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Abstract— Representation learning for two partially overlap-
ping point clouds remains an open challenge in unsupervised
point cloud registration (U-PCR). In this article, we intro-
duce RegiFormer, a geometric local-to-global transformer
(GLGT)-based unsupervised framework equipped with a self-
augmentation (SA) strategy, for point cloud registration. The
GLGT not only aggregates features from local neighborhoods
but also extracts global intrarelationships within the entire point
cloud using a transformation-invariant geometry embedding.
In addition, it enhances the interrelationships between paired
point clouds. To overcome the limited ability of U-PCR methods
to learn alignment knowledge, we design an SA strategy that can
be flexibly integrated into advanced models, significantly boosting
their registration performance. Extensive experiments, conducted
on five popular synthetic and real-scanned benchmarks, demon-
strate the superior performance of RegiFormer compared to
state-of-the-art methods, both qualitatively and quantitatively.

Index Terms— Geometric local-to-global transformer (GLGT),
point cloud registration, RegiFormer, self-augmentation (SA).

I. INTRODUCTION

POINT cloud registration serves as the cornerstone in
various fields such as 3-D reconstruction [2], SLAM [3],

and 3-D location [4], making it a classical topic that has
recently experienced a surge in research interest due to the
advent of deep learning. The primary objective of point cloud
registration is to estimate a rigid transformation, aligning two
partially overlapping point clouds.

Many promising solutions have been proposed [5], [6], [7],
[8], [9], [10], [11] for point cloud registration. Among them,
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the traditional methods, e.g., ICP [5] and FPFH [12], involve
complicated optimization procedures and many parameters to
tweak, which heavily discount the efficiency and user experi-
ence; the deep learning-based methods [13], [14], benefiting
from large training data, can automatically achieve the optimal
registration performance in the run-time stage. The success of
deep learning-based methods mainly imputes to the supervised
learning paradigm that is fed with a huge amount of data
with ground-truth transformation labels. However, in real-
world scenarios, we often lack labeled aligned 3-D scans, and
human annotations of them are quite labor-intensive and time-
consuming due to their irregular structures. Although training
on synthetic scans is promising to alleviate the shortage of
labeled aligned real-world data, such trained models inevitably
suffer from domain shifts. To solve this issue, some efforts [1],
[15], [16], [17] are made to focus on unsupervised point cloud
registration (U-PCR), achieving substantial progress.

Nevertheless, U-PCR remains an open problem for two
reasons. First, current methods, e.g., [1], [16], are often
confronted with the challenges related to insufficient and
indistinctive feature representations, such as the loss of local
cues, the absence of global features and cross-features, and
numerous outlier matches. As illustrated in the purple oval
regions in Fig. 1(b), depending only on local features makes
some outliers salient, leading to confused mismatches. Second,
the difficulty of U-PCR lies in the weak ability of networks
to learn 3-D alignment knowledge without the supervision of
ground-truth transformation labels.

To this end, we propose RegiFormer, a U-PCR method that
utilizes a geometric local-to-global transformer (GLGT) for
robust deep feature learning, along with a self-augmentation
(SA) strategy to facilitate alignment knowledge acquisition,
which can make unsupervised methods learn a better initial-
ization of registration status.

We first design a local-to-global transformer module with
a transformation-invariant geometry embedding to enrich the
feature representation. The local transformer module adap-
tively aggregates the local features from the neighborhood of
each point, which serves as a remedy for the loss of local
cues. In the global transformer module, we utilize the self-
attention [18] to capture the long-range dependence within
each point cloud and use cross-attention to facilitate the feature
interaction between point cloud pairs. In order to make the
features more distinctive, we design a transformation-invariant
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Fig. 1. We propose an effective unsupervised RegiFormer for point cloud registration. (a) Two point clouds for registration (yellow: source; blue: target).
(b) and (c) Feature visualization of our RegiFormer without and with the GLGT. We colorize the points with the (blue, green, yellow, red) color scale according
to feature values and draw the ground-truth correspondence in brown. Note that there are many outlier points with high feature values in the purple oval
regions of (b), which misleads the correspondence search. By contrast, the GLGT makes the features in (c) more reliable to reduce the mismatches effectively.
(d)–(g) Registration results of the ground truth, our RegiFormer, RIENet [1], and RIENet with the SA strategy, respectively.

geometry embedding and inject it into the local-to-global
transformer. With the merits of affluent and reliable features
[see Fig. 1(c)], it is easy to obtain pseudocorrespondences
through feature similarity matching. However, point clouds
tend to be partially overlapping in most cases, and there are
definitely mismatches in the pseudocorrespondences. There-
fore, we feed the coordinates of the pseudocorrespondences
into the confidence prediction module to further compute
confidence scores, which are subsequently used as weights
for estimating the final transformation.

In addition, based on the observation that neural networks
can align completely overlapping pairwise point clouds more
easily than partially overlapping, we devise an SA strat-
egy (without using any GT transformations) to enhance the
learning alignment ability of networks when trained without
ground-truth transformation labels. As shown in the right-hand
side of Fig. 1, with the proposed SA strategy, the network can
learn the 3-D alignment knowledge more easily and estimate
the transformation more accurately.

Comprehensive experiments show that RegiFormer achieves
state-of-the-art performance among unsupervised methods and
even surpasses some supervised methods on both synthetic and
real-scanned data. Our main contributions are threefold.

