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Abstract

Generative AI has established the opportunity001
to readily transform content from one medium002
to another. This capability is especially pow-003
erful for storytelling, where visual illustrations004
can illuminate a story originally expressed in005
text. In this paper, we focus on the task of narra-006
tive scene illustration, which involves automat-007
ically generating an image depicting a scene in008
a story. Motivated by recent progress on text-009
to-image models, we consider a pipeline that010
uses LLMs as an interface for prompting text-011
to-image models to generate scene illustrations012
given raw story text. We apply variations of013
this pipeline to a prominent story corpus in or-014
der to synthesize a novel dataset of illustrations.015
We conduct a human annotation task to obtain016
pairwise quality judgments for these illustra-017
tions. Through our analysis of this dataset and018
experiments modeling illustration quality, we019
demonstrate that LLMs can effectively verbal-020
ize scene knowledge implicitly evoked by story021
text. Moreover, this capability is impactful for022
generating and evaluating illustrations.023

1 Introduction024

Observing the transformation of a story from one025

modality to another (e.g. from text to visual form)026

can make the story more compelling to its audience.027

Recent advances in generative AI have enabled028

this kind of cross-modal transformation to be per-029

formed automatically. In particular, text-to-image030

models allow people to create visual material using031

natural language alone. Current interaction with032

these models typically involves users envisioning a033

particular visual target and then crafting language034

that realizes that target. Many stories that currently035

only exist in text form would be well-suited for036

transfer to an image modality, but the text itself of037

these stories may not be naturally optimal for di-038

rectly applying text-to-image models. Given their039

demonstrated success at meta-prompting (e.g. Zhou040

et al., 2023), LLMs may be able to interface with041

story text to synthesize suitable prompts for text-to- 042

image models towards this end. The cooperation 043

between these AI models would make it possible to 044

automatically generate illustrations for any given 045

text-based story. 046

In this paper, we comprehensively exemplify this 047

approach to visual transfer of story text. Generat- 048

ing illustrations for stories encompasses many chal- 049

lenges, some of which pertain not to the relation 050

between the text and illustrations, but the relation 051

between the illustrations themselves for different 052

scenes in the story (in particular, the visual con- 053

sistency between depictions of story elements). In 054

this work, because we are focused on the first set of 055

challenges concerning the illustrations’ alignment 056

with the story text, we scope the task to focus on 057

individual scene illustrations. In particular, we con- 058

sider scene-level units of stories (fragments). We 059

present a pipeline (outlined in Figure 1) that gener- 060

ates a scene illustration given a fragment in its story 061

context. Through systematic variation and ablation 062

of the components of this pipeline, we produce a 063

novel dataset of scene illustrations for fragments 064

in a notable story corpus. We conduct a human 065

annotation task to obtain relative quality judgments 066

for pairs of scene illustrations. 067

Figure 1: Scene illustration pipeline

We leverage this dataset to establish the im- 068

pressive capability of LLMs to explicate visual 069

knowledge of narrative scenes by inferring it di- 070

rectly from story text, without any visual input. 071

We demonstrate this through two findings. First, 072

1



we show that LLMs are an effective interface for073

transforming story text into prompts that direct text-074

to-image models to produce illustrations. Second,075

we show that LLMs can verbalize scene charac-076

teristics in a way that is useful for evaluating the077

quality of illustrations. In particular, we demon-078

strate an approach to predicting human-favored079

illustrations among pairs in our presented dataset,080

through which we apply scene descriptions given081

by LLMs as evaluation criteria for scoring illustra-082

tions. The success of this approach relative to a083

criteria-ablated baseline further suggests the utility084

of LLMs for explicating scene knowledge that is085

implicitly conveyed by story text.086

1.1 Contributions087

This paper makes the following contributions1:088

• We define and motivate the task of narrative scene089

illustration in relation to existing research on vi-090

sually aligned storytelling.091

• We demonstrate a pipeline for producing scene092

illustrations for any given story text. The pipeline093

components are fully interchangeable and can be094

used with any LLM and text-to-image models.095

• We apply our pipeline to an existing story corpus096

in order to synthesize a dataset of scene illustra-097

tions. We elicit human judgments of the relative098

quality of pairs of illustrations in this dataset.099

• Through analysis of these quality judgments, we100

show that LLMs are an effective interface be-101

tween story text and text-to-image models in fa-102

cilitating scene illustration.103

• We assess an approach to predicting illustration104

quality that involves applying LLM verbaliza-105

tions of scene characteristics as evaluation cri-106

teria. We discuss the evaluation results as addi-107

tional evidence that LLMs can explicate visual108

scene knowledge inferred from story text.109

2 Background and Related Work110

Image-Aligned Story Data There are several111

datasets that pair narrative text with correspond-112

ing images. Most of these have been developed to113

support research on visually grounded story gen-114

eration, where the task is to write a story given115

a sequence of images (Halperin and Lukin, 2023;116

Huang et al., 2016; Hong et al., 2023). The reverse-117

direction task of generating a sequence of images118

to depict a story has been termed story visualiza-119

tion (Li et al., 2019; Tao et al., 2024). While the120

1All data and code available at: withheld/during/review

same datasets used for visual storytelling are appli- 121

cable to story visualization, most research pursuing 122

the latter has adapted data from video captioning 123

datasets. Distinct frames of the videos are sampled 124

as static images, while the captions corresponding 125

to these frames are designated as the story text (Li 126

et al., 2019; Maharana and Bansal, 2021; Maharana 127

et al., 2022). As pointed out in various work (Hong 128

et al., 2023; Liu et al., 2024; Lukin et al., 2018), a 129

limitation of these datasets is that caption text does 130

not necessarily have narrative qualities, since the 131

task of describing a sequence of images is not the 132

same as telling a story. The dataset we present in 133

this paper is unique in that it uses existing stories 134

to derive images, rather than the reverse. 135

Multimodal Storytelling Systems In addition 136

to datasets, there are increasing demonstrations 137

of story visualization systems, as well as systems 138

that generate story text and images in parallel, i.e. 139

multimodal story generation (An et al., 2024; Koh 140

et al., 2023; Singh et al., 2023; Wan et al., 2024; 141

Yang et al., 2024). While some models applied to 142

these use cases have been trained end-to-end on the 143

specialized datasets described above (Feng et al., 144

2023; Maharana and Bansal, 2021; Tao et al., 2024), 145

researchers have also begun to leverage generi- 146

cally pretrained models to expand the scope of 147

these systems to open-domain storytelling (de Lima 148

et al., 2024; Gong et al., 2023; Soumik Rakshit, 149

2024). We follow suit in leveraging a plug-and- 150

play pipeline for scene illustration. 151

Meta-Prompting for Text-to-Image Models 152

One challenge with using generic models for story 153

visualization is that the story text itself is not 154

necessarily an optimal prompt for text-to-image 155

models. In particular, this text tends to be under- 156

specified in details like the physical appearance of 157

story elements (e.g. entities and locations), which 158

are important characteristics specified in text-to- 159

image prompts (Maharana et al., 2022). Users of 160

these models who have become skilled in writing 161

prompts have done so largely through an itera- 162

tive process of observing what prompt language 163

yields desirable images (Don-Yehiya et al., 2023). 164

Even with this skill, significant effort is required 165

to manually compose a prompt that captures the 166

intended visual features of the scene correspond- 167

ing to a story fragment. Following the paradigm 168

of meta-prompting (e.g. Zhou et al., 2023), there 169

is a variety of research on automated prompt op- 170

timization for text-to-image models (Brade et al., 171
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2023; Feng et al., 2024; Hao et al., 2023; Wang172

