
Under review as submission to TMLR

Consistency Trajectory Planning: High-Quality and Efficient
Trajectory Optimization for Offline Model-Based Reinforce-
ment Learning

Anonymous authors
Paper under double-blind review

Abstract

This paper introduces Consistency Trajectory Planning (CTP), a novel offline model-based
reinforcement learning method that leverages the recently proposed Consistency Trajec-
tory Model (CTM) for efficient trajectory optimization. While prior work applying diffu-
sion models to planning has demonstrated strong performance, it often suffers from high
computational costs due to iterative sampling procedures. CTP supports few-step trajec-
tory generation without significant degradation in policy quality. We evaluate CTP on the
D4RL benchmark and show that it consistently outperforms existing diffusion-based plan-
ning methods in long-horizon, goal-conditioned tasks. Notably, CTP achieves higher nor-
malized returns while using significantly fewer denoising steps. In particular, CTP achieves
comparable performance with over 120× speedup in inference time, demonstrating its prac-
ticality and effectiveness for high-performance, low-latency offline planning.

1 Introduction

Recent advances in generative models have significantly impacted offline reinforcement learning (RL), espe-
cially in trajectory planning where agents must learn optimal behavior from fixed datasets. Diffusion-based
methods such as Diffuser (Janner et al., 2022) and Decision Diffuser (Ajay et al., 2023) have proven effec-
tive for modeling complex trajectory distributions, but their reliance on iterative denoising makes real-time
decision-making impractical.

To address the inefficiencies inherent in iterative diffusion-based sampling, recent work has explored distilled
models such as Consistency Model (CM) (Song et al., 2023), which bypasses the reverse diffusion process
by directly learning the mapping from noise to data (Wang et al., 2023; Kang et al., 2024). In the context
of model-free RL, CM has demonstrated substantial speedup with only marginal performance degradation
(Ding & Jin, 2024; Wang et al., 2024a). However, a critical limitation remains: CM lacks a principled
mechanism to trade off between sampling speed and sample quality. This stems from the nature of the
distillation process, where the consistency function is trained to project arbitrary intermediate states along
the ODE trajectory back to the clean data. As a result, in practice, the multistep sampling procedure of
CM for improved sample quality alternates between denoising and injecting noise. This iterative refinement,
however, accumulates errors particularly as the number of function evaluations increases.

Building upon this observation, Consistency Trajectory Model (CTM) has recently been proposed as a
generalization of both score-based and consistency-based models (Kim et al., 2024). CTM enables anytime-
to-anytime transitions along the probability flow ODE, supporting flexible and efficient generation through
both short-step and long-jump sampling. CTM retains access to the score function while allowing diverse
training losses such as denoising score matching and adversarial losses, ultimately improving expressiveness
and generalization. A recent concurrent study (Duan et al., 2025) also investigates the use of CTM for
improving inference efficiency in offline RL. The algorithm operates in a model-free setting and primarily
focuses on policy learning from demonstration data. Although this algorithm accelerates diffusion-based
models for decision-making tasks, it offers limited improvements in long-horizon tasks.

1



Under review as submission to TMLR

Motivated by the strengths of CTM and the need for efficient planning in offline RL, we propose Con-
sistency Trajectory Planning (CTP), a novel offline model-based RL algorithm that integrates CTM into
the trajectory optimization process (Section 4). CTP inherits the speed and flexibility of CTM, allowing
planners to efficiently navigate the trade-off between planning speed and return quality. Unlike previous
score-based planners requiring classifier guidance or iterative refinements, our method enables near single-
step sampling (one or a few denoising steps depending on task complexity) while retaining controllability
and sample diversity. Furthermore, CTM’s access to score information enables conditional planning and
return-conditioning without the need for learned Q-functions, which faces challenges due to overestimated
Q-values for out-of-distribution actions (Kumar et al., 2020; Levine et al., 2020).

We evaluate CTP on D4RL benchmark tasks (Fu et al., 2020) (Section 5). Across multiple tasks, CTP
consistently matches or outperforms prior diffusion-based planners and consistency policies while achieving
significant improvements in inference speed—making it well-suited for real-time or high-frequency control
applications.

2 Related Work

Diffusion models. Diffusion models generate data by reversing a progressive noising process (Sohl-Dickstein
et al., 2015; Ho et al., 2020). This view unifies with score-based modeling and admits SDE/ODE formulations
(Hyvärinen & Dayan, 2005; Song et al., 2021), also connecting to energy-based learning via scores as log-
density gradients (Du & Mordatch, 2019; Nijkamp et al., 2019; Grathwohl et al., 2020). Conditioning
is commonly implemented via guidance: classifier guidance (Nichol & Dhariwal, 2021) and classifier-free
guidance (Ho & Salimans, 2021). These techniques underlie state-of-the-art image/text generation (Saharia
et al., 2022; Nichol & Dhariwal, 2021).

Diffusion Models for Policy Representation. Diffusion models have been adopted to represent expres-
sive policies in RL (Pearce et al., 2023; Chen et al., 2023). Diffusion-QL (Wang et al., 2023) incorporates
diffusion models into both Q-learning and Behavior Cloning to capture multi-modal action distributions, with
later work improving efficiency via action approximation to avoid repeated denoising during training (Kang
et al., 2024). Other work includes robotic visuomotor diffusion policies with receding-horizon control and
visual conditioning (Chi et al., 2023); IDQL, which reinterprets IQL as actor–critic and extracts policies from
diffusion-parameterized behavior models (Hansen-Estruch et al., 2023); QSM, which links diffusion-policy
scores to Q-gradients for principled updates (Psenka et al., 2024); DQS, which samples from Boltzmann
policies via diffusion (Jain et al., 2025); and DACER, which applies diffusion policies to online actor–critic
with GMM-based entropy estimation (Wang et al., 2024b).

Diffusion Models for Trajectory Optimization. In addition to representing policies, diffusion models
have also been employed as trajectory generators for planning in offline RL (Liang et al., 2023; Du et al.,
2023; Yang et al., 2023; Li et al., 2023; Chen et al., 2024; Dong et al., 2024). A notable example is Diffuser
(Janner et al., 2022), which learns to generate entire trajectories from offline data and applies guidance to
bias the trajectories toward high returns or task-specific goals. At execution time, however, only the first
action of each generated trajectory is applied, after which the model replans in a receding-horizon fashion.
Decision Diffuser (Ajay et al., 2023) follows a similar idea but conditions trajectory generation directly on
target returns or goals, eliminating the need for an auxiliary reward model.