1) We propose a novel unsupervised method for point cloud
registration, which can handle the partial overlap scenes
with high registration accuracy and serve as a robust
baseline, facilitating further advancements in the field.

2) We design a GLGT to obtain sufficient and distinctive
feature representation, which not only aggregates the
local features from the neighborhood but also exca-
vates the global intrarelationship in each point cloud
and enhances the cross-interrelationship between paired
point clouds with geometry priors.

3) We devise a plug-and-play SA strategy to enable learn-
ing 3-D alignment knowledge, which improves the
unsupervised registration performance.

This article is organized as follows. Section II provides
a concise review of both traditional and learning-based

registration methods. Section III presents a detailed description
of the proposed method. Section IV presents the results and
discussions. Section V discusses the limitations and failure
cases of our method under specific conditions, followed by
the conclusion in Section VI.

II. RELATED WORK

A. Traditional Registration Methods

Iterative closet point (ICP) [5] is a classical point cloud
registration method, which iteratively searches correspon-
dences and estimates transformation to minimize the error
between corresponding points. Several ICP variants modify
the criterion of correspondence search from point-to-point to
point-to-plane [19] and plane-to-plane [20], which improves
the robustness of ICP. However, ICP and its variants heavily
depend on a good initialization and easily fall into a local
minimum. To solve this problem, Go-ICP [6] leverages a
branch-and-bound scheme [21] to guarantee global optimality,
but it is time-consuming to search the entire 3-D motion space.
Besides, FPFH [12] proposes a fast point feature histogram
descriptor and uses RANSAC [22] to estimate transformation
robustly. Teaser [23] proposes a fast and certifiable algorithm
for the registration of two point sets in the presence of large
amounts of outlier correspondences. Chen et al. [24] design
a novel plane-/line-based descriptor specifically for estab-
lishing structure-level correspondences between point clouds.
Deng et al. [25] design a novel metric based on the intersection
points between two shapes and a random straight line to
conquer the instability of the closest-point criterion, which
does not assume a specific correspondence. GFOICP [26]
statistically selects registration points by the cross-entropy of
geometric features of the points, then matches correspondences
based on a variable distance threshold, and filters out correct
correspondences using an iterative strict constraint on geomet-
ric feature similarity. Nevertheless, the traditional registration
methods require complicated optimization strategies and may
fail in complex scenes.
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Fig. 2. Architecture of our unsupervised RegiFormer. RegiFormer mainly consists of four components: local-to-global transformer, affinity matching,
confidence prediction, and SA. Note that the SA module is only utilized when training.

B. Supervised Registration Methods

Many supervised point cloud registration methods are
proposed with the rapid development of deep learning tech-
niques. PointNetLK [27] combines PointNet [28] and the
Lucas & Kanade optimization algorithm to align point
clouds. Following the ICP pipeline [5], DCP [7] utilizes
an attention-based module to approximate matching and a
differentiable singular value decomposition (SVD) layer to
obtain the final rigid transformation. To tackle the partial reg-
istration problem, PRNet [29] introduces a keypoint detector
to search keypoint-to-keypoint correspondences for alignment.
IDAM [13] proposes an iterative distance-aware similarity
matrix convolution module, which incorporates information
from both the feature and Euclidean space into point match-
ing process. RPM-Net [30] uses the differentiable Sinkhorn
layer and annealing algorithm to get soft correspondences
from hybrid features. RGM [31] transforms point clouds into
graphs and designs a module based on deep graph matching
to calculate a soft correspondence matrix. DeepGMR [32]
represents the input point clouds using Gaussian mixture
models and formulates registration as the minimization of
KL-divergence between two probability distributions. Besides,
several works [33], [34], [35], [36], [37], [38], [39] strive to
remove outlier correspondences, which tackle the registration
problem from another perspective. DGR [33] leverages a
fully convolutional network for correspondence confidence
prediction and employs a differentiable weighted Procrustes
algorithm for closed-form pose estimation. PointDSC [35]
incorporates spatial consistency into spectral matching for
pruning outlier correspondences. In addition, Predator [14]
designs an overlap attention module to align low-overlap point
clouds. Chen et al. [40] solves the low-overlap registration
problem by introducing a misaligned image between paired
point clouds to obtain cross-modality features, which are used
for two-stage overlap point classification. REGTR [8] utilizes
attention mechanisms to replace explicit feature matching and
directly predicts the final set of correspondences. GeoTrans-
former [41] encodes pairwise distances and tripletwise angles
into the transformer, which is robust in low-overlap cases.
GLORN [42] introduces a rotation-invariant full convolutional
network searching for super points located in the overlapping

region and generating feature descriptors at the super points
simultaneously. Incorporating contour cues to enhance the
point cloud registration task, Ma and Wei [43] propose a novel
sketch-based framework for point cloud registration that incor-
porates contour cues to enhance the point cloud registration
task. PointDifformer [44] utilizes graph neural partial differ-
ential equations (PDEs) and heat kernel signatures to extract
high-dimensional features from point clouds by aggregating
information from the 3-D neighborhood of points, thus enhanc-
ing the robustness of the feature representations. HECPG [45]
leverages hyperbolic information to enhance feature represen-
tations and suppresses the effects of nonoverlapping regions
through confidence guidance. Although supervised point cloud
registration methods achieve profound progress, they have to
consume huge data with ground-truth transformation labels for
training, which greatly increases the training cost and hinders
their applications in the real world.

