stat].

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improving Variational Inference with Inverse Autoregressive Flow, January 2016. URL http:
//arxiv.org/abs/1606.04934. arXiv:1606.04934 [cs].

Tom Kwiatkowski, Jenny Palomaki, Olivia Redfield, Michael Collins, Ankur P Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, et al. Natu-
ral questions: A benchmark for question answering research. In Transactions of the Association
for Computational Linguistics, volume 7, pp. 453–466, 2019. doi: 10.1162/tacl a 00276. URL
https://aclanthology.org/Q19-1026/.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785–794, 2017. doi: 10.18653/v1/D17-1082. URL
https://aclanthology.org/D17-1082/.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. Op-
timus: Organizing sentences via pre-trained modeling of a latent space, 2020. URL https:
//arxiv.org/abs/2004.04092.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://arxiv.org/abs/2305.01210.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018. doi:
10.18653/v1/D18-1260. URL https://arxiv.org/abs/1809.02789.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. Technical report, OpenAI, 2018. URL
https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2101.00828
https://arxiv.org/abs/2101.00828
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1606.04934
http://arxiv.org/abs/1606.04934
https://aclanthology.org/Q19-1026/
https://aclanthology.org/D17-1082/
https://arxiv.org/abs/2004.04092
https://arxiv.org/abs/2004.04092
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/1809.02789
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020. URL
https://arxiv.org/abs/2002.05202.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2021. URL https://arxiv.org/abs/
2104.09864.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A ques-
tion answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, 2019. doi:
10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421/.

Haoqin Tu, Zhongliang Yang, Jinshuai Yang, and Yongfeng Huang. Adavae: Exploring adaptive gpt-
2s in variational auto-encoders for language modeling, 2022. URL https://arxiv.org/
abs/2205.05862.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, August 2017. URL http:
//arxiv.org/abs/1706.03762. arXiv:1706.03762 [cs].

Zhuohan Xie, Trevor Cohn, and Jey Han Lau. Exploring story generation with multi-task objectives
in variational autoencoders, 2021. URL https://arxiv.org/abs/2111.08133.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish
your sentence? arXiv preprint arXiv:1905.07830, 2019. URL https://arxiv.org/abs/
1905.07830.

Jingjing Zhang, Ruoming Xiong, Richard Socher, and Caiming Wang. Root mean square layer
normalization. arXiv preprint arXiv:1910.07467, 2019. URL https://arxiv.org/abs/
1910.07467.

12

https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://aclanthology.org/N19-1421/
https://arxiv.org/abs/2205.05862
https://arxiv.org/abs/2205.05862
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2111.08133
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ALGORITHMS

Algorithm 1 Forward pass of a standard decoder Transformer
1: procedure FORWARD(tokens)
2: x← embeddings(tokens)
3: for n = 1, . . . , B do
4: x← blocks[n](in = x)
5: end for
6: logits← linear readout(RMS norm(x))
7: return logits
8: end procedure

Algorithm 2 Forward pass of a Free Transformer
1: procedure FORWARD(tokens)
2: x← embeddings(tokens)
3: for n = 1, . . . , B/2 do
4: x← blocks[n](in = x)
5: end for
6: if train or prefill then
7: y ← encoder block(in q = zeta, in kv = x)
8: o← encoder linear readout(RMS norm(y))
9: z ← binary mapper(o)

10: else
11: z ← one hot(uniform sampler())
12: end if
13: r ← linear post sampler(z)
14: x← blocks[B/2 + 1](in q = x, in kv = x+ r)
15: for n = B/2 + 1, . . . , B do
16: x← blocks[n](in = x)
17: end for
18: logits← linear readout(RMS norm(x))
19: return logits
20: end procedure

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B SYNTHETIC EXPERIMENT

K>!_________!_______!_______!____________!_______KKKKKKKK_________

C>___CCCCCCCC_________________!______!_____________!__!__!________

X>___________________!!_________!!___XX!XXXXX_____!_______________

R>!__RRRRRRRR_____________!__!_______________________________!____

P>!__!___PPPPPPPP_

L>_______!_!LLLLLLLL________!___________!!____________!___________

V>__!_________________!__!________VVVVVV!V________!_____!____!____

P>_________PPPPPPPP_____!________________!_______________________!

A>_______!___________!___________________________!_______AAAAAAA!_

P>____________________!____PPPPPP!P____!___________!_________!__!!

