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ABSTRACT

Transformer-based large language models (LLMs) rely on key–value (KV)
caching to avoid redundant computation during autoregressive inference. While
this mechanism greatly improves efficiency, the cache size grows linearly with
the input sequence length, quickly becoming a bottleneck for long-context tasks.
Existing solutions mitigate this problem by evicting prompt KV that are deemed
unimportant, guided by estimated importance scores. Notably, a recent line of
work improves eviction quality by “glimpsing into the future”, in which a low-cost
draft generator first produces a surrogate response that mimics the target model’s
true response, which is subsequently used to estimate the importance scores of
cached KV. In this paper, we propose LookaheadKV, a lightweight eviction frame-
work that leverages the strength of surrogate future response without the need
for costly draft generation. LookaheadKV augments transformer layers with
parameter-efficient modules trained to predict true importance scores with high
accuracy. Our design ensures negligible runtime overhead comparable to existing
inexpensive heuristics, while achieving accuracy superior to more costly approx-
imation methods. Extensive experiments on long-context understanding bench-
marks, across a wide range of models, demonstrate that our method not only
outperform recent competitive baselines in long-context understanding tasks by
25%, but also reduces the eviction cost by up to 14.5×, leading to significantly
faster time-to-first-token (TTFT).

1 INTRODUCTION

Long context length of Large Language Models (LLMs) is becoming increasingly critical for many
emerging applications: processing long documents (Bai et al., 2024; Wang et al., 2024a; Hsieh
et al., 2024), repository-level code understanding and generation (Luo et al., 2024; Liu et al., 2024;
Jimenez et al., 2024), in-context learning (Li et al., 2025), extension to long multi-modal inputs
such as video (Wang et al., 2024b), etc. However, a central challenge in enabling these applications
is that the key-value (KV) cache size grows linearly in sequence length, which rapidly becomes a
bottleneck for inference, restricting scalable deployment of such applications on both mobile devices
and the cloud. For example, even for moderate-sized models, such as LLaMA3.1–70B (Dubey et al.,
2024) in half-precision, storing a single 64K-token sequence already takes up 40GB of memory,
while scaling to 512K tokens requires 160GB, exceeding the memory capacity of high-end consumer
hardware.

A growing line of work addresses this challenge by identifying salient tokens to achieve effective
KV cache eviction without loss of performance (Li et al., 2024; Cai et al., 2024; Galim et al., 2025;
Wang et al., 2025; Zhang et al., 2023). Early methods often rely on simple heuristics, in which token
importance is estimated based on the self-attention scores of the input tokens. SnapKV (Li et al.,
2024), for instance, leverages the attention weights between the suffix of the input and the preceding
context to estimate the importance of each prompt token. However, investigations in recent studies
(SpecKV (Galim et al., 2025), LAQ (Wang et al., 2025)) reveal that leveraging the model’s response,
rather than the input suffix, can greatly improve the eviction quality. Furthermore, they show that

Source code to reproduce our results is available, released in supplementary.
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Figure 1: (a) Overview of LookaheadKV training (b) Overview of LookaheadKV inference.

a low-cost generated draft response, which closely approximates the true response, can serve as a
powerful proxy for accurately estimating the importance scores. For example, SpecKV employs a
smaller auxiliary model to produce draft tokens to approximate the target model’s response, while
Lookahead Q-Cache (LAQ) first applies a cheap KV eviction scheme to the target model, such as
SnapKV, to obtain draft tokens, which in turn are used to approximate true importance scores.

Figure 2: Accuracy-overhead Trade-off
across KV cache eviction methods.

While these draft-based methods substantially improve
eviction quality, they often struggle with a fundamental
trade-off between performance and efficiency, due to the
need for costly draft token generation. Figure 2 presents
the trade-off between accuracy and overhead of differ-
ent approaches using the QASPER benchmark (Dasigi
et al., 2021) and LLaMA3.1-8B-Instruct (Dubey et al.,
2024) with a cache budget size of 128. While cheaper
approaches like SnapKV are fast, inducing minimal over-
head, they suffer a severe performance degradation un-
der highly constrained budget settings. On the other
hand, LAQ (Wang et al., 2025), a draft-based approach,
shows impressive results even in extremely limited bud-
get settings. However, it incurs a prohibitive computa-
tional overhead by generating an extra draft response,
which limits its practicality in latency-sensitive applica-
tions such as mobile devices.

To overcome this limitation, we introduce LookaheadKV, a novel KV cache eviction method that
augments LLMs with parameter-efficient modules, capable of accurately predicting future attention
patterns, without the need for costly draft token generation. As shown in Figure 2, our method
effectively overcomes the accuracy-overhead trade-off, achieving minimal performance loss with
negligible overhead. LookaheaedKV, as depicted in Figure 1, our method employs a set of learnable
special tokens, together with Lookahead LoRA modules, novel low-rank adapters that selectively ac-
tivate for the special tokens, to produce queries that can reliably estimate token-importance scores.
By fine-tuning these modules to predict the true importance scores, LookaheadKV effectively mini-
mizes the quality loss incurred by KV cache eviction with marginal inference overhead.

To rigorously assess the effectiveness of LookaheadKV, we evaluate it on a diverse set of
long-context benchmarks (Bai et al., 2024; Hsieh et al., 2024; Ye et al., 2025) across multiple models
of varying sizes (Dubey et al., 2024; Yang et al., 2025). Experimental results consistently demon-
strate that LookaheadKV outperforms strong baselines across multiple budgets and context lengths
while incurring significantly less eviction latency.
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To summarize, our contributions are as follows:

• We propose LookaheadKV, the first KV cache eviction framework that employs learnable
lookahead tokens and special LoRA modules to accurately predict the importance scores
from the model’s true response without generating costly approximate response.

• Through extensive experiments, we demonstrate that the proposed approach is effective
and robust across different models and context lengths, and especially under low-budget
settings, making our method particularly useful in resource-constrained environments.

