
How Crucial is Transformer in Decision Transformer?

Max Siebenborn
Technical University of Darmstadt
Department of Computer Science

max.siebenborn@stud.tu-darmstadt.de

Boris Belousov
Technical University of Darmstadt

German Research Center for AI (DFKI)
Systems AI for Robot Learning Group

Junning Huang
Technical University of Darmstadt
Department of Computer Science

Intelligent Autonomous Systems Group

Jan Peters
Technical University of Darmstadt

German Research Center for AI (DFKI)
Hessian.AI & Centre for Cognitive Science

Abstract

Decision Transformer (DT) is a recently proposed architecture for Reinforcement
Learning that frames the decision-making process as an auto-regressive sequence
modeling problem and uses a Transformer model to predict the next action in a
sequence of states, actions, and rewards. In this paper, we analyze how crucial
the Transformer model is in the complete DT architecture on continuous control
tasks. Namely, we replace the Transformer by an LSTM model while keeping
the other parts unchanged to obtain what we call a Decision LSTM model. We
compare it to DT on continuous control tasks, including pendulum swing-up and
stabilization, in simulation and on physical hardware. Our experiments show that
DT struggles with continuous control problems, such as inverted pendulum and
Furuta pendulum stabilization. On the other hand, the proposed Decision LSTM
is able to achieve expert-level performance on these tasks, in addition to learning
a swing-up controller on the real system. These results suggest that the strength
of the Decision Transformer for continuous control tasks may lie in the overall
sequential modeling architecture and not in the Transformer per se.

1 Introduction

Transformers [27] have shown impressive results across a number of problem domains in Natural
Language Processing [5, 17, 3] and Computer Vision [6, 13]. Inspired by these results, [4, 11] framed
Reinforcement Learning (RL) as a sequence modeling problem, in which Transformer predicts the
next element in a sequence of states, actions and rewards. In [4], the Decision Tranformer (DT)
is proposed, an offline RL algorithm that auto-regressively models trajectories using the GPT-2
architecture [18]. The Trajectory Transformer architecture from [11] is similar to DT but instead of
return-to-go values it utilizes beam-search planning for sequence generation and employs state and
reward prediction as well as discretization. The evaluations in [4] showed that DT is stronger than
straightforward Behavior Cloning (BC) on the D4RL dataset [7], which includes discrete Atari games
and continuous control tasks from OpenAI gym [2]. However, from these experiments it remains
unclear whether Decision Transformer is also competitive for dynamic tasks that require stabilization
of systems around an unstable equilibrium, as well as for real robot control tasks.

In this paper, we evaluate Decision Transformer on robot learning tasks, focusing on two aspects. First,
we evaluate DT on stabilization tasks—on various pendulum swing-up and stabilization environments.
The goal of an agent in these tasks is to reach an unstable equilibrium and stabilize the system around
it. Second, we validate our simulation results on a real robotic platform. This evaluation is crucial
since the gap between simulation and reality is still an open issue in robotics and RL [16, 28], and
the results in simulation do not directly transfer to reality. Furthermore, for real robotic applications,
the model inference time must be sufficiently small to enable real-time control.

Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.



Figure 1: Comparison of the architectures of Decision Transformer (on the left) and the proposed
Decision LSTM (on the right). The bottom items show the sequences of observed return-to-go (RTG)
values, actions and states, which are used to predict the next action in an auto-regressive way. The
key differences between the architectures are the use of an LSTM network as a replacement for the
GPT-2 Transformer and the removal of positional encodings for DLSTM.

In addition to our evaluation of Decision Transformer, we propose a related architecture, which we
call Decision LSTM (DLSTM), that builds on top of DT but replaces the GPT-2 Transformer by an
LSTM [10] model. We use DLSTM to test whether framing RL as a sequence modeling problem
allows using other architectures apart from Transformers, and whether they can yield better results.
We compare the performances of both DT and DLSTM against a straightforward Behavior Cloning
(BC) model which mimics actions based on the observed states without taking rewards into account.

In summary, our paper provides the following three contributions.

• The introduction of Decision LSTM as a novel architecture for offline RL, which builds on
top of Decision Transformer. DLSTM shows the general capabilities of framing RL as a
sequence modeling problem independent of the concrete architecture.

