Under review as a conference paper at ICLR 2026

LOOKAHEADKYV: FAST AND ACCURATE KV CACHE
EVICTION BY GLIMPSING INTO THE FUTURE WITHOUT
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based large language models (LLMs) rely on key—value (KV)
caching to avoid redundant computation during autoregressive inference. While
this mechanism greatly improves efficiency, the cache size grows linearly with the
input sequence length, quickly becoming a bottleneck for long-context tasks. Ex-
isting solutions mitigate this problem by evicting prompt KV that are deemed
unimportant, guided by estimated importance scores. Notably, a recent line
of work improves eviction quality by “glimpsing into the future”, in which a
low-cost draft generator first produces a surrogate response that mimics the tar-
get model’s true response, which is subsequently used to estimate the importance
scores of cached KV. In this paper, we propose LookaheadKYV, a lightweight evic-
tion framework that leverages the strength of surrogate future response without
the need for costly draft generation. LookaheadKV augments transformer layers
with parameter-efficient modules trained to predict true importance scores with
high accuracy. Our design ensures negligible runtime overhead comparable to
existing inexpensive heuristics, while achieving accuracy superior to more costly
approximation methods. Extensive experiments on long-context understanding
benchmarks, across a wide range of models, demonstrate that our method not only
outperforms recent competitive baselines in long-context understanding tasks by
25%, but also reduces the eviction cost by up to 14.5%, leading to significantly
faster time-to-first-token.

1 INTRODUCTION

Long context length of Large Language Models (LLMs) is becoming increasingly critical for many
emerging applications: processing long documents (Bai et al.l [2024; Wang et al., 2024a; |Hsieh
et al.,|2024), repository-level code understanding and generation (Luo et al., 2024} |Liu et al.| 2024;
Jimenez et al.| [2024)), in-context learning (Li et al. 2025)), extension to long multi-modal inputs
such as video (Wang et al., 2024b), etc. However, a central challenge in enabling these applications
is that the key-value (KV) cache size grows linearly in sequence length, which rapidly becomes a
bottleneck for inference, restricting scalable deployment of such applications on both mobile devices
and the cloud. For example, even for moderate-sized models, such as LLaMA3.1-70B (Dubey et al.,
2024) in half-precision, storing a single 64K-token sequence already takes up 40GB of memory,
while scaling to 512K tokens requires 160GB, exceeding the memory capacity of high-end consumer
hardware.

A growing line of work addresses this challenge by identifying salient tokens to achieve effective
KV cache eviction without loss of performance (Li et al.,[2024; Cai et al., 2024} |Galim et al., 2025
Wang et al., 2025 |Zhang et al.,[2023)). Early methods often rely on simple heuristics, in which token
importance is estimated based on the self-attention scores of the input tokens. SnapKV (Li et al.,
2024), for instance, leverages the attention weights between the suffix of the input and the preceding
context to estimate the importance of each prompt token. However, investigations in recent studies
(SpecKV (Galim et al., 2025), LAQ (Wang et al.,[2025)) reveal that leveraging the model’s response,
rather than the input suffix, can greatly improve the eviction quality. Furthermore, they show that

Source code to reproduce our results is available, released in supplementary.

Under review as a conference paper at ICLR 2026

Lookahead LoRA on Training

: Trainable
jﬁ 3% Frozen
O o FEE O o Bk OO o .
Input Model Response Input Learnable Input Learned
(pre-generated) Lookahead Tokens Lookahead Tokens

! |

Model Learnable Learned
Response Lookahead Tokens| Lookahead Token;[-E

W

1< Ix]
) e ——— X e EEE
Lookahead LoRA on Decode KL Div. Loss ‘
True importance scores Predicted importance scores Compressed KV
W
(a) LookaheadKYV training (b) LookaheadKV inference

Figure 1: (a) Overview of LookaheadKV training (b) Overview of LookaheadKYV inference.

a low-cost generated draft response, which closely approximates the true response, can serve as a
powerful proxy for accurately estimating the importance scores. For example, SpecKV employs a
smaller auxiliary model to produce draft tokens to approximate the target model’s response, while
Lookahead Q-Cache (LAQ) first applies a cheap KV eviction scheme to the target model, such as
SnapKYV, to obtain draft tokens, which in turn are used to approximate true importance scores.

While these draft-based methods substantially improve

eviction quality, they often struggle with a fundamental N R T
trade-off between performance and efficiency, due to the wo | QASPER score of FullKV: 46.66
need for costly draft token generation. Figure [2] presents s

the trade-off between accuracy and overhead of differ- o Lookaheadky

ent approaches using the QASPER benchmark (Dasigil 8" LX)
et al), [2021) and LLaMA3.1-8B-Instruct (Dubey et al., &

2024) with a cache budget size of 128. While cheaper gm

approaches like SnapKYV are fast, inducing minimal over- s

head, they suffer a severe performance degradation un- 00| bnapkv Speckv

der highly constrained budget settings. On the other .. @ O]

hand, LAQ (Wang et al., 2025), a draft-based approach, e to-rstTaken, TTFT tms)

shows impressive results even in extremely limited bud-

get settings. However, it incurs a prohibitive computa- Figure 2: Accuracy-overhead Trade-off
tional overhead by generating an extra draft response, across KV cache eviction methods.
which limits its practicality in latency-sensitive applica-

tions such as mobile devices.

To overcome this limitation, we introduce LookaheadKYV, a novel KV cache eviction method that
augments LL.Ms with parameter-efficient modules, capable of accurately predicting future attention
patterns, without the need for costly draft token generation. As shown in Figure 2] our method
effectively overcomes the accuracy-overhead trade-off, achieving minimal performance loss with
negligible overhead. LookaheaedKYV, as depicted in Figure[T] our method employs a set of learnable
special tokens, together with Lookahead LoRA modules, novel low-rank adapters that selectively ac-
tivate for the special tokens, to produce queries that can reliably estimate token-importance scores.
By fine-tuning these modules to predict the true importance scores, LookaheadKV effectively mini-
mizes the quality loss incurred by KV cache eviction with marginal inference overhead.

To rigorously assess the effectiveness of LookaheadKV, we evaluate it on a diverse set of
long-context benchmarks (Bai et al.,|2024; Hsieh et al., [2024; Ye et al.,2025) across multiple models
of varying sizes (Dubey et al., 2024} |[Yang et al.,|2025). Experimental results consistently demon-
strate that LookaheadKV outperforms strong baselines across multiple budgets and context lengths
while incurring significantly less eviction latency.

Under review as a conference paper at ICLR 2026

To summarize, our contributions are as follows:

* We propose LookaheadKYV, to the best of our knowledge, the first KV cache eviction frame-
work that employs learnable lookahead tokens and special LoRA modules to accurately
predict the importance scores from the model’s true response without generating costly
approximate response.

» Through extensive experiments, we demonstrate that the proposed approach is effective
and robust across different models and context lengths, and especially under low-budget
settings, making our method particularly useful in resource-constrained environments.

* By conducting a rigorous analysis of eviction latency, both theoretically and empirically,
we demonstrate that our method incurs negligible eviction overhead of less than 2.16% at
32K context length, while being 14.5x faster than draft-based methods.

2 BACKGROUND

The primary objective of the KV cache eviction methods considered in this work, including our
proposed approach, is to accurately estimate the importance score of individual key-value pairs of
prompt tokens using attention weights, in order to guide the eviction process. In the following
section, we formally define the problem of KV cache eviction and briefly discuss how prior methods
have approached it.