et al., 2024), some of which establishes the effec-173

tiveness of LLMs in facilitating this process (Lian174

et al., 2024). Accordingly, recent story visualiza-175

tion work has used LLMs as an interface for de-176

riving text-to-image prompts from story text. In177

particular, Gong et al. (2023) and He et al. (2024)178

instructed GPT-4 to transform a story into a se-179

ries of scene-level prompts intended as input to180

text-to-image models. It is presumed that these181

synthesized prompts are more visually descriptive182

than the story text and thus produce better images,183

but this has not been empirically validated. Thus,184

we address this opportunity in our work.185

LLMs for Image Evaluation Assessing the de-186

gree of semantic alignment between images and187

text is a prominent research endeavor, which has188

primarily involved measuring their similarity when189

projected into a shared embedding space (e.g. Hes-190

sel et al., 2021). Because of their capacity for vi-191

sually descriptive language, even unimodal (text-192

only) LLMs can contribute to this endeavor. Sev-193

eral works have demonstrated the utility of LLMs194

for zero-shot visual recognition tasks. For instance,195

LLM-generated visual descriptions can operate as196

feature or class detectors for multimodal models197

(Li et al., 2023; Maniparambil et al., 2023; Menon198

and Vondrick, 2023; Pratt et al., 2023). This line of199

research has recently extended to using LLMs for200

evaluating text-to-image model output. In particu-201

lar, Lu et al. (2023) facilitated this using an LLM202

to compute similarity between visual descriptors203

detected in a generated image and the text prompt204

used to generate it. Following the same evaluation205

objective, Hu et al. (2023) and Lin et al. (2025)206

used LLMs to decompose the prompt into ques-207

tions to be answered by applying a visual question-208

answering model to the generated image, with im-209

age quality indicated by the rate of answers match-210

ing information in the prompt. We similarly ex-211

amine eliciting visual knowledge from LLMs as a212

strategy for text-to-image evaluation. Encouraged213

by recent demonstrations of LLM-based evaluation214

in multimodal story generation (An et al., 2024),215

we pursue this method for evaluating scene illustra-216

tions.217

Criteria-based Evaluation with LLMs In NLP,218

criteria is a means of anchoring evaluation to219

certain objectives (Yuan et al., 2024). With the220

rapidly expanding LLM-as-a-judge paradigm, this221

has evolved to the point where LLMs are not just222

applying human-authored criteria to assess text, but 223

are also generating their own criteria (Cook et al., 224

2024). We examine LLMs’ capacity to generate 225

evaluation criteria for the scene illustration task. 226

3 Scene Illustration Pipeline 227

We first outline the high-level components2 of the 228

illustration pipeline in this section, before describ- 229

ing their application in the next section. 230

Story Fragmentation In our work, we consider 231

a scene to be an abstract unit of a story that can 232

be distinctly illustrated by a single image. The 233

story text that aligns to a scene is referred to as 234

a fragment. Thus, the first step of producing a 235

scene illustration is to identify its source fragment. 236

Recent work has validated the use of LLMs for 237

the related task of segmenting events in narrative 238

text (Michelmann et al., 2025). Accordingly, we 239

utilize an LLM for this fragmentation task, by in- 240

structing it to explicitly annotate the boundaries of 241

all fragments in a given story. Table A.14 shows 242

the prompt we provide to the LLM to facilitate this, 243

where the input contains the story text and the LLM 244

is expected to generate the same text with brackets 245

demarcating the left and right boundaries of each 246

fragment, as demonstrated by the exemplars. We 247

parse this output with a simple regular expression 248

to gather the list of fragments. 249

Scene Descriptions Once a fragment is identi- 250

fied, the fragment with its story context can then be 251

mapped to a scene description. A scene description 252

is a verbalization of what should be illustrated in 253

the image corresponding to the fragment. This ver- 254

balization serves as the input to the text-to-image 255

model used to produce the scene illustration. In the 256

simplest case, the scene description could be the 257

fragment itself, or the fragment delimited within its 258

corresponding story. However, as identified in §2, 259

this may not specify enough information to the text- 260

to-image model regarding the visual appearance of 261

story elements referenced in the fragment. Thus, 262

we assess using an LLM to transform a fragment 263

alongside its story context into a scene descrip- 264

tion. We use the term scene captioner to refer to 265

an LLM’s function when prompted to generate a 266

scene description. Table A.15 shows the prompt 267

we use to enable this. 268

2We ran all model components using APIs, which we spec-
ify here for each model. Unless otherwise indicated, we used
the default inference parameters defined by the model’s API.
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Image Generation As mentioned, the scene de-269

scriptions are the inputs to a text-to-image model,270

referred to here as an image generator. While we271

use the term ‘illustration’ to describe the end-to-272

end process that yields an image depicting a scene,273

the output of this process (i.e. the image generator274

output) is also called an illustration.275

4 Scene Illustration Dataset276

4.1 Story Text277

Seeking out a story corpus suitable for the scene278

illustration task, we ultimately selected the well-279

studied ROCStories corpus (Mostafazadeh et al.,280

2016) based on some key considerations. In par-281

ticular, these English-language stories were au-282

thored to adhere to basic narrative structure in a283

tightly length-constrained format. In particular,284

each story consists of five sentences conveying “a285

causally (logically) linked set of events involving286

some shared characters”. Thus, we can expect that287

stories are composed of distinct fragments that are288

each appropriately visualized as a scene illustration.289

Moreover, the stories are narrations of everyday290

experiences that can be interpreted according to291

commonsense knowledge. This knowledge is gen-292

eral enough it is likely to be familiar to the model293

components of our illustration pipeline.294

4.2 Phase 1 Pipeline Details295

We applied the pipeline outlined in §3 to produce296

an initial set of scene illustrations, which we refer297

to as Phase 1 data. As inputs to the pipeline, we298

used the first 50 stories in the ROCStories dev set.3299

Fragmentation We divided these stories into300

fragments as described in §3, using CLAUDE-301

3.54 as the LLM, which has displayed notable302

storytelling-related capabilities (e.g. Mazur, 2025).303

As shown in Table A.7, this resulted in 206 total304

fragments across all 50 stories, an average of 4.12305

per story. §A.1.1 presents some additional analysis306

regarding these fragments.307

Scene Descriptions We ran the procedure de-308

scribed in §3 to generate scene descriptions for the309

3The dev and test items in ROCStories are actually des-
ignated as the Story Cloze Test, where items have a specific
format: each story consists of four sentences plus two alterna-
tive fifth sentences, where one is the ‘correct’ story ending and
the other is the ’incorrect’ ending. For each item, we discarded
the incorrect ending and appended the correct ending after the
initial four sentences to form a single five-sentence story.

