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Abstract

We challenge the conventional belief that CNNs require numerous distinct ker-
nels for effective image classification. Our study on depthwise separable CNNs
(DS-CNN&s) reveals that a drastically reduced set of unique filters can maintain
performance. Replacing thousands of trained filters in ConvNextv2 with the closest
linear transform from a small filter set, results in small accuracy drops. Remarkably,
initializing depthwise filters with only 8 unique frozen filters, achieves minimal
accuracy drop on ImageNet. Our findings question the necessity of numerous filters
in DS-CNNg, offering insights into more efficient network designs.

1 Introduction

Convolutional Neural Networks (CNNs) have revolutionized computer vision, and as CNNs scaled to
millions of parameters [25, 18| [12], Depthwise Separable CNNs (DS-CNNs) emerged as an efficient
variant 11} [10]. State-of-the-art architectures like ConvNeXt [21] utilize up to 50,000 trainable
spatial filters. Recent studies have revealed inherent repeating patterns in these filters, with Trockman
et al.[28]] investigating their covariance structure and Babaiee et al.[3]][4] has shown that these filters
exhibit highly clusterable patterns across various architectures. Intriguingly, these patterns can be
classified into a few categories related to the Difference of Gaussians (DoG) functions. These findings
raise an important question:

Is training thousands of filters necessary if similar patterns appear across layers?

In this paper, we challenge the conventional belief that a large number of unique filters is essential
for CNNs. Instead, we explore the potential of using a limited set of carefully chosen filters. We
demonstrate that through a greedy search, we progressively reduce the number of unique filters and
discover that the accuracy remains relatively unchanged even with only 8 filters. Remarkably, these 8
filters bear a striking resemblance to DoGs, Gaussians, and the first derivatives of Gaussians, which
are well-established in scale-space theory [17]] and mammalian vision modeling [29} [30]. We validate
the effectiveness of these discovered filters on other datasets and model architectures, consistently
observing their comparable performance, especially in scenarios with limited training data.

Our findings challenge the prevailing notion that large filter variety is necessary in CNNs. In summary,
the key contributions of our work are:
* We show that replacing each ConvNeXt filter with its the closest linear transformation chosen
from 8 filters closely approximates the original model’s performance without fine-tuning.
* Moreover, training the model with only 8 filters + bias reasonably preserves accuracy.

* Our findings challenge the conventional belief that a large number of unique filters is
essential for CNNs, by reducing the number of unique filters to only 8.

Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.
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Figure 1: We uniformly sample candidates from the code layer of the filter Autoencoder, which we
have trained on the filters that have been learned by the models.

2 Related Work

Depthwise Convolutions (DCs) have revolutionized Convolutional Neural Networks (CNNs), leading
to efficient architectures like MobileNet [[11], EfficientNet [26], and ConvNeXt [21]. Recent studies
have revealed structured covariance matrices in large-kernel DCs [28]] and the convergence of
depthwise convolutional kernels into clusters resembling Gaussian derivatives [3]][4]. While filter
pruning techniques have been explored to reduce computational complexity [9} [16], our work
investigates filter diversity in DS-CNNs, challenging the need for numerous unique filters. We
establish a connection with scale-space theory [13}117], which examines signals across scales using
Gaussian derivatives. Lindeberg’s computational framework for visual receptive fields [17,120] aligns
with hierarchical stages in mammalian visual systems [[18] and provides a provable approach to
capture image transformations [[19], further supported by center-surround receptive field models that
enhance robust image classification [2]. Our findings show that a small set of carefully chosen filters,
including Gaussians, Difference of Gaussians (DoG), and their derivatives, can effectively replace
numerous learned filters in DS-CNN:ss, aligning with scale-space theory principles and suggesting
limited inherent diversity in learned depthwise filters.

3 Do We Require Thousands of Distinct Filters?

In this section, we investigate whether employing thousands of unique filters is essential for maintain-
ing the performance of DS-CNNs. In particular, we explore what is the impact on the performance of
the network, when we replace the trained filters with a minimal set of distinct filter variations.

