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Abstract

Preference datasets are essential for incorporat-
ing human preferences into pre-trained language
models, playing a key role in the success of Rein-
forcement Learning from Human Feedback. How-
ever, these datasets often demonstrate conflicting
alignment objectives, leading to increased vul-
nerability to jailbreak attacks and challenges in
adapting downstream tasks to prioritize specific
alignment objectives without negatively impact-
ing others. In this work, we introduce a novel
statistical metric, Alignment Dimension Conflict,
to quantify the degree of conflict within prefer-
ence datasets. We then present Hummer and its
fine-grained variant, Hummer-F, as innovative
pairwise preference datasets with reduced con-
flict alignment objectives. Hummer is built based
on UltraFeedback and is enhanced by GPT-4 AI
feedback, designated as the first preference data
set aimed at reducing competition between align-
ment objectives. Furthermore, we develop reward
models, HummerRM and HummerRM-F, which
employ a hybrid sampling approach to balance
diverse alignment objectives effectively. This sam-
pling method positions HummerRM as an ideal
model for domain-specific further fine-tuning and
reducing vulnerabilities to attacks.

1. Introduction
Alignment objectives often present competing properties
in current preference datasets for Reinforcement Learning
from Human Feedback (RLHF) (Biyik & Sadigh, 2018;
Hong et al., 2022; Ganguli et al., 2022; Wu et al., 2024).
Considering the Anthropic-HH dataset (Bai et al., 2022),
emphasizing the alignment objective of harmlessness may
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cause an agent to offer only broad or overly cautious ad-
vice. This emphasis could prevent the agent from providing
precise and effective guidance, which limits the capacity
for helpfulness. This competition dynamics among align-
ment objectives poses two significant challenges. On the
one hand, it exacerbates the vulnerability of safety-trained
LLMs to jailbreak attacks by creating prompts to prioritize
one alignment dimension over others (Wei et al., 2024). In
addition, conflict dynamics further complicate the achieve-
ment of equilibrium between all alignment objectives, partic-
ularly customizing models for downstream tasks that require
promotion to specific dimensions ability without sacrificing
performance in other alignment objectives, such as system
simulation (Song et al., 2024), math reasoning (Azerbayev
et al., 2023), and code generation (Guo et al., 2024a).

In this study, we focus on the underlying cause of alignment
conflict: the preference dataset itself. RLHF community has
witnessed an emerging trend towards the development of
new preference datasets, driven by the goals of improving
quality and scale, incorporating a fine-grained preference
signal and covering specific domains aligned with the de-
sired dimensions (Cui et al., 2023; Ji et al., 2024b; Wu
et al., 2024; Stiennon et al., 2020; Lightman et al., 2023;
Ethayarajh et al., 2022). Despite these efforts, a significant
gap persists: the lack of a preference dataset intentionally
crafted to alleviate conflicts between alignment dimensions.
Such a dataset could potentially provide significant benefits
for downstream applications that prioritize certain values
(Zhang et al., 2024; Wang et al., 2024b) and reduce vulner-
abilities to jailbreak attacks (Perez et al., 2022; Qi et al.,
2023; Wei et al., 2024; He et al., 2024; Cui et al., 2024).
Moreover, there is currently no established statistical met-
ric for assessing the degree of conflict among alignment
dimensions within preference datasets.

In light of these observations, we first introduce Alignment
Dimension Conflict (ADC), a statistical metric for quan-
tifying the degree of conflict within preference datasets.
This new criterion moves beyond the conventional metric
of average performance across multiple objectives or do-
mains typically featured on current leaderboards. We then
present Hummer, standing as the first preference dataset
to highlight limited competition among various alignment
objectives. The construction of Hummer capitalizes on the
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advanced capabilities of AI feedback mechanisms, such as
GPT-4 (Achiam et al., 2023), consisting of a three-stage pro-
cess: preference & objective annotation, alignment objec-
tives refination, and dataset split. We use the UltraFeedback
(Cui et al., 2023) as our foundation dataset for this work
and introduce a fine-grained version of Hummer, termed
Hummer-F, which excludes the noisy preference dataset
via the principle of reward gaps and compromises 80% of
Hummer.

Based on Hummer and Hummer-F, we introduce a hy-
brid sampling strategy for training their respective reward
models, HummerRM and HummerRM-F, based on the es-
tablished Llama 2-7B model (Touvron et al., 2023). The
hybrid sampling strategy achieves well-balanced perfor-
mance across diverse limited-competition alignment objec-
tives in Hummer, enhances resilience to jailbreak attacks,
and supports further fine-tuning in downstream tasks. It ac-
complishes this by prioritizing certain alignment objectives
without sacrificing performance in other dimensions. We
summarize our contributions in two main folds:

1. We introduce the Alignment Dimension Conflict
(ADC), a statistical metric for quantifying conflict in
preference datasets. We then present Hummer and
its refined variant, Hummer-F, designed as: the first
preference datasets to mitigate competing alignment
objectives.

2. We develop a hybrid sampling strategy to train the re-
ward model HummerRM from Hummer, balancing per-
formance across alignment objectives and further lim-
iting the conflict. HummerRM boosts defense against
jailbreak attacks and enables downstream fine-tuning
by focusing on key alignment dimensions without com-
promising others.

2. Related Work
Preference Datasets. The RLHF community is observing
a growing trend of new preference datasets from diverse per-
spectives to improve preference modeling. The dominant
motivations for the introduction of new preference datasets
are scalability, quality, and diversity (Guo et al., 2023; Cui
et al., 2023; Wu et al., 2024). For example, SPA dataset
(Guo et al., 2023) presents fine-grained (i.e., token or phrase
level) feedback during optimization rather than holistic feed-
back during the training process. UltraFeedback (Cui et al.,
2023) introduces a wide-source and high-quality preference
dataset with four alignment dimensions, in contrast to two
dimensions (helpfulness and harmlessness) (Ouyang et al.,
2022). Besides, some recent preference datasets underscore
a specific domain or alignment property (Stiennon et al.,
2020; Lightman et al., 2023; Ethayarajh et al., 2022). How-
ever, existing preference datasets fail to mitigate the conflict

between alignment dimensions. Enhancing the synergy of
alignment dimensions improves resilience against jailbreak
attacks and allows for further fine-tuning in downstream
applications. This is achieved by prioritizing specific align-
ment objectives without compromising performance across
other dimensions.

