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Abstract 

Social media users are often harassed. 
This paper presents a patented system to 
filter out harassing content before it 
reaches the recipient. Our first version is 
for the iPhone. To detect harassment, we 
adopted sentiment analysis with a 
supervised learning approach that 
combines Machine Learning (ML) text 
classifiers with a lexicon approach that 
provides a feedback loop to retrain the ML 
model with unknown terms. Because good 
data is essential to obtain the best output of 
any system, we focused on validating our 
labeled data. Our results on static and real-
time data have an accuracy of, 
respectively, 90% and 94%. Our labeled 
data validation allows us to correct labels; 
we also realized the need to increase the 
number of sets in our lexicons. Our 
prototype demonstrates that we are able to 
build an AI infrastructure to filter out 
harassment on an iPhone in real-time with 
good results.  

1 Introduction 

Social media platforms such as Twitter have 
massively advanced human connectivity. 
Every day, there are about  500 million 
tweets sent globally, or about 6,000 tweets 
a second.1 Unfortunately, many people are 
being exposed to unwanted, harassing, and 
even threatening content. Harassment is 
disproportionally aimed at women,2  people of 

                                                
1 See https://www.internetlivestats.com/twitter-statistics/. 
Accessed: 01-02-2021. 
2 See 
https://www.amnesty.org/en/latest/news/2017/11/amnes
ty-reveals-alarming-impact-of-online-abuse-against-
women. Accessed: 12-18-2020. 

color,3 and the LGBTQ+ population (Wilson and 
Cariola, 2020). Though virtual, this content has 
had a strong impact. Thirty percent of women 
journalists have considered leaving their 
profession,4 and suicide and self-harm rates are 
double for adults under 25 who have been 
victimized by online harassment.5 The fear of 
harm and the mental health impact from online 
harassment are real. The explosive growth of 
social media has made it difficult for providers 
to effectively track and remove unwanted 
content. While companies do attempt to track 
and remove content, they rely heavily on manual 
reports from users.6 Our approach is to filter out 
harassment using text classifiers and lexicons on 
the receiver end. For real-time data, the quality 
of the data is important to obtain good results. 
Training any models with data that were 
incorrectly labeled affects the models' 
performance on real-time data. Therefore, we 
decided to validate the labeled data.  The 
accuracy of the performance of a model on real-
time data needs requires that the training data 
cover a huge diversity of content. Therefore, we 
need to expand the model knowledge with the 
following steps: a lexicon that acts as an adaptive 
filter to the classifier by catching unknown 
content to the model; and which searches for 
content with Search API functions calls. The 

                                                
3 See https://www.pewresearch.org/fact-tank/2017/07/25/1-
in-4-black-americans-have-faced-online-harassment-because-
of-their-race-or-ethnicity/. Accessed: 12-18-2020. 
4 See https://www.iwmf.org/programs/online-
harassment/. Accessed: 12-18-2020. 
5 See https://www.comparitech.com/internet-
providers/cyberbullying-statistics. Accessed: 12-
18-2020. 
6 See 
https://blog.twitter.com/en_us/topics/company/2020/
An-update-on-our-continuity-strategy-during-
COVID-19.html. Accessed: 12-18-2020. 
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methodology  provides the blueprint (see Fig.1) 
on how to build the different steps of the AI 
infrastructure in real-time:  
- Data Engineering: collecting and labeling 

data; 
- Modeling: training Machine Learning (ML) 

models and running evaluation metrics;  
- Deployment: implementing Representational 

State Transfer Application Programming 
Interface (Rest API) and Webhook data 
transfer, setting authorization requests, 
uploading models on devices; 

- Reports: storing the sender data information 
into a graph database called Neo4j to 
evaluate the spread of the harassment among 
users; 

- Analyze Results: evaluating the system in 
production, writing tests for the multiple 
components, and providing an evaluation 
matrix for the results. 

   The AI infrastructure is a life cycle that allows 
the system to adjust itself by retraining the 
models with additional data after obtaining 
output results in real-time. We have incremented 
our label data size and validated our label data, 
identified the underlying patterns that make it 
possible to use automation to track and filter 
harassing data in real-time. 