I>__!_!__IIIIIIII_________

D>______!_!___________________________!_________!DDDDDDD__________

A>_____!___AAAAAAA!_______________!_________________!______!______

J>_______!_____!_________J!JJJJJJ_____________!___________________

Figure 2: The synthetic sequences of § 4.1 are of fixed length, with a “target” made of a random
letter repeated 8 times at a random position, an i.i.d. noise of exclamation marks, and a prompt
indicating the target’s letter.

T>_________________________________TTTTTTTT_______________________

T>________________________________TTTTTTTT________________________

T>_________________________________TTTTTTTT_______________________

T>_____________________________________!TTTTTTTT__________________

T>___!_______TTTTTTTT___

T>_________________________________TTTTTTTT_______________________

T>___TTTTTTTT___

T>__!TTTTTTTT_

T>___________________________!____________________________TTTTTTTT

T>___TTTTTTTT_

T>___TTTTTTTT___

T>___TTTTTTTT___

T>___________________________________TTTTTTTT______!_____!____!___

T>___TTTTTTTT___________

T>__________________________________TTTTTTTT______________________

κ = log(2)/64 (1/64 bit)

F>___FFFFFFFF_

F>___________________FFFFFFFF__________!__________!_______________

F>_________________FFFFFFFF________________________!____________!_

F>___________________________________FFFFFFFF__________________!__

F>__!FFF!FFFF___________

F>_______________________!____________________________FFFFFFFF____

F>__FFFFFFFF____

F>__FFFFFFFF!___

F>___FFFFFFFF!____

F>___FFFFFFFF___

F>_________________________FFFFFFFF!_________________!____________

F>__________!____________FF!FFFFF_________________________________

F>________________________FFFFFFFF___________________!____________

F>_______________________FFFFFFFF_______________!______!__________

F>_______________________FFFFFFFF______________________!__________

κ = log(2)/8 (1/8 bit)

J>JJJJJJJ!____!_________!!__!_!_!__________!___________!___!__!___

J>_____!_____!______!______!_JJJJJJJJ______________________!______

J>___JJJ!JJJJ____________!__!___!_!__!_____!_____!!__!_____!___!__

J>__!___________JJJJJJJJ___________________!________!____!________

J>______!!___!!!_____________JJJJJJJJ!______!!!_!_!___!___________

J>_________JJJ!JJJJ__!______________!__________!!___!!_________!__

J>_________JJJ!JJJJ__!______________!______!____!__!!__________!__

J>_________JJ!JJJJJ__!_______!________!________!!__!!__________!__

J>_________JJJ!JJJJ__!________________!!____!!_!!____!_________!__

J>___!_____JJ!JJJJJ__!______________!_______!__!!_______!______!__

J>__JJJJJJJJ______!___________!____!_!______!_______!__!________!_

J>__JJJJJJJJ______!___________!____!_!________!__!__!__!________!_

J>_JJJJJJJJ_______!_______!________!_!______!_______!__!_______!__

J>_JJJJJJJJ_______!________________!_!________!__!____!!___!____!_

J>_JJJJJJJJ_______!___________!_____!_!_____!_______!__!_______!__

κ = log(2) (1 bit)

O>___________!!________!__!________________!_____!_______!______!!

O>____OOOOO__!

O>O!___O_!__!_!__!__!_OO____!!__OO_________________!!________!___!

O>_____!_____!_____________!_______________!_F___!!_!_______!_____

O>__OOOO!OO!___OO____!____O_!________________________O!____O_____!

O>_________OOOO________O__________!_____________________!!_!O____!

O>_________OO!O________O____O_____!_____________________!!!!O____!

O>_________OO!O________O____O_____!________________O____!__!O____!

O>_________OOOO________O____O_____!_____________________!!_!O____!

O>_________OOOO________O____O_____!______________________!_!O____!

O>__!___OO______________!___OO!O________O!O____________O_____O___!

O>O_!__OOO__________________OOOO________O!O____________O________!!

O>__!___OO__________________OO__________O!O____________O_____O____

O>__!___OO__________________OO__________O!O____O_______O_____O__!!

O>O_!__OOO_________!OO__!___OO__________O!O____________O_____O___!