Red Teaming LLMs with Further Fine-tuning. Red
teaming is designed to execute systematic tests and attacks
on LLMs to expose their potential harmfulness and safety
vulnerabilities (Perez et al., 2022; Achiam et al., 2023; Shi
et al., 2024; Kang & Li, 2024; Bi et al., 2024a;b). Recent
work (Qi et al., 2023; Zhan et al., 2023; He et al., 2024)
identifies that customizing policiemodels with further fine-
tuning on downstream tasks, even without harmful content,
will lead to a degradation in resilience against jailbreak
attacks for safety-alignment policy. We hypothesize that
this degradation stems from an. We hypothesize that this
phenomenon is caused by the implicit emphasis on specific
alignment dimensions, (such as helpfulness, and the con-
flict among alignment dimensions present in downstream
datasets, where the learned policy is either an implicit (DPO
pipelines) or explicit distillation (PPO pipelines) of the re-
ward model) in downstream datasets, rooted in conflicts
among these alignment dimensions. In this work, we focus
on the conflict of alignment dimensions and study further
fine-tuning specific alignment dimensions on thef preference
modeling stage (reward model) to improve specific datasets,
with the expectation to improve one alignment ability forde-
manded customization tasks. Aligned with these findings,
we show that further fine-tuning downstream models on
desired alignment dimensions inevitably leads to perfor-
mance degradation in conflicting dimensions, e.g., safety.
(Section 5).

3. Hummer

   initial
fine-tuning

evaluation

copy RM

  further
fine-tuning

evaluation

copy dataset

ADC 

Figure 1. The ADC estimation pipeline, measuring the negative
performance gap between initial and further fine-tuned reward
models.

DP can be further organized as DP
n = {d1, d2, · · · , dn}

with di = {xk, ykw, y
k
l }

Ki

k=1, where di denotes the align-
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ment dimensions, such as helpfulness in Anthropic HH
dataset (Bai et al., 2022), n represents the total alignment
dimensions, and Ki notes the total samples in dimension
di with

∑n
i=1 Ki = K. Formally, given a reward model,

i.e., RM, that has been initially fine-tuned on the whole pref-
erence dataset DP

n = {d1, d2, · · · , dn}, its performance
on the corresponding test dataset from DP

n is represented
by U = {u1, u2, · · · , un}. To study this conflict, we
copy n reward models further fine-tune the reward model
on the interest of any alignment dimensions dataset, e.g.,
di ∈ DP

n , and obtain the further fine-tuned performance
Ui = {ui,1, ui,2, · · · , ui,n}. The performance deviation
can be obtained by Ui − U of RMi, where i highlights
further fine-tuning performed only on di. We present the
pipeline to measure this dimension conflict in Fig. 1 and
present a new statistical metric:

Definition 1 (Alignment Dimension Conflict). The Align-
ment Dimension Conflict (ADC) is defined as the second-
order moment of the sum of the negative performance devia-
tion on all dimensions except di:

U
[
DP

n

] .
= Ei

[∑n
s ̸=i((ui,s − us)−)

2

n− 1

]
, u− = min{u, 0},

(1)
where n − 1 serves as a normalization term to facilitate
fair comparison for different datasets with different align-
ment dimensions and Ei[·] denotes the expectation over the
performance deviations obtained by further fine-tuning on
alignment dimension di∈n with Ei[·] =

∑n
i=1[·]/n.

We provide an intuitive example to show what situation leads
to high ADC within normal distribution in Appendix B.

RewardBench (Lambert et al., 2024) offers toolkits for struc-
tured comparison across various properties in reward mod-
els, accommodating diverse model structures or preference
datasets. To facilitate a systematic comparison of align-
ment dimension conflict levels among different datasets, we
can scale the Alignment Dimension Conflict (ADC) metric
to the properties evaluated in standard evaluation toolkits,
termed ADC-B, which holds the same structure to Defini-
tion 1 to ADC, detailed in Appendix E.1.2.

3.1. Dataset Construction for Hummer

To decouple alignment dimensions, we introduce Hummer,
the first preference dataset that aims to alleviate the compet-
ing dynamics of preference datasets. To accurately capture
the multidimensionality of human preference without in-
terference between alignment dimensions, we leverage the
powerful ability of AI feedback, i.e., GPT-4, which has been
heavily employed in preference dataset construction or pref-
erence modeling (Lee et al., 2023; Cui et al., 2023; Guo
et al., 2023; Burns et al., 2023; Chen et al., 2024; Ji et al.,
2024a). We leverage UltraFeedback (Cui et al., 2023) as the

foundational dataset, attributed to its expansive scale and
diversity.

We show the construction process of Hummer in Fig. 2, de-
tailed in Appendix C. The process of identifying the limited-
conflict dimension and its corresponding pairwise dataset
involves three key stages: : (a) Preference annotation:
Initially, we randomly select g = 400 pairwise preference
datasets (x, y1, y2)k from the foundational dataset. For each
pair, we annotate preferences, alignment dimensions, and
the corresponding reasons (p, d, reason)k, powered by GPT-
4. (b) Alignment objective refination: We then leverage
GPT-4 to refine these dimensions to minimize their conflicts
and finally get n = 6 alignment dimensions: {’accuracy’,
‘conciseness’, ’depth’, ’empathy’, ’tone’, ’specificity’}. (c)
Dataset split: GPT-4 is then used to assign an absolute
reward to n alignment dimensions. We categorize every
dataset sample (x, y1, y2) to its corresponding dimension
on the principle of maximal preference gap. We highlight
that this splitting approach is more favorable than directly
ranking as it avoids the position bias (Zhu et al., 2023) and
facilitates convenience to build Hummer-F. Hummer-F is
refined by applying a reward gap threshold (τ ) to filter out
potentially noisy preference pairs, a subset that comprises
approximately 80% of Hummer.

4. Hybrid Reward Sampling
In this section, we introduce HummerRM and its vari-
ant, HummerRM-F. Both are single-reward models trained
on our custom-limited competitive preference datasets,
Hummer and Hummer-F, respectively. These models em-
ploy a hybrid sampling method, enabling HummerRM to
autonomously adjust its sampling ratio from preference
datasets aligned with various objectives with the perfor-
mance signal.