C. Unsupervised Registration Methods

Since the cost of annotation for ground-truth transforma-
tion labels is expensive, U-PCR has attracted more research
attention. FMR [15] proposes a feature-metric projection error
to optimize registration, which is fast and does not search
the correspondences. CEMNet [16] models the point cloud
registration task as a Markov decision process and designs
a sampling network module to generate a prior sampling
distribution of transformation as a good initialization for
the differentiable CEM module. Jiang et al. [46] leverage
reinforcement learning to deal with registration by developing
a latent dynamic model for point clouds. Li et al. [17]
jointly handle shape completion and registration by a learnable
latent code in an unsupervised manner. Besides, several meth-
ods [47], [48] focus on designing effective feature descriptors
for registration by unsupervised learning. RIENet [1] proposes
a reliable inlier evaluation method to improve the accuracy
of alignment, while it only takes the local neighborhood
information into consideration.

By contrast, our method devises a GLGT that considers the
local, global, and cross-feature representation simultaneously
with geometry priors. Besides, we rethink the learning align-
ment ability of U-PCR methods and design an SA strategy to
promote registration performance.
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III. METHOD

A. Problem Formulation and Overview

Point cloud registration aims at estimating a rigid transfor-
mation T = {R, t}, where R ∈ SO(3) and t ∈ R3, to align
a source point cloud P = {pi ∈ R3

| i = 1, . . . , N } and a
target point cloud Q = {q j ∈ R3

| j = 1, . . . , M}. Given the
correspondences C between P and Q, T can be solved by

min
R,t

∑
(pi ,q j)∈C

∥R · pi + t − q j∥
2
2. (1)

Obtaining the ground-truth correspondences C is nontrivial
in an unsupervised setting. Instead, we first generate the
pseudocorrespondences C∗ and then predict the confidence
scores w as weights for the final transformation estimation.
Therefore, we reformulate the registration problem as

min
R,t

∑
(pi ,q∗

i )∈C∗

wi∥R · pi + t − q∗

i ∥
2
2 (2)

where wi is the confidence score of the i th correspondence.
The pseudotarget point cloud Q∗

= {q∗

i ∈ R3
| i = 1, . . . , N }

builds the pseudocorrespondence set C∗
= {(pi , q∗

i ) | i =

1, . . . , N } with P.
As illustrated in Fig. 2, our method mainly consists of four

components: GLGT, affinity matching, confidence prediction,
and SA. First, we design a local transformer module to
extract distinctive features from the neighborhood adaptively.
Then, a global transformer module is leveraged to capture
the intrarelationship within each point cloud and enhance
the interrelationship between paired point clouds. In addition,
we devise a transformation-invariant geometry embedding,
which is injected into the local-to-global transformer to make
features more distinctive. With sufficient and reliable features,
we utilize an affinity matching module to calculate the feature
similarity matrix, which generates the pseudotarget point cloud
and pseudocorrespondences. Considering that there may be
some wrong pairs in pseudocorrespondences due to partial
visibility, a confidence prediction module is employed to
estimate confidence scores that serve as weights to obtain the
final transformation. Besides, we propose a plug-and-play SA
strategy to produce additional simple training samples when
training, which improves the learning alignment ability of
neural networks and increases registration accuracy.

B. Geometric Local-to-Global Transformer

1) Geometric Relation Embedding: To make features
extracted by the transformer more distinctive, we intro-
duce a novel geometric relation embedding to encode the
transformation-invariant geometry structure of the points (see
Fig. 3). The core idea of the geometric relation embedding is
to leverage the pointwise distance, the point-to-plane angle,
and the maximal side difference between two local triangles
for relation measurement. In detail, given two points pi and
p j , their geometric relation is described as follows.

1) Pointwise Distance: Pointwise distance is the Euclidean
distance ρi, j = ∥pi − p j∥2 between two points.

2) Point-to-Plane Angle: We select two nearest neighbors
pk1

i and pk2
i of pi to form a local plane. Then, we calculate the

Fig. 3. Detail of the geometric relation embedding. The pointwise distance,
the point-to-plane angle, and the maximal side difference between two local
triangles are calculated to form the transformation-invariant geometry structure
of a pair of points.

normal vector n⃗ of the local plane by simple cross-product.
The point-to-plane angle is computed as αi, j = ̸ (n⃗, p j − pi ).

3) Maximal Side Difference of Triangles: Similar to pi ,
we denote the two nearest neighbors of p j as pk1

j and pk2
j .

The maximal side difference between two local triangles is
computed as ηi, j = max((|d i,k1

i −d j,k1
j |, |d i,k2

i −d j,k2
j |, |dk1,k2

i −

dk1,k2
j |), where d i,k1

i = ∥pi − pk1
i ∥2.

Finally, the geometric relation embedding gi, j is computed
by aggregating the pointwise distance, the point-to-plane
angle, and the maximal side difference between two local
triangles as

gi, j =
[
ρi, j , αi, j , ηi, j

]
(3)

where [·, ·] represents the concatenation operation.
2) Local Transformer Module: Most of the current unsu-

pervised registration methods [1], [16] utilize edge convolu-
tion [49] to extract the local features from the neighborhood of
each point. However, edge convolution only chooses the max
value of the neighborhood as the center point’s feature. This
means that some equally important nonmaximum features will
be discarded in each dimension. Thus, the local structure of
a neighborhood is potentially not fully explored. Inspired by
vector attention [50], we design a local transformer module
to adaptively aggregate the local distinctive features from the
neighborhood, which is shown in Fig. 4.