• By conducting a rigorous analysis of eviction latency, both theoretically and empirically,
we demonstrate that our method incurs negligible eviction overhead of less than 2.16% at
32K context length, while being 14.5× faster than draft-based methods.

2 BACKGROUND

The primary objective of the KV cache eviction methods considered in this work, including our
proposed approach, is to accurately estimate the importance score of individual key-value pairs of
prompt tokens using attention weights, in order to guide the eviction process. In the following
section, we formally define the problem of KV cache eviction and briefly discuss how prior methods
have approached it.

KV cache eviction using importance scores. Let X = {x1, ..., xnin} be an input token sequence
(e.g., a user instruction, part of a code snippet, etc.) and Y = {y1, ..., ynout} the model’s generated
response to X . For a given layer and attention head in an LLM, the attention scores of the complete
sequence are given by:

Q =

[
X
Y

]
Wq K =

[
X
Y

]
Wk A = Softmax

(
QK⊤
√
d

)
, (1)

where X = [x1, ...,xnin ]
⊤ ∈ Rnin×d and Y = [y1, ...,ynout ]

⊤ ∈ Rnout×d are the hidden states
of the input prompt and model-generated response, respectively. For better readability, we omit
the layer and head index. We define the ground-truth importance scores sGT = [s1, ..., snin ] of the
KV cache as the average cross-attention scores between the queries of Y and the keys of X, i.e.,
sj =

1
nout

∑nin+nout
i=nin+1 A i,j . Intuitively, these scores quantify the relative contribution of each prompt

token’s key–value pair to the model’s response generation. Based on these scores, the pruned KV
cache can be obtained by retaining a subset of (e.g., TopK) important KV pairs to minimize the
attention output perturbation, such that:

Attn(x,KVorig) ≈ Attn(x,KVGT), (2)

where KVorig and KVGT are the original and evicted KV cache using the ground-truth importance
scores, respectively.

However, since the model’s true future response is unknown during the prefill phase, such scores
cannot be computed directly. Consequently, prior methods resorted to constructing a surrogate re-
sponse sequence Ỹ = [ỹ1, ..., ỹnwindow ]

⊤ ∈ Rnwindow×d to approximate the model’s (partial) future
response and predict the attention pattern:

Q̃ =

[
X

Ỹ

]
Wq K̃ =

[
X

Ỹ

]
Wk Ã = Softmax

(
Q̃ K̃⊤
√
d

)
, (3)

resulting in the estimated importance score vector sapprox = [s̃1, ..., s̃nin ], whose entries are computed
as s̃j = 1

nwindow

∑nin+nwindow
i=nin+1 Ã i,j . In short, these methods aim to obtain the estimated score vector

whose ranking is similar to that of the ground-truth, such that the overlap between the retained KV
pairs and KVGT is high. Various approaches have been suggested to approximate the future response
for effective KV cache eviction.

SnapKV. SnapKV (Li et al., 2024) proposes to use the suffix of input prompt to compute the estimate
of the true future importance scores. Because SnapKV requires only marginal extra computation to
perform eviction, as it uses attention weights that are already computed during the prefill forward
pass, it has widely been adopted as a cheap and effective heuristic for KV cache eviction.
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(a) Theoretical latency overhead (b) Actual latency overhead

Figure 3: Time-to-First-Token (TTFT) latency overhead ratio across context lengths. Similar to
SnapKV, LookaheadKV introduces negligible TTFT overhead across all tested context lengths;
draft-based methods (LAQ, SpecKV) incur substantial latency, especially for shorter contexts.

SpecKV and LAQ. Recently, several methods have proposed to use a low-cost generator to generate
a (partial) approximate response first, and subsequently use it to estimate the true future importance
scores. Notably, SpecKV (Galim et al., 2025) employs a smaller LLM to first generate a draft
response, while Lookahead Q-Cache (LAQ) (Wang et al., 2025) first applies SnapKV to the target
model to generate a draft response, which is in turn used to approximate the future importance.

These draft-based methods have consistently shown superior performance compared to cheaper
heuristics (Li et al., 2024), demonstrating the effectiveness of employing surrogate future response,
i.e., by “glimpsing into the future”. However, the extra draft generation step still incurs substantial
additional compute, resulting in significant increase in latency, as shown in Figure 3. In summary,
existing methods face a clear trade-off: inexpensive heuristics are fast but less accurate, whereas
draft-based techniques improve performance at the cost of increased inference time.

3 PROPOSED METHOD: LOOKAHEADKV

To overcome the challenge of fast and accurate importance prediction, we introduce LookaheadKV, a
framework that augments the LLM with a set of lightweight learnable modules which are optimized
to predict ground-truth importance scores and guide the eviction process. LookaheadKV achieves
the best of both worlds: 1) it eliminates the need for generating a draft response for each query,
resulting in significantly faster KV cache eviction, and 2) it employs learned special tokens that serve
as approximate future response for importance estimation, leveraging the strength of draft-based
methods. The following section (and Figure 1) presents the detailed workflow of LookaheadKV.

3.1 MAIN COMPONENTS

Learnable Lookahead Tokens. LookaheadKV initially performs KV cache eviction using a set of
learnable special tokens during the pre-fill phase, and subsequently decodes auto-regressively with
the retained KV cache. Specifically, for given input prompt tokens X , LookaheadKV appends a
sequence of trainable “soft” lookahead tokens L = {l1, ..., lnlookahead} whose queries in the attention
layers are used to estimate the attention pattern of the true model response. In essence, these tokens
are trained to compress the attention information of the true response to serve as the “observation
window” in the eviction phase. These tokens are used during the pre-fill stage only for eviction, and
adds zero additional overhead for decoding.