• An evaluation of DT and DLSTM in continuous control tasks that require fine-grained
stabilization. Experiments on a Furuta pendulum platform highlight the issues and trade-offs
of the different architectures when deployed in the real world.

• A thorough investigation concentrated on whether the functionalities and effects of critical
ingredients of the Decision Transformer, such as the return-to-go values, can be validated in
the continuous control environments.

2 Background

A key motivation behind the Decision Transformer [4] architecture is to frame reinforcement learning
as a sequence modeling problem [1]. Sequence modeling is predominant in natural language
processing, where, e.g., a sentence can be seen as a sequence of words. Language models predict the
next word in a sentence by taking the previous words as input [26]. Similarly, DT predicts the next
action in a sequence of states, actions, and rewards. Recurrent Neural Networks (RNNs) [21, 12] and
especially LSTMs [10] have been considered state-of-the-art sequence models thanks to their ability
to process sequences of varying length and make information from previous timesteps persistent
inside the network. However, such sequential processing of data precludes parallelization of RNN
and LSTM computations, resulting in potentially long training times [27].

Recently Transformers [27] have become predominant in natural language processing and sequence
modeling. Transformer is an architecture for auto-regressive sequence modeling that is purely based
on the attention mechanism and does not contain any recurrent or convolutional structures. In contrast
to RNNs and LSTMs, they are highly parallelizable since their attention mechanism does not require
sequential processing of the input elements. Furthermore, models such as BERT [5], and the GPT-x
architectures [17, 18] have shown the capabilities of Transformers to build large pre-trained models
that can be finetuned on specific tasks.

2



(a) Mujoco Inverted Pen-
dulum (Stabilization). (b) OpenAI Pendulum.

(c) Furuta Pendulum
(Simulation).

(d) Furuta Pendulum
(Real Hardware).

Figure 2: Experiment environments to test the capabilities of Decision Transformer and Decision
LSTM on continuous control tasks requiring stabilization.

In terms of computational complexity, Transformer layers are linear in the input dimensionality
and quadratic in the input length [27]. This is advantageous for short input sequences with high-
dimensional latent representations (common in NLP) but can be problematic for long input sequences
(e.g., sequences of states, actions, and rewards in RL problems). Recurrent networks, however, can
have computational advantages for long input sequences with small input dimensionality because
they scale linearly in the input length and quadratically in the input dimensionality.

Decision Transformer [4] brings the benefits of sequence modeling to model-free offline reinforcement
learning. It frames RL as a prediction problem, with the goal of predicting the next action given the
history of past transitions in a trajectory

τ = (R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT ) .

Here, R̂t is the return-to-go (RTG) value, i.e., the sum of the future rewards in the trajectory, st is
the state, and at is the action at time step t, respectively. DT aims to solve the RL problem without
making use of conventional value-based methods such as Dynamic Programming or TD-Learning [4]
by conditioning outputs on RTG values, similar to related return-conditioned approaches [14, 9, 22].

3 Methods

The main question addressed in this paper is whether Transformer is crucial for the Decision
Transformer architecture. We hypothesize that the overall framing of RL as a sequence modeling
problem is more responsible for the strong performance of DT than the use of the Transformer. To
prove this point, we introduce Decision LSTM (DLSTM), a novel architecture which builds on the
Decision Transformer but replaces the GPT-2 model by an LSTM network. The DT and DLSTM
architectures are shown in Figure 1. DLSTM introduces the following architectural adjustments:

• the GPT-2 Transformer is replaced by an LSTM;
• the attention mask is removed because LSTM does not utilize it;
• positional embeddings are removed because LSTM processes inputs sequentially;
• LSTM’s hidden states and cell states are initialized with zero vectors.

The LSTM architecture has proven to be a successful tool for sequence modeling [25]. It provides
computational benefits especially on long sequences, because it scales linearly with the input length
whereas Transformer scales quadratically. Therefore, gains in performance and real-time capability
are expected from DLSTM in RL, where input lengths may range between 100’s to 1000’s timesteps.