3.1 The Quest for Optimal Filters

In order to explore the possibility of reducing the number of distinct filters in DS-CNNs, we sought
to distill the filters of trained models into a compact set. We collected filters from ConvNeXtv1
and ConvNeXtv2 models of various sizes and employed an autoencoder to learn a compressed
representation of these filters. The autoencoder was trained to encode each filter into a single
dimension, following a similar procedure as the one described in [3].

We collected and normalized 7 x 7 depthwise filters from all layers of our model bank networks. The
autoencoder architecture consists of an encoder and decoder, each with four intermediate layers. The
encoder uses Leaky ReLU activations and a sigmoid in the code layer, mapping to [0, 1]. The decoder
mirrors this structure, ending with a tanh activation to reconstruct normalized filters within [-1, 1].
This architecture enables learning compact representations of the filter space, facilitating exploration
of filter variations and potential reduction in distinct filters for depthwise separable CNNs.

We uniformly sampled 100, 50, 25, and 10 points from the autoencoder’s code layer to generate
distinct filter sets. For each set of samples, separately, we replace each original filter of the model with
the closest linear transformation of a single, best-matching filter from the set. (see Appendix [A.T].
Table [3 shows the accuracy of ConvNeXtV2 models before and after filter replacement. Notably,
approximating all filters with just 100 sampled filters maintains robust performance without fine-
tuning, especially for larger models. For ConvNeXt V2 Huge, replacing nearly 50K filters with 100
sampled filters results in less than 2% accuracy drop.

As expected, reducing the number of sampled filters decreased accuracy, especially with only 10
filters. To achieve a better smaller set, we conducted a systematic greedy search on ConvNeXt-v2-
Tiny using 50 uniformly sampled filters, removing the least important filters one by one. Figure/[I]
illustrates the 50 uniformly sampled samples. Thezaccuracy plot (Figure[2) showed stability until the
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Figure 2: Our systematic greedy search for the essential filters in ConvNeXt-v2-Tiny and ConvNeXt-
v2-Pico. While the removal of most filters did not noticeably changed accuracy, 8 of them were
essential.

removal of the last 8 filters, wich is the elbow point. These 8 filters outperformed the 25-filter set
across ConvNeXt V2 models, effectively replacing up to 50K filters while maintaining acceptable
performance. (The last row of Table [3)) To validate generalizability, we applied this approach to
ConvNeXt-v2-Pico and Large, arriving at a similar set of 8 filters. This consistency suggests the
existence of universal filters capturing fundamental patterns across model architectures.

3.2 Understanding the Eight Filters

This subsection analyzes the functional characteristics of the eight filters (Figure [3) identified through
greedy search, examining their resemblance to traditional image-processing operators and their roles
in network feature extraction.

Filters 1-4: These 4 filters resemble central difference operators, approximating Gaussian derivatives
discretely, akin to edge detection and texture analysis models.

Filters 5-6: These 2 filters resemble 1st order Gaussian derivatives along x and y axes. Their pro-
nounced spatial smoothing captures broader textural information, potentially improving generalization
across visual contexts.

Filters 7: This filter resembles a 2-D discrete Difference of Gaussians (DoG), approximating the
Laplacian of Gaussian. Crucial for blob detection and bar pattern recognition, it likely enhances the
model’s edge and contour detection capabilities.

Filter 8: This filter resembles a fine-scaled Gaussian kernel, used for noise reduction while preserving
edges. Gaussian filters are uniquely proven for scale-space representation in image processing.

Filters formal definition: For completeness, we provide below the formal definition of the continuous
functions corresponding to the 2D Gaussian, the 2D derivative of the Gaussian along the x and the y
axis, respectively, and the 2D difference of Gaussians (DoG, Laplacian, Mexican hat):

(Gaussian)  G(z,y) = e (@ +v)/20% Jon 52
(dGaussian/dx) 0G0z = —aG(z,y)/0?
(AGaussian) DoG(z,y) = e @ +v")/201 jopg2 _ o=@ +y*)/205 jo7 52

4 Experiments

In this section, we evaluate model performance on ImageNet using the eight identified filters, through
fine-tuning with closest linear transformation and training from scratch with frozen filters. Results
show negligible accuracy drops.