Lookahead LoRA. To enhance the quality of estimation, we introduce Lookahead LoRA, a novel
low-rank adapter module that only activates for the lookahead tokens. Lookahead LoRA allows
these tokens to learn richer representations to compress the information of the true future attention
pattern, while ensuring that the outputs of normal input tokens are unchanged, preserving the orig-
inal model behavior. Moreover, since the original model weights remain unaltered, LookaheadKV
modules can be selectively enabled or disabled depending on the particular requirements of a given
application, thereby broadening the method’s applicability.
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Combining the modules together, LookaheadKV computes the queries and keys of the complete
sequence as follows:

QLKV =

[
X
L

]
Wq +

[
0
L

]
∆Wq KLKV =

[
X
L

]
Wk +

[
0
L

]
∆Wk (4)

where L ∈ Rnlookahead×d denotes the hidden states of the lookahead embeddings, and ∆Wq ,
∆Wk are the Lookahead LoRA modules for query and key projections. Accordingly, the at-
tention pattern ALKV = Softmax(

QLKV K⊤
LKV√

d
), is used to estimate the importance score s̃j =

1
nlookahead

∑nin+nlookahead
i=nin+1 ALKV i,j , which is in turn used for effective KV cache eviction.

3.2 LOOKAHEADKV TRAINING

We train LookaheadKV modules to compress the attention pattern of the true future response, using
the model-generated responses as target. Specifically, given a data pair (X,Y ), one iteration of
LookaheadKV training consists of the following steps:

1. GT Forward Pass. For each layer l = 1, ..., L and head h = 1, ...,H , the ground-truth
importance scores sl,hGT between the input prompt X and model-generated response Y are
computed.

2. Lookahead Forward Pass. Similarly, for each layer l and head h, we obtain the impor-
tance score estimates sl,hLKV between the input prompt X and the lookahead tokens L.

3. Loss Computation. We first normalize all score vectors so that they sum to 1, and com-
pute the average KL divergence loss between the GT and LookaheadKV importance scores
across all heads and layers:

L =
1

|L|
1

|H|

L∑
l

H∑
h

KL
(
Norm(sl,hGT) ∥ Norm(sl,hLKV)

)
. (5)

The loss is backpropagated to update the weights of the lookahead embeddings and Looka-
head LoRA modules, while all other LLM layers remain frozen. The pseudo-code for
LookaheadKV training and eviction is given in Algorithm 1 and Algorithm 2.

Training Objective. We want to ultimately optimize the similarity of the ranking between the
two attention score vectors, such that we obtain TopK indices identical to those from ground-truth
importance scores. Inspired from works on distilling attention scores (Wang et al., 2020; Izacard &
Grave, 2021), we minimize the KL divergence between these normalized attention scores. As our
attentions scores are normalized, this KL divergence is equivalent to the popular ListNet (Cao et al.,
2007) ranking loss, with ϕ of ListNet as identity instead of exp.

Lookahead LoRA Overhead. LookaheadKV consistently achieves strong performance with negli-
gible eviction overhead. In principle, one can apply Lookahead LoRA to only a subset of the linear
layers to tradeoff accuracy and latency. However, even when Lookahead LoRA is applied to every
linear layer, there is a mere 1.6% increase in the latency compared to not using Lookahead LoRA
at all (see Table 3 for ablation results). Further, appending a small number of lookahead tokens
(≤ 32 in our experiments) during prefill for importance estimation similarly incurs minimal cost.
Consequently, we train LookaheadKV with LoRA modules applied to all linear layers.

To avoid materializing the full attention score matrix, we use FlashAttention (Dao et al., 2022) in
the forward pass, coupled with eager attention for importance score computation and loss backprop-
agation, as detailed in Section C.

4 EXPERIMENTS

4.1 TRAINING

Dataset. To encourage the model to learn from diverse attention patterns, we curate training samples
of varying lengths and sources, comprising of both instruction-following datasets as well as pretrain-
ing texts. We collect 50K samples from the long sft subset of the ChatQA2 (Xu et al., 2025) dataset,
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20K samples from the Tulu (Lambert et al., 2025) instruction-following dataset, 7K samples from
the Stack (Kocetkov et al., 2023), and 9K few-shot completion data samples that we create based on
the training splits of the MetaMath, ARC, and HellaSwag datasets, originally curated in Pal et al.
(2024). For instruction-following data, we remove the last assistant response, and use the target
model to obtain the (X,Y ) pairs of input prompt and model response. For pretraining documents,
we first truncate the text at random positions to obtain X , and use the target model to complete
the sequence to obtain Y . We limit the maximum input sequence length to 16K, and generate all
training responses using greedy decoding and max generation length of 512.

Training Details. We apply LookaheadKV on two widely
used open-source architectures, LLaMA (Dubey et al.,
2024) and Qwen (Yang et al., 2025), covering three model
sizes each: LLaMA3.2-1B, LLaMA3.2-3B, LLaMA3.1-8B,
Qwen3-1.7B, Qwen3-4B, and Qwen3-8B. For all models,
we set the lookahead size nlookahead = 32, and apply LoRA
to all projection and feed-forward modules (Wq , Wk, Wv ,
Wo, Wup, Wdown, and Wgate) with rank r = 8 and scal-
ing factor α = 32. This configuration introduces less than
0.5% additional trainable parameters across all models, as
summarized in Table 1. Full hyperparameter settings are
provided in Table 6.

Table 1: Additional trainable param-
eters introduced by LookaheadKV.

Model Trainable Params

Params % of Model

LLaMA3.2-1B 5.4M 0.44
LLaMA3.2-3B 11.9M 0.37
LLaMA3.1-8B 20.6M 0.26

Qwen3-1.7B 8.5M 0.49
Qwen3-4B 16.2M 0.40
Qwen3-8B 21.5M 0.26

4.2 EVALUATION SETUP

We evaluate our method on two popular long-context benchmarks: LongBench (Bai et al., 2024) and
RULER (Hsieh et al., 2024). LongBench is a multi-task benchmark that comprehensively assesses
long-context understanding across diverse tasks, such as question answering, summarization, few-
shot learning, and code completion. We report results on the 16 English tasks, and use the average
score as the main metric. RULER is another multi-task synthetic benchmark, primarily compris-
ing 13 Needle-in-a-Haystack-style subtasks. Each sample can be constructed at varying sequence
lengths, allowing systematic evaluation of scaling behavior. Similar to LongBench, we use average
score as the main metric, and report the results at 4K, 8K, 16K and 32K context lengths.