Given a point cloud, we first search the k nearest neighbors
for each point and use the difference between the center point
pi and its neighbor p j as initial edge features e0

i, j = pi − p j .
Then, we leverage four hierarchical layers with local attention
to extract deep features as

fl
i =

∑
el

i, j ∈E l (i)

φ
(
β
(
ρ
(
el

i, j

)
+ η

(
gi, j

)))
⊙ α

(
el

i, j

)
(4)

where E l(i), l = 1, 2, 3, 4, denotes the set of edge features
for the i th point in the lth layer and ⊙ is the Hadamard
product operation. ρ(·) and η(·) are the MLP layers to project
edge features and geometric relation embedding into attention
scores, respectively. β(·) is the MLP layer to fuse two kinds of
attention scores, and α(·) is another MLP layer that transfers
edge features to node features. φ(·) denotes the softmax
function. Note that we update the lth edge feature as el

i, j =

MLP(el−1
i, j ). With the four hierarchical features, we can obtain

the final local features by

fi = γ
([

f1
i , f2

i , f3
i , f4

i

])
(5)

where γ (·) is an MLP layer and [·, ·] is the concatenation.
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Fig. 4. Illustration of the local transformer module.

Fig. 5. Illustration of the global transformer module.

3) Global Transformer Module: Although distinctive, the
local features are still insufficient due to their limited receptive
fields. We observe that the global contextual features and even
the cross-hybrid features of two point clouds registered are
often required for the task of point cloud registration. First,
there e exist similar structures in a point cloud, which may
help each other to learn a better feature. Second, feature
interaction between the source and target point clouds plays
a vital role in gaining knowledge about potential inlier cor-
respondences. To this end, we introduce Transformer [18] to
capture long-range dependencies within a single point cloud
and enhance the cross-feature fusion between paired point
clouds for unsupervised registration. The global transformer
consists of two self-attention blocks and one cross-attention
block between them (see Fig. 5). Unlike other transformer-
based methods [8], [14], we inject the novel geometric relation
embedding into self-attention blocks to reduce mismatches
from feature matching.

Self-Attention: The self-attention block is utilized to explore
the intrarelationship in both feature and geometry spaces
for each point cloud. We take the computation for P as an
example (the same for Q). Given the features F ∈ RN×d ,
where d is the dimension of features, the output features
Z ∈ RN×d are the weighted sum of all projected input features
as

zi =

N∑
j=1

ai, j
(
f j WV )

(6)

where ai, j is the weight and computed by a rowwise softmax
on the attention scores ri, j , which is computed as

ei, j =

(
fi WQ

)(
f j WK

)T
+ gi, j WG

√
dt

(7)

where gi, j is the geometric relation embedding, and WQ, WK ,
and WV

∈ Rdt ×dt are the projection weights for queries,

Fig. 6. Flow of self-attention with geometric relation embedding.

keys, and values. WG
∈ R3×1 is the projection weights for

geometric relation embedding. Fig. 6 shows the computation
of self-attention with geometric relation embedding.

Cross-Attention: The cross-attention can promote the inter-
relationship between two point clouds. Given the features
FP , FQ of P and Q, the cross-attention features ZP of P is
computed as

zP
i =

M∑
j=1

ai, j

(
fQ

j WV
)
. (8)

Similarly, ai, j is computed by a rowwise softmax on the
cross-attention scores ri, j as

ri, j =

(
fP
i WQ

)(
fQ

j WK
)T

√
d

. (9)

The cross-features ZQ are obtained in the reverse direction.
Thanks to the GLGT, we obtain not only the local distinctive
features but the global contextual and cross-hybrid features ẐP

and ẐQ with geometry priors, improving the accuracy of later
feature similarity matching.

C. Affinity Matching

With the merits of reliable and abundant features, an affinity
matching module [31] is leveraged to generate the feature
similarity matrix. We first calculate the similarity matrix of
features ẐP and ẐQ in a learnable way instead of simple
dot-product of feature vectors as

Ai, j =
(
ẑi

P)
W

(
ẑ j

Q)T
(10)

where W ∈ Rd×d is a learnable parameter. To handle outliers,
we utilize the Sinkhorn algorithm [51] to calculate the soft
assignments S ∈ RN×M , and then, the pseudotarget point cloud
Q∗

= {q∗

i ∈ R3
| i = 1, . . . , N } is obtained by

q∗

i =
1∑M

j exp
(
si j

) M∑
j

exp
(
si j

)
· q j (11)

where exp(·) is the exponential function. We generate the
pseudocorrespondences C∗

= {(pi , q∗
i ) | i = 1, . . . , N } from

the source point cloud P and the pseudotarget point cloud Q∗

for alignment.
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Fig. 7. Details of the confidence prediction module.