2 Background and Prior Art 

In a January 19, 2019 interview, Jack Dorsey, one 
of the founders and the Chief Executive Officer of 
Twitter revealed how surprised he and his 
colleagues were at the prevalence of social media 
harassment: “We weren’t expecting any of the 
abuse and harassment, and the ways that people 
have weaponized the platform.” Dorsey explained 
that they felt “responsible about it.”7 Social media 
companies allow users to report abuse and require 
verification by e-mail addresses, phone numbers, 
or the identification of pictures to prevent robotic 
contact attempts. But these mechanisms have 
proven fruitless to stop the harassment.  
Improvements in ML technology allow 
harassment to be countered.  
   The Times (London), for instance, partnered in 
2016 with a Google-owned technology incubator 
to score incoming comments by comparing them 
                                                
7 See  https://www.huffingtonpost.com/entry/jack-dorsey-
twitter-interview_us_5c3e2601e4b01c93e00e2a00. 
Accessed: 12-18-2020. 

to more than 16 million moderated Times 
comments going back to 2007.8  Email Software 
uses text classifiers to determine whether 
incoming mail is sent to the inbox folder or the 
spam folder9. 
Ogudo (2019) uses sentiment analysis and text 
mining to analyze social media content. Heba 
(2016), Kolchyna (2015), and Medhat (2014)  
describe the following three classification types 
for sentiment mining that were evaluated.  

1) K-neighbors, Decision tree, Naïve Bayes 
and Support Vector Machine (Vinodhini 
et al., 2013);  

2) Passive-Aggressive Algorithm Based 
Classifier, Language Modeling Based 
Classifier, Winnow (Cui et al., 2006); 

3) Machine learning classifiers for sentiment 
analysis approaches are the lexicon-based 
approach and the learning approach build 
classifier trained with labeled data (Bhuta 
et al., 2014; Sadia 2018);  

Another classifier type is the Maximum Entropy 
classifier that combines an ensemble of classifier 
approaches (Perikos et al., 2016; Kharde, 2016). 

3 Methodology  

The methodology utilized to filter out 
harassment data on real-time data consists of the 
following steps:   
• data engineering (collect and label the data), 
• modeling (train the models with the labeled 

data, evaluate the model on static data),  

                                                
8 See https://www.nytimes.com/2017/06/13/insider/have-a-
comment-leave-a-comment.html Accessed: 12-18-2020. 
9 https://developers.google.com/machine-
learning/guides/text-classification/?hl=ID-
id&skip_cache=false%22. 
 

Figure 1: AI Infrastructure 
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• deployment (deploy the models onto the 
iPhone device),  

• report how the harassment is spread.  
The training of ML text classifiers is done with 
English labeled data and Italian labeled data. Only 
our models trained with English data are deployed 
on an iPhone. We use a lexicon, called a "bag-of-
words", to act as a feedback loop for retraining 
our models with unknown words to the model  
(see Fig.2). The unknown words to the model and 
the sender and their friends' names are collected. 
The Program Collecting Data searches and 
collects tweets on Twitter using search API with 
that specific term and/or with the sender name.  
With bag-of-words and the Program Collecting 
Data, we expanded our initial set of labeled data 
to approximatively 70,000 English labeled tweets 
in order to train the model. Figure 3 describes the 
system: how incoming data are processed in order 
to solve the harassing issue on social media. We 
apply an ML classifier to the incoming content. In 
the first version for the iPhone, a text classifier 
model (from Apple Core ML 3) determines if the 
incoming data is harassing. The text classifier 
model separates the data into two sets: the 
harassment data set and the neutral data set. Only 
the neutral data are displayed to the receiver;  the 
harassing content is filtered out and can be 
accessed with a different Tabbar. 

3.1 Data 
We collected two sets of labeled data, one with 
English data and the other with Italian data.   

3.1.1 English Data 
We merged four different available datasets to 
create a general and comprehensive input dataset 
by leveraging their annotation schemes into a 
binary “harassment” and “neutral” classification. 
The datasets were crowdsourced: 
• A corpus of more than 16,000 tweets, 

annotated with labels such as Racism, 
Sexism, and Neither  (Waseem and Hovy, 
2016). The labels conveying harassing 
content were changed into “harassment” and 
the “neutral” data was kept as is. 