κ = 8 log(2) (8 bits)

Figure 3: Results with a Free Transformer trained on the synthetic sequences of § 4.1 for different
prompts and free bit thresholds. To investigate the information encoded in the latent tensor, we
sample a Z per sequence of a blue box, and a Z per green box. For very low values of the KL
divergence, the model behaves like a vanilla model (top left), and when the KL divergence increases,
the model encodes initially the position of the target alone in the latent state (top right), then encodes
both the target position and the noise (bottom left), and finally encodes the full sequence, resulting
in incorrect generation (bottom right).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C EVALUATION BENCHMARKS

• HellaSwag: Multiple choices. Common sense focusing on physically situated scenarios.
(Zellers et al., 2019)

• WinoGrande: Large-scale adversarial Winograd-style pronoun resolution (fill-in-the-
blank) designed to reduce annotation artifacts. (Sakaguchi et al., 2019)

• ARC (AI2 Reasoning Challenge): Grade-school science multiple choice. (Clark et al.,
2018)

• PIQA: Physical commonsense multiple choice about everyday goals and affordances. (Bisk
et al., 2019)

• OpenBookQA (OBQA): Open-book science QA: combines a provided set of core facts
with commonsense/world knowledge to answer questions. (Mihaylov et al., 2018)

• RACE: Multiple-choice reading comprehension from Chinese middle-school English ex-
ams. (Lai et al., 2017)

• MMLU: “Massive Multitask Language Understanding”. Questions spanning STEM, hu-
manities, social sciences, etc. (Hendrycks et al., 2021)

• CommonsenseQA (CSQA): Multiple-choice QA requiring commonsense relational knowl-
edge (leveraging ConceptNet relations). (Talmor et al., 2019)

• BoolQ: Yes/no questions paired with passages to evaluate reading comprehension and
entailment-like inference. (Clark et al., 2019)

• GSM8K: Grade-school math word problems requiring multi-step arithmetic reasoning.
(Cobbe et al., 2021)

• HumanEval+: An augmented version of OpenAI’s HumanEval (Chen et al., 2021) with
many more unit tests per problem to reduce test fragility and overfitting in code generation
evaluation. (Liu et al., 2023)

• MBPP: “Mostly Basic Programming Problems.” Short Python programming tasks solvable
by entry-level programmers; includes text spec and example tests. (Austin et al., 2021)

• NQ: “Natural Questions.” Real user queries paired with Wikipedia pages. (Kwiatkowski
et al., 2019)

D PERFORMANCE MEASURES

• For generated answers:

– pass@1 is the proportion of generated pieces of code that produce the expected be-
havior when executed.

– em (“exact match”) is the proportion of generated endings of a sequence that perfectly
match a reference solution.

• For multi-choice based on log probabilities:

– acc completion is the proportion of correct responses when the choice is based on the
sum of the log probabilities normalized with the number of tokens of each possible
choices.

– acc char is the same as acc completion but normalizes with the number of characters.
– macro avg/acc char is the average of acc char over multiple sub-categories of ques-

tions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E EXPLORATORY PERFORMANCE

1.5B models (47B tokens)

Baseline Free Transformer
1/4 bit 1/2 bit 1 bit 2 bits

Generative code/math
human eval plu (pass@1) 0.055 0.079 +44.44% 0.079 +44.44% 0.085 +55.56% 0.085 +55.56%
mbpp (pass@1) 0.112 0.144 +28.57% 0.148 +32.14% 0.152 +35.71% 0.122 +8.93%
gsm8k (em) 0.025 0.028 +12.12% 0.027 +6.06% 0.033 +30.30% 0.027 +6.06%

Multi-choice general knowledge / common sense
mmlu (macro avg/acc char) 0.252 0.265 +5.31% 0.261 +3.76% 0.254 +1.07% 0.257 +2.19%
csqa (acc char) 0.199 0.175 -11.93% 0.199 +0.00% 0.187 -6.17% 0.197 -0.82%
hellaswag (acc char) 0.593 0.591 -0.40% 0.594 +0.15% 0.592 -0.27% 0.595 +0.32%
winogrande (acc char) 0.603 0.604 +0.13% 0.598 -0.79% 0.600 -0.52% 0.597 -1.05%
obqa (acc completion) 0.446 0.450 +0.90% 0.468 +4.93% 0.460 +3.14% 0.490 +9.87%
arc challenge (acc completion) 0.400 0.392 -1.93% 0.386 -3.43% 0.405 +1.29% 0.385 -3.65%
arc easy (acc completion) 0.596 0.602 +0.92% 0.592 -0.64% 0.603 +1.06% 0.592 -0.71%
piqa (acc char) 0.734 0.736 +0.22% 0.738 +0.52% 0.734 +0.07% 0.733 -0.15%