D. Confidence Prediction

In most cases, paired point clouds are often partially over-
lapped, i.e., there are no one-to-one correspondences. Thus,
we need to distinguish the wrong pairs in the pseudocorre-
spondences for accurate registration. Like [1], we introduce a
confidence prediction module to calculate confidence scores
for correspondences. We aim to exploit the geometric differ-
ence between the source neighborhood and the corresponding
pseudotarget neighborhood for predicting pointwise confi-
dence based on the learned correspondences {(pi , q∗

i )}.
We use the confidence prediction module to adaptively cap-

ture the structurewise difference between the neighborhoods
Npi and Nq∗

i
by constructing a learnable graph representation

on the neighborhood. As illustrated in Fig. 7, this module takes
a source point cloud P and a pseudotarget point cloud Q∗ as
inputs and outputs the confidence scores w. We first search the
k neighbors for P to obtain edge features eP

i, j like the local
transformer module, and then, the KNN index of P is shared
to gain eQ∗

i, j for Q∗, which guarantees that the neighborhood
points of P and Q∗ are consistent. We utilize two MLP layers
to embed points into high-dimensional features and use a
simple subtraction operation to highlight differences. With the
fused features, another MLP layer and a summation operation
are leveraged to obtain correspondence features, which are
finally projected into the confidence scores. The whole module
can be described as

wi = sigmoid

η

 k∑
j=1

φ
(
ϕ
(
eP

i, j

)
− ϕ

(
eQ∗

i, j

)) (12)

where η(·), φ(·), and ϕ(·) are two MLP layers with different
parameters and sigmoid(·) is the sigmoid function.

With the pseudocorrespondences set C∗
= {(pi , q∗

i ) | i =

1, . . . , N } and the confidence scores w, we can estimate the
final transformation by a weighted SVD layer according to (2).

E. Self-Augmentation

Considering the weak learning ability of unsupervised reg-
istration methods, we propose a plug-and-play SA strategy
to assist the training process. Naturally, we can add more
paired samples by applying random rotations and translations
to one of the input point clouds when training, which is
simple but effective for unsupervised registration. In particular,
we copy the source point cloud P as P̃ and randomly rotate
and translate it to obtain Q̃. We repeat this process I times to
get self-augmented training samples. Note that the SA strategy
is different from the data processing in [29] and [30], as they

just simulate partially overlapped point pairs with GT transfor-
mations for training on synthetic data, while ours aims to learn
from self-transformations to grasp 3-D alignment knowledge
for unsupervised methods (also effective on real-scanned data).
The SA strategy only leverages the basic rotation and transla-
tion operation, which does not carry out any partial cropping
for two reasons: 1) we observe that registration methods align
paired point clouds of complete overlap more easily than that
of partial overlap and 2) completely overlapped point cloud
pairs are more generic because different training data may
have different patterns of partial overlap. In addition, several
methods [52], [53] utilize data augmentation such as random
transformation to generate positive samples for representation
learning, while our SA strategy is designed to enhance the
ability of unsupervised registration methods to learn alignment
knowledge.

F. Loss Function

In an unsupervised manner, we iteratively train our approach
with three loss terms like in [1] as

L = La + Lk + Ln. (13)

1) Alignment Loss: Most unsupervised methods [15], [17]
use the Chamfer distance loss [54] for optimization, while this
loss is sensitive to outliers. To tackle this problem, we utilize
the robust Huber function as

ℓβ(u) =


1
2

u2, if |u| ≤ β

β

(
|u| −

1
2
β

)
, otherwise

(14)

where β is the hyperparameter that controls the range of
the inlier. With the transformed source point cloud P by the
estimated transformation, we describe the alignment loss (AL)
as

La
(
P, Q

)
=

∑
p∈P

ℓβ

(
min
q∈Q

∥p − q∥
2
2

)

+

∑
q∈Q

ℓβ

(
min
p∈P

∥q − p∥
2
2

)
. (15)

2) Keypoint Loss: To guide the learning of the confidence
prediction module, we choose pseudocorrespondences with the
g highest confidence scores w. We denote the chosen points
of the source point cloud and the pseudotarget point cloud
as X and Y, respectively. X represents the transformed X by
the estimated transformation. Then, the keypoint loss (KL) is
defined as

Lk =

∑
xi ∈X,yi ∈Y

∥R · xi + t − yi∥2. (16)

3) Neighborhood Loss: In the confidence prediction mod-
ule, we utilize neighborhood information to improve the
reliability of confidence scores. Since the KNN search of the
source point cloud P and the pseudotarget point cloud Q∗ share
the same KNN index, neighbors of X and Y are consistent
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and ordered. Thus, we calculate the relative coordinates of
neighbors and formulate the neighborhood loss (NL) as

Ln =

∑
xi ∈X,
yi ∈Y

∑
p j ∈N (xi ),

q j ∈N (yi )

∥∥R · p j + t − q j
∥∥

2. (17)

Here, N (·) denotes the nearest neighborhood search, and
p j and q j are the relative coordinates of neighborhood points.

IV. EXPERIMENT

Datasets: We evaluate our approach on five datasets:
ModelNet [55] (synthetic object data), ScanObjectNN [56]
(real object data), ICL-NUIM [57] (synthetic scene data),
7Scenes [58] (real scene data), and KITTI odometry
datasets [59].

1) ModelNet is generated from ModelNet40 [55], which
contains point clouds sampled from 12 311 CAD models
of 40 different categories. We sample 1024 points for
each point cloud and transform it by a random rotation
in the range of [0, 45]

◦ and a random translation in the
range of [−0.5, 0.5] along each axis to obtain the paired
point cloud. To simulate the partial-overlap condition,
we adopt the same cropping mode as [29]. Finally, each
point cloud is shuffled to reorder all points. We apply
three different settings on ModelNet for comprehensive
analysis.

a) Seen setting: We follow the official training split
(9840 samples) and testing split (2468 samples), both
containing all categories.

b) Unseen setting: To evaluate the generalization ability
of our method to different shapes, we use the first
20 categories for training (5112 samples) and the last
20 categories for testing (1266 samples).

c) Gaussian noise outliers’ setting: We modify the testing
part of the seen setting by randomly copying 25% points
of each point cloud and adding Gaussian noise to them,
sampled from N (0, 0.5) and clipped to [−1.0, 1.0]

as [1]. We train all approaches under the seen setting
and test them on the modified testing part to measure
the robustness of outliers.