Baselines. We compare our method against popular KV-cache eviction methods: 1) SnapKV (Li
et al., 2024), 2) PyramidKV (Cai et al., 2024), and 3) StreamingLLM (Xiao et al., 2024). Addi-
tionally, we include stronger, more recent baselines that involve costly approximate future response
generation, including 4) Lookahead Q-Cache (LAQ) (Wang et al., 2025), and for 8B-scale models,
5) SpecKV (Galim et al., 2025). In all experiments, Llama3.2-1B-Instruct and Qwen3-1.7B are
used as draft models for Llama3.1-8B-Instruct and Qwen3-8B, respectively. We follow the standard
eviction configuration settings for all baseline methods, which we detail in Section F

4.3 PERFORMANCE RESULTS

LongBench evaluation. Figure 4 shows the average LongBench scores of LookaheadKV and base-
lines, across cache budget settings ranging from 64 to 2048. Our method consistently demonstrates
superior performance across all models and all budgets tested, demonstrating the effectiveness and
robustness of our approach. Overall, results show that expensive draft-based methods, e.g., LAQ and
SpecKV, outperform cheaper baselines, corroborating that employing approximate future response
for importance estimation is effective. Nevertheless, our method significantly outperforms the draft-
based approaches, especially at lower budget settings, highlighting that learning to estimate future
importance is crucial for performance preservation. Due to space limitation, we report the results of
1B-scale models in Section E.

RULER evaluation. We report the RULER evaluation results of all methods with a fixed budget of
128 in Figure 4 (1B-scale results are provided in Section E). LookaheadKV consistently outperforms
other baseline approaches here as well, maintaining strong performance across all evaluated context
lengths. Further, note that while we limit the maximum training sequence length of LookaheadKV
to 16K, our method generalizes to longer context length of 32K. We conduct additional experiments
on the impact of training context length in Section 5.3.
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Figure 4: Top row: Average LongBench results across multiple budgets and models. Bottom row:
Average RULER results across varying context lengths with a fixed budget of 128. Across all tested
models, budgets and context lengths, our method consistently demonstrates superior performance.

Figure 5: HTML-to-TSV evaluation results.

Long-Form output Evaluation. We further
evaluate LookaheadKV on the HTML to TSV
task from LongProc (Ye et al., 2025), which
involves extracting structured information from
long HTML documents and converting it into
TSV format. This benchmark tests not only the
model’s ability to process long-context inputs, but
also its capacity to generate long-form outputs.
We assess LookaheadKV and baseline methods
under two input–output settings: 12K–0.5K and
23K–2K tokens, both at a fixed cache budget ra-
tio of 30%.

Figure 5 presents the results on the HTML to
TSV task. Across both sequence-length config-
urations, LookaheadKV consistently outperforms prior approaches. We hypothesize that Looka-
heaKV, which learns to predict the attention pattern of the entire future response, is particularly
superior in long-form generation tasks compared to draft-based methods that rely only on partial
future response as the observation window.

5 ANALYSIS

5.1 EFFICIENCY COMPARISON

To assess the efficiency of our method against the baselines, we measure the Time-To-First-Token
(TTFT) across multiple context lengths using their official implementations, with the exception of
LAQ which we re-implement since it does not have an official implementation. Furthermore, since
the latency of a method can vary significantly depending on the implementation, we conduct rigorous
analysis and derive the theoretical latency for each method, based on the analytical model proposed
in Davies et al. (2025). We discuss further details in Section B.

Table 2 presents the results of the TTFT analysis for 8K and 32K context lengths (see Table 5 for 4K
and 16K results). Overall, we observe that draft-based methods incur significant overhead, either
due to increased computation (SpecKV) or memory traffic (LAQ). On the contrary, LookaheadKV
requires marginal additional cost across all tested context lengths, achieving 14.5 times faster evic-
tion overhead compared to LAQ at 32K sequence length.

7
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Table 2: Theoretical and Practical Analysis across various context lengths and methods.

Theoretical Cost Empirical Cost

Context Length Method
Compute
(TFLOPs)

Memory Traffic
(GB)

TTFT
(ms)

TTFT
Overhead (ms)

TTFT
(ms)

TTFT
Overhead (ms)

8192

Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 11

SnapKV 136 13 257 0.01 311 20

SpecKV 159 81 337 79.53 411 121

LAQ 137 445 492 234.59 800 509

32768

Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38

SnapKV 928 13 1754 0.01 1838 78

SpecKV 1115 106 2156 402.80 2263 503

LAQ 930 406 1993 239.26 2314 554

5.2 ABLATION ON TRAINABLE MODULES

We study the impact of lookahead size nlookahead and LoRA placement through a 2D ablation across
four lookahead sizes (4, 8, 16, 32) and three configurations: emb-only (No LoRA applied), QV
(LoRA applied to Q and V), and all (LoRA applied to all linear layers). The results show that
both larger lookahead sizes and broader LoRA coverage consistently improve average LongBench
performance. Importantly, these gains come with negligible inference overhead, as the additional pa-
rameters account for only a tiny fraction of pre-filling compute and memory. Based on this analysis,
we set nlookahead = 32 and apply LoRA to all linear modules in our main experiments.