Multi-choice text understanding
race.high (acc char) 0.390 0.382 -2.20% 0.390 +0.00% 0.387 -0.81% 0.386 -1.03%
race.middle (acc char) 0.532 0.511 -3.93% 0.519 -2.49% 0.522 -1.83% 0.514 -3.40%
boolq (acc completion) 0.583 0.632 +8.39% 0.614 +5.35% 0.648 +11.12% 0.620 +6.29%

Culture
nq (em) 0.081 0.069 -15.36% 0.073 -9.56% 0.075 -7.17% 0.071 -11.95%
tqa (em) 0.205 0.191 -6.93% 0.190 -7.58% 0.200 -2.84% 0.197 -4.13%

Table 2: Performance of 1.5B models trained on 47B tokens. The training procedure was tuned
for the baseline and kept unchanged, but the Free Transformers require 3.6% more compute and
parameters for the encoder. See Figure 4 in Appendix F for the performance during training.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

8B models (200B tokens)

Baseline Free Transformer
1/4 bit 1/2 bit 1 bit 2 bits

Generative code/math
human eval plu (pass@1) 0.159 0.171 +7.69% 0.189 +19.23% 0.165 +3.85% 0.177 +11.54%
mbpp (pass@1) 0.278 0.330 +18.71% 0.306 +10.07% 0.298 +7.19% 0.318 +14.39%
gsm8k (em) 0.086 0.079 -8.77% 0.095 +9.65% 0.104 +20.18% 0.096 +10.53%

Multi-choice general knowledge / common sense
mmlu (macro avg/acc char) 0.359 0.337 -6.13% 0.398 +10.97% 0.365 +1.81% 0.345 -4.00%
csqa (acc char) 0.356 0.292 -17.93% 0.450 +26.21% 0.346 -2.99% 0.324 -8.97%
hellaswag (acc char) 0.735 0.737 +0.26% 0.737 +0.26% 0.732 -0.45% 0.738 +0.39%
winogrande (acc char) 0.680 0.667 -1.86% 0.664 -2.32% 0.664 -2.32% 0.667 -1.86%
obqa (acc completion) 0.522 0.508 -2.68% 0.484 -7.28% 0.530 +1.53% 0.554 +6.13%
arc challenge (acc completion) 0.465 0.483 +3.87% 0.468 +0.55% 0.452 -2.95% 0.485 +4.24%
arc easy (acc completion) 0.677 0.676 -0.25% 0.665 -1.81% 0.668 -1.44% 0.679 +0.31%
piqa (acc char) 0.774 0.780 +0.77% 0.782 +1.05% 0.785 +1.41% 0.793 +2.46%

Multi-choice text understanding
race.high (acc char) 0.433 0.447 +3.30% 0.443 +2.25% 0.444 +2.58% 0.435 +0.53%
race.middle (acc char) 0.594 0.592 -0.35% 0.591 -0.47% 0.587 -1.17% 0.584 -1.64%
boolq (acc completion) 0.705 0.632 -10.37% 0.632 -10.33% 0.687 -2.47% 0.671 -4.82%

Culture
nq (em) 0.181 0.183 +1.38% 0.167 -7.67% 0.173 -4.14% 0.168 -6.90%
tqa (em) 0.440 0.438 -0.28% 0.443 +0.80% 0.434 -1.19% 0.446 +1.45%

Table 3: Performance of 8B models trained on 200B tokens. The training procedure was tuned
for the baseline and kept unchanged, but the Free Transformers require 3.1% more compute and
parameters for the encoder. See Figure 5 in Appendix F for the performance during training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F PERFORMANCE DURING TRAINING

0k 10k 20k 30k 40k
0.00

0.02

0.04

0.06

0.08

0.10

human_eval_plu (pass@1)

0k 10k 20k 30k 40k
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

mbpp (pass@1)

0k 10k 20k 30k 40k
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
gsm8k (em)

0k 10k 20k 30k 40k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
mmlu (macro_avg/acc_char)

0k 10k 20k 30k 40k
0.00

0.05

0.10

0.15

0.20

0.25

csqa (acc_char)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hellaswag (acc_char)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

winogrande (acc_char)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

0.5

0.6
obqa (acc_completion)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

0.5
arc_challenge (acc_completion)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

arc_easy (acc_completion)