2) ScanObjectNN [56] is a real-world dataset based on
scanned indoor object data, which contains 2309 training
samples and 581 testing samples. We apply the same
data preprocessing on ScanObjectNN as ModelNet to
generate partial-overlap point cloud pairs for alignment.

3) ICL-NUIM [57] is a synthetic indoor scene dataset.
We resample the source point clouds to 2048 points,
operate the rigid transformation on them for the target
point clouds, and then downsample the point clouds to
1536 points like in [1] to generate the partial data. The
ICL-NUIM dataset is split into 1278 samples for training
and 200 samples for testing.

4) 7Scenes [58] is a widely used benchmark registration
dataset of seven indoor scenes, including Chess, Fires,
Heads, Office, Pumpkin, RedKitchen, and Stairs, which
is divided into 296 samples for training and 57 samples
for testing. The data preprocessing is the same as the
ICL-NUIM dataset.

5) The KITTI odometry dataset [59] consists of
11 sequences of outdoor driving scenarios scanned by
LiDAR. We use Sequence 00-05 for training, 06-07
for validation, and 08-10 for testing. The GT poses are
refined with ICP, and we only use point cloud pairs
that are at least 10 m away for evaluation.

Evaluation Metrics: Following the prior work DCP [7], we use
the anisotropic metrics of mean absolute error (MAE) over
Euler angles and translations. In addition, we evaluate the
mean isotropic error (MIE) for rotation and translation pro-
posed in [30]. All angles are in degrees.

Comparison: We compare RegiFormer with seven reg-
istration methods, including traditional methods, ICP [5]
and FPFH + RANSAC [12], earlier supervised methods,
IDAM [13] and RPM-Net [30], and unsupervised methods,
FMR [15], CEMNet [16], RIENet [1], and IFNet [60]. In addi-
tion, to evaluate the performance of the proposed method more
comprehensively, we compared it with four additional super-
vised methods in the last part of the experiment, including
Geotransformer [41] and BUFFER [61]. For all comparison
methods, we use their released code and follow the same
settings to retrain them.

Implementation Details: All experiments are conducted on a
single Nvidia RTX 2080Ti. We train RegiFormer for 75 epochs
with a batch size of 4. The Adam optimizer is used with
an initial learning rate of 0.001. The number I of the SA
strategy is set to 1, and the hyperparameter β for the Huber
function is 0.01. The number k of KNN search and g of KL
are set to 5 and 256, respectively. We update the estimated
transformation iteratively three times during both training and
testing.

A. Evaluation on Synthetic ModelNet

1) Seen Setting: We quantitatively evaluate the registration
performance of several methods and our method in the seen
setting, which is reported on the left-hand side of Table I. It is
obvious that RegiFormer outperforms the traditional, state-of-
the-art unsupervised, and even some early supervised methods
on all four metrics. Compared with RIENet [1] on the MAE of
rotation and translation, our method has a 66.7% and 57.9%
improvement, respectively.

2) Unseen Setting: From the middle side of Table I,
one can see that our method achieves the lowest error
among all comparison methods. Compared with the seen
setting, the performance of RegiFormer only decreases
slightly, demonstrating that our approach is insensitive to
different shapes. The visual comparison can be found in
Fig. 8(b).

3) Gaussian Noise Outliers’ Setting: To evaluate the robust-
ness of outliers, we train all methods in the seen setting
and test them under the Gaussian noise outliers’ setting.
In the right-hand side of Table I, although all methods have
different degrees of degradation, RegiFormer obtains the best
performance, benefiting from the reliable and sufficient feature
representation produced by the GLGT module. Most meth-
ods fail to achieve satisfying registration results when there
exist many disturbing outlier points, except our method [see
Fig. 8(c)].
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Fig. 8. Visual comparison of seven methods and our method on (a) ScanObjectNN, (b) ModelNet with an unseen setting, and (c) ModelNet with Gaussian
noise outliers’ setting. We colorize the source and target point clouds in yellow and blue, respectively.

TABLE I
QUANTITATIVE REGISTRATION RESULTS OF DIFFERENT METHODS ON MODELNET. (⋆), (◦), AND (⋄) REPRESENT THE TRADITIONAL,

SUPERVISED, AND UNSUPERVISED METHODS, RESPECTIVELY. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON

SCANOBJECTNN. (⋆), (◦), AND (⋄) REPRESENT TRADITIONAL,
SUPERVISED, AND UNSUPERVISED METHODS, RESPECTIVELY.

THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

B. Evaluation on Real-Scanned ScanObjectNN

Aligning point cloud pairs from real-scanned devices is
quite challenging because this kind of data often has irregular
shapes and cluttered noise [see Fig. 8(a)]. As reported in the
left-hand side of Table II, our method achieves better registra-
tion results than its competitors by a large margin. Qualitative

comparisons are consistent with quantitative statistics, which
demonstrates the great adaptability of RegiFormer to real-
scanned data.

C. Evaluation on Indoor/Outdoor Sences

1) ICL-NUIM: From the middle side of Table III,
we observe that our method obtains satisfactory performance
on the synthetic scene data. The visual results are found in
Fig. 9(a).