KYV cache eviction using importance scores. Let X = {z1, ..., x,,, } be an input token sequence
(e.g., a user instruction, part of a code snippet, etc.) and Y = {y1, ..., Yn,, } the model’s generated
response to X . For a given layer and attention head in an LLM, the attention scores of the complete
sequence are given by:

X X QK'
= W K= W A = Softmax , (D)
? M ’ M * (NG)
where X = [X1,...,Xp,]" € R™*4and Y = [yy,...,yn,.] € R are the hidden states

of the input prompt and model-generated response, respectively. For better readability, we omit
the layer and head index. We define the ground-truth importance scores sgr = [s1, ..., Sp,,] Of the

KV cache as the average cross-attention scores between the queries of Y and the keys of X, i.e.,
ﬁ fit;ii‘;‘l A ; ;. Intuitively, these scores quantify the relative contribution of each prompt
token’s key—value pair to the model’s response generation. Based on these scores, the pruned KV
cache can be obtained by retaining a subset of (e.g., TopK) important KV pairs to minimize the

attention output perturbation, such that:

Attn(z, KVig) = Attn(z, KVgr), ()

S5 =

where KV, and KVgr are the original and evicted KV cache using the ground-truth importance
scores, respectively.

However, since the model’s true future response is unknown during the prefill phase, such scores
cannot be computed directly. Consequently, prior methods resorted to constructing a surrogate re-

sponse sequence Y = [J1, -, Jnyu) | € R™mv X4 to approximate the model’s (partial) future
response and predict the attention pattern:

- [X _ X . QKT

Q = [Y] Wq K= [Y] Wk A = Softmax(\/g >, (3)

resulting in the estimated importance score vector Sapprox = [51, ..., 5n,, |, Whose entries are computed
as §; = —L_ S i mmor A, In short, these methods aim to obtain the estimated score vector

M window
whose ranking is similar to that of the ground-truth, such that the overlap between the retained KV
pairs and KVgr is high. Various approaches have been suggested to approximate the future response
for effective KV cache eviction.

SnapKYV. SnapKV (Li et al.,|2024) proposes to use the suffix of input prompt to compute the estimate
of the true future importance scores. Because SnapKV requires only marginal extra computation to

Under review as a conference paper at ICLR 2026

400%

200% Method Method
—e— Ours 350% —e— Ours

;\?150"/ —e— SnapKV $300% —e— SnapKV
= ° —e— SpeckV = —e— SpeckV
b T 250%
© —e— LAQ b —e— LAQ
S 100% < 200%
> °. g ..
E E 150%
E 50% |= 100%

.. e . -
50% T, \.

0% 0% :
5,000 10,000 15,000 20,000 25,000 30,000 5,000 10,000 15,000 20,000 25,000 30,000
Context size (tokens) Context size (tokens)
(a) Theoretical latency overhead (b) Actual latency overhead

Figure 3: Time-to-First-Token (TTFT) latency overhead ratio across context lengths. Similar to
SnapKYV, LookaheadKV introduces negligible TTFT overhead across all tested context lengths;
draft-based methods (LAQ, SpecKV) incur substantial latency, especially for shorter contexts.

perform eviction, as it uses attention weights that are already computed during the prefill forward
pass, it has widely been adopted as a cheap and effective heuristic for KV cache eviction.

SpecKYV and LAQ. Recently, several methods have proposed to use a low-cost generator to generate
a (partial) approximate response first, and subsequently use it to estimate the true future importance
scores. Notably, SpecKV (Galim et al.| [2025) employs a smaller LLM to first generate a draft
response, while Lookahead Q-Cache (LAQ) (Wang et al.l [2025)) first applies SnapKV to the target
model to generate a draft response, which is in turn used to approximate the future importance.

These draft-based methods have consistently shown superior performance compared to cheaper
heuristics (L1 et al., 2024)), demonstrating the effectiveness of employing surrogate future response,
i.e., by “glimpsing into the future”. However, the extra draft generation step still incurs substantial
additional compute, resulting in significant increase in latency, as shown in Figure[3] In summary,
existing methods face a clear trade-off: inexpensive heuristics are fast but less accurate, whereas
draft-based techniques improve performance at the cost of increased inference time.

3 PROPOSED METHOD: LOOKAHEADKV

To overcome the challenge of fast and accurate importance prediction, we introduce LookaheadKYV, a
framework that augments the LLM with a set of lightweight learnable modules which are optimized
to predict ground-truth importance scores and guide the eviction process. LookaheadKV achieves
the best of both worlds: 1) it eliminates the need for generating a draft response for each query,
resulting in significantly faster KV cache eviction, and 2) it employs learned special tokens that serve
as approximate future response for importance estimation, leveraging the strength of draft-based
methods. The following section (and Figure|[T) presents the detailed workflow of LookaheadKYV.

3.1 MAIN COMPONENTS

Learnable Lookahead Tokens. LookaheadKYV initially performs KV cache eviction using a set of
learnable special tokens during the pre-fill phase, and subsequently decodes auto-regressively with
the retained KV cache. Specifically, for given input prompt tokens X, LookaheadKV appends a
sequence of trainable “soft” lookahead tokens L = {l1, ..., ln, .. | WhOse queries in the attention
layers are used to estimate the attention pattern of the true model response. In essence, these tokens
are trained to compress the attention information of the true response to serve as the “observation
window” in the eviction phase. These tokens are new tokens added to the vocabulary, each with an
embedding of shape R € d that is randomly initialized. Note that the lookahead tokens are used
during the prefill stage only for eviction, and adds zero additional overhead for decoding.

Lookahead LoRA. To enhance the quality of estimation, we introduce Lookahead LoRA, a novel
low-rank adapter module that only activates for the lookahead tokens. While predicting attention pat-
terns across all layers and heads using only the lookahead tokens is challenging due to their limited
capacity, Lookahead LoRA provides complementary performance gains by allowing these tokens
to learn richer representations, enabling their queries to more accurately predict token importance.

Under review as a conference paper at ICLR 2026

The selective activation mechanism of the LoRA modules ensures that the outputs of normal input
tokens are unchanged, preserving the original model behavior. Moreover, since the original model
weights remain unaltered, LookaheadKV modules can be selectively enabled or disabled depending
on the particular requirements of a given application, thereby broadening the method’s applicability.

Combining the modules together, LookaheadKV computes the queries and keys of the complete
sequence as follows:

Qrkv = [)Iﬂ W, + [g} AW, Kikv = [)Iﬂ Wi + [E} AWy, “4)

where L € R™oke X4 denotes the hidden states of the lookahead embeddings, and AW, AW, are

the Lookahead LoRA modules for query and key projections. Similar to prior methods (Li et al.,

(Qukv Ky)
Vd

2024), we use the attention matrix A gy = Softmax , to estimate the importance score

= 1 Z Tin+Nlookahead

8j = 2 it Aikv i, and retain Top-K KV pairs with the highest importance scores.

3.2 LOOKAHEADKYV TRAINING

We train LookaheadKV modules to compress the attention pattern of the true future response, using
the model-generated responses as target. Specifically, given a data pair (X,Y’), one iteration of
LookaheadKV training consists of the following steps:

1. GT Forward Pass. For each layer [= 1,...,L and head h = 1, ..., H, the ground-truth
importance scores slG}Tl between the input prompt X and model-generated response Y are
computed.

2. Lookahead Forward Pass. Similarly, for each layer [and head h, we obtain the impor-
tance score estimates sf_’{zv between the input prompt X and the lookahead tokens L.