Formally, considering a preference dataset with n alignment
objectives, denoted as DP

n = {d1, d2, . . . , dn}, we assign
an initial equal sampling weight to each dimension dataset,
represented by Λ = {λ1, λ2, . . . , λn}, where λi = 1/n
with i ∈ [1, n]. We achieve the balance among all alignment
dimensions by evaluating the preference performance across
these dimensions, denoted as U = {u1, . . . , un}. The sam-
pling weights are adaptively updated in every 1 epoch (128
steps) as follows:

λi ← λi + η(ū− ui), (2)

where ū represents the average preference performance
across all alignment objectives, and η is the temperature
for updating the sampling weights Λ. To ensure adherence
to the sum constraint,

∑n
j=1 λj = 1, we normalize the λi

values accordingly after every update. Consequently, the
mini dataset sampled at each training step is represented by
⌊BatchSize×Λ⌋ from Dp

n, where BatchSize = 128 and
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Figure 2. Hummer construction process. We leverage the advanced ability of GPT-4 to build Hummer, a preference dataset with low
competitive alignment objectives.

⌊x⌋ represents the floor function.

Intuitively, if the performance of a specific dimension, e.g.,
ui, is higher than the average (ui > ū), the corresponding
sampling ratio λi for dataset di decreases. Conversely, if
ui < ū, indicating a performance lower than the average,
λi increases, promoting an increasing sampling dataset for
di. We then integrate all sampled datasets into one training
batch and update the reward model via:

max
rϕ

E(x,yw,yl)∼DP [log σ (rϕ (x, yw)− rϕ (x, yl))] , (3)

where σ is the logistic function. The hybrid sampling strat-
egy enhances the robust performance of HummerRM across
all alignment dimensions.

5. Experiments
Our testbed is designed to assess the low-conflict alignment
dimensions within our introduced datasets, namely Hummer
and Hummer-F. We initiate our evaluation by examining
the Alignment Dimension Conflict (ADC) and ADC-B us-
ing HummerRM, alongside a standard reward benchmark,
as detailed in Section 5.1. Subsequently, we explore the
vulnerabilities of HummerRM to jailbreak attacks, shown
in Section 5.2. Finally, we assess the efficacy of the hybrid
sampling strategy in comparison to diverse sampling meth-
ods in Appendix D. Detailed experiment setups are shown
in Appendix E.3.

5.1. Reward Model Evaluation

Setup. To elucidate the dynamics of low competition in
Hummer and Hummer-F, we assess the ADC within their
respective preference datasets. This evaluation is contex-
tualized by comparisons with the Anthropic HH dataset

Table 1. Comparison of existing preference datasets. We demon-
strate that all existing preference datasets exhibit a significantly
higher ADC (%) (8-10x) compared to Hummer and Hummer-F.
The best performance is in blue .

Dataset Model
Type

Alignment
Dimensions

Dataset
Size

ADC (↓) ADC-B (↓) Reward
Bench (↑)

Anthropic HH AnthropicRM 2 170k 85.04 204.6 56.72

UltraFeedback UltraRM 4 64k 67.23 126.3 68.34

Hummer HummerRMw/o HS 6 46k 14.35 38.7 68.55

Hummer HummerRM 6 46k 11.04 31.2 71.52

Hummer-F HummerRM-Fw/o HS 6 37k 12.92 36.0 70.39

Hummer-F HummerRM-F 6 37k 9.62 28.5 72.13

(Bai et al., 2022), and UltraFeedback (Cui et al., 2023). To
systematically analyze the degree of competition among
alignment dimensions, we extend our evaluation to include
ADC-B and assess performance on RewardBench (Lambert
et al., 2024). RewardBench represents a comprehensive
benchmark covering chat, reasoning, and safety domains,
providing a pairwise testbed for evaluating reward models.
Furthermore, we explore the effectiveness of hybrid sam-
pling strategies in the training of reward models. For consis-
tency across evaluations, we employ a consistent backbone
model, specifically a fine-tuned Llama 2-7B (Touvron et al.,
2023), to train the reward models for each dataset.

Result. In Tab. 1, we summarize prevalent preference
datasets with our statistical evaluation findings. Notably,
Hummer and Hummer-F demonstrate a significantly re-
duced ADC (8-10x) compared to other preference datasets.
This diminished ADC in Hummer suggests the limited align-
ment conflict, in stark contrast to the pronounced alignment
conflicts observed within the dimensions of other datasets.
However, ADC lacks a structured framework for compar-
ison, as each preference dataset is assessed based on its
unique alignment dimension. To enable a structured compar-
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Table 2. Jailbreak rate (%, ↓) for different reward models with further fine-tuning on specific alignment dimensions. While Other reward
models show highly fluctuating attack ratios, HummerRM demonstrates remarkable consistency with low fluctuation. Warm colors are
used to show increased jailbreak rates and cold colors (preferred) refer to decreased jailbreak rates.

Dataset Reward
model

Initial
fine-tuning

Further fine-tuning

# 1 # 2 # 3 # 4 # 5 # 6

Anthropic HH AnthropicRM 46.2 + 6.2 − 22.5 - - - -

UltraFeedback UltraRM 46.6 + 4.0 + 8.5 + 0.3 + 3.5 - -

Hummer HummerRMw/o HS 46.6 + 3.8 − 1.5 + 0.5 − 11.7 − 2.9 + 0.1

Hummer HummerRM 46.4 + 3.6 − 1.7 + 0.3 − 11.7 − 3.2 + 0.0

Hummer-F HmmerRM-Fw/o HS 46.4 + 2.7 − 1.7 + 0.8 − 11.4 − 3.1 − 0.2

Hummer-F HmmerRM-F 46.3 + 2.4 − 1.8 + 0.5 − 11.8 − 3.4 − 0.3

ison, we apply the ADC-B evaluation to the RewardBench
framework, uncovering a notable consistency with the ADC
findings. Our analysis further reveals a negative correlation
between the ADC and the number of alignment objectives,
suggesting that incorporating more fine-grained alignment
dimensions may potentially mitigate conflict to a certain
degree.

Ablation. The ablation study on the HS strategy reveals
that improvements in ADC and ADC-B are primarily de-
rived from our proposed datasets, while an observable mar-
gin with HS, i.e., around 3% and 7% for ADC and ADC-B
respectively. Our observations confirm that HS is crucial
for enhancing leaderboard-centric performance primarily
aiming at ”achieving a higher score” on Rewardbench. Ad-
ditionally, we emphasize the importance of data quality in
further fostering improvements in ADC and RewardBench.
Despite these observed gains, this study fundamentally aims
to identify and quantify the competing dynamics prevalent
in preference datasets.