Table 3: 2D ablation across lookahead sizes and trainable modules, on LLaMA 1B. Average Long-
Bench scores and TTFT overhead are reported.

nlookahead = 4 nlookahead = 8 nlookahead = 16 nlookahead = 32

Module score overhead(%) score overhead(%) score overhead(%) score overhead(%)

emb-only 25.5 3.4 25.7 3.8 26.4 3.4 26.4 4.2

QV 26.5 3.7 26.4 4.1 26.9 4.0 26.9 4.4

all 26.6 4.2 27.0 4.2 27.0 4.7 27.1 5.0

5.3 ROBUSTNESS TO TRAINING CONTEXT LENGTH

Transformer-based language models trained with
fixed context lengths often struggle to generalize be-
yond their training window. Similarly, one may raise
concern about the context length generalization of our
method. To examine this effect, we apply Looka-
headKV training to LLaMA-3B with limited training
context lengths of 2K, 4K, and 8K, and evaluate on
RULER (Figure 6). We observe that while longer
training context lengths yield better performance as
expected, training on shorter contexts still remains ef-
fective with relatively minor degradation in perfor-
mance, demonstrating that our method generalizes ro-
bustly to unseen sequence lengths. Figure 6: RULER evaluation on Looka-

headKV trained with shorter contexts.
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6 RELATED WORK

KV Cache Eviction. Early analyses revealed that attention scores tend to be sparse (Zhang et al.,
2023), implying that only a small subset of KV entries substantially contributes to the attention
output. Subsequent work showed that the importance of these tokens remains stable throughout
generation, i.e., tokens deemed important early on tend to stay important (Liu et al., 2023). These ob-
servations motivated a range of eviction methods aimed at discarding unimportant KV entries while
preserving model performance. A representative method is H2O (Heavy-Hitter Oracle) (Zhang et al.,
2023), which proposes an eviction policy that considers the historical importance of tokens based on
attention weights. NACL (Chen et al., 2024) performs eviction in a chunk-wise fashion, computing
token importance locally within each chunk.

Prefill KV Cache Eviction. Another line of work, which we discuss extensively in our paper,
focuses on eviction of prefill KV-cache. SnapKV (Li et al., 2024) introduced the notion of an “ob-
servation window” consisting of the suffix of the input prompt, which is used to predict important
tokens to keep for subsequent response generation. Further, SpecKV (Galim et al., 2025) proposed
to generate an approximate response with a smaller model and use the resulting tokens as a more re-
liable observation window for future importance prediction. Similarly, Lookahead Q-Cache (Wang
et al., 2025) first applies a cheap eviction method, such as SnapKV, to obtain a partial low-cost
draft response, then re-evicts KV entries based on the importance scores derived from the draft.
KV-zip (Kim et al., 2025) adopts a query-agnostic strategy by inserting a repeated prompt and mea-
suring which KV entries are essential for accurately reconstructing the input. Orthogonal to these
approaches, several works proposed to allocate non-uniform budgets for each layer (Cai et al., 2024)
and head (Feng et al., 2024) to further improve performance.

Prompt Tuning for Task Adaptation. Another line of work closely related to ours is parameter-
efficient finetuning through learned prompts. Prompt Tuning (Lester et al., 2021) inserts a sequence
of continuous, learnable embeddings into the frozen LLM for downstream task adaptation, while
Prefix-Tuning (Li & Liang, 2021) extends this idea by pre-pending learned vectors across multiple
layers. Further, P-Tuning v2 (Liu et al., 2022) demonstrated that prompt-based adaptation scales
well across a wide range of model sizes. Unlike conventional prompt-tuning methods that aim to
improve task performance, our work leverages learned prompts to predict internal model statistics,
thereby enhancing computational efficiency rather than accuracy.

Training objectives similar to ours have been used in distillation (Wang et al., 2020), or in rank-
ing/retrieval (Cao et al., 2007; Izacard & Grave, 2021). Some contemporaneous works (Greenewald
et al., 2025; Peng et al., 2025; Samragh et al., 2025) also propose LoRA modules that selectively
activate only for some tokens.

7 CONCLUSION AND LIMITATION

We introduce LookaheadKV, a trainable prefill-time KV cache eviction framework that accurately
predicts token importance without relying on draft generation. The method augments a frozen LLM
with a small set of learnable lookahead tokens and Lookahead LoRA modules that activate only
on these tokens. Trained to match ground-truth importance distributions across layers and heads,
LookaheadKV achieves performance superior to costly draft generation-based approaches while
adding negligible inference overhead. Empirically, across LLaMA and Qwen model families and
multiple long-context benchmarks, our approach consistently outperforms training-free heuristics
and draft-based baselines, especially in low-budget regimes and long-from output tasks, while in-
troducing less than 0.5% additional parameters and incurring only a marginal increase in prefill
latency.

Due to limited compute resources, we were unable to conduct experiments on larger-sized models.
Experiments on longer contexts should also be explored, but our analysis indicates that Looka-
headKV training generalizes to longer context lengths. We greedily generate all responses for train-
ing, but the interaction between the decoding parameters, e.g., temperature, and LookaheadKV per-
formance could be further explored. Lastly, LookaheadKV focuses on the prefill KV cache eviction;
extending LookaheadKV to also perform decoding-stage eviction remains a future work.
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8 REPRODUCIBILITY STATEMENT

Our source code is released in supplementary to reproduce our results, and pseudo-code is also
provided in Section A. Section G provides links to datasets and evaluation benchmarks used, and
Section 4.1 describes the pre-processing steps on the data.
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A PSEUDO-CODE

The pseudocode for LookaheadKV training and eviction is described in Algorithm 1 and Algo-
rithm 2, respectively.