We evaluate DT and DLSTM on several continuous control tasks, which are shown in Figure 2.
Additionally, we report the results of a straightforward Behavior Cloning (BC) baseline which
predicts the next action using a feedforward neural network trained on the dataset of past trajectories.
Our experimental methodology consists of the following steps. First, a dataset of trajectories is
collected using a behavior policy. All three approaches—DT, DLSTM, and BC—operate in the offline
mode. Following the D4RL [7] protocol, we collect separate datasets of expert quality (behavior
policy solves the task at expert level) and of replay quality (data from early epochs of training of
an online model-free RL algorithm is mixed with data from late epochs). On the replay data, DT

3



Table 1: Simulation results on expert data. Fully trained DT, DLSTM, and BC models are evaluated
in 4 simulated environments. Mean episode return over the dataset GData and the mean ± standard
deviation of episode returns over 30 evaluation episodes are reported. DLSTM outperforms DT in all
cases, and it outperforms BC in 3/4 environments, performing on par in OpenAI pendulum swing-up.

Evaluation Episode Returns
Environment Dataset GData DT DLSTM BC

Mujoco Pendulum Stabilization Expert 1000.00 ± 0.00 454.72 ± 360.12 985.31 ± 71.96 61.61 ± 170.16
OpenAI Pendulum Swing-up Expert -207.53 ± 167.75 -761.44 ± 375.71 -252.86 ± 233.21 -235.78 ± 204.45

Furuta Pendulum Stabilization Expert 5.95 ± 0.02 0.46 ± 0.03 5.93 ± 0.01 1.82 ± 1.60
Furuta Pendulum Swing-up Expert 2.93 ± 0.63 0.74 ± 0.24 1.79 ± 1.12 0.87 ± 0.21

0 5 10 15 20 25
Training epoch

0

1

2

3

4

5

6

M
ea

n 
ep

is
od

e 
re

tu
rn

Furuta Pendulum Stabilization Expert

Decision Transformer Decision LSTM Behavioral Cloning Mean dataset return

(a) Learning curves / expert data, Furuta stabilization

0.0 2.5 5.0

30

20

10

0

10

20

30

d
/d

t

DLSTM

0.0 2.5 5.0

BC

Equilibrium Points
0.0 2.5 5.0

DT

Trajectory Return

0

6

Furuta Pendulum Stabilize Expert

(b) Phase portraits / expert data, Furuta stabilization

0 5 10 15 20 25 30 35 40
Training epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n 
ep

is
od

e 
re

tu
rn

Furuta Pendulum Swingup Expert

Decision Transformer Decision LSTM Behavioral Cloning Mean dataset return

(c) Learning curves / expert data, Furuta swing-up

0.0 2.5 5.0

30

20

10

0

10

20

30
d

/d
t

DLSTM

0.0 2.5 5.0

BC

Equilibrium Points
0.0 2.5 5.0

DT

Trajectory Return

0

3

Furuta Pendulum Swing-up Expert

(d) Phase portraits / expert data, Furuta swing-up

Figure 3: Learning curves (left) and phase portraits (right) for DT, DLSTM, and BC trained on expert
data for stabilization (top) and swing-up (bottom) tasks. Especially stabilization (a) appears to pose a
challenge to DT and BC, whereas DLSTM quickly achieves the mean dataset return and is able to
keep the pendulum at equilibrium, as seen in (b). The swing-up task (c) is significantly harder, and
again only DLSTM manages to reach sufficiently high return, albeit not in all runs. Phase portraits
(d) show that DLSTM is the only model which is able to stabilize the pendulum.

and DLSTM are expected to perform better than BC, because they weigh experiences by the reward,
whereas BC does not take the reward into account. Second, all models are trained until convergence
on the collected data. Third, fully optimized models are evaluated over 30 runs in the respective
environments. Our implementation is based on the original DT codebase with default parameters.

4 Experiments

In this section, we present and discuss the results of the experiments described in Section 3.

Simulation results on expert data. Table 1 shows the performance of DT, DLSTM, and BC on
simulated swing-up and stabilization tasks. Decision LSTM outperforms both Decision Transformer
and Behavioral Cloning in most experiments, and performs on par with BC on OpenAI pendulum
swing-up. The superior performance of DLSTM is especially apparent in the more challenging Furuta
pendulum environment, both on the swing-up and stabilization tasks, on which DT and BC fail to
reach the expert performance.