4Specifically, claude-3-5-sonnet-20240620, which we ran
via the Anthropic API

fragments, using CLAUDE-3.5 as the scene cap- 310

tioner. We refer to these outputs as CAPTION scene 311

descriptions. An example is shown in Table 1, 312

with additional examples included in Table A.16. 313

As outlined in Table 2, CAPTION is one of three 314

scene description types we consider for Phase 1. 315

We compare CAPTION with baseline scene descrip- 316

tions that consist of the raw story text without any 317

LLM transformation. In the first baseline case, we 318

simply use the original fragment by itself as a scene 319

description, which we refer to as FRAGMENT. The 320

obvious limitation of FRAGMENT is that it ablates 321

any scene-relevant information referenced by the 322

fragment in the surrounding story context. Since 323

this contextual information is accessible when the 324

CAPTION is generated, we designed a comparable 325

baseline scene description that integrates the story 326

context, referred to as CTX-FRAGMENT. As Table 327

2 shows, CTX-FRAGMENT is formatted as an in- 328

struction to take the entire story into account when 329

illustrating the target fragment. 330

Image Generation We then applied two image 331

generators5 to generate images using the scene de- 332

scriptions as prompts. In particular, we used Mid- 333

journey v6.1, denoted here as MJ-6.1 (Midjourney, 334

2024), and FLUX-1[pro], denoted here as FLUX-1- 335

PRO (Black Forest Labs, 2024a). We selected these 336

image generators because they topped the Artifi- 337

cial Analysis Image Arena Leaderboard at the time 338

of Phase 1 in August 2024. This leaderboard cap- 339

tures the relative ELO score (Boubdir et al., 2023) 340

of text-to-image models based on pairwise human 341

judgments regarding how well images from differ- 342

ent models reflect the input prompt. Table A.16 343

includes examples of generated illustrations. 344

4.3 Phase 1 Annotation Task 345

Illustration Pairs Our primary objective for 346

Phase 1 was to assess the effectiveness of the 347

LLM scene captioner (i.e. CAPTION scene de- 348

scriptions) in generating illustrations relative to 349

generating them directly from the raw story text. 350

To address this, we randomly sampled 1384 pairs 351

of illustrations belonging to the same story frag- 352

ment, where one illustration used CAPTION as the 353

scene description, while the other used one of the 354

baseline scene descriptions, FRAGMENT or CTX- 355

FRAGMENT. This sampling resulted in some pairs 356

where the illustrations used the same image gen- 357

5With exception to Midjourney, we ran all image genera-
tion models via the Replicate API.

4

https://www.anthropic.com/api
https://artificialanalysis.ai/text-to-image/arena?tab=Leaderboard
https://artificialanalysis.ai/text-to-image/arena?tab=Leaderboard
https://artificialanalysis.ai/text-to-image/arena?tab=Leaderboard
https://replicate.com/


Fragment (within story) CAPTION
Alice was getting married in a few weeks. One
night, her mother called and she forgot to call her
back. Her mother left an angry message on her
phone. She threatened not to come to the wed-
ding. Alice called her mother and apologized
profusely.

A young woman with a worried expression sits on a couch, holding
a phone to her ear. She’s gesticulating with her free hand, appearing
to speak emphatically. In the background, a wedding dress can be
seen hanging on a closet door. The room is dimly lit, suggesting it’s
evening, and there’s a notepad with wedding plans visible on a nearby
coffee table.

Table 1: An example of a CAPTION scene description generated by CLAUDE-3.5 in Phase 1

Type Format
CAPTION LLM output of scene captioning

prompt (Table A.15)
FRAGMENT {{fragment}}
CTX-FRAGMENT “Consider this story: [{{story}}]

Based on this context, illus-
trate this fragment of the story:
[{{fragment}}]”

Table 2: Types of scene descriptions for Phase 1

erator and others that used different image gener-358

ators. Ultimately there were 1183 unique illustra-359

tions contained in these 1384 pairs. Additional360

data statistics for Phase 1 including the specific361

distribution of pair types are provided in Table A.8.362

Task Design We designed an annotation task to363

assess the relative quality of the two illustrations364

in each pair. In judging a pair, human annotators365

were shown the full story with the target fragment366

for that scene underlined, along with the two alter-367

native images. As shown in Figure A.3, annotators368

were instructed to select the image that was “the369

better visualization of the underlined fragment”.370

Note that scene descriptions were not shown to an-371

notators, since their judgment of illustration quality372

should be anchored to the original fragment. An-373

notators could express uncertainty by selecting “I374

can’t decide which is better”. We implemented the375

UI for this task using POTATO (Pei et al., 2022).376

Procedure We deployed the task on Prolific to377

obtain annotators. English proficiency was the only378

requirement for participation. We sought 2 annota-379

tors to judge each illustration pair. Each participant380

judged between 33 and 74 pairs (median=47), plus381

3 “attention check” items where one illustration in382

the pair was replaced with one for a different story,383

making it trivially easy which image to select. Par-384

ticipants were paid $6 for an expected completion385

time of 30 minutes. We filtered out participants386

who did not pass all of the attention check items.387

Ultimately, 62 participants completed the task, with388

59 passing all attention checks. This resulted in a389

total of 2768 responses for the 1384 pairs, where390

each item received a response from 2 annotators. 391

4.4 Phase 1 Annotation Results 392

Inter-annotator Agreement Given the anno- 393

tated pairs resulting from §4.3, we computed the 394

inter-annotator agreement of which illustration was 395

selected as the better one in each pair. We did 396

this using an uncertainty-weighted variation of Co- 397

hen’s Kappa score (Cohen, 1960), which we ab- 398

breviate here as κu. This variation considers that 399

response disagreements arising from one annota- 400

tor expressing uncertainty (i.e. selecting “I can’t 401

decide”) should be weighted less heavily than dis- 402

agreements where the two annotators each select a 403

different illustration as better. In κu, disagreements 404

arising from uncertainty are down-weighted by a 405

factor of 0.5. As indicated in Table A.8, the overall 406

κu for all 1384 items was 0.447, which can be clas- 407

sified as moderate agreement (Landis and Koch, 408

1977). §A.1.2 provides a finer-grained analysis of 409

agreement for different categories of pairs. 410

Win Rates for Scene Description Types To de- 411

termine whether using an LLM as a scene captioner 412

helps illustration quality, we counted how often the 413

favored illustration was associated with each scene 414

description type, i.e. each type’s win rate. Table 3 415

shows the win rate for CAPTION illustrations when 416

paired with FRAGMENT and CTX-FRAGMENT il- 417

lustrations. This win rate is represented as the per- 418

centage of responses in which annotators selected 419

the CAPTION illustration as better among all re- 420

sponses for each respective set of pairs. In both 421

cases, the CAPTION is significantly6 better: it has 422

an overall win rate of ≈78% against FRAGMENT 423

and ≈75% against CTX-FRAGMENT. Table A.17 424

further examines the win rates for pairs that used 425

the same image generator, verifying that CAPTION 426

is equally favorable regardless of which image gen- 427

erator was used. This validates the importance of 428

6Statistical significance was computed using a one-sample
binomal test at α = 0.05 to determine if the win rate was
higher than that expected by chance, where chance is defined
as (1−#ties/#responses)/2
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the scene captioner in the pipeline: it verbalizes429

information that is important for imagining how a430

story fragment should be visually illustrated as a431

scene. Illustrations are more successful when this432

information is explicated to the image generator.433

Scene Description Pair # Pairs Caption %
CAPTION vs. FRAGMENT 680 78.1 (1360)
CAPTION vs. CTX-FRAGMENT 384 74.7 (768)

Table 3: Win rates of CAPTION over the baseline scene
descriptions in Phase 1 (# of responses in parentheses)