3. Loss Computation. We first normalize all score vectors so that they sum to 1, and com-

pute the average KL divergence loss between the GT and LookaheadKV importance scores
across all heads and layers:

L H
11 Lh Lh
L = T El Eh KL(Norm(sgy) || Norm(sigy))-)

The loss is backpropagated to update the weights of the lookahead embeddings and Looka-
head LoRA modules, while all other LLM layers remain frozen. The pseudo-code for
LookaheadKV training and eviction is given in Algorithm [I]and Algorithm

Training Objective. We want to ultimately optimize the similarity of the ranking between the two
importance score vectors, such that we obtain TopK indices identical to those from ground-truth
importance scores. Inspired from works on distilling attention scores (Wang et al.l |2020; Izacard
& Grave, [2021)), we minimize the KL divergence between these normalized attention scores. As
our attentions scores are normalized, this KL divergence is equivalent to the popular ListNet (Cao
et al., 2007) ranking loss, with ¢ of ListNet as identity instead of exp. We note that, while we
employ normalized average attention scores as the importance metric throughout the experiments,
any suitably defined token-wise importance metric can be used for training, provided that it can be
computed for each token.

Lookahead LoRA Overhead. In principle, one can apply Lookahead LoRA to only a subset of the
linear layers to tradeoff accuracy and latency. However, even when Lookahead LoRA is applied to
every linear layer, there is a minor increase (>1.3%) in latency compared to not using Lookahead
LoRA at all (see Table [5] for ablation results), while significantly boosting performance compared
to not using LoRA. Consequently, we train LookaheadKV with LoRA modules applied to all linear
layers.

To avoid materializing the full attention score matrix, we use FlashAttention (Dao et al |[2022) in
the forward pass, coupled with eager attention for importance score computation and loss backprop-
agation, as detailed in Section

Under review as a conference paper at ICLR 2026

Llama3.2-3B-Instruct Llama3.1-8B-Instruct Qwen3-4B Qwen3-8B

LongBench Score
PR

Cy 0 ® ®.5 0 ® o5 > ®
e ¥ R s e K4 s e Ky s
Cache Budget Cache Budget Cache Budget
W] [[
.................. 90 0
s e —_— 80
e o 80 \.‘,\ e e
%o \\Q R ———— 3%
& & & &
[:4 o 70 -4 -4
& g 8 40 g
3 60 2 g 2 40
60
50 20 20,
—_——— 50 % \
40
a4 8 16 32 a 8 16 32 4 8 16 32 4 8 16 32
Context (x21°) Context (x21°) Context (x21%) Context (x21°)
[* Ours —— LAQ —— SnapKV —— PyramidkV StreamingLLM —— SpeckV s FuHKV]

Figure 4: Top row: Average LongBench results across multiple budgets and models. Bottom row:
Average RULER results across varying context lengths with a fixed budget of 128. Across all
tested models, budgets and context lengths, LookaheadKV consistently demonstrates superior per-
formance.

4 EXPERIMENTS

4.1 TRAINING

Dataset. To encourage the model to learn from diverse attention patterns, we curate training samples
of varying lengths and sources, comprising of both instruction-following datasets as well as pretrain-
ing texts. We collect 50K samples from the long_sft subset of the ChatQA2 (Xu et al.,2025)) dataset,
20K samples from the Tulu (Lambert et al.| [2025)) instruction-following dataset, 7K samples from
the Stack (Kocetkov et al.| [2023), and 9K few-shot completion data samples that we create based on
the training splits of the MetaMath, ARC, and HellaSwag datasets, originally curated in [Pal et al.
(2024). For instruction-following data, we remove the last assistant response, and use the target
model to obtain the (X,Y") pairs of input prompt and model response. For pretraining documents,
we first truncate the text at random positions to obtain X, and use the target model to complete
the sequence to obtain Y. We limit the maximum input sequence length to 16K, and generate all
training responses using greedy decoding and max generation length of 512.

Training Details. We apply LookaheadKV on two widely .)
used open-source architectures, LLaMA (Dubey et al., Table. 1: Additional trainable param-
2024) and Qwen (Yang et al. [2025)), covering three model eters introduced by LookaheadKV.

sizes each: LLaMA32—1B, LLaMA32—3B, LLaMA3.1 —SB, Model Trainable Params
Qwen3-1.7B, Qwen3-4B, and Qwen3-8B. For all models, ode Params % of Model
we set the lookahead size Njpokanead = 32, and apply LoRA -

to all projection and feed-forward modules (W,, W, W, Iﬂkgﬁﬁ%;g 1‘1";% 83?
Wo, Wup, Waown, and Wggee) with rank » = 8 and scal- 11aMA3.1-8B 20.6M 0.26
ing factor a = 32. This configuration introduces less than 3178 S5M 0.49
0.5% additional trainable parameters across all models, as 83223_43 16:;M 0.40
summarized in Table m Full hyperparameter settings are ~ Qwen3-8B 21.5M 0.26
provided in Table [T6]

4.2 EVALUATION SETUP

We evaluate our method on two popular long-context benchmarks: LongBench (Bai et al.,2024)) and
RULER (Hsieh et al., [2024). LongBench is a multi-task benchmark that comprehensively assesses
long-context understanding across diverse tasks, such as question answering, summarization, few-
shot learning, and code completion. We report results on the 16 English tasks, and use the average
score as the main metric. RULER is another multi-task synthetic benchmark, primarily compris-
ing 13 Needle-in-a-Haystack-style subtasks. Each sample can be constructed at varying sequence

Under review as a conference paper at ICLR 2026

Table 2: MT-Bench evaluation results. Bold and underlined values indicate best and second best
scores, respectively.

Model | Budget | PyramidKV SnapKV StreamingLLM SpecKV LAQ LookaheadKV
| FullKV score: 5.72
64 4.64 4.70 4.54 N/A 5.03 5.21
LLaMA3.2-1B 128 5.10 5.39 4.94 N/A 545 5.60
256 5.49 5.67 5.37 N/A 5.64 5.62
512 573 5.71 5.68 N/A 5.73 5.79
| FullKV score: 7.35
64 6.30 6.28 5.96 6.52 6.48 6.87
LLaMA3.2-3B 128 6.93 7.03 6.42 7.02 6.93 7.26
256 7.19 7.30 7.20 7.28 7.43 7.30
512 7.46 7.24 7.24 7.34 7.27 7.15
| FullKV score: 7.77
64 6.85 6.80 6.17 6.77 7.1 7.26
LLaMA3.1-8B 128 7.39 7.50 6.84 7.34 7.54 7.63
256 7.76 7.72 741 7.84 7.72 7.92
512 7.82 7.78 7.73 7.89 7.85 7.86
| FullKV score: 7.19
64 5.81 5.95 5.83 N/A 6.19 .70
Qwen3-1.7B 128 6.38 6.65 6.16 N/A 6.91 7.12
256 6.90 6.94 6.91 N/A 7.02 7.20
512 7.09 7.03 7.08 N/A 7.20 7.29
| FullKV score: 8.02
64 6.85 6.60 6.24 7.05 7.06 7.69
Qwen3-4B 128 7.55 7.71 7.24 7.78 7.70 8.12
256 7.90 8.20 7.87 8.11 8.12 8.06
512 8.15 8.12 8.00 8.02 8.06 8.08
\ FullKV score: 8.48
64 7.33 7.26 6.81 7.69 7.58 8.04
Qwen3-8B 128 7.85 7.94 7.64 797 8.24 8.41
256 8.42 8.43 8.34 8.45 8.56 8.51
512 8.43 8.36 8.44 8.50 8.63 8.53

lengths, allowing systematic evaluation of scaling behavior. Similar to LongBench, we use average
score as the main metric, and report the results at 4K, 8K, 16K and 32K context lengths.