Figures 3a and 3c show the learning curves on stabilization and swing-up tasks in the Furuta pendulum
environment. DLSTM is the only model that manages to solve both tasks, albeit the swing-up is
not successful in every run. Figures 3b and 3d show the phase portraits of the trained models. In
the stabilization task in Figure 3b, the pendulum starts in the upright unstable equilibrium state,
indicated by the points α = 0 and α = 2π. DLSTM achieves stabilization and high returns in all

4



Table 2: Simulation results on replay data. DLSTM is the only model which achieves better mean
episode return than the average return GData of the training dataset.

Evaluation Episode Returns
Environment Dataset GData DT DLSTM BC

OpenAI Pendulum Swing-up Replay -837.35 ± 414.12 -1083.78 ± 346.79 -569.89 ± 568.49 -815.41 ± 577.83
Furuta Pendulum Swing-up Replay 1.56 ± 1.70 0.51 ± 0.25 1.30 ± 1.28 0.89 ± 0.83

0 5 10 15 20 25 30 35 40
Training epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n 
ep

is
od

e 
re

tu
rn

Furuta Pendulum Swingup Replay

Decision Transformer Decision LSTM Behavioral Cloning Mean dataset return

(a) Learning curves / replay data, Furuta swing-up

0.0 2.5 5.0

30

20

10

0

10

20

30

d
/d

t

DLSTM

0.0 2.5 5.0

BC

Equilibrium Points
0.0 2.5 5.0

DT

Trajectory Return

0

3

Furuta Pendulum Swing-up Replay

(b) Phase portraits / replay data, Furuta swing-up

Figure 4: Learning curves (left) and phase portraits (right) for DT, DLSTM, and BC trained on replay
data for the Furuta swing-up task. Notably, only DLSTM is able to achieve higher returns than the
mean dataset return (the shaded blue area in (a) goes higher than the dotted red line). The phase
portraits (b) again show that DLSTM is the only model that stabilizes the pendulum.

evaluation episodes. Meanwhile, BC sometimes achieves stabilization (indicated by green trajectories,
high return), but often fails (red trajectories, low return). DT always fails at the stabilization task:
trajectories diverge from the equilibrium state in all episodes. On the swing-up task (Figure 3d), BC
and DT manage to bring the pendulum to the upright position, but fail to stabilize it. DLSTM, on the
other hand, is able to swing-up and stabilize the pendulum, albeit not at expert level in every run.

Simulation results on replay data. On the replay data, DLSTM again achieves better performance
than the other models (Table 2). Notably, DLSTM is the only model which is able to improve upon
the demonstrations, i.e., achieve a higher return than in the training dataset. Figure 4a shows the
corresponding learning curves and Figure 4b the phase portraits. The results are similar to Figure 3d.

Real platform results. For a real-world evaluation, the models trained on an expert dataset recorded
on the real Furuta pendulum platform are evaluated in this environment. Table 3 indicates that DLSTM
significantly outperforms DT and BC. On the standard swing-up task, DLSTM achieves stabilization
and high return in many but not all episodes, while the other models fail to bring the pendulum to the
upright position altogether. Despite successful swing-up, DLSTM fails at stabilizing the pendulum in
most cases, therefore the episode return is lower than in the expert data. Such performance gap can
be explained by the sim-to-real discrepancy and the real-time requirements of the physical platform.

To show that DLSTM is both capable of swinging up and stabilizing the pendulum, we test its
capabilities on the respective tasks independently. First, we let the DLSTM policy swing up the
pendulum and, after a certain pose is reached, let a PD controller take over and stabilize the pendulum.
The second row in Table 3 shows that this combination of the controllers leads to higher mean returns
than before. Apparently, DLSTM has problems dealing with the high velocities which occur during
the swing-up phase but which were not observed in the simulation training data.

Finally, we evaluate all models on the pure stabilization task on the real Furuta pendulum platform.
We use a given expert policy to swing up and stabilize the pendulum for a short period of time, and
then let the respective models (DT, DLSTM or BC) take over to continue stabilizing the pendulum.
DLSTM and BC achieve expert performance, while DT fails on this task (3rd row in Table 3).