Win Rates for Image Generators While we fo-434

cus primarily on how scene descriptions affect il-435

lustration quality, we also considered whether there436

were quality differences based on which image gen-437

erator was used. These results are given in §A.1.3.438

4.5 Phase 2 Motivation and Design439

After verifying that the LLM-generated scene de-440

scriptions can contribute substantially to the quality441

of illustrations, we then wanted to compare the im-442

pact of different LLMs as scene captioners. Phase443

1 used only CLAUDE-3.5 as the scene captioner. In444

Phase 2, we included other LLMs with storytelling-445

relevant capabilities (e.g. Tian et al., 2024): GPT-446

4O7 (OpenAI et al., 2024) and LLAMA-3.1-405B8447

(Grattafiori et al., 2024), utilizing the same scene448

captioning prompt (Table A.15).449

We expanded the Phase 2 data to include a larger450

set of fragments compared with those of Phase451

1. We randomly sampled 1000 stories from the452

ROCStories dev set, split them into fragments using453

the same method from Phase 1 (CLAUDE-3.5 with454

the Table A.14 prompt), then randomly selected455

one fragment per story for inclusion in the dataset.456

We also considered a larger set of image gen-457

erators in Phase 2. Based on the state of the Ar-458

tificial Analysis Leaderboard in November 2024,459

we selected five image generators. This included460

MJ-6.1 from Phase 1, as well as FLUX1.1[pro]461

(referred to here as FLUX-1.1-PRO) (Black For-462

est Labs, 2024b), Ideogram 2.0 (IDEOGRAM-2.0)463

(Ideogram, 2024), Recraft V3 (RECRAFT-V3) (Re-464

craft, 2024), and Stable Diffusion 3.5 Large (SD-465

3.5-LARGE) (Stability AI, 2024).466

We applied the scene illustration pipeline to pro-467

duce illustrations for all 1000 story fragments, vary-468

ing runs of the pipeline between the three scene469

7Specifically, gpt-4o-2024-05-13, ran via the OpenAI API
8Specifically, llama-3.1-405b-instruct, ran via the Repli-

cate API

captioners and five image generators. Based on 470

these variations, we sampled 1218 pairs comprised 471

of 1582 illustrations. We sampled a roughly equal 472

ratio of pairs where the illustrations varied by scene 473

captioner, image generator, or both scene captioner 474

and image generator. The exact distribution is spec- 475

ified in Table A.9. We repeated the same procedure 476

described in §4.3 to obtain selections from two an- 477

notators for the better illustration in each of these 478

pairs. There were 48 (out of 49 total) annotators on 479

Prolific who passed the attention checks, each an- 480

notating between 46 and 109 pairs (median=50), re- 481

sulting in a total of 2436 responses for 1218 pairs. 482

4.6 Phase 2 Annotation Results 483

Inter-annotator Agreement As shown in Table 484

A.9, the overall κu for all 1218 pairs in Phase 2 485

was 0.228. This can be classified as fair agreement, 486

which is lower than the agreement observed for 487

Phase 1. As done with Phase 1, §A.1.2 analyzes 488

agreement across different pair subsets. 489

Win Rates for Scene Captioners Table 4 shows 490

the win rates for each LLM scene captioner against 491

each of the others. In particular, each value is the 492

percentage of responses where the illustration asso- 493

ciated with the scene captioner in the row label was 494

selected as better than the illustration associated 495

with the scene captioner in the column label. Thus, 496

higher values indicate more success for the scene 497

captioner in the row against the scene captioner in 498

the column. Statistically significant win rates are 499

denoted with an asterisk. Recall that a response of 500

“I can’t decide” indicates a tie, which is why win 501

rates of less than 50% may be statistically signifi- 502

cant. These results show that CLAUDE-3.5 yields 503

the highest win rates, followed by GPT-4O, with 504

LLAMA-3.1 having lowest rates. The win rate for 505

CLAUDE-3.5 against LLAMA-3.1 is statistically 506

significant, suggesting that the former generates 507

more descriptive captions compared with the latter. 508

CLAUDE-3.5 GPT-4O LLAMA-3.1
CLAUDE-3.5 - 46.1(532) 49.6* (536)
GPT-4O 41.2 (532) - 47.8 (552)
LLAMA-3.1 39.7 (536) 42.9(552) -

Table 4: Win rates (%) by scene captioner for Phase 2
(# of responses in parentheses)

Win Rates for Image Generators While not the 509

focus of our analysis, we observed some signifi- 510

cant differences in the win rates of different image 511

generators. These results appear in §A.1.3. 512
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Fragment (within story) Illustration 1 Illustration 2

Sophie’s nana was terminally ill. Sophie visited her in the hospital to say goodbye. Her
nana gave Sophie her prized gold locket. She told Sophie to keep it to remember her
by. Sophie cried.

Criteria Response Response
1. The image shows two people: an elderly woman (nana) and a younger woman (Sophie) ✓ ✗
2. The setting appears to be a hospital room or medical facility ✓ ✓
3. The elderly woman is in a hospital bed or medical chair ✓ ✗
4. The image shows a gold locket ✓ ✓
5. The locket is clearly visible and recognizable as a piece of jewelry ✓ ✓
6. The elderly woman is holding or presenting the locket to the younger woman ✗ ✓
7. The younger woman’s hand is positioned to receive or touch the locket ✓ ✗
8. The facial expressions of both women convey emotional significance ✓ ✓
9. The elderly woman’s expression shows love, tenderness, or sadness ✓ ✓
10. The younger woman’s expression shows a mix of emotions (sadness, gratitude, love) ✓ ✗
11. The body language of both women suggests intimacy and connection ✓ ✓
12. The composition focuses on the moment of giving/receiving the locket ✓ ✓
13. The lighting adequately illuminates the locket and the faces of both women ✓ ✓
14. The locket appears to be in good condition, suggesting its value as a keepsake ✓ ✓
15. The elderly woman’s appearance suggests illness or frailty ✓ ✗
16. The younger woman’s appearance and demeanor suggest she is visiting ✓ ✗
17. The overall atmosphere of the image conveys a solemn and meaningful moment ✓ ✓
18. The spatial relationship between the two women suggests closeness and care ✓ ✓
19. Any medical equipment or hospital elements are present but not dominating the scene ✓ ✓
20. The perspective allows viewers to see both the locket and the emotional exchange
between the women

✓ ✓

Score=19.0 Score=14.0

Table 5: Demonstration of criterial rating approach applied to both illustrations in a given pair. In this particular
example, the criteria writer is CLAUDE-3.5, and the rater providing each response is GPT-4O.

5 Predicting Illustration Quality513

The dataset presented in §4 provides an opportunity514

to understand what defines the quality of a scene il-515

lustration. To initiate this line of work, we explored516

a particular approach to modeling annotators’ judg-517

ments. Our approach leverages the finding from §4518

that LLMs can effectively verbalize visual descrip-519

tions of scenes based on the story text. We consider520

whether these descriptions can be used as criteria521

for predicting illustration quality.522

5.1 Criteria Generation523

For the remaining experiments, we combined the524

data from Phase 1 and Phase 2, which together525

included illustrations for 1206 story fragments. For526

each fragment, we ran the prompt in Table A.18527

to produce criteria articulating the expected visual528

characteristics of the scene illustration. We use the529

term criteria writer to refer to an LLM’s role when530

running this prompt, and we refer to its output as a531

criteria set. An example of a criteria set is included532

in Table 5. Note that a criteria writer model does533

not require vision capabilities, since it observes534

only the story text as input. §A.2.1 discusses some535

design considerations for generating criteria.536

Criteria Writer Details We examined three cri- 537

teria writers, the same LLMs that operated as scene 538

captioners in §4.5: CLAUDE-3.5, GPT-4O, and 539

LLAMA-3.1. Applying the Table A.18 prompt 540

with temperature=0 to facilitate deterministic out- 541

put, each criteria writer generated one criteria set 542

per fragment. We post-processed this output to 543

identify each individual criterion according to its 544

expected numerical label in the set. §A.2.2 gives 545

some descriptive analysis of the criteria sets. 546

5.2 Criteria-based Ratings 547

After obtaining the criteria sets, we then enlisted 548

visually-enabled models to assess illustrations 549

based on this criteria. In our scheme, when apply- 550

ing a criteria set to score a given illustration, each 551

criterion receives a response indicating whether or 552

not it is satisfied by the image. The overall illus- 553

tration quality is quantified by the total number of 554

satisfied criteria. Our scoring protocol is as fol- 555

lows: a response conveying that the criterion is 556

satisfied is assigned 1.0 points; a response convey- 557

ing “maybe” or partial satisfaction is assigned 0.5 558

points; and a response conveying the criterion is 559

not satisfied is assigned 0.0 points. The total score 560

for an illustration is the sum of these point values. 561
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VLM Rater
Criteria Writer CLAUDE-3.5 GPT-4O PIXTRAL Average