4.1 ImageNet

Table [3] shows model accuracy remains stable despite reduced filter diversity, prompting further
investigation. Fine-tuning with frozen filters (Table [2)) yields minimal accuracy drops for Pico
(-1%) and Tiny (-0.4%) models. In these model filters are linear transfer of one of the 8 filters,
in mathematical expressions they are a(x + b). Given DS-CNNs architecture, coefficient can be
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Figure 3: Heatmap of the 8 filters found through greedy search on ConvNeXtv2 tiny model.

transferred to the fully-connected layers, simplifying the filters essentially to = + b, where b acts as
bias. This motivated us to train a model from scratch using only these 8 filters plus biases.

Training with Only 8 Frozen Transferred Filters plus Bias. To further investigate the effectiveness
of the 8 candidate filters, we trained ConvNeXtv2 models from scratch, initializing each layer’s filters
with the transferred 8 filters with trainable bios. We trained the networks for 300 epochs following
the same training pipeline as described in the original paper [24], but with frozen filters having a
trainable bios.

Table [T shows the results. Remarkably, the ConvNeXtv2 Tiny model with only 8 types of filters
achieved an accuracy of 82.7%, which is only 0.2% lower than the model trained with 6,624 trainable
filters and FCMAE pretraining. We also conducted a similar experiment with the smaller ConvNeXtv2
Pico model, where the model with 8 types of frozen filters reached an accuracy of 80.2%, 0.1% lower
than the model with 2,944 trainable filters.

Table 1: Imagenet Top-1 Accuracy. We report accuracies for original models both with and without
FCMAE pretraining. It is quite remarkable that the model with only 8 unique filters achieve
comparable results.

ConvNeXtv2 Models Pico Tiny Base Large
Number of Original Filters 2944 6624 18048 27072
Original model with FCMAE! 80.3% 82.9% 84.9% 85.8%
Original model 79.7% 82.5% 84.3% 84.5%
With 8 unique filters + bias 80.2% 82.7% 84.6% 85.4%

! FCMAE (fully convolutional masked autoencoder framework) is a heavy pretraining ConvNextv2 uses.

These results demonstrate the effectiveness of the candidate filter set in capturing the essential features
required for the task, even when the filters are frozen and not learned during training. The ability to
achieve competitive performance with only 8 fixed filter types highlights the potential for using a
small set of carefully selected filters and challenges the belief of the high diversity of filters required.

By training the models from scratch with frozen filters, we eliminate the need for learning the filter
weights during training, which can reduce the computational complexity and memory requirements
of the training process, especially in larger models with larger kernel sizes.

4.2 Conclusion

In this paper, we demontrated that DS-CNNs perform with a reasonably high accuracy with only 8
unique, not-trained filters. We thus questioned the necessitiy of training thousands of distinct filters
in CNNs (Each DS-CNN, is a CNN).

In this work, we searched for the 8 filters through a compressed filter set derived from the trained
models. Future research could explore training models with a small number of shared filters across
all layers, potentially discovering even more effective filter sets. Our results open new avenues for
designing novel CNN architectures, enhancing model efficiency, and improving explainability in
CNNE.
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A Appendix / supplemental material

A.1 Closest Linear Transformation

A depthwise filter for the c-th channel can be denoted as F., where c is the index of the channel.
When flattened, F. can be represented as a vector f, € Rk2, where k X k is the spatial dimension of
the filter. The matrix F composed of these flattened vectors is F = [f;, f,, ..., fo]7 € ROXF,

For each depthwise filter F, learned by the ConvNeXtV2-tiny model, we then conducted a linear
approximation with respect to the decoded filters, by identifying the scalar coefficients a and b, which
minimized the Euclidean distance between the corresponding flattened filter vector f., and the linear
combination a f. + b, where f. represents a flattened decoded-filter sample. The original filter was
then substituted with the optimal linear combination a f/, + b that exhibited the smallest distance to
the original, thus preserving the filter’s functional characteristics while reducing model complexity.