• A corpus of 35,000 tweets, with 15% positive 
harassment examples and 85% negative 
examples (Golbeck et al., 2017).  

• 7,321 tweets with tweet ID, bullying, author 
role, teasing, type, form, and emotion labels 
were all converted into ”harassment” tweets  
(Xu et al., 2012). 

• A corpus of 25,000 tweets is annotated with 
the labels “hate speech”, “offensive 
language” or “neither” (Davidson et al., 
2017). 

   The system collects text data and labels it 
internally in two different ways: 

Figure 3: Bag-of-words acting as an adaptive filter 
to the ML text classifier 

Figure 2: System 
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• Program Collecting Data is a python program 
using Twitter Search API to collect content 
data with specific terms or a specific user. 
To collect neutral content, we search 
individuals that are known to have empathetic 
personalities. The program collects the 
content of their tweets, screens them, and 
labels the tweets. For harassing content, the 
program using Search API searches for 
specific harassing terms or harassing 
individuals on Twitter.   

• The bag-of-words act as an adaptive filter to 
increase the data set size by retraining the text 
classifier with content yet unknown to the 
model. 
 

3.1.2 Italian Data 
Two hundred thousand tweets were collected 
with distance supervision by allocating “hateful” 
or “neutral” labels according to the source of the 
content (Merenda et al., 2018). 

3.2 Labeled Data Validation 

Our labeled English datasets originated from academic 
sources and were mainly collected with 
crowdsourcing. We  recognize the implications of 
merging datasets that have been compiled using 
different annotation schemes. Some, for example, 
use a crowd-sourced hate speech lexicon to 
collect tweets containing hate speech keywords 
(Davidson et al., 2017). Others use terms in 
tweets that contain hate speech and references to 
specific entities (Waseem and Hovy, 2016). 
Good data are essential to obtain good output 
results. Training any model with bad data – data 
that were labeled incorrectly – affects the 
performance of the model especially with real-
time data. Therefore, we decided to validate the 
accuracy of the labeling before training our 
models with the labeled data.   To assess the 
quality of the labeled data, we are using the same 
lexicon that we use as a feedback loop to retrain 
the models during the deployment. We are 
evaluating our labeled data against the content of 
the lexicon lists.  At first, we only had one list of 
harassing words. During the validation, we 
realized our need to extend the number to at least 
five different lists of sensitive words and 
expressions. At a later time, the number of lists 
might increase depending on the data needs. 

The first list consists of hardcore harassing 

terms. The second list has words evincing a 
milder harassing tone; the third list has terms that 
have a double meaning, with one of the meanings 
being harassing; the fourth list contains phrases 
connecting the sub-list of “bad action” with the 
sub-list of the intended recipient of those bad 
actions; the fifth list contains harassing emojis. 

We are evaluating our labeled data against the 
content of the lexicon lists. In the labeled data 
set, if any hate-related term is found in tweets 
labeled as neutral, we changed the label to 
harassment. On the other hand, if no terms were 
found in tweets labeled as harassment, we 
rebalanced the annotation by labeling them as 
neutral. Following this method, we changed 
1,880 labels from “neutral” to “harassing” from 
the labeled data set.  

4 Modeling  

The text classifiers train machine learning 
models that are uploaded to the iPhone onto two 
applications to classify incoming natural 
language text. We choose the Core ML 3 
platform from Apple 10  and the Auto ML 11 
platform from Google to classify the annotated 
data we had gathered to filter online harassment 
on incoming social media data. The Apple Core 
ML 3 text classifier and the AutoML classifier 
have been trained to recognize a pattern in the 
text, such as sentiments expressed in a sentence.  
   Core ML 3 framework provides several 
fundamental Natural Language Processing 
(NLP) building blocks such as language 
identification, tokenization, part of speech 
tagging, lemmatization, and named entity 
recognition. Google provides a comprehensive 
text classifier guideline that allows for the 
appropriate text classifier to be built. Another 
interesting feature of these models is that the NLP 
functionalities are provided across several 
different languages. For instance, Core ML 3’s 
sentiment analysis API is available in different 
languages. Core ML 3 uses different classification 
algorithms. To classify the data, the text classifier 
algorithm running internally is the MaxEnt 
algorithm. The MaxEnt combines the following 

                                                
10 See 
https://developer.apple.com/documentation/createml/mltextcl
assifier. Accessed: 12-31-2020. 
11  See https://cloud.google.com/natural-
language/automl/docs. Accessed: 12-31-2020. 
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classification types: K-neighbors, Decision Tree, 
Naïve Bayes and Support Vector Machine. 