Criterial Base Criterial Base Criterial Base Criterial Base
CLAUDE-3.5 0.698 0.594 0.688 0.550 0.691 0.562 0.692 0.569
GPT-4O 0.684 0.588 0.668 0.566 0.687 0.560 0.680 0.571
LLAMA-3.1 0.662 0.584 0.657 0.575 0.662 0.556 0.660 0.571
Average 0.681 0.589 0.671 0.563 0.680 0.559 0.677 0.570

Table 6: Accuracy of criterial and baseline (Base) raters grouped by criteria writer and VLM

We implemented this by prompting a visually-562

enabled LLM (i.e. VLM) to assign responses to563

each criterion for a given illustration. We use the564

term criterial rater to refer to a VLM’s role when565

running this prompt, which appears in Table A.19.566

As shown, the rater observes an illustration and the567

criteria set for the corresponding fragment. The568

rater is asked to respond to each criterion (where a569

response of ‘✓’ means the criterion is satisfied, ‘✗’570

means not satisfied, and ‘?’ means “maybe”). As571

post-processing, we parsed these response tokens572

and mapped them to the point values defined above573

to obtain the illustration score. Table 5 exemplifies574

this approach applied to both illustrations in a pair.575

Rater Details For raters, we utilized three VLMs576

that have obtained notable performance on visual577

understanding benchmarks: CLAUDE-3.5, GPT-4O,578

and PIXTRAL9 (Mistral AI, 2024). Each rater ran579

the prompt in Table A.19 with temperature=0. All580

images were resized to a height of 240 pixels with581

proportional width. We briefly assessed the correct-582

ness of raters’ responses, which appears in §A.2.3.583

Comparative Baseline To determine the impact584

of criteria in assessing quality, we designed a com-585

parable rating approach that scores illustrations on586

the same scale as the criterial rater but without ob-587

serving the criteria itself. We use the term baseline588

rater to refer to a VLM’s application of the prompt589

for this approach, which is shown in Table A.20.590

The prompt presents the fragment and illustration,591

and instructs the VLM to assign a rating in half-592

point increments between 0 and a maximum that593

is dynamically set to the length of the given crite-594

ria set. For each criteria writer, we compare the595

result obtained by a particular criterial rater to the596

analogous result obtained by the baseline rater.597

5.3 Selection Performance Results598

We filtered pairs to only include those where there599

was a consensus between both annotators for which600

illustration was better. This yielded 1501 pairs601

9Specifically, pixtral-large-2411, ran via the MistralAI API

comprised of 1987 illustrations. We then applied all 602

criterial and baseline raters to score the illustrations. 603

For a given pair, a rater’s selection was the image it 604

assigned a higher score. We measured each rater’s 605

performance in terms of proportion of pairs where 606

the rater’s selection matched the human selection. 607

We refer to this metric as accuracy. 608

Table 6 shows the accuracy for all raters on these 609

pairs, with the respective averages for each criteria 610

writer and rater. For reference, always selecting the 611

second illustration in each pair yields 50% accuracy. 612

We observe that the criterial raters all considerably 613

outperform the baseline raters (an average accuracy 614

of ≈68% vs. 57%). Criteria from different writers 615

yields comparable results, with CLAUDE-3.5 aver- 616

aging the highest accuracy across raters (≈69%). 617

The raters obtain similar accuracies when applied 618

to the same criteria. Overall this outcome suggests 619

that criteria are an effective strategy for modeling 620

illustration quality, which in turn provides further 621

evidence of LLMs’ capacity to verbalize visual 622

characteristics of narrative scenes. This still leaves 623

room for accuracy improvements, motivating fu- 624

ture exploration of this dataset for understanding 625

what makes a compelling scene illustration. 626

6 Conclusion and Future Work 627

This paper details a pipeline for generating illustra- 628

tions of narrative scenes, which we apply to pro- 629

duce a quality-annotated dataset of illustrations for 630

a popular story corpus. We identify that LLMs 631

can facilitate this task by distilling scene descrip- 632

tions from story text. We show that this capacity 633

to verbalize implicit scene knowledge is useful for 634

modeling illustration quality. 635

Our long-term objective is to generate multi- 636

scene illustration sequences depicting an entire 637

story. This poses key research challenges, such as 638

ensuring visual consistency between story elements 639

(e.g. Liu et al., 2025) as well as progressive story 640

development across images (e.g. Maharana et al., 641

2022). Our future work will expand our current 642

illustration pipeline to address these challenges. 643
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Limitations644

We consider the following limitations:645

Proprietary Models Our scene illustration646

pipeline has a plug-and-play design, enabling any647

LLM to be used for fragmentation and scene cap-648

tioning and any text-to-image model to be used649

for image generation. However, most of the mod-650

els we assessed in this paper are proprietary (i.e.651

closed-weight), with exception to LLAMA-3.1 and652

SD-3.5-LARGE. While the gap between closed and653

open-weight models is narrowing (Cottier et al.,654

2024), currently most models with capabilities rele-655

vant to the illustration task are closed-weight. This656

poses a general disadvantage in accessibility and re-657

producibility, which applies likewise to this work.658

Prompt Design Currently there is no tractable659

way to ensure that a particular prompt is optimal660

for the task it is intended to perform. Prompt op-661

timization is fundamentally a process of iterative662

trial-and-error, even when automation is used to663

increase the number of trials. For our experiments,664

we primarily employed a principled approach to665

writing prompts, which involved adhering to gen-666

eral guidance on effective prompt design such as667

explaining instructions clearly and including rep-668

resentative exemplars (e.g. DAIR.AI, 2025). We669

iterated on this design according to qualitative sub-670

jective assessment of model outputs for inputs not671

included in our scene illustration dataset (i.e. “vibe-672

based” prompt engineering), rather than employing673

a quantitative optimization approach (e.g. Khattab674

et al., 2024) based on targets in a designated devel-675

opment set. There are tradeoffs to this technique:676

while it avoids overfitting to our presented dataset,677

it leaves open the possibility of further prompt op-678

timization, which could yield a different view of679

model behavior compared with our observations.680

Story Corpus The story corpus we use, ROCSto-681

ries, is popular in NLP research for some of the682

same reasons discussed in §4: the constrained lan-683

guage and structure of the text makes the narrative684

elements more accessible to computational model-685

ing techniques. The stories were authored specifi-686

cally for the benefit of this research. However, this687

corpus is distinct from “naturally” authored stories688

whose complexity is what makes them compelling689

to readers. We have not yet fully assessed whether690

our scene illustration pipeline generalizes to more691

complex narratives.692

Ethical Considerations 693

Generative AI models, and in particular text-to- 694

image models, pose various ethical risks (Bird et al., 695

2023). In this work, we were primarily concerned 696

with the risk of exposing Prolific annotators to 697

harmful content. We attempted to mitigate this 698

risk by manually reviewing stories sampled for in- 699

clusion in our dataset. We flagged stories that we 700

anticipated could yield objectionable illustrations, 701

and re-sampled a different story to replace each of 702

these. Ultimately, this re-sampling was triggered 703

for 10 stories. Of course, this procedure did not 704

eliminate the risk, so we also utilized the content 705

warning feature on the Prolific platform, which in- 706

dicated to potential annotators that the task could 707

expose them to offensive and/or biased content. 708
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A Appendix1025