2) 7Scenes: Given the registration accuracy of all methods
on the challenging real scene data [see the right-hand side
of Table III and Fig. 9(b)], the superiority of RegiFormer is
outstanding.

3) KITTI Odometry Dataset: From Table III, one can see
that our model has also achieved satisfactory performance on
outdoor scenes, the KITTI dataset. The translation errors of
supervised RPMNet on KITTI are smaller than ours, but the
runtime of our method is shorter than theirs. The visual results
can be found in Fig. 9(c).
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TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON ICL-NUIM, 7SCENES, AND KITTI DATASETS. (⋆), (◦), AND (⋄) REPRESENT TRADITIONAL,

SUPERVISED, AND UNSUPERVISED METHODS, RESPECTIVELY. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

Fig. 9. Visual comparison of competitors and our approach on (a) ICL-NUIM, (b) 7Scenes, and (c) KITTI datasets. The registration results depicted in the
figure only showcase a partial area within the entire scene of the KITTI dataset. We colorize the source and target point clouds in yellow and blue, respectively.

TABLE IV
ABLATION STUDIES ON SCANOBJECTNN. LT, GT, LGE, GGE, AND SA

ARE BASELINES WITH THE LOCAL TRANSFORMER MODULE, GLOBAL
TRANSFORMER MODULE, LOCAL GEOMETRIC

EMBEDDING, GLOBAL GEOMETRIC EMBEDDING,
AND SA, RESPECTIVELY

TABLE V
ABLATION STUDY OF LOSS FUNCTION ON SCANOBJECTNN. AL,

KL, AND NL ARE ALIGNMENT LOSS, GLOBAL KEYPOINT
LOSS, AND NEIGHBORHOOD LOSS, RESPECTIVELY

D. Analysis

To analyze the main ideas of RegiFormer, various specified
experiments are carried out and reported in this section.

1) Ablation Study: The Effectiveness of Key Component:
For a better understanding of our method, we conduct abla-
tion studies on ScanObjectNN. We develop the baseline by
removing the SA strategy and replacing the GLGT with

TABLE VI
ERROR STATISTICS OF POSITION EMBEDDINGS. NPE, APE, AND

GRE(UTOPIC) DENOTE VARIANTS WITH NO POSITION EMBEDDING,
ABSOLUTE POSITION EMBEDDING, AND GEOMETRIC RELATION

EMBEDDING OF UTOPIC, RESPECTIVELY

DGCNN [49] in RegiFormer. Table IV reports the results
of variants with: 1) the local transformer module (LT); 2)
the global transformer module (GT); 3) the local geometric
embedding (LGE); 4) the global geometric embedding (GGE);
and 5) the SA strategy. It is clear that our full pipeline
achieves the best performance on four metrics, and removing
any component degrades the overall performance.

Loss Functions: We train our model with the combination of
the AL, the KL, and the NL. In Table V, we train our model
using the different loss functions and present the results on
ScanObjectNN. One can see that with the keypoint loss and
neighborhood loss, we can obtain high registration precision.

2) Different Position Embeddings: To testify to the effec-
tiveness of the proposed geometric relation embedding,
we compare four variants in Table VI: 1) no position embed-
ding (NPE) [8]; 2) absolute position embedding (APE) [62];
3) geometric relation embedding of UTOPIC [63]; and 4)
our geometric relation embedding. We improve the geometric
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TABLE VII
COMPARISON OF RPM-NET [30] AND RIENET [1] OVER THEIR

VARIANTS WITH THE GLGT ON SCANOBJECTNN

TABLE VIII
COMPARISON OF FMR [15], RIENET [1], AND THEIR VARIANTS

WITH THE SA STRATEGY ON SCANOBJECTNN

TABLE IX
REGISTRATION ERRORS OF EVERY ITERATION OF REGIFORMER

VARIANTS WITH AND WITHOUT THE SA STRATEGY
ON SCANOBJECTNN

embedding of UTOPIC by representing the neighborhood by
the local normal vector, which is easily calculated by cross-
product, and measuring the similarity between two points by
the maximum difference of side between their local triangles.
We observe that the absolute position embedding has no
obvious advantages. By contrast, the variant equipped with our
geometric relation embedding achieves the best performance.

3) Geometric Local-to-Global Transformer: To provide a
better understanding of the critical role played by the proposed
GLGT, we replace the original feature extraction modules
of RPM-Net [30] and RIENet [1] with it. As reported in
Table VII, it is obvious that GLGT improves the performance
of both supervised and unsupervised registration methods by
a large margin because it sufficiently extracts local distinctive,
global contextual, and cross-interactive features with geometry
priors. In particular, we observe that RPM-Net + GLGT has a
tremendous improvement compared with its original version,
indicating the potential of the proposed GLGT to promote the
performance of current registration methods.

4) Effectiveness of SA Strategy: To evaluate the effective-
ness of the SA strategy for unsupervised registration methods,
we compare the performance of FMR [15], RIENet [1],
and their variants with the proposed SA strategy on the
ScanObjectNN dataset. From Table VIII, we observe that
the proposed SA strategy brings a significant improvement
to both two unsupervised registration methods, demonstrating
its generality. In addition, we compare the registration of
every iteration of RegiFormer variants with and without the
SA strategy on the ScanObjectNN dataset. As reported in
Table IX, it is worth noting that the SA strategy improves the
performance of the initial iteration, which proves the advantage
of facilitating alignment knowledge acquisition.