Summary. Across behavior cloning, actor–critic, energy-based policies, and online control (Chi et al.,
2023; Hansen-Estruch et al., 2023; Psenka et al., 2024; Jain et al., 2025; Wang et al., 2024b), diffusion-
based methods typically require multi-step denoising or gradient refinements, incurring nontrivial inference
latency; trajectory planners like Diffuser/Decision Diffuser further amplify cost by generating full sequences
and replanning. While Diffusion-QL variants reduce some training-time overhead, they do not fundamentally
eliminate the need for iterative reverse diffusion processes during the inference process.

Positioning of our work. Beyond diffusion-based planners, the work most closely related to ours is Consis-
tency Planning (CP) (Wang et al., 2024a), which first introduced the use of consistency models for trajectory
optimization in offline RL. Both CP and our proposed CTP share the same high-level goal of trajectory-level
planning; however, CTP introduces several key differences. First, instead of using a standard CM that only

2



Under review as submission to TMLR

learns mappings from xt to x0, CTP leverages CTM which support anytime-to-anytime mappings along
the probability flow ODE. This formulation enables greater flexibility at inference time and reduces reliance
on iterative guidance. Second, whereas CP steers trajectory generation using classifier-free guidance, CTP
adopts a critic-based selection mechanism that evaluates multiple candidate plans and selects the best one
according to predicted returns (Chi et al., 2023). This avoids the potential instability of classifier-based
guidance while aligning the planner directly with the RL objective. In addition, CTP incorporates several
architectural refinements, including stride-based trajectory representation and transformer backbones, which
further improve scalability to complex benchmarks. Overall, these modifications allow CTP to handle more
challenging tasks while maintaining the efficiency advantages of the consistency framework.

Motivated by these limitations, our work introduces a more efficient alternative based on the recently pro-
posed CTM, which supports one or a few denoising steps, depending on task complexity (single-step on
Maze2D, and two steps for harder benchmarks). By integrating CTM into the trajectory optimization
process, our method circumvents the need for iterative denoising and enables fast planning with minimal
performance degradation. In contrast to prior diffusion-based planners, CTP achieves a favorable trade-off
between sample quality and computational cost, making it particularly well-suited for time-sensitive offline
RL applications.

3 Preliminary

3.1 Reinforcement Learning Problem Setting

We consider standard reinforcement learning formulated as a Markov Decision Process (MDP) M =
(S, A, P, R, γ, d0), where S is the state space, A is the action space, P is the transition function, R is
the reward, γ ∈ [0, 1) is the discount factor, and d0 is the initial state distribution. The objective is to learn
a policy that maximizes the expected discounted return E

[∑kend

k=0 γkr (sk, ak)
]
, where kend is the index of

final time step in a trajectory.

3.2 Consistency Trajectory Models

Diffusion models generate samples by gradually adding and then removing Gaussian noise, but require
hundreds of denoising steps at inference, limiting their practicality in RL. CMs (Song et al., 2021; Kim et al.,
2024) address this by learning a direct mapping from noisy input xt at arbitrary noise level t back to its
clean counterpart xϵ, enabling generation in one or a few steps. This efficiency makes CMs appealing for
planning tasks where inference speed is critical.

CTMs extend the idea of CMs (Song et al., 2021; Kim et al., 2024) from data generation to trajectory
prediction. The framework follows a teacher–student distillation paradigm. The teacher model Dϕ is trained
as a denoiser, mapping noisy data back to clean ones:

L(ϕ) :=Eσ∼ptrain,τ∼D,n∼N (0,σ2I)

[
∥Dϕ(xσ(τ), σ)− x0(τ)∥2

2

]
, (1)

where the noise level σ is sampled from a log-normal distribution ptrain following Karras et al. (2022).

To stabilize training, Dϕ adopts a skip-connection parameterization:

Dϕ(xt, t) = cskip(t) xt + cout(t) Fϕ(xt, t), (2)

where Fϕ is a neural network and cskip, cout are time-dependent coefficients that ensure correct boundary
behavior at t = ϵ. These coefficients are chosen such that cskip(ϵ) = 1 and cout(ϵ) = 0, ensuring that the
model exactly reproduces the clean data at the boundary t = ϵ, i.e., Dϕ(xϵ, ϵ) ≡ x0.

The student model Gθ (Eq. 3) learns to map noisy inputs at arbitrary t to less noisy versions at w < t,
combining an identity shortcut with a neural residual.

3



Under review as submission to TMLR

Gθ (xt, t, w) = w

t
xt +

(
1− w

t

)
gθ (xt, t, w) , (3)

Distillation enforces local and global consistency by comparing student predictions with targets obtained
from the teacher through short ODE integrations, typically solved with a Heun method. This yields the
CTM loss (Eq. 4), while denoising score matching (Eq. 5) regularizes cases where w ≈ t.

LCTM(θ; ϕ) := Et∈[0,tN ]Ew∈[0,t]Eu∈[w,t)Ex0Ext|x0 [d (xtarget (xt, t, u, w) , xest (xt, t, w))] , (4)

where d(·, ·) is the squared ℓ2 distance with d(x, y) = ∥(x− y)∥2
2, and xest (xt, t, w) :=

Gsg(θ) (Gθ (xt, t, w) , w, 0), xtarget (xt, t, u, w) := Gsg(θ) (Gtarget, w, 0), representing the predictions at time
0.

LDSM(θ) = Et,x0Ext|x0

[
∥x0 − gθ (xt, t, t)∥2

2

]
, (5)

which acts as a regularization mechanism that strengthens the learning signal and improve the accuracy
when w ≈ t.

To further improve sample quality, an adversarial discriminator is added, yielding a GAN loss (Eq. 6).

LGAN(θ, η) = Ex0 [log dη (x0)] + Et∈[0,tN ]Ew∈[0,t]Ex0Ext|x0 [log (1− dη (xest (xt, t, w)))] , (6)

where dη is the discriminator function, and η denotes its parameters.

The overall training objective combines these components (Eq. 7), and the complete training algorithm is
summarized in Appendix B.

L(θ, η) := LCTM(θ; ϕ) + λDSMLDSM(θ) + λGANLGAN(θ, η). (7)

4 Planning with Consistency Trajectory Model

This paper explores the integration of CTM into the planning architecture in offline RL. In the following, we
discuss how we use CTM for the trajectory optimization process. Section 4.1 details the training process of
each component, and Section 4.2 describes how the consistency trajectory planner is applied during inference.