5.2. Jailbreak Attacks Evaluation

Result. In Tab. 2, we delineate the outcomes of jailbreak
attacks on Anthropic HH (Ouyang et al., 2022), UltraFeed-
back (Cui et al., 2023), and Hummer, with each model
integrating 2, 4, and 6 alignment dimensions, respectively.
Initial fine-tuning yields a uniform jailbreak rate across all
datasets. Notably, UltraRM registers the highest attack rate,
exhibiting a 10.4% increase following further fine-tuning on
the instruction-following alignment dimension (# 2). This
highlights a significant escalation in vulnerability to jail-
break attacks when UltraRM is specifically fine-tuned to
enhance instruction-following, underscoring a pronounced
tension with safety protocols. Conversely, HummerRM
demonstrates exceptional robustness, with a jailbreak rate in-
crement of less than 3% subsequent to additional fine-tuning
across all dimensions. This indicates that the alignment ob-
jectives of Hummer are harmoniously integrated, ensuring
that its safety remains unimpaired by further fine-tuning.

We emphasize that a declining jailbreak rate signifies en-
hanced defensive capabilities against jailbreak attacks. This
improvement is particularly notable when further fine-tuning
focuses on specific alignment dimensions, such as harmless-
ness (# 2) in the case of Anthropic HH, and empathy (# 4) in
Hummer. The detailed alignment dimensions for preference
datasets are shown in Appendix Tab. 6.

Ablation. The ablation study on the HS indicates the
strong ability of reward models against jailbreak attacks
is most saturated from Hummer and Hummer-F, while hy-
brid sampling further enhances the defensive capabilities.
These results align with those observed in the Tab. 1, affirm-
ing ADC’s reliability as a proxy for quantifying preference
conflicts in datasets. Addressing these conflicts is essential
for maintaining resilience against jailbreaks.

6. Conclusion
In this study, we delve into the dynamics of competing pref-
erences within the Reinforcement Learning from Human
Feedback (RLHF) framework. We introduce a novel statis-
tical metric termed Alignment Dimension Conflict (ADC)
to quantify the extent of conflict among alignment objec-
tives within preference datasets. We unveil the first prefer-
ence dataset, Hummer, alongside its fine-grained variant,
Hummer-F. These datasets are designed to mitigate di-
mension conflicts, facilitating domain-specific fine-tuning
while increasing resilience against jailbreak attacks. This is
achieved by selectively prioritizing certain alignment objec-
tives without compromising performance across other align-
ment objectives. Subsequently, we develop reward models
for our datasets, namely HummerRM and HummerRM-F,
employing a hybrid sampling technique that dynamically
adjusts the sampling weight based on reward performance
across different alignment dimensions. Looking ahead, an
intriguing avenue for future research lies in constructing
low-conflict alignment objectives using unsupervised or self-
supervised (Zhang et al., 2020; Yan et al., 2021) learning
methods to discern semantic nuances. Furthermore, explor-
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ing the conflict of alignment dimensions in the preference
modeling stage offers a promising avenue for understanding
the safety trade-offs in further fine-tuning policies (Qi et al.,
2023).
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A. More Related Work
RLHF. RLHF has emerged as the leading strategy to integrate human preferences into language models through preference
datasets, which can be fixed pre-collected or generated from agents or language models (Cheng et al., 2011; Akrour
et al., 2011; Askell et al., 2021). To integrate human values, RLHF generally obtains the final aligned policy through RL
algorithms, such as PPO (Schulman et al., 2017), to maximize the reward through the trained reward model on preference
datasets (Ramamurthy et al., 2022; Bai et al., 2022; Ouyang et al., 2022; Touvron et al., 2023). Another important branch
is to directly anchor the human preferences to the final policy by constructing the implicit reward with policies through
the closed-form optimal solution for the reward model (Rafailov et al., 2023; Zhao et al., 2023; Azar et al., 2023; Wang
et al., 2023a; Ethayarajh et al., 2024; Zhou et al., 2023; Amini et al., 2024; Liu et al., 2023; Swamy et al., 2024). While
these approaches are appealing for their computation cost and ease of implementation, their inherited offline paradigm
suffers from the distributional shift and lack of online exploration (Guo et al., 2024c; Calandriello et al., 2024). We elaborate
on more related work for the human alignment in Appendix A, consisting of rank-based, conditional, and weak-to-strong
supervision approaches.

Ranked-based Human Alignment. Human Alignment with rank-based methods is to formalize language model alignment
as a listed ranking problem, where the model learns from a ranked list of responses to each prompt. LiPO (Liu et al.,
2024) computes ranking loss by utilizing the ordered results from multiple responses. RRHF (Yuan et al., 2023) advances
the field by evaluating the responses generated under different sampling strategies and aligning them with human preferences
through a refined ranking loss mechanism. Similar to RRHF, PRO (Song et al., 2023) chooses more negative samples with
various penalties. This strategy improves the model’s understanding of less preferred responses, sharpening its alignment
with human preferences. Curry-DPO (Pattnaik et al., 2024) expands upon this by incorporating the concept of curriculum
learning with multiple preference pairs into the DPO framework. These ranking-based strategies are in the ongoing effort to
enhance the alignment of language models with human preferences. However, the quality of these rankings significantly
influences the quality of model alignment. Additionally, these methods also lack the generalization of the various dimensions
of human values. Besides, Conditional RLHF does not require constructing preference or ranking data. Instead, they utilize
a mix of high and low-quality data for implicit reward signals, such as OpenChat (Wang et al., 2023b).

Weak-to-Strong Genelization in Alignment. In some cases, expecting humans to evaluate an extremely complex response,
such as assessing millions of lines of code, is impractical. This necessitates a branch of study (Ji et al., 2023) focused on how
weak supervisors can control models that are significantly more intelligent than themselves. The concept of weak-to-strong
generalization (Burns et al., 2023) primarily involves utilizing a model with limited capabilities to fine-tune a strong,
pre-trained foundational model. This process enhances the foundational model’s capabilities beyond those of the initial weak
model, often achieving better outcomes than those refined using ground truth labels. Empirical experiments in debate (Khan
et al., 2024) have demonstrated that a weaker model can evaluate the correctness of a stronger model by assessing the
debates between two expert models. Aligner (Ji et al., 2024a) introduces an additional model to correct outputs, achieving a
mapping from an unaligned distribution to an aligned distribution. Remarkably, using only a 7B model can significantly
enhance the results of GPT-4. Liu & Alahi (2024) proposes the improvement through hierarchical layers of multiple weak
supervisors. Vision Superalignment (Guo et al., 2024b) introduces an adaptive confidence loss to measure the discrepancy
between soft and hard labels, thereby facilitating W2SG in large vision models. These methods prove that leveraging weak
supervisors to extract knowledge from strong models is feasible. However, they may not reach the performance ceiling,
indicating limitations in achieving the utmost efficiency or accuracy possible with current methodologies.