Algorithm 1 LookaheadKV Training

Require: dataset D of input-response pairs
1: scores← [] ▷ GT importance scores
2: estimates← [] ▷ score estimates using LookaheadKV
3: for each training sample (X,Y ) in dataset D do
4: for each layer l do ▷ GT pass
5: for each head h in layer l do
6: S ← GT importance score for head (l, h)
7: scores.append(S)
8: end for
9: end for

10: for each layer l do ▷ lookahead pass
11: for each head h in layer l do
12: Ŝ ← importance scores using lookahead embeddings for head (l, h)

13: estimates.append(Ŝ)
14: end for
15: end for
16: L← 0 ▷ compute loss
17: for all (S, Ŝ) in scores, estimates do
18: L← L+KL

(
Norm(S) ∥ Norm(Ŝ)

)
19: end for
20: L← L

|scores|
21: L.backward()
22: end for

Algorithm 2 LookaheadKV Eviction

Require: Input prompt X = (x1, . . . , xnin)
Require: cache budget k
Require: learned lookahead tokens L = (l1, . . . , lnlookahead)

1: X̂ ← (x1, . . . , xnin , l1, . . . , lnlookahead) ▷ append learned lookahead tokens to input
2: Perform a forward pass with X̂ to populate KV cache
3: For each layer l and head h we now have

Kl,h ∈ R(nin+nlookahead)×d,
Vl,h ∈ R(nin+nlookahead)×d

4: for each layer l do
5: for each head h in layer l do
6: Qlookahead

l,h ← Llookahead
l,h W q

l,h + Llookahead
l,h ∆W q

l,h ▷ queries of lookahead tokens

7: Al,h ← Softmax
(

Qlookahead
l,h K⊤

l,h√
d

)
8: sl,h ← 1

nlookahead

∑nlookahead
i=1 Al,h[i, :] ▷ score vector of length nin

9: Il,h ← TopK(sl,h, k) ▷ select Top-k indices
10: Kpruned

l,h ← Kl,h[Il,h]
11: V pruned

l,h ← Vl,h[ Il,h]
12: Cache (Kpruned

l,h , V pruned
l,h )

13: end for
14: end for
15: return Pruned KV cache {(Kpruned

l,h , V pruned
l,h )}

14
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B THEORETICAL ESTIMATION DETAILS

This section details our methodology for theoretically estimation the Time-to-First-Token (TTFT)
latency for various KV cache eviction algorithms. Our analysis is based on the analytical model for
FLOPs and memory traffic proposed by Davies et al. (2025). To align configurations of theoretical
estimates with them of actual measurements, we simulate the execution of LLaMA3.1-8B on a
single NVIDIA H100 80GB GPU with a batch size of 1, assuming all weights and activations are
in half-precision. We set KV cache budget size of 128, lookahead size as 32, and window size as
32. We only consider tensor operations which are dominant parts of the computations. To provide
estimates that closely reflect real-world performance, our calculations incorporate practical hardware
utilization by assuming a flops efficiency of 0.7 and a memory efficiency of 0.9, as described in Li
(2023).

To isolate the specific overhead introduced by each eviction algorithm, we first establish a baseline
by calculating the theoretical latency of a single forward pass. The TTFT overhead for each eviction
method is then determined by subtracting this baseline forward pass latency from the method’s total
estimated TTFT. Notably, we do not add memory IO overhead incurred by KV cache unlike other
eviction methods, since we only aim to calculate the computational overhead of a single forward
pass operation. For LAQ, the total latency is calculated by summing the costs of its three costituent
steps—the first eviction, low-cost generation of pseudo response, and the second eviction. Similarly,
the total latency of SpecKV is estimated by aggregating the latencies of its draft prefill, draft decode,
and target model eviction phases. A comprehensive implementation of the code to derive theoretical
estimates of all baselines is available in the Suppplementary Materials.

C IMPLEMENTATION OPTIMIZATION

Efficient attention implementations such as FlashAttention (Dao et al., 2022) do not materialize the
full attention score matrix, but is required in our setting to compute importance scores and enable
gradient backpropagation. A possible solution is to compute the complete attention matrix using
native PyTorch (i.e., eager attention), but this quickly leads to an out-of-memory error as the matrix
size grows quadratically with the sequence length, which is incompatible with our training setting
(upto 16K sequence length). Fortunately, for our objective, we only require the cross-attention scores
between the generated response and the entire input sequence, and the response length is typically
much shorter than the input prompt.

Leveraging this observation, we adopt the following approach: for the attention layers’ forward
computation, we use flash attention, while for the importance score computation and loss back-
propagation, we employ eager attention to only compute the partial attention score matrix with the
queries of model response and keys of the entire sequence. This reduces the memory requirement of
eager attention fromO((|X|+ |Y |)2) toO(|X| · |Y |+ |Y |2), where |X| and |Y | denote the lengths
of the input prompt and model response, respectively, with |X| ≫ |Y |.

15
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D NEED FOR DATA GENERATION

One of the requirements of LookaheadKV training is that the target model’s generated responses
must be available as training data. However, generating these responses from the model can some-
times be costly, e.g., when applying LookaheadKV across multiple models. Hence, to assess
whether this requirement of can be relaxed, we evaluate an alternative setting where training uses
the responses from the source datasets instead of model-generated outputs.

We observe in Figure 7 that this substitution leads to a relatively minor drop in average LongBench
performance in lower-budget regimes. We hypothesize that if the attention distribution of the model-
generated responses and that of the source dataset responses are moderately similar, our method can
still successfully learn to accurately predict the importance scores. Overall, these results suggest
that, in scenarios where training data generation is impractical, using source responses provides a
viable and effective alternative.

Figure 7: Performance ratio of training using model-generated data vs. source data.
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E ADDITIONAL RESULTS

We provide a comprehensive experimental results excluded from the main text due the page limita-
tion.

E.1 RESULTS ON LONGBENCH

Figure 8: Full Longbench results across multiple cache budgets.

Table 4: Performance comparison of different methods across various LLMs on LongBench.

LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.
NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lcc RB-P

L
la

m
a3

.1
-8

B
-I

ns
tr

uc
t

FullKV 31.63 46.66 56.93 58.10 48.50 31.57 34.46 25.28 26.98 72.50 91.65 43.79 6.64 99.50 65.12 58.78 49.88
KV Cache Size = 128

StreamingLLM 24.95 21.50 32.56 50.67 42.89 24.31 18.49 21.25 18.19 40.50 85.57 38.28 7.50 99.50 59.03 49.72 39.68
SnapKV 29.13 28.06 51.23 56.79 45.30 27.81 19.99 23.03 19.73 46.00 89.72 40.44 7.50 99.50 59.50 52.19 43.50
PyramidKV 27.70 28.86 52.00 56.76 46.11 28.13 19.86 22.81 20.03 44.50 88.41 39.73 7.50 99.50 59.84 51.96 43.36
LAQ 30.48 38.31 55.73 57.50 49.13 29.67 22.42 24.20 21.59 60.50 92.09 41.04 7.25 99.50 60.54 55.83 46.61
SpecKV 29.22 29.12 54.05 56.54 46.30 29.90 22.65 23.18 21.25 52.00 90.02 42.14 8.83 99.50 61.11 61.38 45.45
LookaheadKV 31.32 42.85 56.78 57.04 47.44 30.82 25.18 24.33 23.09 65.50 92.24 42.96 7.50 99.50 61.75 55.29 47.72

KV Cache Size = 256
StreamingLLM 25.96 24.08 33.73 50.56 42.61 23.49 20.86 21.60 20.64 46.00 87.50 41.09 7.50 99.50 61.19 51.53 41.12
SnapKV 27.96 34.49 55.07 57.40 46.57 29.50 22.49 23.51 22.42 54.00 91.10 40.61 7.33 99.50 62.48 55.36 45.61
PyramidKV 28.09 36.64 55.86 57.68 46.28 29.56 22.23 23.86 22.53 56.50 91.56 41.23 7.33 99.50 62.47 53.92 45.95
LAQ 31.03 43.97 55.93 57.78 49.42 30.42 24.48 24.60 23.29 68.00 92.20 42.61 7.08 100.00 62.70 58.09 48.23
SpecKV 28.66 36.19 57.26 58.17 48.51 30.85 24.83 24.60 23.32 61.00 91.16 42.46 8.33 99.50 64.21 63.18 47.64
LookaheadKV 31.96 44.01 56.80 57.99 47.41 31.46 27.26 24.56 24.59 69.00 92.55 42.93 7.33 100.00 62.81 57.02 48.61

KV Cache Size = 1024
StreamingLLM 27.23 30.80 36.64 50.59 43.26 23.45 25.73 21.67 25.49 63.50 88.84 42.56 7.50 93.50 63.15 55.73 43.73
SnapKV 29.64 44.60 57.30 57.62 48.31 31.18 27.57 24.17 25.84 69.50 92.04 42.78 7.08 99.50 64.57 58.46 48.76
PyramidKV 30.79 44.91 56.65 58.13 48.17 30.56 26.65 24.53 25.88 68.00 91.78 42.20 6.83 99.50 64.41 57.77 48.55
LAQ 31.63 45.63 55.02 57.70 50.27 31.28 28.82 25.10 26.18 72.50 92.33 43.31 6.50 100.00 62.75 59.04 49.25
SpecKV 31.59 45.44 57.98 57.51 49.16 31.95 28.67 24.95 25.77 67.50 92.23 43.94 6.00 99.50 65.21 62.30 49.36
LookaheadKV 31.14 46.04 57.77 58.22 48.43 30.72 30.75 25.31 26.66 72.50 91.92 43.39 7.08 100.00 64.87 58.36 49.57

Q
w

en
3-

8B

FullKV 26.04 47.76 53.33 59.23 43.37 36.05 33.66 24.05 24.79 71.50 90.21 44.43 2.00 100.00 69.39 65.57 49.46
KV Cache Size = 128

StreamingLLM 17.65 26.69 28.40 41.05 33.46 20.82 15.72 19.15 15.14 43.00 82.57 38.44 1.50 70.00 62.86 56.69 35.82
SnapKV 19.14 32.65 45.99 54.81 38.95 26.59 17.66 20.83 16.04 49.50 87.10 38.90 3.50 99.50 64.62 58.29 42.13
PyramidKV 15.57 30.19 41.84 46.01 35.73 19.57 16.51 19.67 14.86 47.00 83.51 35.56 2.50 92.00 62.14 53.07 38.48
LAQ 22.74 42.15 53.55 57.89 42.84 36.74 21.33 22.25 18.34 64.50 89.55 40.93 3.00 100.00 66.74 61.70 46.52
SpecKV 23.03 37.14 53.58 56.77 42.24 31.82 21.33 22.86 19.04 60.00 88.31 41.50 3.50 100.00 66.82 61.96 45.62
LookaheadKV 26.06 44.30 53.24 58.78 42.79 35.89 25.29 22.95 21.13 66.50 88.95 41.64 3.50 99.50 65.95 62.88 47.46

KV Cache Size = 256
StreamingLLM 18.18 28.53 28.52 42.81 33.58 21.34 18.63 19.20 17.76 48.00 85.58 40.08 1.00 69.00 65.50 59.41 37.32
SnapKV 23.03 38.32 51.04 57.36 40.67 32.82 21.51 21.89 18.97 59.50 89.46 41.06 2.00 100.00 67.62 61.88 45.45
PyramidKV 18.47 34.87 47.44 55.68 37.89 26.67 20.43 20.92 17.43 58.50 85.20 38.98 3.50 100.00 65.51 57.32 43.05
LAQ 26.00 45.44 53.84 57.00 43.53 36.62 24.22 23.38 20.38 70.00 89.05 42.47 3.00 100.00 68.17 64.03 47.95
SpecKV 22.58 41.09 53.89 59.85 42.42 34.50 24.53 23.64 21.25 68.00 88.13 43.12 3.00 100.00 68.39 64.40 47.42
LookaheadKV 25.88 45.40 52.68 58.47 44.05 36.13 27.77 23.71 22.88 69.00 89.05 43.32 2.00 100.00 67.83 64.71 48.31