4.1 Training process

Trajectory representation. As outlined by Ajay et al. (2023), the diffusion process encompasses only the
state transitions, as described by

xti
(τ) := (sk, sk+M , . . . , sk+(H−1)M )ti

. (8)

In this notation, k indicates the timestep of a state within a trajectory τ , H represents the planning horizon,
and ti ∈ [ϵ, tN ] is the timestep in the diffusion sequence. To make the model look ahead farther, we choose a
jump-step planning strategy (Lu et al., 2025). Jump-step planning models H×M environment steps, where
M ∈ N+ is the planning stride. Consequently, xti

(τ) is defined as a noisy sequence of states, represented

4



Under review as submission to TMLR

as a two-dimensional array where each column corresponds to a different timestep of the trajectory. In the
training process, the sub-sequence ti follows the Karras boundary schedule (Karras et al., 2022):

ti =
(

ϵ1/ρ + i− 1
N − 1

(
t
1/ρ
N − ϵ1/ρ

))ρ

, (9)

where ϵ = 0.002, tN = 80, and ρ = 7.

Inverse dynamics model training. To derive actions from the states generated by the diffusion model,
we employ an inverse dynamics model (Agrawal et al., 2016; Pathak et al., 2018), denoted as hφ, trained
using (sk, sk+M ) as input, ak as target, sampled from the dataset D consisting of trajectories. Therefore,
actions can be obtained via the inverse dynamics model by extracting the state tuple (sk, sk+M ) at diffusion
timestep t0:

L(φ) :=E(sk,ak,sk+M )∼D

[
∥ak − hφ(sk, sk+M )∥2

2

]
. (10)

CTM training. Following the general framework in Section 3.2, we instantiate CTM in RL using xti(τ)
as noisy sequences (Eq. 8). The teacher Dϕ is trained to map these noisy trajectories back to clean ones
using the objective in Eq. 1, and knowledge is distilled to the student Gθ via the CTM and auxiliary losses
(Eqs. 4–7). This adaptation allows CTM to directly generate candidate state sequences conditioned on the
current state sk, which are later ranked by the critic model.

Critic Model training. During the sampling process, we use Monte Carlo sampling from selections, where
C selections are firstly sampled from CTM as candidates. To select the best plan from the C selections, a
critic model Vα is trained using xt0(τ) as input, the accumulated discounted returns Rk as target output,
where α denotes the parameters of the critic network. Specifically, Rk is calculated by

Rk =
tend∑
h=0

γhrk+h. (11)

To train the critic model Vα, we minimize the mean squared error between the predicted return and the
actual accumulated return:

Lcritic(α) = Eτ∼D

[
(Vα(xt0(τ))−Rk)2

]
. (12)

This value-based selection process enables the planner to rank candidate trajectories according to their
expected returns and choose the highest-scoring plan for execution.

4.2 Inference process

Sampling with CTM. To generate samples using CTM, we follow a reverse-time denoising procedure
along a predefined sequence of time steps t0, t1, . . . , tN , where tn = n

N tN and t0 = ϵ. Sampling begins by
drawing an initial noisy sample xtN

from a standard Gaussian prior N (0, t2
N I). Then, for each time step

n = N − 1, . . . , 0, the model applies a single-step denoising operation using the student model Gθ, which
maps the current noisy sample xtn+1 from time tn+1 to a less noisy representation at time tn.

Formally, this process iteratively computes

xtn
← Gθ(xtn+1 , tn+1, tn), (13)

until reaching the final output xt0 , which serves as the generated sample. Unlike the inference process in
CM, we do not add noise perturbations to intermediate samples, since such perturbations would cause error
accumulation. This deterministic sampling procedure allows CTM to produce high-quality samples in a
small number of steps, while preserving flexibility in the choice of discretization schedule.

5



Under review as submission to TMLR

...

consistency trajectory model

...

repeat C times

expected cumulative rewards

inverse dynamicscritic model

...

best plan

Figure 1: Consistency Trajectory Planning. Given the current state sk, Consistency Trajectory Planning
generates C sequences of future states with planning horizon H. Then, the best plan is selected by the critic
model. Finally, the inverse dynamics model is used to extract and execute the action ak from sk and sk+M

which are from the selected best plan.

Algorithm 1 Consistency Trajectory Planning
1: Input: Planning horizon H, Dataset D, Discount factor γ, Candidate number C, Planning stride M
2: Initialize: Diffusion Transformer Planner Dϕ, Consistency Trajectory Planner gθ, Diffusion Inverse

dynamics hφ, Critic Vα

3: Calculate accumulated discounted returns Rk =
∑end

h=0 γhrk+h for every step k
4: function Training
5: Sample sk, sk+M , . . . , sk+(H−1)M , ak, ak+M , . . . , ak+(H−1)M , Rk from D
6: Train diffusion model Dϕ using sk as condition and sk,k+M,...,k+(H−1)M as target output (Eq. 1)
7: Distill consistency trajectory planner gθ (Eq. 7)
8: Train inverse dynamics hφ using sk, sk+M as input, ak as target output (Eq. 10)
9: Train critic Vα using sk,k+M,...,k+(H−1)M as input, Rk as target output (Eq. 12)

10: end function
11: function Planning(s)
12: Randomly generate C plans using CTP sampling, while fixing the first state as s during sampling
13: Select the best plan using critic Vα

14: Use the inverse dynamics hφ to generate action using s and the next state in the best plan
15: end function

CTP Inference. During the inference process, we first observe a state s in the environment and sample a
Gaussian noise xtN

. Then, CTM iteratively predicts the denoised trajectories xtn
from the noisy inputs. This

process is repeated C times to generate C plans using gθ, while the first state s is fixed during sampling.
Then, we select the best plan using critic Vα. Finally, we extract states (sk, sk+M ) from the denoised
trajectory and get the action ak via our inverse dynamics model hϕ. The algorithm of CTP is provided in
Algorithm 1 and visualized in Figure 1.

5 Experiment

In this section, we present the experiment environment, experiment setting and report empirical results that
validate the effectiveness of the proposed CTP algorithm across diverse offline RL tasks.

6



Under review as submission to TMLR

5.1 Experiment Environment

We train the diffusion model, inverse dynamics model, and consistency trajectory model on publicly available
D4RL datasets. Evaluation is conducted across diverse Gym tasks, including locomotion (HalfCheetah,
Hopper, Walker2d), long-horizon planning (Maze2D), and high-dimensional robotic control tasks (Antmaze,
Kitchen, Adroit) from the D4RL benchmark suite (Fu et al., 2020). These tasks are characterized by
continuous state and action spaces and are conducted under offline RL settings. More details of the tasks
are provided in Appendix A.