In mathematical expressions, given smaller set of fitters G, For each f, € F', we want to replace it
with the closest linear transformation a*g* + b*, where

(a*,0%,g") = argmin [[f. — (ag + )|
a,beER, g€G

To solve for scalars a and b that minimize the distance between vectors f. and af., + b, we use linear
regression. Here, the goal is to determine the coefficients a and b for two vectors = and y such that
by having y = ax + b the length of the vector y — g is minimized. This problem has a well-known
solution.

n n n n n 2 n n
o= N i il — i Ti Do Yi b— Do Yidoic1 Ti — Dim1 Ti Qi Tili )
- n 2 n - n 2 n
ny g wg = (i @i)? ny i@ — (s i)?
Calculating Equations (T)) can be computationally intensive, especially when dealing with hundreds
of thousands of filters. To reduce computational complexity, we can use a normalization trick. Since
any linear transformation of  does not alter the optimal 3, we normalize x using the transformation

2, r—x

& = 3=37. With this normalization, S, & =0and Y !, &7 = 1, allowing us to simplify
Equation.

SOV ELL R W ML L @

n n

a

Consequentially, Given the vectors Zi,Zs9,...,Z, as the rows of matrix X and the vectors
Y1,Y2, - - -, Ym as the columns of matrix Y, we introduce the vector ymean, Which contains the
means i1, 2, - - . , ym. Using these, we can calculate the coefficients a;; and b;; for each pair of x;
and y; through matrix multiplication.

A= XY B= ymean]-—r 3

For each layer, with the set of depthwise filter vectors matrix F' and the sample filter vectors matrix
F’, we calculate the coefficients as above to find the closest linear approximation.

A.2 Fine-tuning

Here, we fine-tuned Pico and Tiny models from the "Acc with 8" row of Table [3] while keeping the
filters frozen.

A.3 Other Datasets

To investigate the generalizability of our findings, we extend our experiments to other datasets and
compare the performance of the ConvNeXt Femto model across various settings.



Table 2: Demonstrating fine-tuned accuracy of ConVextV2 models with frozen filters approximated
with the closest linear transformation of the eight filters.

Models | Original Acc lin. trans. 8 filters lin. trans. 8 filters + fine-tuning
ConvNeXtv2 Pico 80.3% 73.1% 79.3%
ConvNeXtv2 Tiny 82.9% 76.7% 82.5%

Datasets. We evaluate the low filter variety on five datasets: CIFAR-10 [14], Flowers [22], Pets [23],
and STL-10 [5)]. These datasets have smaller scales compared to ImageNet, with the size of training
sets ranging from 2040 to 50000 samples.

Settings. We use the ConvNeXt Femto model as our base architecture. For a fair comparison, we
train the model on all datasets for 300 epochs, following the training parameters from the ConvNeXt
paper [21], and keep the training settings consistent across all runs and datasets.

For each dataset, we first train the model to obtain the baseline accuracy. Then, we explore two
different filter initialization strategies:
1. Depthwise filters directly transferred from the ConvNeXt Femto model trained on ImageNet.
2. 8 filter types, frozen from scratch.

Table [] presents the accuracy of the ConvNeXt Femto model on each dataset under these different
initialization settings.

Table 3: The accuracy with no fine-tuning of the various ConvNeXtv2 models, when their filters are
replaced with the closest linearly transformation from uniformly-sampled candidate-filter sets. It is
quite remarkable that only 8 filters from our greedy search perform encouragingly well.

ConvNeXtv2 Models Pico Tiny Base Large Huge

Number of Filters 2944 6624 18048 27072 49632
Original Acc 80.3% 83.0% 84.9% 85.8% 86.3%
Acc with 100 filters 75.3% 77.0% 80.6% 83.7% 84.6%
Acc with 50 filters 75.0% 75.4% 80.5% 83.2% 84.0%
Acc with 25 filters 72.0% 66.9% 72.8% 79.6% 80.4%
Acc with 10 filters 23.4% 1.0% 1.4% 3.0% 2.0%

Acc with 8 (Greedy Search) 73.1% 76.7% 79.3% 81.2% 82.8%

Results. The results demonstrate the effectiveness of using the 8 frozen filters across different datasets.
Notably, the performance improvement becomes more pronounced as the dataset size decreases. For
the Flowers and Pets datasets, the frozen 8 filter types achieve remarkable improvements of up to
11% and 30%, respectively, compared to the baseline model.