Baselines. We compare our method against popular KV-cache eviction methods: 1) SnapKV (Li
et al., [2024), 2) PyramidKYV (Cai et al., 2024)), and 3) StreamingL.LLM (Xiao et al., 2024). Addi-
tionally, we include stronger, more recent baselines that involve costly approximate future response
generation, including 4) Lookahead Q-Cache (LAQ) (Wang et al.,2025), and for 8B-scale models,
5) SpecKYV (Galim et al., |2025). In all experiments, Llama3.2-1B-Instruct and Qwen3-1.7B are
used as draft models for Llama3.1-8B-Instruct and Qwen3-8B, respectively. We follow the standard
eviction configuration settings for all baseline methods, which we detail in Section

4.3 PERFORMANCE RESULTS

LongBench evaluation. Figure | shows the average LongBench scores of LookaheadKV and base-
lines, across cache budget settings ranging from 64 to 2048. Our method consistently demonstrates
superior performance across all models and all budgets tested, demonstrating the effectiveness and
robustness of our approach. Overall, results show that expensive draft-based methods, e.g., LAQ and
SpecKYV, outperform cheaper baselines, corroborating that employing approximate future response
for importance estimation is effective. Nevertheless, our method significantly outperforms the draft-
based approaches, especially at lower budget settings, highlighting that learning to estimate future
importance is crucial for performance preservation. Due to space limitation, we report the results of
1B-scale models in Section [El

RULER evaluation. We report the RULER evaluation results of all methods with a fixed budget of
128 in Figure] (1B-scale results are provided in Section[E)). LookaheadKV consistently outperforms
other baseline approaches here as well, maintaining strong performance across all evaluated context
lengths. Further, note that while we limit the maximum training sequence length of LookaheadKV
to 16K, our method generalizes to longer context length of 32K. We conduct additional experiments
on the impact of training context length in Section

Under review as a conference paper at ICLR 2026

Table 3: Theoretical and empirical cost analysis of LLaMA3.1-8B at C' = 128.

Theoretical Cost Empirical Cost
Compute Memory Traffic TTFT TTFT TTFT TTFT
Context Length Method (TFLOPs) (GB) (ms) Overhead (ms) (ms) Overhead (ms)
Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 11
8192 SnapKV 136 13 257 0.01 311 20
SpecKV 159 81 337 79.53 411 121
LAQ 137 445 492 234.59 800 509
Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38
32768 SnapKV 928 13 1754 0.01 1838 78
SpecKV 1115 106 2156 402.80 2263 503
LAQ 930 451 1993 239.26 2314 554
Long-Form output evaluation. We further s2e0
evaluate LookaheadKV on the HTML to TSV 50 » Output Length
task from LongProc (Ye et al) [2025), which =

involves extracting structured information from
long HTML documents and converting it into
TSV format. This benchmark tests not only the
model’s ability to process long-context inputs, but
also its capacity to generate long-form outputs.
We assess LookaheadKV and baseline methods
under two input—output settings: 12K-0.5K and

F1-Score

Fullkv ours LAQ SpeckV Snapkv

23K-2K tokens, both at a fixed cache budget ra- Method
tio of 30%.

Figure 5: HTML-to-TSV evaluation results us-

Fi h I he HTML
igure 5] presents the results on the to ing LLaMA3.1-8B.

TSV task. Across both sequence-length configu-
rations, LookaheadKV consistently outperforms
prior approaches. We hypothesize that Looka-
headKV, which learns to predict the attention pattern of the entire future response, is particularly
superior in long-form generation tasks compared to draft-based methods that rely only on partial
future response as the observation window.

MT-Bench evaluation. To test our method under multi-turn conversation setting, we evaluated
LookaheadKV and baselines on MT-Bench (Zheng et all, 2023), a benchmark covering diverse
domains, e.g., writing, coding, and math. The generated responses are evaluated using Qwen3-
235B-A22B as the LLM judge. The results in Table [2] indicate that LookaheadKYV is either on par
or superior across all models and budgets tested. Similar to other evaluation results, we observe
that our method is especially favorable at lower budget settings (e.g., C' = [64, 128]). On the other
hand, the performance gap quickly narrows at higher budgets since the context length of MT-Bench
samples are relatively short compared to benchmarks targeting long-context capabilities.

5 ANALYSIS

5.1 EFFICIENCY COMPARISON

To assess the efficiency of our method against the baselines, we measure the Time-To-First-Token
(TTFT) of LLaMA3.1-8B across multiple context lengths using their official implementations, with
the exception of LAQ which we re-implement since it does not have an official implementation. Fur-
thermore, since the latency of a method can vary significantly depending on the implementation, we
conduct rigorous analysis and derive the theoretical latency for each method, based on the analytical
model proposed in[Davies et al] (2025). We discuss further details in Section [B]

Table [3] presents the results of the TTFT analysis for 8K and 32K context lengths (see Table [T3]
for 4K and 16K results). Overall, we observe that draft-based methods incur significant overhead,

Under review as a conference paper at ICLR 2026

Table 4: Average LongBench performance at different temperature settings on LLaMA3.1-8B, with
C = 128. LookaheadKV outperforms baselines across all tested temperature settings.

Method FullKV | SnapKV SpecKV LAQ LookaheadKV
49.88 | 43.50 45.45 46.61 47.72

T =0.2 | 49.58(-0.60%) | 4329 (-048%) 44.99 (-1.01%) 46.73 (+0.26%) 47.75 (+0.06%)
T =0.8 | 4782 (-4.13%) | 41.39 (-4.85%) 43.43 (-4.44%) 4527 (-2.87%) 45.81 (-4.00%)

Table 5: 2D ablation across lookahead sizes and trainable modules, on LLaMA3.2-1B. Average
LongBench scores with cache budget of 64 and TTFT overhead are reported.

‘ Niookahead = 4 Niookahead = 8 Nigokahead = 16 Niookahead = 32 Niookahead = 64 Mookahead = 128
Module score overhead(%) score overhead(%) score overhead(%) score overhead(%) score overhead(%) score overhead(%)
emb-only | 25.5 34 25.7 3.8 26.4 34 26.4 4.2 25.8 73 26.2 10.7
Qv 26.5 3.7 26.4 4.1 26.9 4.0 26.9 4.4 26.7 7.7 27.1 10.7
all 26.6 4.2 27.0 4.2 27.0 4.7 27.1 5.0 27.1 8.5 27.0 11.0

either due to increased computation (SpecKV) or memory traffic (LAQ). On the contrary, Looka-
headKV requires marginal additional cost across all tested context lengths, achieving 14.5 times
faster eviction overhead compared to LAQ at 32K sequence length.

5.2 EFFECT OF STOCHASTIC DECODING

To analyze the effect of stochastic generation on LookaheadKV’s performance, we evaluate our
method using two temperature settings: [0.2,0.8]. Results in Table 4| show that LookaheadKV
maintains superior performance over all other baselines across all temperature settings. Further, we
observe that performance degradation at high temeprature setting (3-4% at T' = 0.8) is consistent
across all methods, including FullKV, indicating that stochasticity in inference affects all approaches
similarly. We further discuss the interplay between stochastic decoding for training data generation
and LookaheadKV performance in Section[EJ]

5.3 ABLATION ON TRAINABLE MODULES

We study the impact of lookahead size 7njgokanecad and LORA placement through a 2D ablation across
six lookahead sizes (4, 8, 16, 32, 64, 128) and three configurations: emb-only (No LoRA ap-
plied), Qv (LoRA applied to Q and V), and all (LoRA applied to all linear layers). The results
incidcate that both larger lookahead windows and broader LoRA coverage generally improve aver-
age LongBench performance. However, performance gains saturate at njpokahead = 32; increasing
the lookahead size beyond this point yields diminishing returns while incurring a noticeable increase
in inference overhead. On the other hand, applying Lookahead LoRA to all layers results in rela-
tively minor rise in TTFT while significantly improving the performance across all lookahead sizes.
Based on this analysis, we set Njookanead = 92 and apply LoRA to all linear modules in our main
experiments.