5 Static Data Results 

Our results on static data are obtained with two 
different frameworks; one is the Core ML 3 from 
Apple and the other is Auto ML from Google.  

5.1 Core ML 3 Text Classifier Training & 
Testing 

Core ML 3 framework trains different models 
and selects using the MaxEnt algorithm . English 
data consist of 78,533 inputs after removing the 
duplicates. Our English data sets are not well 
balanced (see Table 1). 

     
    
   The ratio of harassing tweets on the Twitter app 
is much smaller than 33%, around 3% to 11%. 
For the Italian data, the input data consist of 
199,020 inputs with 50% labeled as harassing 
content and 50% labeled as neutral content (see 
Table 2).  

 
    
   For English data, the MaxEnt training has a 
training set of 49,873 inputs and a validation set 
of 12,767 tweets. Each iteration of the MaxEnt 
training is evaluated on the validation set. The 
model reached 90.21% accuracy on the test set, 
consisting of 15,893 English-language tweets 
(see Table 3). The classifier error on the test 
data is 9.64%.  
   The Italian training data consists of 127,177 
inputs. The evaluation accuracy on the Italian  
language data is 88.61% (see Table 3).  

 
 
   The evaluation accuracy and the classification 
error are useful metrics only when the data is 
well-balanced between categories. The precision 
and recall on the harassment set (see Tables 4 
and 5) reflect more accurately how the model is 
performing on the harassment set and the neutral 
set. For instance, the precision and recall for 

harassment (English language) in Table 4 are, 
respectively, 84.26% and 85.56%; while for the 
neutral set they are, respectively, 93.26% and 
92.59%. This difference reflects that the model’s 
predictive power is stronger when it comes to 
finding neutral content.  

  
 
 
    The Italian language results (see Table 5) are 
similar to the English language model, albeit 
with a small difference; the English language 
model detects the neutral tweets better and the 
Italian language model detects harassment and 
neutral at a similar ratio. 

  
 
    
The two datasets differ in size, distribution, 
annotation, and compilation criteria. However, 
the results we obtained show that the English and 
Italian results from Tables 3, 4, and 5 are in the 
same range. The Core ML 3 training of the 
models took 3.36 seconds for English data and 
11.6 seconds for Italian data. 

5.2  AutoML Text Classifier Training & 
Testing 

Google Cloud Natural Language API provides 
content classification, sentiment detection, and 
extracts entities and syntax analysis. AutoML 
Natural Language features custom entity 
extraction and custom sentiment analysis. The 
training set consists of 62,575 English tweets. 
The validation and testing set consist of 7,822 
labeled tweets each. 
   The Italian data training set consists of 99,938 
inputs. The Auto ML Text classifier is still a beta 
version and the maximum input data that its 
structure can take is 100,000 inputs. The Italian 
testing set consists of 9,994 inputs. 
   For both languages, the Auto ML text classifier 
training took from 7 to 12 hours. Table 6 
displays the evaluation accuracy of the models 
training with Auto ML text classifiers. The 
English data accuracy is 94.36% and the Italian 

Harassment Neutral 
33% 67% 

Harassment Neutral 
50% 50% 

English dataset Italian dataset 
90.21% 88.61% 

Class Precision Recall F1 
Harassment 84.26% 85.56% 84.90% 
Neutral 93.26% 92.59% 92.92% 

Class Precision Recall F1 
Harassment 89.38% 87.07% 88.21% 

Neutral 87.92% 90.10% 89.00% 

Table 4:  Precision  & Recall Core ML 3 
English Results 

 

Table 5:  Precision & Recall 
Core ML 3 Italian Results 

 

Table 1: Distribution –English Dataset 
 

Table 2: Distribution –Italian Dataset 
 

Table 3: Evaluation Accuracy 
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data accuracy is 91.74%. The confusion matrices 
are shown in Tables 7 and 8. We note that the 
matrix cells labeled “Harassment/Harassment” 
have a percentage range from 87% to 95%, 
respectively, for the English and Italian 
languages. Tables 9 and 10 show the precision and 
recall results for the English and Italian data sets. 