Locomotion The locomotion tasks—Hopper, HalfCheetah, and Walker2d—are widely adopted due to their
controlled dynamics, reproducibility, and varying levels of complexity. These environments are based on the
MuJoCo physics engine (Todorov et al., 2012) and simulate planar bipedal or quadrupedal agents that must
learn to move forward efficiently.

Maze2D To validate the long-horizon planning capabilities of CTP, we conduct an evaluation in the Maze2D
environment (Fu et al., 2020), where the task involves navigating to a specific goal location, with a reward
of 1 assigned only upon reaching the goal. Because it requires hundreds of steps to reach the goal, even the
most advanced model-free algorithms struggle with effective credit assignment and consistently reaching the
goal.

AntMaze The AntMaze task extends the Maze2D environment by replacing the simple 2D ball agent with
a more complex quadrupedal "Ant" robot, thereby combining challenges of both locomotion and high-level
planning. In the diverse variant of the dataset, the ant is initialized at random positions and directed toward
randomly sampled goals. In contrast, the play variant consists of trajectories guided toward manually selected
goal locations within the maze.

Kitchen The Kitchen environment simulates a robotic manipulator interacting with various appliances in
a realistic kitchen setting, requiring the agent to perform multi-stage manipulation tasks to accomplish
specified goals. In the partial dataset, only a subset of trajectories successfully achieves the full task,
allowing imitation-based methods to benefit from selectively identifying informative demonstrations. The
mixed dataset, on the other hand, contains no trajectories that solve the task in its entirety, necessitating
the use of RL to stitch together relevant sub-trajectories.

Adroit The Adroit Hand benchmark consists of four high–degree-of-freedom manipulation tasks constructed
from motion-capture demonstrations of human hand movements (Rajeswaran et al., 2018; Fu et al., 2020).
The benchmark couples challenging planning objectives with low-level motor control, thereby providing a
stringent test of our approach.

5.2 Experiment Setting

We evaluate the performance of our proposed method by comparing it against both actor-critic-based ap-
proaches, including Consistency Actor-Critic (C-AC) (Ding & Jin, 2024) and Diffusion-QL (D-QL) (Wang
et al., 2023), as well as model-based planning methods, such as Diffuser (Janner et al., 2022), Decision Dif-
fuser (DD) (Ajay et al., 2023), Consistency Planning (CP) (Wang et al., 2024a), Reward-Aware Consistency
Trajectory Distillation (RACTD) (Duan et al., 2025) and Lower Expectile Q-learning (LEQ) (Park & Lee,
2025).

For all experiments, we report results as the mean over 150 independent planning seeds to ensure statistical
robustness. Following the evaluation protocol established in Fu et al. (2020), we adopt the normalized
average return as the primary performance metric.

Unless otherwise specified, the CTP algorithm employs N = 2 denoising steps, which we found to yield
near-saturated performance across most tasks. An exception is the Maze2D domain, where we use a single
denoising step (N = 1) due to the relative simplicity of the environment. For comparison, competing methods
employ different denoising schedules: the diffusion policy utilizes N = 5 steps (Wang et al., 2023), Diffuser
adopts N = 20 steps, and Decision Diffuser uses N = 40 steps (Janner et al., 2022; Ajay et al., 2023).
Consistency-based baselines such as Consistency Actor-Critic and Consistency Planning are evaluated with

7



Under review as submission to TMLR

Table 1: The average scores of Diffuser, Decision Diffuser, Diffusion-QL, Consistency-AC, Consistency Plan-
ning and our method on D4RL locomotion tasks are shown. The results of previous work are quoted from
Ding & Jin (2024), Ajay et al. (2023) and Wang et al. (2024a).

Dataset Environment Diffuser DD D-QL C-AC CP CTP

Medium-Expert Halfcheetah 79.8 90.6 96.8 84.3 94 89.3± 0.6
Medium-Replay Halfcheetah 42.2 39.3 47.8 58.7 40.6 43.4± 0.4
Medium Halfcheetah 44.2 49.1 51.1 69.1 46.8 50.4± 0.1
Medium-Expert Hopper 107.2 111.8 111.1 100.4 107.5 107.5± 1.2
Medium-Replay Hopper 96.8 100 101.3 99.7 97.8 90.0± 1.0
Medium Hopper 58.5 79.3 90.5 80.7 87.8 83.6± 1.3
Medium-Expert Walker2d 108.4 108.8 110.1 110.4 109.8 110.1± 0.05
Medium-Replay Walker2d 61.2 75 95.5 79.5 75.3 86.9± 0.3
Medium Walker2d 79.7 82.5 87.0 83.1 80.5 85.7± 0.2

Average - 75.3 81.8 87.9 85.1 82.2 83

Table 2: The performance of CTP, Diffuser, and previous model-free algorithms in the Maze2D environment,
which tests long-horizon planning due to its sparse reward structure. The results of previous work are quoted
from the data provided in Janner et al. (2022), Wang et al. (2024a) and Duan et al. (2025).

Dataset MPPI CQL IQL Diffuser CP RACTD CTP

Maze2D U-Maze 33.2 5.7 47.4 113.9 122.7 125.7 154.1± 2.3
Maze2D Medium 10.2 5.0 34.9 121.5 121.4 130.8 167.1± 2.4
Maze2D Large 5.1 12.5 58.6 123.0 119.5 143.8 216.7± 3.4

Average 16.2 7.7 47.0 119.5 121.2 133.4 179.3

N = 2 denoising steps, consistent with their original implementations. More implementation details are
provided in Appendix B.

5.3 Experimental Results

As shown in Table 1, CTP achieves competitive performance across standard locomotion benchmarks. These
results highlight the effectiveness of CTP in matching the performance of prior state-of-the-art diffusion-based
planning algorithms.

Given the relatively lower complexity of Maze2D compared to AntMaze and Kitchen, our model is capable
of generating effective trajectories with one-step generation (N = 1), while still achieving best performance
(Table 2). Notably, when compared to the recent concurrent method RACTD (Duan et al., 2025), which
adopts a model-free approach, CTP consistently achieves higher returns across all Maze2D tasks, which
require accurate trajectory optimization and modeling of long-term dependencies. By leveraging environment
dynamics through CTM, CTP enables high-quality planning under sparse-reward, long-horizon scenarios.

Tables 3 and 4 present the performance of CTP on the Kitchen and AntMaze benchmarks, illustrating its
robustness in addressing complex, goal-conditioned control tasks. Our experimental results demonstrate that
CTP performs competitively not only in relatively simple environments such as Maze2D—where no robotic
actuation is involved—but also in more challenging domains like Kitchen and AntMaze, which demand
high-dimensional, temporally coordinated control.