A.1 Additional Dataset Statistics1026

A.1.1 Analysis of Phase 1 Fragments1027

As mentioned in §4.2, there were 206 total frag-1028

ments derived from the 50 stories in Phase 1, based1029

on applying CLAUDE-3.5 to the prompt in Table1030

14. As shown in Table 7, the majority consist of1031

a single sentence, with some consisting of 2 sen-1032

tences and a few having 3 sentences. An internal1033

annotator assessed each fragment to determine if it1034

was the correctly-sized unit for a scene illustration.1035

A fragment was considered incorrectly-sized if it1036

either did not include all the text in the story rel-1037

evant to a single scene (i.e. the fragment was too1038

short) or if it included text pertaining to more than1039

one scene (i.e. the fragment was too long). The1040

annotator considered the vast majority of fragments1041

to be correctly-sized (≈96%).1042

# Total Fragments 206
# 1-Sentence Fragments 164
# 2-Sentence Fragments 40
# 3-Sentence Fragments 2
Mean # Sentences Per Fragment 1.21
Mean # Fragments Per Story 4.12
% of Correctly-Sized Fragments 96.1%

Table 7: Fragmentation statistics for stories in Phase 1

# of Unique Illustrations
All 1183
By Scene Description

FRAGMENT 395
CTX-FRAGMENT 384
CAPTION 404

By Image Generator
FLUX-1-PRO 595
MJ-6.1 588

Illustration Pair Type # Pairs κu

All 1384 0.447
Different Scene Descriptions 1064 0.516

FRAGMENT vs. CAPTION 680 0.520
CTX-FRAGMENT vs. CAPTION 384 0.504

Different Image Generators
FLUX-1-PRO vs. MJ-6.1 661 0.364

Table 8: Descriptive statistics for Phase 1 data, including
inter-annotator agreement (κu) for different pair types

A.1.2 Inter-annotator Agreement1043

As presented in §4.4, the uncertainty-weighted1044

kappa (κu) for all Phase 1 pairs was 0.447. We1045

also considered whether κu differed based on the1046

variable components of the illustrations in each pair.1047

The bottom section of Table 8 shows that agreement1048

# of Unique Illustrations
All 1582
By Scene Captioner

CLAUDE-3.5 496
GPT-4O 532
LLAMA-3.1 554

By Image Generator
FLUX-1.1-PRO 307
IDEOGRAM-2.0 300
MJ-6.1 321
RECRAFT-V3 323
SD-3.5-LARGE 331

Illustration Pair Type # Pairs κu

All 1218 0.228
Different Scene Captioners 810 0.236

CLAUDE-3.5 vs. GPT-4O 266 0.198
CLAUDE-3.5 vs. LLAMA-3.1 268 0.234
GPT-4O vs. LLAMA-3.1 276 0.273

Different Image Generators 813 0.228
FLUX-1.1-PRO vs. IDEOGRAM-2.0 72 0.079
FLUX-1.1-PRO vs. MJ-6.1 74 0.183
FLUX-1.1-PRO vs. RECRAFT-V3 75 0.089
FLUX-1.1-PRO vs. SD-3.5-LARGE 71 0.164
IDEOGRAM-2.0 vs. MJ-6.1 99 0.312
IDEOGRAM-2.0 vs. RECRAFT-V3 81 0.159
IDEOGRAM-2.0 vs. SD-3.5-LARGE 94 0.339
MJ-6.1 vs. RECRAFT-V3 73 0.419
MJ-6.1 vs. SD-3.5-LARGE 88 0.184
RECRAFT-V3 vs. SD-3.5-LARGE 86 0.271

Table 9: Descriptive statistics for Phase 2 data, including
inter-annotator agreement (κu) for different pair types

was higher among the 1064 pairs where the illustra- 1049

tions used different scene descriptions (κu=0.516), 1050

while agreement was lower among the 661 pairs 1051

where the illustrations used different image gen- 1052

erators (κu=0.364). This indicates that the scene 1053

description type was particularly influential to an- 1054

notators’ judgments of which illustration was bet- 1055

ter. Considered along with Table 3, we can specifi- 1056

cally conclude that ablating the scene captioner (i.e. 1057

using the baseline FRAGMENT/CTX-FRAGMENT 1058

scene descriptions) yielded illustrations that anno- 1059

tators consistently judged as lower quality relative 1060

to those that used the scene captioner. 1061

For Phase 2, as reported in §4.6, the overall 1062

κu was 0.228 among all 1218 pairs. The bottom 1063

section of Table 9 also shows that the agreement 1064

level was similar between the 810 pairs where 1065

illustrations involved different scene captioners 1066

(κu=0.236) and the 813 pairs that involved different 1067

image generators (κu=0.228). Agreement varied 1068

especially widely based on which particular im- 1069

age generators were paired together (ranging from 1070

0.079 for FLUX-1.1-PRO vs. IDEOGRAM-2.0, up 1071

to 0.419 for MJ-6.1 vs. RECRAFT-V3). This indi- 1072

cates that in contrast to Phase 1 where there was a 1073

13



significant variable (the ablation of the scene cap-1074

tioner) that made the relative quality of illustrations1075

more consistently distinguishable to annotators, the1076

Phase 2 pairs were less reliably distinct.1077

A.1.3 Win Rates for Image Generators1078

To determine whether the choice of image genera-1079

tor influenced illustration quality in both Phase 11080

and Phase 2, we computed the win rates for each1081

image generator against each other among the pairs1082

that used different image generators.1083

For Phase 1, there were only two image genera-1084

tors used to produce illustrations, FLUX-1-PRO vs.1085

MJ-6.1. We did not find any significant difference1086

in the win rates of these image generators. Table1087

10 shows these results.1088

FLUX-1-PRO MJ-6.1
42.6% 41.0%

Table 10: Win rates (percentages) of FLUX-1-PRO vs
MJ-6.1, for 1322 responses pertaining to Phase 1 pairs
where the illustrations used different image generators.

.