TABLE X
COMPARING RIENET [1] AND REGIFORMER UNDER

DIFFERENT OVERLAP RATIOS

TABLE XI
QUANTITATIVE PERFORMANCE OF RPMNET [30], RIENET [1], AND OUR

METHOD ON SCANOBJECTNN WITH LARGE ROTATION ANGLES
IN THE RANGE OF [0, 180]

◦ . THE BEST PERFORMANCE
IS HIGHLIGHTED IN BOLD

TABLE XII
TIMING STATISTICS (IN SECONDS) ON 7SCENES. N DENOTES THE NUM-

BER OF INPUT POINTS. WE REPORT THE TIME FOR ONE PAIR OF POINT
CLOUDS

5) Different Overlap Ratios: We analyze the performance
of RIENet [1] and our method on the ScanObjectNN dataset
when the overlap ratio decreases gradually. We use the same
crop setting of PRNet [29]. The number of points is set to
768, 700, 640, 600, and 560 to generate point clouds with
approximate overlap ratios of 0.69, 0.58, 0.47, 0.40, and 0.32,
respectively. Table X shows the registration errors for different
overlap ratios. As observed, our method is very stable until the
overlap ratio decreases to 0.32, but still better than RIENet [1].

6) Performance With Large Rotation Angles: To evaluate
the performance of methods at large rotation angles on the
object registration data, we train RPMNet [30], RIENet [1],
and our approach on the ScanObjectNN dataset with rotation
angles in the range of [0, 45]

◦ and test them at rotation angles
in the range of [0, 180]

◦. From Table XI, the comparison meth-
ods fail to register point cloud pairs with large rotation angles.
By contrast, our approach still performs well, benefiting from
the transformation-invariant geometric relation embedding.

7) Running Time: Table XII reports the average running
time (in seconds) of different comparison methods. The testing
data are collected from the 7Scenes dataset. We conduct all
experiments on a single Nvidia RTX 2080Ti with Intel Core
i7-4790 @ 3.6 GHz. With the best registration accuracy, our
method also runs at a comparable speed.

8) Unseen Real-Scanned Multiview Airplane Shapes With
Complex and Tiny Geometry Details: We provide the visual
registration result of our RegiFormer on real-scanned multi-
view airplane shapes with complex and tiny geometry details.
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Fig. 10. Visual registration result of RegiFormer on real-scanned multiview airplane shapes with complex and tiny geometry details. Scan 1–Scan 4 denote
four parts of the real complex airplane shape from different views. We register two adjacent point clouds in turn, and the final registration result can be found
in the Registration part.

TABLE XIII
QUANTITATIVE RESULTS OF RPM-NET [30], GEOTRANSFORMER [41], AND OUR METHOD ON MODELNET. (◦) AND (⋄) REPRESENT THE SUPERVISED

AND UNSUPERVISED METHODS, RESPECTIVELY. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

Fig. 11. Two failure examples. RegiFormer fails when: 1) the inputs lack
geometrically indistinguishable features (Row 1) and 2) the point clouds have
inconsistent separate parts (Row 2).

The inputs are sampled with 5000 points from the original
scanned point clouds. Notably, our method is trained on the
synthetic ModelNet dataset with an unseen setting. As illus-
trated in Fig. 10, RegiFormer registers two adjacent point
clouds in turn and combines them into a complete airplane
shape. The airplane shape is more geometrically complicated
than the models in ModelNet40, but our method works well,
demonstrating the potential of RegiFormer in the complex
real-world registration application.

9) More Quantitative Results: To provide a complete
comparison with existing supervised methods, we retrain
GeoTransformer [41] and BUFFER [61] on ModelNet and
KITTI using its released public code. Quantitative results
are recorded in Table XIII. Surprisingly, we find that the
performance of GeoTransformer and BUFFER is worse than
that of RPM-Net [30] on the seen and unseen settings of the
synthetic ModelNet dataset. This is because GeoTransformer
is specifically designed for low-overlap, large-scale indoor, and
outdoor scenes, and the downsampling operation is crucial
for processing point clouds of large data volumes. However,
downsampling may have certain side effects, such as the
discarding of corresponding points, when the number of points
is not very large. However, for the KITTI dataset, we only
applied downsampling to our approach while using the original
settings from the article for the GeoTransformer and BUFFER.

The results in the table indicate that the performance of the
supervised method significantly outperforms the unsupervised
method.

V. FAILURE CASES AND LIMITATIONS

RegiFormer has some limitations. First, if the point cloud
pairs have no distinctive geometry structures (see the first row
of Fig. 11), it may fail to align them. This is because outlier
points near the flat surface (without distinctive geometry struc-
tures) confuse the feature extraction, and indistinguishable
features lead to mismatches. Second, it is hard to register point
clouds with separate parts (see the second row of Fig. 11)
because features of separate parts may be inconsistent and
mislead the final registration. In the future, we intend to handle
the mismatches from indistinctive and repeated structures in
point clouds and pay more attention to the consistency of
registration data with separate parts.

VI. CONCLUSION

We propose RegiFormer, a novel GLGT-based method
with an SA strategy for U-PCR. Through the GLGT, our
method extracts local distinctive, global contextual, and
cross-interactive features with geometry priors. Thanks to
the sufficient feature representation and confidence prediction
module, RegiFormer can align point cloud pairs with high
accuracy even under the noise and outliers condition. Besides,
we design a plug-and-play SA strategy, which can be inte-
grated into any unsupervised cutting-edge registration methods
to boost their performance.
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