B. Example for ADC
An interesting question to ask is: What situation leads to high ADC? We simplify the performance deviation (U − U)
sampling from a normal distribution N

(
0, σ2

)
1. The expression Ex∼N (µ=0,σ2)U[x] in Fig. 3 (a) represents the Average

Deviation Coefficient (ADC) of a normal distribution with respect to its variance parameter σ. This measures how much
adjusting one alignment dimension affects others with further fine-tuning. We observe a strongly positive correlation
between ADC and σ, indicating that datasets with a higher level of competing dimensions (evidenced by greater variance on
the negative side) tend to exhibit higher ADC values. The performance deviation across datasets with varying ADC levels
is illustrated in Fig. 3, where datasets with low ADC are characterized by a minimal negative impact on the performance

1The assumption that µ = 0 is justified because further fine-tuning along dimension di might enhance performance in some dimensions
while adversely competing with others.
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Figure 3. (a) Normal distribution of ADC with varying standard variance σ: Ex∼N(0,σ2)U[x]. (b-c) The performance deviation with
further fine-tuning on the first dimension of preference datasets with (b) low and (c) high ADC. Intuitively, a high ADC indicates a strong
conflict between the alignment dimensions of a given preference dataset.

across other alignment dimensions, i.e., lower level of competition.

C. Hummer Details
C.1. Data Construction Prompt and Annotation

In this section, we detail the construction process of Hummer, starting from the initial data formulation. Utilizing the original
dataset, we format it in the pattern {x, y1, y2, y3, y4}, where x serves as the prompt and each yi represents a candidate
generated by the model. To create a rich dataset for pairwise comparison, we pair the candidates, resulting in a new set of
sample pairs {x, y1, y2}.

Following this, we select a subset of 400 pairs from this collection through random sampling. These selected pairs are then
formatted into standard prompts, structured to be fed into GPT-4 for evaluation. In executing these queries, our objective is
to discern the superiority between y1 and y2 within each pair, focusing on identifying which candidate better aligns with
a specific predefined objective. Additionally, for each comparison, we aim to gather a concise explanation highlighting
why one candidate is favored over the other, based on the alignment with the mentioned objective. Through this meticulous
process, we identified a diverse set of 37 different objective names.

Prompt for identifying multiple objectives and definitions to reduce competing.

Following is a pair-wise RM training data item with the structure {’prompt’:[prompt],’candidate-1’:[candidate-
1],’candidate-2’:[candidate-2]}.

The ’prompt’ stands for a question/situation in which one agent is asked to answer; the ’candidate-1’ and ’candidate-2’
are two responses from agents. One response is better than the other.
Your task is to give a brief assessment about which response is better and in which quality it did so. Your output
should have following json format: {’quality’:[summarize the quality name],’reason’:response-1(or response-2) is
better because [reason],’chosen’:[0 for response-1 better and 1 for response-2 better]}. Remind the ’reason’ part
should contain no more than 40 words.
Here is the item case:

Subsequently, we integrate the previously identified 400 superior alignment objectives, replete with their concise explanations,
into the new prompt design for GPT-4 as part of our second approach in prompt engineering. This step instructs GPT-4 to
assimilate the given information and differentiate between objectives, combining similar ones to eliminate redundancies,
and then distill these into a defined set of distinct objectives. The anticipated outcome is a final set of consolidated objective
names and corresponding definitions.

The sampling strategy employed in the aforementioned stages functions as a heuristic aid, steering us towards dimensionality
where conflicts are minimized. Empirically, this selective approach enabled us to pinpoint ten distinct dimensions.
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Prompt for refining independent dimensions definitions and approaches from summarized
alignment Features.

You will receive a series of example entries formatted to: {”quality”: ”aspect-name”, ”reason”: ”Response-1 (or
Response-2) is better because [reason]}”.

Please understand the meaning of each entry in conjunction with the ’quality’ and analyze the differences and
connections between them.
Finally, summarize all the ’qualities’ and refine them by only retaining the ’qualities’ that are semantically indepen-
dent and have as little feature overlap as possible, and provide the reasons for doing so. Your output should follow
this format: {”single-quality”: ”aspect-name”, ”reason”: ”because [reason]”}.
Here is the list of example entries:

Table 3. Frequencies of Samples Aligned to Alignment Objectives under 2-stage Classification Method.

ID 0 1 2 3 4 5

Dimension accuracy conciseness depth empathy tone specificity

Frequency 4721 1544 2855 1376 872 2635

In the concluding procedure, we categorize the entirety of the dataset into these ten alignment objectives following the
structure specified by the third prompt example. Our initial method used a singular query to present all objectives’
definitions to GPT-4, subsequently prompting it to discern the most suitable alignment objective for each data entry.
Unfortunately, this methodology yielded suboptimal performance due to positional bias, where objectives presented earlier
were disproportionately selected over subsequent ones. The variability of results with different objective orders further
indicated a lack of stability in this initial approach.

Prompt for final dataset splitting with objectives.

Following is a pair-wise RM training data item with the structure ’prompt’:[prompt], ’chosen’ :[chosen output],
’rejected’:[rejected output].

The ’prompt’ stands for a question one agent is asked to answer and the ’chosen’ and ’rejected’ are two responses
from the above agent. Your task is to assess both of them and give reward (float, 5.0 for best and 0.0 for worst) in
the dimension of Depth with the definition “the thoroughness of analysis or explanation, providing detailed insights
into a subject”, for ’chosen’ and ’rejected’ responses(Each response one score). Then compute the gap between the
two rewards (’chosen’ reward - ’rejected’ reward). Finally only output the reward gap.
Here is the item case:

To address the limitations observed with the initial approach, we transition to a two-stage reward-ranking classification
methodology. In the first stage, we present each alignment objective distinctly, pairing them with the samples for evaluation
by GPT-4. Our request for GPT-4 includes assessing and assigning a reward to both y1 and y2 based on how well they
meet the given objectives and calculating the difference between these rewards, termed the ’reward gap’. Subsequently, we
compile a list of these reward gaps for each sample across the various objectives and rank them in order of magnitude. The
logic underpinning this sorting is straightforward: a larger reward gap signifies a clear preference for one candidate over the
other, primarily grounded in the specific objective, thereby determining the ultimate classification for data segregation. This
iterative refinement led to the crystallization of 6 distinct alignment objectives, each defined succinctly and accompanied by
the frequency of dataset samples correlating with them.