8



Under review as submission to TMLR

Table 3: The performance of CTP, Diffuser, and previous model-free algorithms in the Kitchen environment,
which tests both locomotion and high-level planning capability. The results of previous work are derived
from the data provided in Ding & Jin (2024) and Ajay et al. (2023).

Dataset Environment Diffuser DD D-QL C-AC CTP

Mixed Kitchen 47.5 65± 2.8 62.6± 5.1 45.8± 1.5 74.5± 0.3
Partial Kitchen 33.8 57± 2.5 60.5± 6.9 38.2± 1.8 91.2± 1.0

Average - 40.65 61 61.55 42 82.85

Table 4: The performance of CTP and LEQ in the Antmaze environment. The results of LEQ are quoted
from Park & Lee (2025).

Dataset Environment LEQ CTP

Diverse Antmaze-Large 60.2± 18.3 82.0± 3.1
Play Antmaze-Large 62.0± 9.9 82.0± 3.1
Diverse Antmaze-Medium 46.2± 23.2 86.0± 2.8
Play Antmaze-Medium 76.3± 17.2 83.3± 3.0

Average - 61.18 83.33

We further evaluate CTP on the “expert” dataset from the Adroit benchmark, which consists of 5000
trajectories generated by a policy that consistently completes the task. Quantitative results are reported in
Table 5. While CTP does not outperform all prior methods across every task, it achieves competitive results
overall. These findings suggest that CTP is effective in goal-conditioned manipulation scenarios that require
precise spatial reasoning and long-horizon planning.

While CTP achieves competitive overall results, we note that model-free Diffusion QL obtains stronger scores
on several MuJoCo locomotion tasks (Table 1). This performance gap can be explained by the nature of
these benchmarks. First, locomotion tasks such as HalfCheetah, Hopper, and Walker2d primarily reward
short-horizon control signals (e.g., maintaining balance and maximizing forward velocity), which can be
effectively optimized through direct policy gradient updates and critic-based temporal-difference learning
(Wang et al., 2023; Ding & Jin, 2024). In contrast, model-based planning approaches like CTP introduce
additional sources of approximation error due to dynamics modeling and trajectory sampling, which may be
unnecessary overhead in these relatively simple tasks. Second, trajectory-level planning with small candidate
counts C may under-explore the fine-grained action variations that are critical for maximizing continuous
control rewards in MuJoCo environments. Third, the critic in CTP is trained to evaluate full trajectories
rather than single-step actions, which can be less sample-efficient for dense-reward settings compared to
actor-critic methods tailored for stepwise feedback. Together, these factors suggest that the gap arises not
from a fundamental weakness of CTP, but from a mismatch between algorithmic design and the structural
simplicity of MuJoCo tasks.

Computational Time. To assess the computational efficiency of CTP relative to Diffuser under varying
denoising step numbers N , we conduct a systematic evaluation of both inference time and policy performance
on the walker2d-medium-exper task. Since both CTP and Diffuser are built upon generative modeling
frameworks based on probability flow, their inference cost scales with the number of denoising steps N .
However, by design, the CTP enables effective few-step sampling, in contrast to diffusion models which
typically require iterative refinement to achieve comparable sample quality.

9



Under review as submission to TMLR

Table 5: The performance of CTP against other baselines in the Adroit environment. The results of previous
work are quoted from the data provided in He et al. (2024).

Dataset Environment BC BCQ CQL IQL AlignIQL CTP

Expert door 34.9 99.0 101.5 103.8 104.6 104.1± 0.5
Expert hammer 125.6 107.2 86.7 116.3 124.7 110.5± 3.1
Expert pen 85.1 114.9 107.0 111.7 116.0 104.1± 5.3
Expert relocate 101.3 41.6 95.0 102.7 106.0 108.8± 0.6

Average - 86.7 90.7 97.6 108.6 112.8 106.88

100 101

N (Log Scale)
0

50

100

150

Av
g.

 S
co

re

Saturates with smaller N (=1)

Average Score vs. N on walker2d-me
Diffuser (Avg. Score)
CTP (Avg. Score)

(a)

100 101

N (Log Scale)
0

20

40

60

80

100

120

Av
g.

 S
co

re

Saturates with smaller N (=1)

Average Score vs. N on walker2d-m
Diffuser (Avg. Score)
CTP (Avg. Score)

(b)

100 101

N (Log Scale)
0

20

40

60

80

100

120

Av
g.

 S
co

re

Saturates with smaller N (=1)

Average Score vs. N on walker2d-mr
Diffuser (Avg. Score)
CTP (Avg. Score)

(c)

100 101

N (Log Scale)
0

500

1000

1500

2000

In
fe

re
nc

e 
Ti

m
e 

(m
s p

er
 sa

m
pl

e)

Larger time gap

Inference Time vs. N on walker2d-me
Diffuser (Inference Time)
CTP (Inference Time)

(d)

100 101

N (Log Scale)
0

500

1000

1500

2000

In
fe

re
nc

e 
Ti

m
e 

(m
s p

er
 sa

m
pl

e)

Larger time gap

Inference Time vs. N on walker2d-m
Diffuser (Inference Time)
CTP (Inference Time)

(e)

100 101

N (Log Scale)
0

500

1000

1500

2000
In

fe
re

nc
e 

Ti
m

e 
(m

s p
er

 sa
m

pl
e)

Larger time gap

Inference Time vs. N on walker2d-mr
Diffuser (Inference Time)
CTP (Inference Time)

(f)

Figure 2: Comparison of the average normalized scores (top row) and inference times (bottom row) of
CTP and Diffuser on three walker2d datasets: walker2d-medium-expert, walker2d-medium, and walker2d-
medium-replay. Each column corresponds to a specific dataset. The x-axis denotes the number of denoising
steps N on a logarithmic scale. Vertical error bars represent the standard deviation over five random seeds.
While CTP achieves near-optimal performance with significantly fewer denoising steps (e.g., saturating at
N = 1), Diffuser requires substantially more steps to match similar scores. Inference time grows rapidly
with larger N for Diffuser, whereas CTP maintains consistently low inference time.

Figure 2 presents a detailed comparison of the average normalized scores and inference time (in milliseconds
per sample) across varying denoising steps. Each data point reports the mean and standard deviation
computed over five random seeds. As shown, CTP achieves near-optimal performance with N = 1, and
saturates fully by N = 2. In contrast, Diffuser requires up to N = 20 steps to reach its performance plateau,
with inference time increasing significantly with each additional step.