The Phase 2 data utilized a larger set of image1089

generators. Table 11 shows the win rates of these1090

image generators, presented comparably to Table1091

4 where each value is the percentage of selections1092

for the image generator in the row against the im-1093

age generator in the column. According to these1094

results, IDEOGRAM-2.0 obtains the highest win1095

rates against the other image generators, with sig-1096

nificant success against FLUX-1.1-PRO, MJ-6.1,1097

and SD-3.5-LARGE. Additionally, RECRAFT-V31098

is significantly favored over MJ-6.1. Further anal-1099

ysis of these model differences for this task is an1100

opportunity for future work.1101

A.2 Criteria-based Evaluation Details1102

A.2.1 Criteria Design Considerations1103

As referenced in §5.1, two design considerations1104

for the criteria generation prompt (Table 18) were1105

flexibility and atomicity. Flexibility emphasizes1106

that a scene characteristic referenced by a criterion1107

may be depicted with multiple alternative visual1108

details that all align equally with the story text.1109

For example, if a criterion conveys that the scene1110

should take place at a particular location, it should1111

be flexible about how the location is portrayed.1112

Regarding atomicity, we aimed for each criterion1113

to be as atomic as possible, meaning that it should1114

refer to only a single characteristic of the scene.1115

This promotes concise and easy-to-parse responses1116

when judging whether the criterion is satisfied by 1117

an image, as opposed to a criterion that conflates 1118

multiple characteristics, some of which are satisfied 1119

and others that are not. Concerning the length of 1120

the generated criteria, our prompt did not specify 1121

a particular number of criteria to return, but the 1122

exemplar and instructions indicated that the criteria 1123

should comprehensively refer to as many scene 1124

characteristics as possible without redundancy. 1125

A.2.2 Descriptive Analysis of Criteria Sets 1126

Regarding the generated criteria sets (§5.1), Table 1127

12 compares the average number of criteria in the 1128

sets generated by each criteria writer, revealing that 1129

CLAUDE-3.5 generated the longest criteria sets, 1130

followed by GPT-4O, and LLAMA-3.1. 1131

CLAUDE-3.5 GPT-4O LLAMA-3.1
19.3 17.3 15.8

Table 12: Mean number of criteria per set for each writer

Additionally, Figure 2 visualizes all criteria, 1132

based on encoding each criterion with the Mod- 1133

ernBERT embedding model (Warner et al., 2024), 1134

then running PCA + t-SNE to yield a 2D embed- 1135

ding. While there are no distinct clusters asso- 1136

ciated with each criteria writer, some separation 1137

can be observed between the criteria generated by 1138

CLAUDE-3.5 and GPT-4O, while those generated 1139

by LLAMA-3.1 are more distributed alongside both 1140

other writers. 1141

Figure 2: Visualization of criteria generated by each
writer. Each point is a single criterion represented by its
ModernBERT embedding. We applied PCA followed
by t-SNE to plot the embedding in 2D space.

A.2.3 Criterial Rater Assessment 1142

As referenced in §5.2, we conducted a small as- 1143

sessment of the correctness of the VLM raters’ re- 1144

14



FLUX-1.1-PRO IDEOGRAM-2.0 MJ-6.1 RECRAFT-V3 SD-3.5-LARGE
FLUX-1.1-PRO - 35.4 (144) 43.2 (148) 45.3 (150) 48.6 (142)
IDEOGRAM-2.0 53.5* (144) - 61.6* (198) 46.9 (162) 58.5* (188)
MJ-6.1 39.9 (148) 31.8 (198) - 28.8 (146) 44.9 (176)
RECRAFT-V3 44.0 (150) 40.1 (162) 61.6* (146) - 50.6 (172)
SD-3.5-LARGE 43.7 (142) 30.3 (188) 43.8 (176) 37.8 (172) -

Table 11: Win rates (percentages) by image generator for Phase 2, with the number of responses in parentheses.
Statistically significant win rates are denoted with an asterisk.

sponses to criteria. To do this, we randomly sam-1145

pled 100 items, each with a unique image and crite-1146

ria set. We then enlisted an expert human annotator1147

to assign a response to each criterion, which we1148

treated as the gold standard criterion response for1149

the sampled image. We measured rater correct-1150

ness in terms of linear-weighted κ agreement with1151

the gold standard, where responses of ‘✗’ were1152

mapped to -1, ‘?’ to 0, and ‘✓’ to 1; this results1153

in less weight assigned to disagreements involving1154

‘?’ (“maybe”) responses. Table 13 shows the κ1155

on these 1699 criterion responses. It indicates that1156

raters are all substantially aligned with the human1157

annotator, though GPT-4O appears to have the high-1158

est human agreement, followed by CLAUDE-3.5,1159

and then PIXTRAL.1160

Rater κ
CLAUDE-3.5 0.676
GPT-4O 0.710
PIXTRAL 0.622

Table 13: Correctness of criterial rater responses (κ)
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You are performing the task of story fragmentation. The task is to split a story into fragments where each fragment consists
of a distinct part of the story. A fragment contains enough information to yield a visualization that is unique to that part of the
story. In this version of the task, you will insert brackets (i.e. [ and ]) into the given story text to annotate the beginning and
end of each fragment. Write the fragments without preamble. Here are some examples:

Story: Mia sat at home in her living room watching sports. Her favorite soccer team was playing their rival. To encourage her
team, she began chanting positive phrases. During her chant, her favorite team scored a goal. Mia cheered loudly and thought
that she helped score that goal.
Fragmented Story: [Mia sat at home in her living room watching sports. Her favorite soccer team was playing their rival.] [To
encourage her team, she began chanting positive phrases.] [During her chant, her favorite team scored a goal.] [Mia cheered
loudly and thought that she helped score that goal.]

[...2 more exemplars...]

Story: {{story}}
Fragmented Story:

Table 14: Fragmentation prompt. LLM prompt for annotating fragment boundaries in a story, which consists of a
task instruction and exemplars demonstrating the task. The stories in the exemplars are from various corpora

(ROCStories, TinyStories, and the ARL Creative Visual Storytelling Anthology).

Imagine an AI system will be used to generate illustrations for story fragments. This AI illustrator generates a single image
given a caption describing what is contained in the image. Your task is to read a story fragment along with its story context
and write a caption that describes how to illustrate the fragment. The caption should elaborately describe the most salient way
to visualize the fragment. It should completely specify all the information the illustrator needs to generate the image. Write
the caption without preamble. Here are some examples:

Story Context: Carrie had just learned how to ride a bike. She didn’t have a bike of her own. Carrie would sneak rides on her
sister’s bike. She got nervous on a hill and crashed into a wall. The bike frame bent and Carrie got a deep gash on her leg.
Story Fragment: Carrie would sneak rides on her sister’s bike.
Caption for Story Fragment: A young girl with a mischievous expression carefully wheels a bicycle that’s slightly too big for
her out of a garage, glancing over her shoulder as if making sure no one sees her.

[...2 more exemplars...]

Story Context: {{story}}
Story Fragment: {{fragment}}
Caption for Story Fragment:

Table 15: Scene captioning prompt. LLM prompt for generating scene descriptions. The prompt consists of a
task instruction and exemplars demonstrating the task. The stories in the exemplars are from various corpora

(ROCStories, TinyStories, and the ARL Creative Visual Storytelling Anthology).

Figure 3: Example of a item shown to participants in the annotation task described in §4.3
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Fragment (within story) CAPTION CAPTION Illustration CTX-FRAGMENT
Illustration

Joe went to the junk-
yard to find treasures.
He dug through a stack of
old clothes. At the bottom
was a vintage shirt with a
rock band on it. Joe put
the shirt on to try it out.
Joe was happy the shirt
fit.

A young man with an excited expres-
sion stands at the entrance of a sprawl-
ing junkyard. He’s wearing casual
clothes and holding a small backpack.
The junkyard is filled with piles of dis-
carded items, including old appliances,
furniture, and scrap metal. The sky is
bright and sunny, creating an adventur-
ous atmosphere. In the foreground, a
rusty sign reads "Junkyard" with oper-
ating hours listed below.

Trish hated the outdoors.
Her friends convinced her
to go camping. She
wasn’t having a good
time. They showed her
how to fish and showed
her the stars. Eventually
Trish grudgingly came to
accept nature.

A young woman with a scowling ex-
pression sits on a log by a campfire,
arms crossed and looking miserable.
She’s surrounded by cheerful friends
setting up tents and unpacking camp-
ing gear in a forest clearing. Her
clean, urban clothing contrasts with the
rugged outdoor setting, emphasizing
her discomfort with nature.

Sammy’s coffee grinder
was broken. He needed
something to crush up his
coffee beans. He put his
coffee beans in a plastic
bag. He tried crushing
them with a hammer. It
worked for Sammy.