Real-time capabilities. One reason for the worse performance of the considered models on the
physical platform compared to simulation may be the time delays in the real-time control loop. To
investigate this issue, we compare the mean inference times, i.e., the time needed to generate an
action, for the different models in the Furuta pendulum environment. Figure 5 shows response times
measured on a laptop and a stationary PC. The horizontal orange line shows the maximum allowed
time for action generation in the real-time loop at 250Hz. This control frequency is necessary to
enable stable and reliable pendulum stabilization. DT and DLSTM have higher inference times
compared to BC and a PD-controller. DT on average takes twice the time compared to DLSTM.

5



Table 3: Experimental results on the real Furuta pendulum (denoted FPRR) on expert data. DLSTM
matches expert performance on the stabilization task and achieves high but less than expert reward
on swing-up and swing-up with PD-stabilization tasks. Only DLSTM was evaluated with PD-
stabilization, because DT and BC failed to swing-up the real Furuta pendulum.

Evaluation Episode Returns
Environment Dataset GData DT DLSTM BC

FPRR Swing-up Expert 2.93 ± 0.63 0.38 ± 0.15 1.11 ± 0.52 0.22 ± 0.18
FPRR Swing-up with PD stabilization Expert 2.93 ± 0.63 − 2.17 ± 0.60 −

FPRR Stabilization Expert 5.95 0.38 ± 0.08 5.98 ± 0.00 5.96 ± 0.02

DT DLSTM BC PD0.000

0.001

0.002

0.003

0.004

Av
er

ag
e 

Re
sp

on
se

 T
im

e 
[s

]

Response Times for Mobile Notebook

Environment Period Length

(a) Inference times on laptop with Intel(R) Core(TM)
i5-7200U CPU, 2 cores @ 2.50 GH.

DT DLSTM BC PD0.000

0.001

0.002

0.003

0.004

Av
er

ag
e 

Re
sp

on
se

 T
im

e 
[s

]

Response Times for Laboratory Computer

Environment Period Length

(b) Inference times on computer with Intel(R)
Core(TM) i7-9700K CPU, 8 cores @ 3.60 GH.

Figure 5: Mean inference times for DT, DLSTM, BC, and a PD controller on a real Furuta pendulum
commanded from a laptop (a) and a stationary PC (b). In both cases, the mean inference time is below
the control interval 0.004s for all methods. However, DT takes twice the time compared to DLSTM.

600 800 1000 1200 1400 1600
RTG value

0

200

400

600

800

1000

M
ea

n 
ep

is
od

e 
re

tu
rn

Mujoco Pendulum Stabilization

Decision Transformer Decision LSTM Mean Dataset Return

(a) RTG influence in Mujoco InvPend

800 600 400 200 0 200
RTG value

1400

1200

1000

800

600

400

200

0

M
ea

n 
ep

is
od

e 
re

tu
rn

OpenAI Pendulum Swingup

Decision Transformer Decision LSTM Mean Dataset Return

(b) RTG influence in OpenAI pendulum

2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
RTG value

0

1

2

3

4

5

6

M
ea

n 
ep

is
od

e 
re

tu
rn

Furuta Pendulum Stabilization

Decision Transformer Decision LSTM Mean Dataset Return

(c) RTG influence in Furuta stabilization

4 2 0 2 4 6 8 10 12
RTG value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n 
ep

is
od

e 
re

tu
rn

Furuta Pendulum Swingup

Decision Transformer Decision LSTM Mean Dataset Return

(d) RTG influence in Furuta swing-up

Figure 6: Effects of the desired return-to-go (RTG) values used for conditioning action generation by
DT and DLSTM on the mean episode return in different environments. The query RTG value appears
to have no influence on the episode return, which indicates that the models are not making use of the
RTG value for action generation.

Influence of return-to-go values. An important feature of DT is the use of return-to-go (RTG)
values, i.e., one can in principle control the optimality of the generated trajectories: at evaluation time,
the RTG value specifies the desired expected return, and therefore DT should generate trajectories
that achieve this desired RTG value. We perform evaluations to verify whether the RTG value indeed
has an influence on the episode return. Contrary to the findings in [4], Figure 6 indicates no influence
of the desired RTG values on the actual returns both for DT and DLSTM. These results raise the
question whether the RTG values are even necessary in the DT architecture and what role they play.