An intriguing observation emerged during this process: a notable fraction of samples (11.2%, to be precise) displayed nearly
identical or very closely matched reward gaps for two or more objectives. Our strategy to address these ambiguities varies
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depending on the dataset context. For the standard dataset, these samples are randomly allocated to one of the objectives
sharing the highest reward gap, aiming to preserve the integrity and balance of the dataset. Conversely, in the fine-grained
dataset, we opt for exclusion, removing these samples outright to maintain the precision and reliability of our objective
classifications.

1. Accuracy refers to the adherence to factual correctness, ensuring that information is free from errors.

2. Conciseness refers to the ability to convey information with brevity, using a minimal number of words without
sacrificing clarity.

3. Depth refers to the thoroughness of analysis or explanation, providing detailed insights into a subject.

4. Empathy refers to the capacity to understand and share the feelings of others, reflecting compassion in communication.

5. Specificity refers to the provision of precise and detailed information, avoiding generalizations or vagueness.

6. Tone refers to the author’s attitude or mood conveyed through language, influencing the reader’s perception.

C.2. Case Study

Following Tab. 4 and Tab. 5 we provide some representative cases from Hummer dataset, each for one alignment objective,
ranging from three lines to tens of lines. The format follows ”prompt”, ”chosen” and ”rejected” (pair-wise) versions.

C.3. Hummer-F

While the prevailing belief advocates for the benefits of increasing dataset size to enhance the performance of language
models, we emphasize the critical role of data quality over quantity in developing preference datasets for effective preference
modeling. Enlarging the dataset may inadvertently incorporate noisy preference pairs, potentially diluting the integration
of human values into the reward model (Siththaranjan et al., 2023; Wang et al., 2024a). In response, Wang et al. (2024a)
undertook comprehensive experiments that underscored this phenomenon, proposing label smoothing and additive margin
as algorithmic innovations to refine the preference model.

In light of these findings, our approach in developing Hummer involves a meticulous two-stage filtering process, resulting in
the creation of Hummer-F, a fine-grained variant distilled from approximately 46% of the original dataset. The initial stage
utilizes scores from raw paired data sourced from UltraFeedback (Cui et al., 2023), implementing a threshold (τ1 = 4.0)
on the summed score gap for initial data cleansing. This procedure effectively reduces the dataset from N0 = 100k
preference pairs to N1 = 46k. Subsequently, we introduce a second threshold (τ2 = 0.5) specifically within the pairwise
preference datasets of Hummer, aiming to isolate and remove potentially noisy data based on reward signals derived from
the concluding phase of Hummer’s assembly. This strategy further refines the dataset to N2 = 37k preference pairs. Our
experimental results affirm that this meticulous dataset curation markedly enhances testing accuracy. Although the current
filtering process relies on heuristic methods, future iterations could benefit from an implementation grounded in a reward
modeling approach.

D. Hybrid sampling strategy maintains performance on imbalanced datasets.
An imbalanced dataset arises with a non-uniform distribution of classes, often characterized by a disproportionate number
of instances between major and minor classes, resulting in biased predictions (Krawczyk, 2016; Jiang et al., 2023). To
investigate the efficacy of a hybrid sampling strategy in addressing dataset imbalance in the context of alignment objectives,
we integrate our datasets across six alignment dimensions with a distribution ratio of 10 : 10 : 10 : 10 : 1 : 1, where the 1 : 1
ratio pertains specifically to specificity and tone. The results are illustrated in Fig. 4.

Fine-tuning on specific dimensions will boost the performance on its corresponding alignment dimensions but fail to achieve
desirable performance on other alignment dimensions, such as Single # 1 (Accuracy), and Single # 5 (Tone). We demonstrate
that the All Dimensions Equal strategy, with a uniform distribution ratio of 1:1:1:1:1:1, underperforms relative to our hybrid
sampling approach across all dimensions, achieving only 70% to 95% of the performance of the Hybrid sampler. This
implies that this uniform sampling strategy, also employed by Cui et al. (2023), may fall short in imbalanced datasets. The
All Mixed strategy, integrating all alignment datasets ignoring the data balance, exhibits significantly superior performance
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Table 4. Representative Cases for Depth, Tone and Specificity Objectives in Hummer.

Objective
Number of
Samples

Case of
objectives

Depth 2855

”prompt”: ”What are the key factors
that influence the stock market?“,

”chosen”:”First, economic indicators,
such as GDP growth and inflation rates,
set the stage for market expectations by.
reflecting the overall health of the economy.
Second, corporate earnings reports can
significantly impact stock prices, as they
provide insights into the profitability and

future prospects of individual companies.
Last, geopolitical events, including trade wars
and policy changes, can create uncertainty and
affect investor sentiment, leading to market volatility.”,

”rejected”:”The stock market is affected by
economic data, company profits,
and world events, but the specific details of
these factors are not elaborated upon.”

Tone 872

”prompt”:”What are the potential consequences
of not recycling?

”chosen”:”Not recycling can lead to increased
waste in landfills, which contributes to
environmental pollution and the depletion of
natural resources. It’s important that we consider
the long-term effects on our planet and strive
to reduce, reuse, and recycle whenever possible.

”rejected”: ”If you don’t recycle, you’re practically
destroying the Earth! It’s people like you who are
causing irreversible damage to our environment.
Wake up and start doing your part, or else!”

Specificity 2635

”prompt”: ”I’m trying to improve my fitness and lose weight.
What kind of exercise routine should I follow?”,

”chosen”: ”For a targeted approach to fitness
and weight loss, commit to a routine that
includes jogging or brisk walking for 20 minutes
every morning, three times a week, and swimming or
cycling for 30 minutes on the alternate days.
On weekends, dedicate 30 minutes to
strength training, focusing on
full-body workouts with exercises
like squats, lunges, push-ups, and planks. ”,

”rejected”:”To enhance your fitness and promote weight loss, consider
integrating a mix of cardio and strength training into your
weekly schedule. Aim to stay active for at least 30 minutes
a day, five days a week, and include healthy
eating habits as part of your lifestyle.”
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Table 5. Representative Cases for Accuracy, Conciseness, and Empathy objectives in Hummer.

Objective Number of Samples Case of objectives

Accuracy 4721
”prompt”: ”What is the capital of France?
”chosen”: ”The capital of France is Paris.
”rejected”: ”The capital of France is Lyon.”

Conciseness 1544

”prompt”:
”What is the primary function of
photosynthesis in plants?

”chosen”:
”Photosynthesis converts sunlight, water,
and carbon dioxide into glucose and oxygen,
providing energy for plant growth.