Furthermore, Diffuser with N = 20 requires approximately 1900 ms per sample for inference, while CTP
with N = 1 achieves the same in just 15 ms—resulting in a speedup of roughly 120× under this setting.
Despite this large discrepancy in computation time, CTP continues to outperform Diffuser in terms of policy
quality, yielding a slight improvement in normalized score.

10



Under review as submission to TMLR

To further validate scalability, we also evaluate inference latency on large-scale tasks beyond locomotion.
Figure 3 reports results on AntMaze (large/medium diverse) and Kitchen (partial and mixed) tasks. It is
evident that CTP consistently outperforms Diffuser across both AntMaze and Kitchen domains for the same
number of denoising steps N . This implies that, to achieve a comparable level of performance, CTP can
deliver a substantial inference speedup relative to Diffuser, underscoring the scalability advantage of CTP
in both navigation and manipulation tasks.

100 101

N (Log Scale)
0

25

50

75

100

125

Av
g.

 S
co

re

Average Score vs. N on antmaze-ld
Diffuser (Avg. Score)
CTP (Avg. Score)

(a)

100 101

N (Log Scale)
0

25

50

75

100

125

Av
g.

 S
co

re

Average Score vs. N on antmaze-md
Diffuser (Avg. Score)
CTP (Avg. Score)

(b)

100 101

N (Log Scale)
0

25

50

75

100

125

Av
g.

 S
co

re

Average Score vs. N on kitchen-partial
Diffuser (Avg. Score)
CTP (Avg. Score)

(c)

100 101

N (Log Scale)
0

25

50

75

100

125

Av
g.

 S
co

re

Average Score vs. N on kitchen-mixed
Diffuser (Avg. Score)
CTP (Avg. Score)

(d)

100 101

N (Log Scale)
0

200

400

600

800

1000

In
fe

re
nc

e 
Ti

m
e 

(m
s p

er
 sa

m
pl

e) Inference Time vs. N on antmaze-ld
Diffuser (Inference Time)
CTP (Inference Time)

(e)

100 101

N (Log Scale)
0

200

400

600

800

1000

In
fe

re
nc

e 
Ti

m
e 

(m
s p

er
 sa

m
pl

e) Inference Time vs. N on antmaze-md
Diffuser (Inference Time)
CTP (Inference Time)

(f)

100 101

N (Log Scale)
0

200

400

600

800

1000

In
fe

re
nc

e 
Ti

m
e 

(m
s p

er
 sa

m
pl

e) Inference Time vs. N on kitchen-partial
Diffuser (Inference Time)
CTP (Inference Time)

(g)

100 101

N (Log Scale)
0

200

400

600

800

1000

In
fe

re
nc

e 
Ti

m
e 

(m
s p

er
 sa

m
pl

e) Inference Time vs. N on kitchen-mixed
Diffuser (Inference Time)
CTP (Inference Time)

(h)

Figure 3: Comparison of the average normalized scores (top row) and inference times (bottom row) of CTP
and Diffuser on AntMaze (large/medium diverse) and Kitchen (partial/mixed) datasets.

These results underscore the efficiency advantage of CTP, demonstrating that it achieves strong perfor-
mance with substantially fewer denoising steps, thereby offering a more practical solution for time-sensitive
deployment scenarios.

Error accumulation. Score-based models are prone to discretization errors introduced by SDE/ODE
solvers, while distillation-based models often suffer from error accumulation across multiple sampling steps.
CTM mitigates these issues and reduce the error accumulation from O

(√
t1 + t2 + · · ·+ tN

)
to O

(√
tN

)
(Kim et al., 2024). As shown in Figure 4, the proposed algorithm CTP achieves significantly improved
performance over offline RL methods based on CM when the number of sampling steps N > 2.

Ablation Studies. To disentangle the contributions of CTM and auxiliary design choices, we perform two
groups of ablation studies on Maze2D-Umaze, Medium, and Large tasks.

• Effect of the M-stride Trajectory Representation. We first investigate the impact of the
stride-based trajectory representation, where only every M -th state is sampled from the original
sequence. We compare our original CTP (stride = 5, H = 16) with the CTP (no stride, H = 80),
both of which correspond to an effective lookahead of 80 steps. Across all Maze2D tasks, CTP (no
stride) achieves the best overall performance, followed by CTP (stride = 5). These results highlight
that introducing the M-stride representation slightly reduces performance but substantially improves
computational efficiency, as it reduces the number of planning horizon (16 vs. 80). Thus, the stride
formulation offers a practical trade-off between accuracy and efficiency. The quantitative results are
shown in Figure 5a.

• Effect of Value-based Trajectory Selection. Next, we evaluate the influence of the value
network–based selection used during inference. We compare CTP with filter with CTP w/o filter,
which adopts classifier-free guidance for trajectory generation. We further include CP baseline,
which also employs classifier-free guidance by default, for comparison. Results show that CTP with
filter achieves the higher returns across all Maze2D variants, followed by CTP w/o filter and CP.
Corresponding results are reported in Figure 5b. This indicates that: (i) When using the same

11



Under review as submission to TMLR

1 2 3 4 5 6 7
Sampling Steps N

50

60

70

80

90

No
rm

al
ize

d 
Sc

or
e

Average Performance vs. samplings steps N 
Consistency Trajectory Models
Consistency Models

Figure 4: The average performance versus sampling steps N for CTP and CM on kitchen-partial dataset.

Maze2D-Umaze Maze2D-Medium Maze2D-Large
0

25

50

75

100

125

150

175

200

No
rm

al
ize

d 
Re

tu
rn

Effect of M-stride Trajectory Representation
CTP with stride
CTP w/o stride

(a) Effect of M-stride trajectory representation.

Maze2D-Umaze Maze2D-Medium Maze2D-Large
0

50

100

150

200

No
rm

al
ize

d 
Re

tu
rn

Effect of Value-based Trajectory Selection
CP
CTP w/o filter
CTP with filter

(b) Effect of value-based trajectory selection.

Figure 5: The ablation study on (a) M-stride trajectory representation and (b) value-based trajectory selec-
tion across three Maze2D environments.

classifier-free guidance mechanism, CTP consistently outperforms CP, demonstrating the inherent
advantage of CTM in trajectory optimization; and (ii) The value-based selection further improves
planning quality by directly aligning trajectory choice with predicted returns, effectively replacing
classifier-based guidance with a more stable and reward-consistent evaluation mechanism.