Interestingly, on these smaller datasets, the frozen 8 filter types even outperform the transferred filters
from the model trained on ImageNet. This observation suggests that the carefully selected filter types
capture fundamental patterns that are highly relevant to the task at hand, even when the dataset size is
limited.

The superior performance of the frozen filters on smaller datasets highlights their ability to ex-
tract meaningful features without the need for extensive fine-tuning. This finding has significant
implications for scenarios where training data is scarce or computational resources are limited.

Table 4: Comparing accuracy of ConvNeXt Femto model with different training setups. Demon-
strating the superiority of using 8 (3) unique frozen filters to even transferred filters of pretrained
ImageNet for pets and flowers datasets.

Dataset CIFAR10 STL-10 Oxford Flowers Oxford Pets
# Training Set Size 50000 5000 2040 3680
Original Acc 96.9% 80.4% 66.0% 36.3%

Acc with ImageNet Filters 97.1% 83.2% 73.2% 56.0%

Acc with 8 unique Filters 96.3% 83.1% 77.7% 66.4%



B Debunking Challenge Submission

B.1 What commonly-held position or belief are you challenging?

Provide a short summary of the body of work challenged by your results. Good summaries should
outline the state of the literature and be reasonable, e.g. the people working in this area will agree
with your overview. You can cite sources beside published work (e.g., blogs, talks, etc).

There exists a commonly-held belief that convolutional neural networks require a large diversity of
filters to perform well. This belief is reflected in how the networks are typically designed and trained:
A large number of filters are individually trained in all SOTA models[27, 121} 124} |8, [15]. This number
is often increased for better performance gains.

Filter diversity has been a focus of research for enhancing model performance and for network
pruning and compression. For instance, Zhang et al. [31]] proposed a new training strategy called
"weight asynchronous update"” to increase filter diversity in CNNs. Graff et al. [7] investigated the
correlation between filter diversity and CNN accuracy, though their experiments were limited to
first-layer filters. Gavrikov et al. [6] investigated trained filters of CNNs and found low diversity in
structure of deep layer filters, noting them as redundant: "Filters are structurally similar to each other
and therefore redundant.”

This common belief in the necessity of filter diversity is often justified by the perceived need for a
high variety of filters to capture all different features in datasets, an example of which can be seen in
the response to this stackoverflow question[1].

B.2 How are your results in tension with this commonly-held position?

Detail how your submission challenges the belief described in (1). You may cite or synthesize results
(e.g. figures, derivations, etc) from the main body of your submission and/or the literature.

Our paper challenges this widely held belief through a systematic search for a minimal high-
performing filter set. Our findings reveal that only 8 filters are necessary for competitive performance,
which stands in stark contrast to the thousands of filters typically used in state-of-the-art models.

We demonstrate that all filters of ConvNeXt-V2 models, regardless of their parameter count, can be
linearly approximated by one of these 8 filters. This approximation maintains reasonable performance
without any fine-tuning (Table [3). Furthermore, we show that training models with these 8 frozen
filter types plus a bias can achieve very competitive results (Table[T). These findings challenge the
necessity of training thousands of individual filters.

It’s important to note that feature map diversity should be distinguished from filter diversity. Our
research specifically questions the latter. We posit that a limited set of filters can produce various
features when combined in subsequent layers or with weighted sums (pointwise layers) in the same
layer.

B.3 How do you expect your submission to affect future work?

Perhaps the new understanding you are proposing calls for new experiments or theory in the area, or
maybe it casts doubt on a line of research.

Our discovery of only 8 filters, all of which are mathematically describable, opens up a new line
of research on mathematical theories for understanding and explaining how CNNs work. This
simplification of filter diversity could provide a more accessible framework for theoretical analysis of
CNN operations.

Moreover, with the drastic decrease in filter variety across all layers, we cast doubt on the commonly
accepted transition from general to specialized filters in the deeper layers of CNNs. These results call
for more experiments on filter generalization, potentially challenging long-held assumptions about
the nature of feature extraction in deep networks.

Finally, we are optimistic that our findings will be beneficial for designing new CNN architectures
that are more efficient or better performing. These potential impacts collectively suggest a paradigm
shift in how we think about and design CNNss, calling for a reevaluation of current practices and
opening up new avenues for both theoretical and applied research.
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