5.4 ROBUSTNESS TO TRAINING CONTEXT LENGTH

Transformer-based language models trained with
fixed context lengths often struggle to generalize be-
yond their training window. Similarly, one may raise
concern about the context length generalization of our
method. To examine this effect, we apply Looka-
headKV training to LLaMA-3B with limited training
context lengths of 2K, 4K, and 8K, and evaluate on
RULER (Figure [6). We observe that while longer
training context lengths yield better performance as 4 8 16 32
expected, training on shorter contexts still remains ef- K e 4§°”texﬂflos)|< —— 1AQ
fective with relatively minor degradation in perfor-

mance, demonstrating that our method generalizes ro-
bustly to unseen sequence lengths.

RULER Score
o o < N N
o s o N »

-3
>

Figure 6: RULER evaluation on Looka-
headKYV trained with shorter contexts.

Under review as a conference paper at ICLR 2026

6 RELATED WORK

KYV Cache Eviction. Early analyses revealed that attention scores tend to be sparse (Zhang et al.,
2023), implying that only a small subset of KV entries substantially contributes to the attention
output. Subsequent work showed that the importance of these tokens remains stable throughout
generation, i.e., tokens deemed important early on tend to stay important (Liu et al.|[2023)). These ob-
servations motivated a range of eviction methods aimed at discarding unimportant KV entries while
preserving model performance. A representative method is H20 (Heavy-Hitter Oracle) (Zhang et al.|
2023)), which proposes an eviction policy that considers the historical importance of tokens based on
attention weights. NACL (Chen et al., |2024) performs eviction in a chunk-wise fashion, computing
token importance locally within each chunk.

Prefill KV Cache Eviction. Another line of work, which we discuss extensively in our paper,
focuses on eviction of prefill KV-cache. SnapKV (Li et al., 2024) introduced the notion of an “ob-
servation window” consisting of the suffix of the input prompt, which is used to predict important
tokens to keep for subsequent response generation. Further, SpecKV (Galim et al.| 2025)) proposed
to generate an approximate response with a smaller model and use the resulting tokens as a more re-
liable observation window for future importance prediction. Similarly, Lookahead Q-Cache (Wang
et al) [2025) first applies a cheap eviction method, such as SnapKYV, to obtain a partial low-cost
draft response, then re-evicts KV entries based on the importance scores derived from the draft.
KV-zip (Kim et al.| 2025) adopts a query-agnostic strategy by inserting a repeated prompt and mea-
suring which KV entries are essential for accurately reconstructing the input. Orthogonal to these
approaches, several works proposed to allocate non-uniform budgets for each layer (Cai et al., 2024)
and head (Feng et al., 2024)) to further improve performance.

Prompt Tuning for Task Adaptation. Another line of work closely related to ours is parameter-
efficient finetuning through learned prompts. Prompt Tuning (Lester et al.,|2021) inserts a sequence
of continuous, learnable embeddings into the frozen LLM for downstream task adaptation, while
Prefix-Tuning (Li & Liang, 2021) extends this idea by pre-pending learned vectors across multiple
layers. Further, P-Tuning v2 (Liu et al., 2022) demonstrated that prompt-based adaptation scales
well across a wide range of model sizes. Unlike conventional prompt-tuning methods that aim to
improve task performance, our work leverages learned prompts to predict internal model statistics,
thereby enhancing computational efficiency rather than accuracy.

Training objectives similar to ours have been used in distillation (Wang et al 2020), or in rank-
ing/retrieval (Cao et al.,|2007; [zacard & Grave, [2021]). Some contemporaneous works (Greenewald
et al., 2025} |Peng et al.l |2025} [Samragh et al., 2025) also propose LoRA modules that selectively
activate only for some tokens.

7 CONCLUSION AND LIMITATION

We introduce LookaheadKYV, a trainable prefill-time KV cache eviction framework that accurately
predicts token importance without relying on draft generation. The method augments a frozen LLM
with a small set of learnable lookahead tokens and Lookahead LoRA modules that activate only
on these tokens. Trained to match ground-truth importance distributions across layers and heads,
LookaheadKV achieves performance superior to costly draft generation-based approaches while
adding negligible inference overhead. Empirically, across LLaMA and Qwen model families and
multiple long-context benchmarks, our approach consistently outperforms training-free heuristics
and draft-based baselines, especially in low-budget regimes and long-from output tasks, while in-
troducing less than 0.5% additional parameters and incurring only a marginal increase in prefill
latency.

Due to limited compute resources, we were unable to conduct experiments on larger-sized models.
However, experimental results indicate that LookaheadKV improves both performance and latency
of KV cache eviction across a variety of model sizes. Further LookaheadKV currently focuses on the
prefill KV cache eviction; extending LookaheadKYV to also perform decoding-stage eviction remains
an interesting future work.

10

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Our source code is released in supplementary to reproduce our results, and pseudo-code is also
provided in Section [A] Section |G| provides links to datasets and evaluation benchmarks used, and
Section[4.1] describes the pre-processing steps on the data.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A
bilingual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3119-3137, Bangkok, Thailand,
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-1ong.172/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. ArXiv preprint, abs/2406.02069, 2024. URL https://arxiv.
org/abs/2406.020609.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pair-
wise approach to listwise approach. In Proceedings of the 24th International Conference on
Machine Learning, ICML 07, pp. 129-136, New York, NY, USA, 2007. Association for Com-
puting Machinery. ISBN 9781595937933. doi: 10.1145/1273496.1273513. URL https:
//doi.orqg/10.1145/1273496.1273513.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuo-
huan Wang, Yu Sun, Dianhai Yu, and Hua Wu. NACL: A general and effective KV cache
eviction framework for LLM at inference time. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 7913-7926, Bangkok, Thailand, 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.428. URL |https:
//aclanthology.org/2024.acl-1long.428/.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Pradeep Dasigi, Kyle Lo, 1z Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 4599-4610, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.365. URL https://aclanthology.org/2021.
naacl-main.365/.

Michael Davies, Neal Crago, Karthikeyan Sankaralingam, and Christos Kozyrakis. Efficient llm
inference: Bandwidth, compute, synchronization, and capacity are all you need, 2025. URL
https://arxiv.orqg/abs/2507.14397.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv-2407, 2024.

11

https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://aclanthology.org/2024.acl-long.428/
https://aclanthology.org/2024.acl-long.428/
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://aclanthology.org/2021.naacl-main.365/
https://aclanthology.org/2021.naacl-main.365/
https://arxiv.org/abs/2507.14397

Under review as a conference paper at ICLR 2026

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient Ilm inference. ArXiv preprint, abs/2407.11550,
2024. URL https://arxiv.org/abs/2407.11550.

Kevin Galim, Ethan Ewer, Wonjun Kang, Minjae Lee, Hyung Il Koo, and Kangwook Lee. Draft-
based approximate inference for llms. ArXiv preprint, abs/2506.08373, 2025. URL https:
//arxiv.org/abs/2506.08373.

Kristjan Greenewald, Luis Lastras, Thomas Parnell, Vraj Shah, Lucian Popa, Giulio Zizzo, Chulaka
Gunasekara, Ambrish Rawat, and David Cox. Activated lora: Fine-tuned llms for intrinsics, 2025.
URL https://arxiv.org/abs/2504.12397.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for question
answering. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=NTEz-6wysdb.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTE8yNQOM6 6.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, and Hyun Oh Song. KVzip:
Query-agnostic KV cache compression with context reconstruction. In ES-FoMo II1: 3rd Work-
shop on Efficient Systems for Foundation Models, 2025. URL https://openreview.net/
forum?id=gcqzyyF654.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, Yacine Jernite, Margaret
Mitchell, Carlos Mufioz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
Werra, and Harm de Vries. The stack: 3 TB of permissively licensed source code. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=pxpbTdUEpPD.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christo-
pher Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=11uGbfHHpH.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
3045-3059, Online and Punta Cana, Dominican Republic, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/
2021 .emnlp-main.243.