A man in casual clothing stands at
a kitchen counter, holding a hammer
above a clear plastic bag filled with
whole coffee beans. The hammer is
poised mid-swing, about to strike the
bag. The man’s face shows a mix of de-
termination and uncertainty. Scattered
around the counter are a few stray cof-
fee beans and an unplugged, visibly
broken coffee grinder.

I decided to go on a bike
ride with my brother. We
both headed out in the
morning. We were hav-
ing a lot of fun. Suddenly,
he hit a rock and broke his
wheel! I felt very badly
for my brother.

A concerned young person stands next
to their brother, who sits dejectedly on
the ground next to a fallen bicycle with
a visibly bent front wheel. The scene
takes place on a sunny morning on a
bike path, with trees and nature in the
background. The standing sibling has
a sympathetic expression, reaching out
to comfort their brother, who looks dis-
appointed and upset about the broken
bike.

Table 16: Scene illustrations in Phase 1. For each story fragment, we show an illustration resulting from the
LLM-generated CAPTION scene description and one resulting from the baseline CTX-FRAGMENT scene description.
The image generator for all illustrations is FLUX-1-PRO.

CAPTION Win %
Scene Description Pair MJ-6.1 & FLUX-1-PRO MJ-6.1 Only FLUX-1-PRO Only
CAPTION vs. FRAGMENT 78.1 (1360) 79.2 (342) 77.7 (336)
CAPTION vs. CTX-FRAGMENT 74.7 (768) 74.5 (372) 75.0 (396)

Table 17: Extended view of Table 3. Here, the win rates for CAPTION vs. baseline scene descriptions in Phase 1
are split out by pairs where both illustrations used the same image generator (the MJ-6.1 Only and FLUX-1-PRO
Only columns). This shows that the CAPTION win rate is similar regardless of which image generator is used. The
number of responses is in parentheses.
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Imagine an AI system will be used to judge the quality of images intended to illustrate story fragments. This AI judge scores
the images given some criteria about what should be depicted in the images. Your task involves writing the criteria for this AI
judge. In particular, you will read a story and focus on a fragment at a specific position in the story. You will write the criteria
defining the characteristics the image for that fragment should satisfy in order to be considered a good illustration of the
fragment. There are a few things to consider when writing the criteria. First, while the criteria should define the fundamental
characteristics depicted in the image, the visual details of these characteristics may vary across images, and alternative details
may be similarly effective in illustrating the fragment. Each criterion should be written in a way that accommodates these
potential variations in detail, without assuming specific information that is not defined explicitly in the story. Additionally,
each criterion should refer to only a single atomic characteristic of the image. If a criterion references multiple characteristics
such that an image might satisfy some but not others, it should be further split into multiple separate criteria. For example,
instead of writing "the image shows a sapphire ring on the bathroom floor" as one criterion, you should write "the image
shows a ring", "the ring contains a sapphire", and "the ring is on the bathroom floor" as separate criteria. The criteria should
not only consider the presence of certain elements in the image, but also the visual quality of their depiction. Write the criteria
without preamble, with a number header (e.g. ’1.’) for each criterion. Try to write as many criteria as possible, but avoid
specifying extraneous or redundant criteria. Here is an example:

Story Context: Lisa has a beautiful sapphire ring. She always takes it off to wash her hands. One afternoon, she noticed
it was missing from her finger! Lisa searched everywhere she had been that day. She was elated when she found it on the
bathroom floor!
Story Fragment: She was elated when she found it on the bathroom floor!
Image Criteria for Story Fragment:
1. The image shows a clearly visible ring
2. The image portrays a bathroom setting recognizable through typical bathroom elements (tiles, fixtures, etc.)
3. The ring contains a blue gemstone recognizable as a sapphire
4. The ring is on the bathroom floor
5. The ring appears to be positioned naturally as if it had fallen or been dropped
6. A female figure (Lisa) is present in the image
7. The woman’s facial expression clearly conveys joy or elation
8. The woman’s body language demonstrates excitement or relief
9. The woman’s positioning suggests she has just discovered or is reaching for the ring
10. The lighting adequately illuminates the ring to make it visible as the focal point
11. The perspective of the image allows viewers to see both the ring and the woman’s emotional reaction
12. The composition draws attention to the moment of discovery
13. The spatial relationship between the woman and ring suggests imminent retrieval
14. The overall scene composition captures the spontaneous nature of the discovery
15. The woman’s appearance suggests this is taking place during daytime/afternoon
16. The ring appears intact and undamaged, justifying the woman’s relief
17. The bathroom setting appears residential rather than public

Story Context: {{story}}
Story Fragment: {{fragment}}
Image Criteria for Story Fragment:

Table 18: Criteria generation prompt. LLM prompt used to generate evaluation criteria for assessing the quality
of scene illustrations.
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You will observe an image along with a list of criteria, where each criterion describes a characteristic or quality that may or
may not be depicted in the image. Your task is to determine whether or not each criterion is satisfied by the image. For each
criterion, if the image fully satisfies that criterion, write a checkmark (’✓’) after it. If the image only partially satisfies the
criterion but not completely, write a question mark (’?’) after it. Otherwise, if the image does not satisfy that criterion, write
an X mark (’✗’) after it. Reiterate each criterion before giving your assessment for it, but do not provide additional preamble
in your response. Here is an example:

Criteria:
1. The image shows a young woman (Laura) in an apartment setting
2. The woman’s facial expression conveys happiness or contentment
3. The apartment appears to be newly moved into, with some visible unpacked items
4. There are visible windows in the apartment
5. The view through the windows shows recognizable California scenery (palm trees, ocean, mountains, or urban landscape)
6. The lighting suggests natural daylight entering the apartment
7. The apartment appears residential and suitable for a recent college graduate
Image: <IMAGE WILL APPEAR HERE>
Criteria Responses:
1. The image shows a young woman (Laura) in an apartment setting ✓
2. The woman’s facial expression conveys happiness or contentment ✗
3. The apartment appears to be newly moved into, with some visible unpacked items ?
4. There are visible windows in the apartment ✓
5. The view through the windows shows recognizable California scenery (palm trees, ocean, mountains, or urban landscape)
✗
6. The lighting suggests natural daylight entering the apartment ✓
7. The apartment appears residential and suitable for a recent college graduate ✓

Criteria:
{{criteria}}
Image: {{image}}
Criteria Responses:

Table 19: Criteria-based rating prompt. VLM prompt used to score the quality of a scene illustration by assigning
responses to each criterion in a provided criteria set

Your task is to rate how well a particular image illustrates a fragment of a story. You will observe the fragment with its story
context, alongside the image depicting the fragment. Provide a rating on a scale ranging from 0.0 to {{len(criteria)}}
in half-point increments, where 0.0 indicates the image is unrelated to the fragment and {{len(criteria)}} indicates the
image is a perfect illustration of the fragment. Do not provide additional preamble before the rating. Here is an example:

Story: Laura had just graduated college. She was planning on moving on California. She packed all her belongings in her car
and drove 18 hours. When she arrived at her new apartment she unpacked all her things. Laura loved the new change of
scenery at her new place.
Fragment: Laura loved the new change of scenery at her new place.
Image: <IMAGE WILL APPEAR HERE>
Rating: 4.5

Story: {{story}}
Fragment: {{fragment}}
Image: {{image}}
Rating:

Table 20: Baseline rating prompt. VLM prompt used to score the quality of a scene illustration by directly
assigning a rating between 0 and a maximum. This maximum is dynamically set to the total number of criteria in a
provided criteria set ({{len(criteria)}}), even though the criteria themselves are not referenced in the prompt.
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