6 Conclusion

In this work, we propose CTP, a novel approach that integrates CTM into the trajectory optimization
framework for offline RL. CTP enables highly effective trajectory sampling with only one or a few denois-
ing steps, achieving superior performance across standard benchmarks. Our method demonstrates robust
generalization in both simple and complex environments, showcasing its practical value for efficient policy
planning.

Looking ahead, several avenues of improvement remain. First, enhancing the critic model (Kostrikov et al.,
2022) to better estimate the upper bound of plausible returns—rather than the mean—can improve planning
guidance; this can be achieved using asymmetric loss functions such as the expectile loss. Second, the
consistency loss weighting scheme can be refined to more accurately reflect the impact of different noise scales
during training (Song & Dhariwal, 2024), thereby amplifying the signal from informative samples. Finally,
incorporating advanced network architectures (e.g., UNet, Transformer) along with curriculum learning
strategies may further improve training stability and policy performance. We leave these directions for
future work.

12



Under review as submission to TMLR

References
Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by

poking: Experiential learning of intuitive physics. Advances in Neural Information Processing Systems,
29, 2016.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is condi-
tional generative modeling all you need for decision-making? The Eleventh International Conference on
Learning Representations, 2023.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical planning
with diffusion. In The Twelfth International Conference on Learning Representations. The International
Conference on Learning Representations (ICLR), 2024.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via high-
fidelity generative behavior modeling, 2023. URL https://arxiv.org/abs/2209.14548.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal
of Robotics Research, pp. 02783649241273668, 2023.

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement learning.
The Twelfth International Conference on Learning Representations, 2024.

Zibin Dong, Yifu Yuan, Jianye Hao, Fei Ni, Yao Mu, Yan Zheng, Yujing Hu, Tangjie Lv, Changjie Fan, and
Zhipeng Hu. Aligndiff: Aligning diverse human preferences via behavior-customisable diffusion model. In
ICLR, 2024.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy based models. Advances in
Neural Information Processing Systems, 32, 2019.

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and Pieter
Abbeel. Learning universal policies via text-guided video generation. Advances in neural information
processing systems, 36:9156–9172, 2023.

Xintong Duan, Yutong He, Fahim Tajwar, Ruslan Salakhutdinov, J Zico Kolter, and Jeff Schneider. Ac-
celerating Diffusion Models in Offline RL via Reward-Aware Consistency Trajectory Distillation. arXiv
preprint arXiv:2506.07822, 2025.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for Deep Data-
Driven Reinforcement Learning. CoRR, abs/2004.07219, 2020. URL https://arxiv.org/abs/2004.
07219.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, and Richard Zemel. Learning
the stein discrepancy for training and evaluating energy-based models without sampling. In Proceedings
of the International Conference on Machine Learning, pp. 3732–3747. PMLR, 2020.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine. Idql:
Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573,
2023.

Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. AlignIQL: Policy Alignment in Implicit Q-Learning
through Constrained Optimization. CoRR, abs/2405.18187, 2024. URL https://doi.org/10.48550/
arXiv.2405.18187.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In Proceedings of NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021. URL https://openreview.net/forum?
id=qw8AKxfYbI.

13

https://arxiv.org/abs/2209.14548
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
https://doi.org/10.48550/arXiv.2405.18187
https://doi.org/10.48550/arXiv.2405.18187
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI


Under review as submission to TMLR

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Vineet Jain, Tara Akhound-Sadegh, and Siamak Ravanbakhsh. Sampling from energy-based policies using
diffusion. In Proceedings of Reinforcement Learning Conference, 2025.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. International Conference on Machine Learning, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for offline
reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning probability flow ODE
trajectory of diffusion. In Proceedings of The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=ymjI8feDTD.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit Q-Learning. In
Proceedings of International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline rein-
forcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. ArXiv, abs/2005.01643, 2020.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision making.
In International Conference on Machine Learning, pp. 20035–20064. PMLR, 2023.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser: Diffusion
models as adaptive self-evolving planners. In International Conference on Machine Learning (23/07/2023-
29/07/2023, Honolulu, Hawaii), 2023.

Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner for decision
making? In Proceedings of The Thirteenth International Conference on Learning Representations, 2025.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
Proceedings of International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent non-persistent
short-run mcmc toward energy-based model. Advances in Neural Information Processing Systems, 32,
2019.

Kwanyoung Park and Youngwoon Lee. Model-based Offline Reinforcement Learning with Lower Expectile
Q-Learning. In Proceedings of The Thirteenth International Conference on Learning Representations,
2025.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan Shel-
hamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation. In Proceedings of
the IEEE conference on computer vision and pattern recognition workshops, pp. 2050–2053, 2018.

14

https://openreview.net/forum?id=ymjI8feDTD
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8


Under review as submission to TMLR

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio Valcarcel
Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human behaviour with
diffusion models. In The Eleventh International Conference on Learning Representations (ICLR 2023),
2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy from
rewards via q-score matching. In Proceedings of the 41st International Conference on Machine Learning,
pp. 41163–41182, 2024.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel Todorov,
and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and
demonstrations. In Proceedings of Robotics: Science and Systems, 2018.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-
to-image diffusion models with deep language understanding. Advances in neural information processing
systems, 35:36479–36494, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proceedings of International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In Proceedings of
The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=WNzy9bRDvG.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In Proceedings of International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Proceedings of Inter-
national Conference on Machine Learning, 2023. URL https://api.semanticscholar.org/CorpusID:
257280191.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control. In
Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE,
2012.

Guanquan Wang, Takuya Hiraoka, and Yoshimasa Tsuruoka. Planning with consistency models for model-
based offline reinforcement learning. Transactions on Machine Learning Research, 2024a.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang, Liming
Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator. Advances in Neural
Information Processing Systems, 37:54183–54204, 2024b.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class
for offline reinforcement learning. In Proceedings of The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Cheng-Fu Yang, Haoyang Xu, Te-Lin Wu, Xiaofeng Gao, Kai-Wei Chang, and Feng Gao. Planning as
in-painting: A diffusion-based embodied task planning framework for environments under uncertainty.
CoRR, 2023.

15

https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=PxTIG12RRHS
https://api.semanticscholar.org/CorpusID:257280191
https://api.semanticscholar.org/CorpusID:257280191
https://openreview.net/forum?id=AHvFDPi-FA


Under review as submission to TMLR

A Task Properties

Table 6 provides a comprehensive summary of dataset sizes used in our experiments. All datasets are
sourced from the latest release of the D4RL benchmark suite (Fu et al., 2020), encompassing four domains:
Gym-MuJoCo, Maze2D, FrankaKitchen, and AntMaze.