 
  

 
  

 
   

   

 

 
 
 
    The evaluation accuracy results obtained with 
Core ML and Auto ML with the English and 
Italian data sets are in the same range. Table 11 
reflects the good results obtained with an 
evaluation accuracy ranging from 88.61% to 
94.36%.  

 

6 Deployment 

Only English Models were deployed with 
Testing Models application to evaluate the 
accuracy of the models on real-time data. We 
first implemented the application for the iPhone 
because the upload of their classifier models onto 
the device is a simpler process that has been 
available since July 2018. Android development 
will be done at a later time. We upload the 
English model and the bag-of-words to the 
iPhone. The bag-of-words acts as an adaptive filter; 
it catches terms unknown to the model. In the first 
version, the uploaded bag-of-words on the iPhone is 
only one set of harassing terms. In the next version 
the number of sets will increase to five (see §3.2). 
The bag-of-words filters the data with the following 
constraints: content defined as harassing has at least 
one word from the bag-of-words; when no term 
from the bag-of-words is found in the content, the 
content is defined as neutral. Fig. 2 shows a 
flowchart of the bag-of-words serving as an 
adaptive filter for the model. First, language 
detection is applied to the data to determine its 
language. Then, a corresponding text classifier is 
loaded to process the incoming data. The classifier 
labels the incoming content as harassing or neutral.  
In parallel, the data go through the bag-of-words 
filter. Results from the model and the bag-of-words 
filter are compared. If the model and filter results 
are the same, then the data are placed in the 
corresponding category. If the results differ, we 
have two possibilities:  
1: If a hardcore harassing term from the bag-of-
words is detected in tweet content and the model 
had categorized the tweet as neutral, then the 
decision of the filter overrides the model. 
2: If the model categorizes a tweet as harassment 
and no harassing term from the bag-of-words is 
present, the content is defined as neutral.  

For the next version, we will integrate the five 
sets of the bag-of-words such that: the definition of 
harassing content will have at least one term from 
any of the following set: hardcore harassing terms 
(first list), the sub-list of “bad action” with the 
sub-list of the intended recipient of those bad 
actions (fourth list); and harassing emojis (fifth 
list). (See §3.2.) 
   The neutral content may include words from the 
second list with moderate words (e.g., the word 
"stupid") and the third list with double meaning 
terms. (See §3.2.) We will also modify the second 
possibility. As modified, if the model categorizes a 
tweet as harassment, yet no harassing term from 

English dataset Italian dataset 
94.36% 91.74% 

True\Predict Harassment Neutral 
Harassment 87% 13% 

Neutral 2% 98% 

True\Predict Harassment  Neutral  
Harassment 95% 5% 
Neutral 12% 88% 

Class Precision Recall 
Harassment 95.44% 86.88% 

Neutral 93.91% 97.99% 

Class Precision Recall 
Harassment 89.42% 95.04% 

Neutral 94.47% 88.30% 

Evaluation 
Accuracy 

English Italian 

Core ML 90.21% 88.61% 
Auto ML 94.36% 91.74% 

Table 8:  Confusion Matrix Auto ML Italian 
Results 

 
 

Table 7:  Confusion Matrix Auto ML  English 
results 

 
 

Table 10:  Precision & Recall Auto ML 
Italian Results 

 

Table 11:  Evaluation Accuracy  
 

Table 9:  Precision & Recall Auto ML 
English Results 

 

Table 6: Evaluation Accuracy 
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any of the first, fourth and fifth list is found in the 
tweet, then the content is further analyzed and 
sender history is taken into consideration. 
   The discrepancy between model and bag-of-
words results is reported to the server for further 
analysis.   Program Collecting Data collect tweets 
containing one or several of those terms and retrain 
the model with the collected tweets. 