”rejected”:
”The quintessential process of photosynthesis,
a veritable symphony of nature’s alchemy,
transmutes the radiant energy of the sun,
the life-sustaining elixir of water, and the
invisible breath of carbon dioxide into the
sweet nectar of glucose, the very essence
of verdant vitality, and the ethereal gift of oxygen,
all in a dance of molecular elegance that is
the cornerstone of botanical sustenance
and the tapestry of life itself.”

Empathy 1376

”prompt”:
”Ï’m feeling really overwhelmed with my work
and personal life.I’m struggling to find a balance.
What advice would you have for me?

”chosen”:
”Ï understand that you’re going through a tough time,
and it’s completely natural to feel overwhelmed.
It’s hard when you’re juggling many responsibilities,
and it can be tough to find that balance. May I suggest
taking a few moments each day to focus on your breath
and practice mindfulness? This can help create
a sense of calm and provide a fresh perspective.
Also, remember that it’s okay to say
no sometimes and protect your personal time.

”rejected”:
”You’re not alone in feeling overwhelmed.
It’s a common problem in today’s fast-paced world.
Here are some practical tips: prioritize tasks,
set boundaries, and consider delegating or
asking for help when necessary. Remember, it’s
important to take breaks and engage in activities
that you enjoy to recharge.”
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Figure 4. Performance with different sampling strategy on imbalanced datasets.

in well-represented alignment datasets # 1 and # 2 (Depth and Accuracy), yet fails in alignment objectives with limited
datasets: # 5 and # 6 (Tone and Specificity). Such an approach could further diminish the performance of lesser-represented
alignment objectives, particularly in scenarios involving competing alignment objectives.

E. Experiments Details
This section delineates the experimental apparatus employed in our study. Our computational setup comprised a quad-
cluster of NVIDIA A100 GPUs, each furnished with 100GB of memory, providing robust computational capacity. This
infrastructure was driven by a software stack anchored by Python 3.8. In the realm of deep learning libraries, we harnessed
the capabilities of PyTorch version 2.0.1. Allied with PyTorch, we utilized torchvision version 0.13.1+cu113 and torchaudio
version 0.12.1+cu113 to manage image and audio data transformations, respectively. Additionally, scikit-learn version 1.0.1
served as our machine learning toolkit, offering a versatile assortment of algorithms for data mining and analysis.

To expedite the training process, we integrated the flashattention library at version 1.0.0, specifically optimized to harness
the A100’s computing prowess effectively. This library was instrumental in reducing the computing overhead significantly,
thus accelerating training times for our models.

Below, we expand on the specifics of our experimental methodologies, ensuring that we shed light on each significant aspect
that could possibly influence the replicability and interpretation of our research findings.

E.1. Datasets evaluation

We initiate our experimentation by training an encompassing model on the Hummer dataset utilizing the LLaMA2-7B
architecture, extending over m0 = 24000 training steps. To assess its performance, we deploy the model to RewardBench,
yielding an evaluative score.

To gauge and juxtapose the Average Deviation Coefficient (ADC) across varying datasets, we embark on a fine-tuning
regimen. This phase commences with models that have undergone a warm-up phase of training, aligned with different
specified objectives. These fine-tuned models, including the initially warmed-up model, undergo individual assessments
against the corresponding evaluation sets of each dataset. The objective is to discern the adjustment in prediction accuracy
specifically on the RM dataset. We normalize the observed changes to derive the relative variation and, leveraging the ADC
as previously defined, calculate the precise value through the established formula.

To mitigate the potential biases introduced by the model architecture in evaluating datasets, we standardize the use of the
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Llama2-7B model as our foundational model for all datasets undergoing evaluation. This standardized approach includes
an initial phase of training amounting to k0 = 1000 steps, covering the entirety of the source dataset—a conglomerate
reflecting the diverse spectrum of the target evaluation dataset. This foundational model subsequently anchors the further
fine-tuning training sessions and comparative performance analyses.

In the advanced fine-tuning phase, we meticulously sample from each subset within the evaluation dataset, catering to
distinct alignment objectives. This step involves engaging in reward model training over M = 4000 steps, rooted in the
preliminarily trained base model. For those datasets facing data scarcity, we incorporate a multi-epoch replay and reuse
strategy. This method is pivotal in circumventing the undue repetition of data samples, thereby minimizing the risk of
overfitting and maintaining the model’s generalization capabilities.

Table 6. The details alignment dimensions for preference datasets.
Datasets # 1 # 2 # 3 # 4 # 5 # 6

Anthropic HH helpfulness harmlessness - - - -

UltraFeedback helpfulness instruction-following honesty truthfulness - -

Hummer accuracy conciseness depth empathy tone specificity

E.1.1. ADC CALCULATION

For the computational demands of our experiment, each further fine-tuning phase of our model on the Hummer dataset,
leveraging the LLaMA2-7B framework, required approximately 6 hours of dedicated processing time using four NVIDIA
A100 GPUs. Our ADC evaluation involves the following three key steps:

(a) Single evaluation strategy: During the evaluation stage, we strategically sample 1,000 instances from each test set
corresponding to the distinct alignment objectives integrated within our target evaluation dataset. This sampling aims to
rigorously assess the prediction accuracy of our fine-tuned models. Adopting a standard reward model evaluation approach,
we analyze the competency of the reward model by presenting two candidate responses to a given prompt. The evaluation
criteria are straightforward: if the candidate response marked as “chosen” garners a higher score compared to its counterpart
across the sampled data, the model’s prediction for that instance is deemed accurate; conversely, it’s labeled inaccurate. The
precision of the model, thus, is quantified as the percentage of instances correctly evaluated as accurate.

(b) Evaluate further tuning: Upon refining the new model via further fine-tuning on an alignment objective from the
base model, we meticulously evaluate the impact of this fine-tuning on relative accuracy across all objectives delineated in
the dataset. In analyzing the outcomes, our focus narrows to the adverse effects—specifically, the reduction or negative
impact that further tuning dedicated to one objective might have on the performance across other objectives. This analysis is
operationalized by computing the squared mean of these reductions.

(c) Compute ADC value: Concluding this multi-faceted evaluation, we compute the expectation across each specified
objective within the target evaluation dataset. This computational step culminates in the derivation of the Average Deviation
Coefficient (ADC) result, effectively encapsulating the nuanced dynamics our definition intended to capture. This ADC
measurement serves as a nuanced indicator, reflecting the model’s balanced performance across a spectrum of alignment
objectives, shedding light on the intricate trade-offs that underlie fine-tuning processes in deep learning model optimization.