In the Gym-MuJoCo domain, we consider three data variants: medium-expert, medium, and medium-replay.
The medium-expert datasets comprise trajectories generated by a mixture of medium- and expert-level
policies, thus incorporating both suboptimal and near-optimal actions. The medium datasets are collected
exclusively using medium-performance policies, and consequently, contain a higher proportion of suboptimal
behavior. The medium-replay datasets represent replay buffers collected from medium-level agents during
training, featuring highly diverse suboptimal trajectories and exploration noise. The Gym-MuJoCo domain
consists of three standard environments:

• Hopper involves a single-legged robot that must learn to hop forward without falling, presenting
challenges in stability and balance.

• HalfCheetah features a planar cheetah-like agent with a more complex morphology, requiring the
agent to coordinate multiple joints to achieve high-speed locomotion.

• Walker2d simulates a two-legged humanoid robot that must walk forward while maintaining upright
posture, making it more prone to instability.

These tasks serve as standard benchmarks for evaluating the ability of offline algorithms to generalize from
limited data and produce smooth, efficient motion without direct online interaction.

In the Maze2D domain, datasets are categorized according to maze complexity: umaze, medium, and large.
Each variant reflects increasing navigation difficulty and state space dimensionality.

The FrankaKitchen domain includes two types of datasets: partial and mixed, both of which consist of
undirected demonstrations. In the partial dataset, a subset of trajectories successfully accomplish the full
task, enabling imitation learning algorithms to leverage these informative samples. Conversely, the mixed
dataset contains only partial trajectories, with no complete demonstrations of the full task. This requires RL
algorithms to generalize from sub-trajectories and effectively compose them into successful task completions.

For the AntMaze domain, we use the same three maze configurations (umaze, medium, and large) as in
Maze2D. Three types of datasets are constructed: In the standard setting (antmaze-umaze-v0), the ant is
instructed to reach a fixed goal from a fixed start state. In the diverse datasets, both the goal and starting
positions are randomly sampled, introducing high variability. In the play datasets, the ant is commanded to
reach hand-picked waypoints in the maze, which may not coincide with the evaluation goal, and also begins
from a curated set of start locations. These variations are designed to assess the agent’s ability to generalize
under different levels of distributional shift and task ambiguity.

The Adroit Hand benchmark comprises four distinct manipulation scenarios, each instantiated with a 30-DoF
dexterous hand mounted on a freely moving arm:

• Door. The agent must disengage a latch with substantial dry friction and swing the door until it
contacts the stopper. No explicit latch state is provided; the agent infers its dynamics solely through
interaction. The door’s initial pose is randomized across trials.

• Hammer. The hand picks up a hammer and drives a nail of variable location into a board. The
nail—subject to dry friction resisting up to 15N—must be fully embedded for success.

• Pen. With the wrist fixed, the agent reorients a blue pen so that its pose matches a randomly
placed green target within a prescribed angular tolerance.

• Relocate. The agent transports a blue sphere to a green target whose position, along with the
sphere’s start pose, is uniformly randomized throughout the workspace; success is declared once the
sphere lies within an ϵ-ball of the target.

16



Under review as submission to TMLR

Domain Task Name Samples

Gym-MuJoCo

hopper-me 2× 106

hopper-m 106

hopper-mr 402000
halfcheetah-me 2× 106

halfcheetah-m 106

halfcheetah-mr 202000
walker-me 2× 106

walker-m 106

walker-mr 302000

Maze2D
maze2d-umaze 106

maze2d-medium 2× 106

maze2d-large 4× 106

FrankaKitchen kitchen-mixed 136950
kitchen-partial 136950

AntMaze

antmaze-medium-play 106

antmaze-medium-diverse 106

antmaze-large-play 106

antmaze-large-diverse 106

Table 6: Size for each dataset is provided. The number of samples indicates the total count of environment
transitions recorded in the dataset (Fu et al., 2020).

B Implementation Details

This section outlines the architectural and training details used throughout our experiments.

CTM Training. This is the teacher–student distillation algorithm for consistency trajectory models (Song
et al., 2021; Kim et al., 2024), included here for completeness.

Algorithm 2 Consistency Trajectory Model’s Training
1: repeat
2: Sample x0(τ) := (sk, sk+M , . . . , sk+(H−1)M ) from data distribution
3: Sample ϵ ∼ N (0, I)
4: Sample t ∈ [ϵ, tN ], w ∈ [0, t], u ∈ [w, t)
5: Calculate xt = x0 + tϵ
6: Calculate Solver(xt, t, u; ϕ)
7: Update θ ← θ − ∂

∂θL(θ, η)
8: Update η ← η + ∂

∂ηLGAN(θ, η)
9: until converged

Model Architecture. We use Diffusion Transformer blocks with adaLN-Zero architecture (Peebles & Xie,
2023) as the network backbone for the diffusion model and CTM.

Transformer Depth. We use Transformer depth of 2 in all the MuJoCo tasks, Kitchen tasks, Maze2D
tasks, and Adroit tasks, 8 in AntMaze-Medium tasks, 12 in AntMaze-Large tasks.

Training Hyperparameters. The teacher model (EDM) is trained using a learning rate of 2×10−4, while
the student model (CTM) is trained with a smaller learning rate of 8 × 10−6. Both models are optimized

17



Under review as submission to TMLR

using the Adam optimizer with a batch size of 128 for a total of 1×106 training steps. Additionally, we train
the inverse dynamics model and the critic using a learning rate of 3× 10−4, also with the Adam optimizer.

Inference Settings. During inference, we set the number of sampling steps N = 2 for CTP procedure.

Planning Horizon and Stride. We set the planning horizon H and stride M as follows:

• MuJoCo tasks: H = 4, M = 1

• Kitchen tasks: H = 32, M = 4

• Maze2D tasks: H = 32, M = 15

• AntMaze tasks: H = 40, M = 25

• Adroit tasks: H = 32, M = 2

These hyperparameters were selected based on task complexity and temporal resolution, with longer planning
horizons and strides for more complex, long-horizon tasks such as AntMaze and Kitchen.

18


	Introduction
	Related Work
	Preliminary
	Reinforcement Learning Problem Setting
	Consistency Trajectory Models

	Planning with Consistency Trajectory Model
	Training process
	Inference process

	Experiment
	Experiment Environment
	Experiment Setting
	Experimental Results

	Conclusion
	Task Properties
	Implementation Details