KV Cache Size = 1024
StreamingLLM 21.25 32.82 31.44 45.94 34.38 23.34 25.73 20.25 23.50 62.00 88.71 41.18 0.50 44.00 68.39 63.65 39.19
SnapKV 24.26 46.13 52.48 58.52 42.66 36.89 28.39 23.61 23.33 69.00 89.55 43.13 2.00 100.00 69.05 66.27 48.45
PyramidKV 23.77 42.89 53.01 58.86 42.32 35.47 27.32 23.07 22.72 71.00 89.95 42.56 2.00 100.00 68.81 64.25 48.00
LAQ 26.11 47.27 53.45 57.01 43.52 37.26 29.50 23.88 23.47 71.50 89.63 44.00 2.00 100.00 67.94 64.83 48.84
SpecKV 24.98 46.56 54.07 59.04 43.37 34.12 29.32 24.18 23.68 71.00 90.11 44.56 3.00 100.00 69.09 66.53 48.98
LookaheadKV 25.36 47.23 52.56 59.30 43.25 36.39 31.65 23.72 24.61 71.00 90.21 44.69 0.50 100.00 68.93 65.22 49.04
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E.2 RESULTS ON RULER

We report the RULER results across all six models tested, with cache budget settings at 64 (Figure 9)
and 128 (Figure 10).

Figure 9: Full RULER results across context lengths (budget = 64)

Figure 10: Full RULER results across context lengths (budget = 128)
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E.3 ADDITIONAL EFFICIENCY ANALYSIS

We show the full results of the latency analysis that were omitted in the main paper due to space lim-
itation in this section. Note that the empirical TTFT overheads for some methods, SnapKV in partic-
ular, can be larger than theoretical estimations. These are probably due to inefficient implementation
of these methods in KVCache-Factory or their official implementation. Better implementations may
reduce these overheads significantly, more in line with the theoretical cost.

Table 5: Theoretical and Practical Analysis across various context lengths and methods.

Theoretical Cost Empirical Cost

Context Length Method
Compute
(TFLOPs)

Memory Traffic
(GB)

TTFT
(ms)

TTFT
Overhead (ms)

TTFT
(ms)

TTFT
Overhead (ms)

4096

Forward Pass Only 60 13 113 N/A 130 N/A
LookaheadKV (ours) 60 13 114 0.92 141 11.38

SnapKV 60 13 113 0.01 143 13.14

SpecKV 70 77 165 52.10 223 92.42

LAQ 61 444 347 233.81 637 506.58

8192

Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 10.88

SnapKV 136 13 257 0.01 311 20.17

SpecKV 159 81 337 79.53 411 120.51

LAQ 137 445 492 234.59 800 509.38

16384

Forward Pass Only 336 13 635 N/A 658 N/A
LookaheadKV (ours) 337 13 636 1.27 677 18.50

SnapKV 336 13 635 0.01 695 37.12

SpecKV 398 89 792 157.05 866 207.31

LAQ 337 447 871 236.15 1182 523.54

32768

Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38.04

SnapKV 928 13 1754 0.01 1838 77.67

SpecKV 1115 106 2156 402.80 2263 502.87

LAQ 930 406 1993 239.26 2314 553.68
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F HYPER-PARAMETERS

Training hyper-parameters.

Learning rate was searched for Llama and Qwen model family among [5×10−5, 1×10−4, 2×10−4,
1× 10−3]. The final hyper-parameters for all experiments are shown in Table 6.

Table 6: Training hyperparameters.

Parameters Values
Optimizer Adam
β1, β2 0.9, 0.95
Effective Batch Size 32
Drop-out (p) 0.0
Max Sequence Length 16384 (prompt length) + 512 (response length)
Train Iters 7600
Learning rate 1× 10−3 (for Llama), 2× 10−4 (for Qwen)
Schedule Cosine
Warmup steps 2%
Min LR 0.0
Gradient clipping 1.0

Eviction hyper-parameters. We use the implementations in KVCache-Factory or their official im-
plementations (SpecKV) for all our methods, except for LAQ which we re-implement ourselves.
Following prior works (Li et al., 2024; Cai et al., 2024; Galim et al., 2025), we use standard config-
uration settings for all baseline methods, including an observation window size of 32, maxpooling
kernel size of 7, and mean reduction for GQA compatibility (Feng et al., 2024). For LookaheadKV
we use the same settings, except we do not use window size, as our method does not train with the
suffix window for prediction. Further, since our lookahead size nlookahead is 32, we set the maximum
generation limit of LAQ and SpecKV to 32 tokens so that the methods can be compared using the
same number of draft tokens.

G DATASETS, BENCHMARKS, AND SOFTWARE

Software Our source code is available in the supplementary, and our implementation is built on
KVCache-Factory.

Training Dataset Our training dataset mixture consist of random samples from publicly available
datasets: 50K long sft subset of ChatQA2-Long-SFT-data, 20K subset of tulu-3-sft-olmo-2-mixture,
7K samples from The Stack, and 3K samples from MetaMathFewshot, HellaSwag DPO Fewshot,
and ARC DPO Fewshot, respectively.

Evaluation Benchmarks We used LongBench dataset as fetched and processed by KVCache-
Factory, see HF Dataset for the official source. For RULER, we used RULER Github. For LongProc,
we used LongProc Github.

H LLM USAGE

LLM assistants were used to refine the wording of selected sentences, while the majority of the text
was written by human. All LLM-generated text was carefully inspected to ensure that it contained
no harmful or controversial content. Additionally, we used LLMs to help in finding some of the
related literature discussed in the paper.
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https://github.com/Zefan-Cai/KVCache-Factory
https://huggingface.co/datasets/nvidia/ChatQA2-Long-SFT-data
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