E.1.2. ADC-B CALCULATION

Formally, the performance of a given reward model after fine-tuning on its preference dataset Dp
n is denoted as V =

{v1, v2, · · · , vm}, where m indicates the total dimensions of abilities for assessment, e.g., Reasoning ability in RewardBench.
With further fine-fune of the reward model on one specific dimension di ∈ Dp

n, new evaluated performance and benchmark
performance deviation are defined as Vi = {vi,1, vi,2, · · · , vi,m} and Vi − V, respectively. We then can evaluate the ADC
of datasets with a structured comparison on standard benchmarks:

Definition 2 (Alignment Dimension Conflict Benchmark). The Alignment Dimension Conflict (ADC) extended to standard
benchmark evaluation is the second-order moment of negative performance deviation on all evaluation dimensions in the
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Figure 5. The performance deviation with further fine-tuning on different alignment objectives, where the green bar indicates the further
fine-tuning dimensions. Notably, Hummer demonstrates minimal competition among alignment dimensions.

benchmark:

V
[
DP

n

] .
= Ei

[∑m
j=1((vi,j − vi,j)−)

2

m

]
with v− = min{v, 0}, (4)

E.2. Hybrid Sampler

To rigorously evaluate our novel hybrid sampler methodology against the conventional fixed-ratio mixture sampling
technique, we undertake comparative training experiments using the same dataset. In this case, we exemplify the process
with the fine-grained version of the Hummer dataset. We standardize the foundation of our comparative analysis by utilizing
the Llama2-7B base model, maintaining a consistent training duration of N = 2000 steps across all experimental trials.
Post-training, we assess the resulting reward model’s performance on various objectives’ evaluation sets within the Hummer
dataset. The findings related to relative accuracy are illustrated in Fig. 4.

Parameters settingArticulating the specifics of the hybrid sampler configuration, we establish the following parameters:
each objective weight, λi, is set at the uniform value of 1/6, corresponding to an equal division of focus across all objectives.
The adherence threshold, thresholdi, is set to 0.80, indicative of our criterion for sample selection consistency. Moreover,
the learning rate (denoted as lr) for the λ values is calibrated at 1e − 4. These weights, λi, subsequently inform the
proportional sampling across the respective datasets, such that the ideal number of samples from dataset i in a single batch
would approximate to BatchSize× λi.

Handling sampling size not integer:Addressing scenarios when the calculated sampling size for specific objectives
does not yield an integer, we initially resort to the floor function, expressing this as SampleSizej = [BatchSize × λ].
Post-computation, we then determine the remaining sampling capacity, described as BatchSize−

∑
SampleSizej . The

ensuing step entails random sampling for the objectives that correlate with this remaining budget, relying on Λj as the
probability factor. This tailored approach aims to uphold the integrity of equitable consideration for each alignment objective,
meticulously adhering to the pre-set guidance of Λj . Such stringent adherence seeks to ensure the sampler’s fairness and
objectivity across the landscape of alignment objectives within the dataset.

Result analysisThe radar chart reveals notable findings regarding the performance of the hybrid sampling methodology
within a fixed training-step regime. Specifically, the hybrid sampler’s performance closely matches the precision gains seen
when training objectives independently (showing a difference of less than 5.6%) for accuracy and conciseness objectives.
Additionally, this approach yields a higher precision improvement rate (by roughly 4.3%) than that of the fixed-ratio 1:1
mixture sampling method for the same objectives. When juxtaposed against the equal-ratio 1:1:1:1:1:1 mixture sampling
strategy spanning all six objectives of the dataset, the hybrid sampler shows an even more marked enhancement, outstripping
the uniform mixture method by over 10%. Significantly, the hybrid sampling approach also surpasses strategies that forgo
additional fine-tuning for the remaining four objectives. The rationale behind these outcomes can be intuitively understood
when considering how objectives, which are not specifically bolstered by increased sample counts—the same FLOPs
(Floating Point Operations Per Second)—can still be affected to different extents, as indicated by the dataset’s ADC levels.
Some objectives might lag in improvement when provided with the same or smaller sample distribution proportions. The
hybrid sampler intelligently adjusts for this by diminishing the sampling proportions of objectives that have already attained
a satisfactory level of accuracy enhancement. This reallocation tactic beneficially channels a greater share of the training
proportion towards those objectives that show slower gains. Consequently, this method maximizes training efficiency,
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enabling more substantial improvements under a constant computational budget.

E.3. Setups.

Reward Model Evaluation To elucidate the dynamics of low competition in Hummer and Hummer-F, we assess the
ADC within their respective preference datasets. This evaluation is contextualized by comparisons with the Anthropic HH
dataset (Bai et al., 2022), and UltraFeedback (Cui et al., 2023). To systematically analyze the degree of competition among
alignment dimensions, we extend our evaluation to include ADC-B and assess performance on RewardBench (Lambert
et al., 2024). RewardBench represents a comprehensive benchmark covering chat, reasoning, and safety domains, providing
a pairwise testbed for evaluating reward models. Furthermore, we explore the effectiveness of hybrid sampling strategies in
the training of reward models. For consistency across evaluations, we employ a consistent backbone model, specifically a
fine-tuned Llama 2-7B (Touvron et al., 2023), to train the reward models for each dataset.

Jailbreak Attacks Evaluation. We posit that the HummerRM framework can mitigate vulnerabilities to jailbreak attacks
by enhancing one dimension without degrading performance across other metrics. Our jailbreak evaluation framework
follows the methodology outlined by Siththaranjan et al. (2023). Specifically, the jailbreak-based dataset comprises pair-wise
tuples (x, y1, y2), where x represents prompts designed to elicit a harmful response from the model (termed ’jailbreak
prompts’), y1 denotes the safe response, and y2 is jailbreak response (Wei et al., 2024). Given a learned reward model, if the
reward of (x, y2) is higher than (x, y1), we then expect a failure in maintaining policy modeling safety, leading to jailbroken
responses. We quantify this through the ’jailbreak rate’, calculated as the proportion of instances where the reward model
favors (x, y2) over (x, y1), represented by I(r(x, y2) > r(x, y1))/n, where I is the indicator function and n denotes the
total prompts. The higher the jailbreak rate, the greater the vulnerability of models to attacks.

The datasets and the backbone model used for the reward training and jailbreak evaluation adhere to the experimental
settings detailed in Section 5.1. Our test reward models consist of the initial fine-tuning models on the whole preference
datasets and further fine-tuning models on specific alignment dimensions. Further fine-tuning of reward models is crucial
for downstream tasks that require emphasis on specific alignment dimensions.
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