0k 10k 20k 30k 40k
0.0

0.2

0.4

0.6

0.8

piqa (acc_char)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

race.high (acc_char)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

race.middle (acc_char)

0k 10k 20k 30k 40k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
boolq (acc_completion)

0k 10k 20k 30k 40k
0.00

0.02

0.04

0.06

0.08

0.10
nq (em)

0k 10k 20k 30k 40k
0.00

0.05

0.10

0.15

0.20

0.25
tqa (em)

Baseline 1.5B FT 1.5B 1/4 bit FT 1.5B 1/2 bit FT 1.5B 1 bit FT 1.5B 2 bits

Figure 4: Experiments with 1.5B models trained on 47B tokens. Comparison on standard bench-
marks of the baseline and our models. The optimization hyperparameters were tuned for the baseline
and kept unchanged, but the Free Transformers require 3.6% more compute and parameters for the
encoder.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0k 10k 20k 30k 40k 50k
0.00

0.05

0.10

0.15

0.20

human_eval_plu (pass@1)

0k 10k 20k 30k 40k 50k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

mbpp (pass@1)

0k 10k 20k 30k 40k 50k
0.00

0.02

0.04

0.06

0.08

0.10

0.12

gsm8k (em)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

mmlu (macro_avg/acc_char)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

csqa (acc_char)

0k 10k 20k 30k 40k 50k
0.0

0.2

0.4

0.6

0.8

hellaswag (acc_char)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

winogrande (acc_char)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

obqa (acc_completion)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

0.6
arc_challenge (acc_completion)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

arc_easy (acc_completion)

0k 10k 20k 30k 40k 50k
0.0

0.2

0.4

0.6

0.8

piqa (acc_char)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

race.high (acc_char)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

race.middle (acc_char)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

boolq (acc_completion)

0k 10k 20k 30k 40k 50k
0.00

0.05

0.10

0.15

0.20

nq (em)

0k 10k 20k 30k 40k 50k
0.0

0.1

0.2

0.3

0.4

0.5

tqa (em)

Baseline 8B FT 8B 1/4 bit FT 8B 1/2 bit FT 8B 1 bit FT 8B 2 bits

Figure 5: Experiments with 8B models trained on 200B tokens. Comparison on standard bench-
marks of the baseline and our models. The training procedure was tuned for the baseline and kept
unchanged, but the Free Transformers require 3.1% more compute and parameters for the encoder.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0k 100k 200k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

human_eval_plu (pass@1)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

0.5

mbpp (pass@1)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

gsm8k (em)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

mmlu (macro_avg/acc_char)

0k 100k 200k
0.0

0.2

0.4

0.6

0.8

csqa (acc_char)

0k 100k 200k
0.0

0.2

0.4

0.6

0.8

1.0
hellaswag (acc_char)

0k 100k 200k
0.0

0.2

0.4

0.6

0.8

winogrande (acc_char)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

obqa (acc_completion)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

arc_challenge (acc_completion)

0k 100k 200k
0.0

0.2

0.4

0.6

0.8

arc_easy (acc_completion)

0k 100k 200k
0.0

0.2

0.4

0.6

0.8

1.0
piqa (acc_char)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

0.5

0.6
race.high (acc_char)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
race.middle (acc_char)

0k 100k 200k
0.0

0.2

0.4

0.6

0.8

1.0
boolq (acc_completion)

0k 100k 200k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

nq (em)

0k 100k 200k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tqa (em)

Baseline 8B FT 8B 1/2 bit FT 8B 1 bit

Figure 6: Experiments with 8B models trained on 1T tokens. Comparison on standard benchmarks
of the baseline and our models. The training procedure was tuned for the baseline and kept un-
changed, but the Free Transformers require 3.1% more compute and parameters for the encoder.

20

	Introduction
	Motivation
	Method
	Conditional Variational Autoencoder
	Model structure
	Encoder and Loss
	Binary Mapper

	Experiments
	Synthetic Dataset
	Baseline architectures
	Setup and hyperparameters
	Exploratory Results
	Results with 1T tokens training

	Previous work
	Conclusion
	Algorithms
	Synthetic experiment
	Evaluation Benchmarks
	Performance measures
	Exploratory Performance
	Performance during training