Cheng Li. Llm-analysis: Latency and memory analysis of transformer models for training and
inference. https://github.com/cli99/11m-analysis), 2023.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context LLMs struggle with
long in-context learning. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.
URLhttps://openreview.net/forum?id=Cw2x1g0e46l

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th

12

https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2506.08373
https://arxiv.org/abs/2506.08373
https://arxiv.org/abs/2504.12397
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=gcqzyyF654
https://openreview.net/forum?id=gcqzyyF654
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=i1uGbfHHpH
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://github.com/cli99/llm-analysis
https://openreview.net/forum?id=Cw2xlg0e46

Under review as a conference paper at ICLR 2026

Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582-4597, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL
https://aclanthology.org/2021.acl-1long.353|

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are
looking for before generation. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
28ab418242603e0£7323e54185d19bde-Abstract-Conference.htmll

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. In The Tivelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=pP JZ2I0uQuF.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Mure-
san, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 61-68, Dublin, Ire-
land, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8l

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anas-
tasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of
importance hypothesis for LLM KV cache compression at test time. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ad52a7cb6cdo63edae8fbdcolicbe983eb6-Abstract-Conference.html.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. RepoAgent: An
LLM-powered open-source framework for repository-level code documentation generation. In
Delia Irazu Hernandez Farias, Tom Hope, and Manling Li (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 436—
464, Miami, Florida, USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-demo.46. URL https://aclanthology.org/2024.emnlp—demo.46/.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. ArXiv preprint,
abs/2402.13228, 2024. URL https://arxiv.org/abs/2402.13228.

Yuqi Peng, Lingtao Zheng, Yufeng Yang, Yi Huang, Mingfu Yan, Jianzhuang Liu, and Shifeng
Chen. Tara: Token-aware lora for composable personalization in diffusion models, 2025. URL
https://arxiv.orqg/abs/2508.08812.

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential,
2025. URL https://arxiv.org/abs/2507.11851.

Minzheng Wang, Longze Chen, Fu Cheng, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and Yongbin Li. Leave no
document behind: Benchmarking long-context LLMs with extended multi-doc QA. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 5627-5646, Miami, Florida, USA,
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.322. URL
https://aclanthology.org/2024.emnlp—-main.322/.

13

https://aclanthology.org/2021.acl-long.353
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=pPjZIOuQuF
https://aclanthology.org/2022.acl-short.8
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://aclanthology.org/2024.emnlp-demo.46/
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2508.08812
https://arxiv.org/abs/2507.11851
https://aclanthology.org/2024.emnlp-main.322/

Under review as a conference paper at ICLR 2026

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 5776-5788. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
understanding with large language model as agent. In European Conference on Computer Vision,
pp- 58-76. Springer, 2024b.

Yixuan Wang, Shiyu Ji, Yijun Liu, Yuzhuang Xu, Yang Xu, Qingfu Zhu, and Wanxiang Che. Looka-
head g-cache: Achieving more consistent kv cache eviction via pseudo query. ArXiv preprint,
abs/2505.20334, 2025. URL https://arxiv.org/abs/2505.20334,

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=NG7sS51zVF.

Peng Xu, Wei Ping, Xianchao Wu, Chejian Xu, Zihan Liu, Mohammad Shoeybi, and Bryan Catan-
zaro. Chatqa 2: Bridging the gap to proprietary llms in long context and RAG capabilities. In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
cPD2hU35x3.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388|

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation.
In Second Conference on Language Modeling, 2025. URL https://openreview.net/
forum?id=ruWC5LIMSo.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
bceefa’/bl5572587b/8ecfcebb2827f8-Abstract-Conference.html.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Sto-
ica. Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 46595-46623. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91f18a1287b398d378ef22505bf41832-Paper—-Datasets_and_Benchmarks.
pdf.

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2505.20334
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cPD2hU35x3
https://openreview.net/forum?id=cPD2hU35x3
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=ruWC5LIMSo
https://openreview.net/forum?id=ruWC5LIMSo
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf

Under review as a conference paper at ICLR 2026

A PSEUDO-CODE

The pseudocode for LookaheadKV training and eviction is described in Algorithm [] and Algo-
rithm 2| respectively.

Algorithm 1 LookaheadKV Training

Require: dataset D of input-response pairs

1: scores < || > GT importance scores
2: estimates « [] > score estimates using LookaheadKV
3: for each training sample (X,Y") in dataset D do
4: for each layer [do > GT pass
5: for each head h in layer [do
6: S < GT importance score for head (I, h)
7: scores.append(S)
8: end for
9: end for
10: for each layer [do > lookahead pass
11: for each head h in layer [do
12: S importance scores using lookahead embeddings for head (I, i)
13: estimates.append(S)
14: end for
15: end for
16: L+0 > compute loss
17: for all (S, S) in scores, estimates do
18: L + L+ KL(Norm(S) || Norm(g))
19: end for
20: L+ m
21: L.backward()
22: end for

Algorithm 2 LookaheadKV Eviction

Require: Input prompt X = {z1,...,2,,}
Require: cache budget k
1: Append learned lookahead tokens to input and compute the sequence embeddings X = [X L] T

> shape: (nin + Niookahead) X d

2: Perform a prefill forward pass with X:
3: for each layer [do

4: for each head i do .

5: A «— SOftIIl?LX(%) > shape: (nm + nlookahead) X (nin + nlookahead)
6: A+~ Alni, ¢ nig > attention between lookahead tokens and input prompt
7 s < MeanReduce(A) > score vector, shape: 1 X nj,
8: T + TopK(s, k) > select Top-k indices
9: K*ert « K[T]

10: Vet ¢ V(7]

11: Cache (K*ert J/kept) > evict unimportant KV pairs and cache retained pairs
12: Compute attention output for MLP layer

13: end for

14: Compute MLP output for next layer

15: end for

16: return

15

Under review as a conference paper at ICLR 2026

B THEORETICAL ESTIMATION DETAILS

This section details our methodology for theoretically estimation the Time-to-First-Token (TTFT)
latency for various KV cache eviction algorithms. Our analysis is based on the analytical model for
FLOPs and memory traffic proposed by |Davies et al.| (2025). To align configurations of theoretical
estimates with them of actual measurements, we simulate the execution of LLaMA3.1-8B on a
single NVIDIA H100 80GB GPU with a batch size of 1, assuming all weights and activations are
in half-precision. We set KV cache budget size of 128, lookahead size as 32, and window size as
32. We only consider tensor operations which are dominant parts of the computations. To provide
estimates that closely reflect real-world performance, our calculations incorporate practical hardware
utilization by assuming a flops efficiency of 0.7 and a memory efficiency of 0.9, as described in [Li
(2023)).

To isolate the specific overhead introduced by each eviction algorithm, we first establish a baseline
by calculating the theoretical latency of a single forward pass. The TTFT overhead for each eviction
method is then determined by subtracting this baseline forward pass latency from the method’s total
estimated TTFT. For LAQ, the total latency is calculated by summing the costs of its three con-
secutive steps—the first eviction, low-cost generation of pseudo response, and the second eviction.
Similarly, the total latency of SpecKV is estimated by aggregating the latencies of its draft prefill,
draft decode, and target model eviction phases. A comprehensive implementation of the code to
derive theoretical estimates of all baselines is available in the Supplementary Materials.