7 Real-time Data Results 

The Model Testing application that includes 
previously English trained models is uploaded on 
the device. The application purpose is to test our 
model with real-time data. The application contains 
a list of 20 user names previously gathered with 
Program Collecting Data. The user name list is 
created from different sources. The list of user 
names contains names from people with diverse 
backgrounds. The list is composed of the friends of 
the sender’s tweets. The  tweets of the senders were 

previously labeled and the models trained with 
them in real-time, from the Twitter platform, the 
Model Testing application requests, and with REST 
API 120 tweets for each user’s list. The tweets are 
the most recent tweets sent by each user. The 
previously trained model (not trained with those 
tweets) filters the tweets into two categories: 
harassment and neutral. On the device, tweets from 
the list of names are displayed. The tweets (which 
are real-time data) were unknown to the Model, the 
bag-of-words and our development team. As a 
result, our deployment testing set consists of the last 
120 sent tweets from each user’s names list. The 
neutral tweets are displayed on the main screen; 
while the TabBar allows the harassing content to be 
accessed. The Model Testing application is a way to 
evaluate how text classifier is filtering out 
harassment on real-time data content.  

On Twitter, a search for U.S. Congresswoman 
Maxine Waters shows that she receives a lot of 
harassing tweets. The names of harassing 
individuals were collected and added to the user 
name list.  

Figure 4: Model Testing application on an iPhone, 
Neutral Tweets are displayed with TabBar set to 

Tweet   

Figure 5: Model Testing application on an iPhone, 
Harassing Tweets are displayed with TabBar set to 

harassment 
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Fig. 4 displays the neutral tweet content with the 
TabBar set to Tweet. Fig. 5 is a screenshot of the 
Model Testing application with TabBar 
harassment checked. Results output were 
collected in debug mode with a print console 
function. On the device, 1,890 tweets were 
displayed and the accuracy was 94% with a 
wide margin of error. The accuracy of our 
models varies with the type of tweets 
searched. The accuracy is lower for harassing 
tweets than for neutral ones. The margin of error 
for accuracy is large given the need to integrate 
the resulting modification with the validation 
step into the deployment step. For instance, on 
the device, the bag-of-words set is only one list 
and it should be composed of at least five. In Fig. 
4, the top arrow points to a tweet with the f-word 
that was not caught because the word has a 
different spelling. In Fig.4, the bottom arrow 
points to another harassing tweet that was not 
caught by our filtering system; the harassing 
phrase is of the format of the fourth set of bag-
of-words that combines a subset of "bad action" 
and "recipient". The bad action is "kicking", the 
recipient is "him". Our aim is to reduce the size 
of our lexicon by permutating the bad action 
with different recipients. Even with some errors 
in detecting harassment, we obtained good 
results with real-time data. At first, our 
debugging output test results with real-time data 
had an accuracy of around 70%; once we trained 
our models with the new labeled data sets, the 
accuracy level increased to above 90%.   

9 Conclusion 

The System demonstrated that a supervised 
learning technique with hybrid classification and 
lexicon approaches obtains good results. Our 
solution was to design and implement an AI 
infrastructure to filter out harassment on real-
time incoming tweets on an iPhone. The life 
cycle of the system allows us to adjust and 
retrain our text classifier models with unknown 
data. We have validated our labeled data because 
bad data will affect the output of the models. We 
trained Apple’s Core ML3 and Google’s Auto 
ML models; we obtained an accuracy of about 
90% on the static data with both models using 
English and Italian data. For the deployment on 
the iPhone, we are using the Core ML 3 model 
on the Model Testing. We improved the quality 
of the training data with the lexicon adaptive 
filter. The Apple Core ML 3 documentation 

recommends that the text classifier is trained 
with at least one million data inputs to obtain the 
best results. The first version of the system used 
an ML model trained with an English language 
input of 78,533 tweets. The accuracy of the 
model was improved by increasing the number 
of inputs with which the model was trained. We 
expect that enlarging the training data with 
validated data will improve overall performance. 
The bag-of-words feedback loop improved the 
accuracy of the system on real-time data. We 
obtained an accuracy of 94% on real-time 
English Twitter data with a large margin of error. 
Our real-time data results were obtained with 
data unknown to our model, our bag-of-words, 
and our developing team.  
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