6



5 Related Work

The original Decision Transformer [4] presents a basic approach to framing RL as sequence modeling
problem, allowing for extensions in multiple directions. In [8], a Generalized Decision Transformer
is introduced, which performs hindsight information matching by generating trajectories that match
any statistics of the future trajectories and not only return-to-go values. The Online DT [29]
combines offline pre-trained DT models with an online fine-tuning procedure, thereby overcoming the
distributional shift inherent in offline RL and affecting the DT. A similar online DT approach but in a
multi-agent setting is proposed in [15]. Transfer learning for the DT architecture is addressed in [20],
where the DT is pre-trained on data from other domains and modalities, e.g., Wikipedia articles,
and subsequently fine-tuned on a given offline RL problem. On a massive scale, such cross-modal
generalization capability of DT was demonstrated in Gato [19]. These results indicate the existence
of an underlying universal structure across sequence modeling problems that enables cross-domain
and multi-modal transfer learning.

6 Conclusion

Our empirical evaluations of Decision Transformer on continuous control tasks such as pendulum
swing-up and stabilization have shown that DT struggles on problems that require fine-tuned actions.
The model trained on offline data fails in the online setting and is not able to solve the task on a real
system. On the other hand, the proposed modification of DT, which we call Decision LSTM—and
which only differs from DT in that the Transformer is replaced by an LSTM—has shown strong
performance in the same environments. Therefore, we conclude that the advantages of DT observed
in prior works may be rather due to the sequence modeling approach than to the particular choice of
the prediction module.

The paper does not consider discrete actions (e.g., discretizing continuous actions into bins, or
discrete-action domains such as Atari), where transformer-style architectures may have an advantage.
Moreover, performance of DT-like policy architectures can depend on many factors, including the
domain/task (transition dynamics and reward function), action parameterization, discretization of
RTG, network architecture, etc. In general, our results only apply to the continuous control tasks and
a further investigation is necessary to evaluate our hypothesis on a broader set of domains.

Despite the good performance of DLSTM, it remains an open question whether approaches that frame
RL as a sequence modeling problem provide significant advantages over standard Behavioral Cloning.
Our results indicate no correlation between the return-to-go values and the model performance in the
stabilization experiments. Therefore, the effectiveness of RTG values as task-defining inputs that
provide hindsight information to the decision architectures in continuous control tasks is unclear.

Finally, to make Decision Transformer and Decision LSTM applicable in real-world settings, the
sim-to-real gap and the inference times of the models are crucial. The inference times of the decision
architectures are significantly longer compared to standard BC, which yielded problems in our real-
time experiments, making it necessary to investigate the inference times of the models further. Purely
relying on successful simulation runs where the actual inference times of the models are ignored may
be a potential cause of problems under real-world conditions. In settings where Decision Transformer
generates actions too slow for the real-time requirements, the proposed Decision LSTM architecture
may be preferred due to the faster run time.

Acknowledgments and Disclosure of Funding

This project has received funding from BMWSB ZukunftBau under grant Nr. 10.08.18.7-21.34.
Calculations for this research were partially conducted on the Lichtenberg high performance computer
of the TU Darmstadt.

References
[1] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and

recurrent networks for sequence modeling. CoRR, abs/1803.01271, 2018.

7



[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. CoRR, abs/1606.01540, 2016.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[4] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In Advances
in Neural Information Processing Systems (NeurIPS), pages 15084–15097, 2021.

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. In Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL-HLT), pages 4171–4186, 2019.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, et al. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations (ICLR), 2021.

[7] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets for deep data-driven
reinforcement learning. CoRR, abs/2004.07219, 2020.

[8] H. Furuta, Y. Matsuo, and S. S. Gu. Generalized decision transformer for offline hindsight
information matching. In International Conference on Learning Representations (ICLR), 2022.

[9] Y. Guo, J. Choi, M. Moczulski, S. Feng, S. Bengio, M. Norouzi, and H. Lee. Memory
based trajectory-conditioned policies for learning from sparse rewards. In Advances in Neural
Information Processing Systems (NeurIPS), 2020.

[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[11] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. In Advances in Neural Information Processing Systems, pages 1273–1286, 2021.