C IMPLEMENTATION OPTIMIZATION

Efficient attention implementations such as FlashAttention (Dao et al.,|2022) do not materialize the
full attention score matrix, but is required in our setting to compute importance scores and enable
gradient backpropagation. A possible solution is to compute the complete attention matrix using
native PyTorch (i.e., eager attention), but this quickly leads to an out-of-memory error as the matrix
size grows quadratically with the sequence length, which is incompatible with our training setting
(upto 16K sequence length). Fortunately, for our objective, we only require the cross-attention scores
between the generated response and the entire input sequence, and the response length is typically
much shorter than the input prompt.

Leveraging this observation, we adopt the following approach: for the attention layers’ forward
computation, we use flash attention, while for the importance score computation and loss back-
propagation, we employ eager attention to only compute the partial attention score matrix with the
queries of model response and keys of the entire sequence. This reduces the memory requirement of
eager attention from O((| X |+ |Y)?) to O(|X|-|Y| + |Y|?), where | X | and |Y'| denote the lengths
of the input prompt and model response, respectively, with | X | > |Y|.

16

Under review as a conference paper at ICLR 2026

D NEED FOR DATA GENERATION

One of the requirements of LookaheadKV training is that the target model’s generated responses
must be available as training data. However, generating these responses from the model can some-
times be costly, e.g., when applying LookaheadKV across multiple models. Hence, to assess
whether this requirement of can be relaxed, we evaluate an alternative setting where training uses
the responses from the source datasets instead of model-generated outputs.

We observe in Figure[7] that this substitution leads to a relatively minor drop in average LongBench
performance in lower-budget regimes. We hypothesize that if the attention distribution of the model-
generated responses and that of the source dataset responses are moderately similar, our method can
still successfully learn to accurately predict the importance scores. Overall, these results suggest
that, in scenarios where training data generation is impractical, using source responses provides a
viable and effective alternative.

1.010

1.005

1000 /\

£ 0.995
<
0.990
0.985
0980 ¢, 128 256 512 1024 2048
Cache Budget
—— Llama3.1-8B-Instruct —— Llama3.2-3B-Instruct

Figure 7: Performance ratio of training using model-generated data vs. source data.

17

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

In this section, we provide additional experimental results excluded from the main text due to page
limitation.

E.1 RULER EVALUATION ON LONGER CONTEXTS

To explore the capability of LookaheadKV on longer contexts, we evaluate our method on RULER at
64k and 128k context lengths using LLaMA3.1-8B-Instruct with a cache budget of 128. We sample
50 random examples per task from the RULER benchmark. As shown in Table [§] LookaheadKV
achieves the best performance at these context lengths as well, showing that the effectiveness of our
method scales to even longer context lengths.

Table 6: RULER evaluation results on longer context lengths using Llama3.1-8B-Instruct at C' =
128.

Context Length | FullKV ~ LookaheadKV ~ SnapKV ~ SpecKV ~ LAQ

64k 88.48 71.00 36.15 65.08 64.73
128k 77.98 55.83 27.64 53.16 50.91

E.2 EFFECT OF COMBINING SUFFIX WINDOW

To test the effect of incorporating suffix window, as proposed in SnapKV 2024), we
augment LookaheadKV by also including queries of the last 32 prompt tokens for importance score
estimation. As shown in Table[7} we observe a slight drop in performance when SnapKV importance
scores are included. The degraded performance when averaging LookaheadKV importance scores
with SnapKV scores, compared to using LookaheadKV scores alone, indicates that the importance
predicted by our method is superior to SnapKV.

Table 7: Average LongBench scores using LookaheadKV window only and LookaheadKV +
SnapKV-style suffix window, evaluated using LLaMA3.2-1B-Instruct with C' = 64.

FullKV | LookaheadKV LookaheadKV
+ Suffix Window

32.01 ‘ 29.10 28.52 (-1.99%)

E.3 DISCUSSION OF GENERATION STOCHASTICITY IN LOOKAHEADKYV TRAINING

For LookaheadKV training, various stochastic decoding methods may be employed to generate
training data. One may hypothesize that the attention matrices induced by responses generated with
higher stocasticity may diverge significantly from those induced by greedy responses, potentially
limiting the generalizability of LookaheadKV modules trained exclusively on greedy responses to
stochastic inference scenarios. To investigate this, we quantify the similarity between importance
score vectors induced by greedy responses and those generated under varying temperature settings.

Table[§] presents recall@512 and Kendall rank correlation coefficients comparing importance scores
induced by greedy decoding against stochastic decoding at multiple temperatures using LLaMA3.1-
8B. The scores are averaged over 30 randomly selected samples from our training data, across all
layers and heads. Even at relatively high temerature (I" = 0.8), we observe strong persistence of
attention patterns. Notably, the deviation is smaller than that induced by resposnes of a specula-
tive model (Llama3.2-1B, equivalent to the SpecKV setting). This indicates that the ground-truth
importance scores induced by stochastically generated responses are highly similar to the scores
induced by greedy responses, which in turn indicates that greedy-generated training data provides
sufficiently robust learning signals for stochastic settings.

18

Under review as a conference paper at ICLR 2026

Table 8: Importance score similarity with stochastic response using various temperatures vs. greedy
response on LL.aMA3.1-8B. LLaMA3.2-1B presents the similarity of importance scores using
greedy response generated with LLaMA3.2-1B vs. LLaMA3.1-8B.

Generation Method \ T=02 T=04 T=06 1T=08 LLaMA3.2-1B

Recall@512 (%) 95.06 93.73 91.40 91.37 88.66
Kendall’s Tau 91.44 88.63 84.61 84.79 80.05

E.4 RESULTS ON LONGBENCH

Llama3.2-1B-Instruct Llama3.2-3B-Instruct Llama3.1-8B-Instruct

w
8

LongBench Score
o N w
& 2 &
LongBench Score
woow s s
o S 5 o
o b o °

425

LongBench Score

325

P S & qp“q’ QP 5 & ,LQ‘& QP 5 & 79\&
Cache Budget Cache Budget Cache Budget
Qwen3-1.7B Qwen3-4B Qwen3-8B
48
46
<
S 44
@
S
3
E§ 40
S8
36
34
QPP S \é‘v Wm“% QPP S \c”b ,bb"% QPP S N&b w&%
Cache Budget Cache Budget Cache Budget
—— Ours —— LAQ —— SnapKV —— PyramidkV —— StreamingLLM —— SpeckV e FullkV

Figure 8: Full Longbench results across multiple cache budgets. 1B-scale results are included.