[12] M. I. Jordan. Serial order: A parallel distributed processing approach. In Advances in Psychol-
ogy, volume 121, pages 471–495. Elsevier, 1997.

[13] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah. Transformers in vision:
A survey. ACM Computing Surveys, 54(10s):1–41, jan 2022.

[14] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and
solutions. In International Joint Conference on Artificial Intelligence, pages 5502–5511, 2022.

[15] L. Meng, M. Wen, Y. Yang, C. Le, et al. Offline pre-trained multi-agent decision transformer:
One big sequence model tackles all SMAC tasks. CoRR, abs/2112.02845, 2021.

[16] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters. Robot learning from
randomized simulations: A review. Frontiers in Robotics and AI, 9, 2022.

[17] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training. Technical report, OpenAI, 2018.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. Technical report, OpenAI, 2019.

[19] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, et al. A generalist agent. CoRR,
abs/2205.06175, 2022.

[20] M. Reid, Y. Yamada, and S. S. Gu. Can wikipedia help offline reinforcement learning? CoRR,
abs/2201.12122, 2022.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.

[22] J. Schmidhuber. Reinforcement learning upside down: Don’t predict rewards - just map them to
actions. CoRR, abs/1912.02875, 2019.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[24] K. Schweighofer, M. Hofmarcher, M.-C. Dinu, P. Renz, A. Bitto-Nemling, V. P. Patil, and
S. Hochreiter. Understanding the effects of dataset characteristics on offline reinforcement
learning. ArXiv, abs/2111.04714, 2021.

8



[25] R. C. Staudemeyer and E. R. Morris. Understanding lstm – a tutorial into long short-term
memory recurrent neural networks, 2019.

[26] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), pages 3104–3112, 2014.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), pages 5998–6008, 2017.

[28] W. Zhao, J. P. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learning
for robotics: a survey. In Symposium Series on Computational Intelligence (SSCI), pages
737–744. IEEE, 2020.

[29] Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In International Conference
on Machine Learning (ICML), volume 162, pages 27042–27059, 2022.

A Appendix

A.1 Datasets

Table 4 provides an overview of the datasets used in our experiments. The behavior policy is given
by a PPO agent [23], i.e., the replay datasets are comprised of the experiences collected during all
epochs of the PPO training, while the expert datasets contain demonstrations of the PPO policy
in the final epoch, i.e., after it has been trained to expert-level. As a measure of the quality of
demonstrations in the dataset, the expected trajectory return (TQ) values [24] are used, which quantify
the relation between the average return of a trajectory to the maximal return in the dataset. A high TQ
value indicates high quality (i.e., high mean returns) in the dataset, while a low TQ value indicates
low-return demonstrations.

Name Environment Num. Traj Beh. Policy Task TQ
mujoco-inverted-pendulum-expert Mujoco Inv. Pendulum 500 PPO Stabilization 1.00

openai-pendulum-expert OpenAI Pendulum 250 PPO Swing up 0.83
openai-pendulum-replay OpenAI Pendulum 100 PPO Swing up 0.32

furuta-pendulum-stabilize-expert Furuta Pendulum 500 PPO Stabilization 0.99
furuta-pendulum-swing-up-expert Furuta Pendulum 500 PPO Swing up 0.49
furuta-pendulum-swing-up-replay Furuta Pendulum 515 PPO Swing up 0.29

Table 4: Overview of the used training datasets for the stabilization experiments.

A.2 Hyperparameter Settings

For the experiments, the default hyperparameter settings from [4] were used, as shown in Table 5.

DT DLSTM BC
Context length K 20 20 20

Number of hidden layers 3 3 3
Hidden layer size 128 128 256

Batch size 64 64 128
Number of training steps per training epoch 3000 3000 3000

Input normalization yes yes yes
Dropout 0.1 0.1 0

Activation function tanh tanh tanh
Learning rate 3× 10−5 3× 10−5 3× 10−5

Number of attention heads 1 - -
Table 5: Overview of the used hyperparameters for the different evaluated architectures.

9


	Introduction
	Background
	Methods
	Experiments
	Related Work
	Conclusion
	Appendix
	Datasets
	Hyperparameter Settings