19

Under review as a conference paper at ICLR 2026

Table 9: LongBench evaluation results for Llama3.2-1B

LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Ave
NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lcc RB-P
FullKV 1924 1596 4247 35.53 29.42 19.87 28.34 22.18 25.64 64.00 80.85 38.83 3.00 4.78 38.63 43.35 32.01
KV Cache Size = 64
StreamingLLM 14.42 1230 24.02 24.04 24.05 9.35 13.56 19.23 13.61 3550 6894 29.09 4.00 3.71 37.61 37.33 23.17
SnapKV 1424 12,18 30.53 27.30 25.66 12.44 14.27 19.27 12.37 35.00 73.57 29.29 2.00 4.49 38.01 36.84 24.22
PyramidKV 1333 11.36 26.05 25.34 24.01 10.57 13.64 19.49 11.96 35.00 69.95 27.75 1.50 4.33 3525 36.01 22.85
17.21 1276 37.30 3027 27.36 14.22 16.42 20.09 14.28 39.50 76.02 31.19 3.00 4.58 39.15 38.37 26.36
LookaheadKV 17.69 13.30 40.80 33.66 29.80 16.95 18.76 20.65 18.97 45.50 80.12 34.77 2.50 322 33.69 36.47 27.93
KV Cache Size = 128
StreamingLLM 14.84 1236 24.67 2548 23.86 8.73 14.71 19.58 15.50 3800 71.61 31.82 3.50 379 38.81 39.03 24.14
SnapKV 1574 12,59 3587 29.77 26.43 14.17 16.17 20.35 16.47 36.50 78.04 31.84 3.50 4.57 39.03 40.15 26.32
PyramidKV 1484 12,10 3363 2773 23.95 11.77 15.27 19.79 13.99 3550 7417 30.50 1.50 4.71 37.90 37.99 24.71
LAQ 18.63 13.65 41.78 3475 29.59 16.57 18.89 20.88 19.19 44.00 79.29 34.89 2.54 425 3943 41.06 28.71
LookaheadKV 1738 1492 4139 3546 29.22 17.47 20.13 20.78 21.24 51.50 80.27 36.19 3.00 4.17 34.75 37.68 29.10
KV Cache Size = 256
StreamingLLM 14.74 1239 2528 26.71 23.87 8.88 16.99 19.67 1797 4450 74.85 35.96 350 3.90 40.37 42.19 25.74
SnapKV 16.59 13.78 38.80 32.54 28.11 16.55 18.55 20.00 19.69 41.50 79.31 33.70 4.00 4.58 39.15 41.26 28.01
PyramidKV 1511 13.08 3731 32.03 25.36 12.60 16.91 20.10 17.78 40.50 76.61 3234 3.50 4.65 37.13 40.32 26.58
LAQ 1831 14.64 41.83 3534 29.61 17.27 20.68 21.21 21.37 52.00 79.62 36.99 4.04 4.17 40.44 43.37 30.06
LookaheadKV 1823 14.70 40.25 36.52 30.45 18.50 21.75 2091 22.46 57.50 80.09 38.05 4.00 4.50 36.19 40.73 30.30
KV Cache Size = 512
StreamingLLM 14.62 12.86 2637 27.03 24.19 9.96 19.02 19.61 20.99 5250 7692 36.50 254 3.64 40.76 42.83 26.90
SnapKV 17.58 14.17 40.91 3457 29.19 16.74 20.32 20.78 22.10 5250 80.29 34.65 3.00 4.58 3820 42.59 29.51
PyramidKV 16.55 1348 39.67 32.62 28.38 15.59 18.50 20.87 20.54 4850 79.30 34.43 4.00 4.50 38.79 41.42 28.57
LA 1845 1526 41.93 34.75 30.44 17.63 2239 21.45 23.11 57.50 79.04 37.81 4.00 4.17 40.76 44.64 30.83
LookaheadKV 1832 14.87 41.62 36.05 30.10 18.77 23.06 21.49 23.57 63.50 80.40 38.73 3.00 4.75 37.12 42.04 31.09
KV Cache Size = 1024
StreamingLLM 15.07 13.49 29.51 28.66 25.17 11.51 20.86 19.85 23.62 57.00 79.36 37.59 4.00 3.64 39.54 44.15 2831
SnapKV 18.12 14.66 40.52 35.01 29.85 18.86 2238 21.12 24.16 60.50 81.16 35.61 3.00 4.62 38.58 43.47 30.73
PyramidKV 1594 14.15 3934 34.16 28.37 16.68 20.27 21.11 23.14 56.00 79.93 35.36 1.50 4.58 38.48 42.06 29.44
LAQ 19.18 1523 41.55 34.43 30.52 18.35 23.96 21.47 24.51 61.50 79.78 38.53 3.00 4.42 40.60 4530 31.40
LookaheadKV 1851 1541 4149 3541 29.74 19.29 24.93 21.19 24.58 64.00 81.07 39.06 3.50 4.80 37.99 43.55 31.53
KV Cache Size = 2048
StreamingLLM 17.10 1471 3130 31.33 26.60 11.20 22.94 20.21 24.89 59.00 79.81 38.02 4.04 4.00 39.49 44.55 29.32
SnapKV 17.73 15.74 42.03 36.12 29.48 19.34 2430 21.75 25.22 62.50 80.90 38.22 3.00 4.75 38.28 43.52 31.43
PyramidKV 18.83 14.50 4140 3575 28.89 17.40 22.05 21.14 24.97 60.50 80.62 3733 2.50 450 38.51 43.46 30.77
LAQ 19.03 15.61 40.93 34.10 30.23 18.99 25.75 21.55 25.49 64.50 79.73 38.66 3.50 4.33 40.35 45.65 31.78
LookaheadKV 18.18 16.08 42.13 35.45 30.13 19.89 26.34 21.23 25.63 64.00 80.90 39.52 3.00 4.70 38.06 44.13 31.84
Table 10: LongBench evaluation results for Qwen3-1.7B
LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lcc RB-P i
FullKV 1894 2478 46.15 39.15 33.11 19.03 30.33 23.06 25.18 7400 8521 42.87 0.00 94.50 46.82 40.24 40.21
KV Cache Size = 64
StreamingLLM 1225 16.83 2038 22.62 24.61 7.26 11.43 18.96 12.12 39.00 66.48 35.14 0.00 12.50 42.95 36.90 23.71
SnapKV 13.01 17.50 3047 28.14 25.68 8.63 11.89 19.77 11.03 37.50 78.59 37.62 0.00 54.50 44.42 36.92 28.48
PyramidKV 1320 1631 27.19 2383 25.80 6.95 11.23 19.12 10.72 37.00 73.99 35.99 0.00 43.00 43.01 35.97 26.46
LA 16.64 1699 43.66 34.19 31.41 14.00 16.09 20.94 1376 48.00 83.63 38.89 0.00 70.75 42.51 39.08 33.16
LookaheadKV 19.12 21.73 4425 37.18 33.01 15.98 21.42 22.53 19.73 56.50 85.56 41.72 0.00 89.00 44.58 38.05 36.90
KV Cache Size = 128
StreamingLLM 13.58 16.57 22.67 22.16 24.16 7.54 13.01 19.26 1480 4450 70.96 37.72 0.00 12.50 46.07 38.30 25.24
SnapKV 1594 1873 38.02 3335 28.02 11.74 15.40 20.80 15.71 47.00 81.65 38.77 0.00 86.00 45.47 38.55 33.45
PyramidKV 1413 18.14 3549 3097 26.99 10.53 14.27 20.50 1429 4550 78.72 38.06 0.00 78.00 44.05 37.95 31.72
LA 1838 21.08 4504 38.04 33.52 15.36 20.17 2270 18.78 62.50 8521 41.79 0.14 92.00 42.94 40.84 37.41
LookaheadKV 19.46 2327 4459 378l 33.82 17.97 23.71 23.12 21.70 6550 85.56 42.38 0.12 92.75 44.80 38.61 38.45
KV Cache Size = 256
StreamingLLM 1341 17.66 22.58 23.72 23.88 7.65 16.15 19.24 17.97 4750 7622 40.17 0.00 13.50 46.27 37.64 26.47
SnapKV 17.52 2072 3973 34.12 30.25 14.94 19.06 21.99 19.43 61.00 83.82 38.53 0.00 94.50 44.98 39.87 36.28
PyramidKV 17.07 19.74 38.19 33.18 29.09 13.95 17.92 21.26 17.67 56.00 8147 39.26 0.00 91.50 45.19 38.23 34.98
LA 1874 2171 4585 3793 33.55 16.16 22.63 23.05 21.51 70.00 8521 4273 0.17 95.00 41.83 41.63 38.61
LookaheadKV 19.60 2430 4569 388l 34.02 17.91 25.51 23.11 23.15 70.00 8537 42.16 0.12 91.00 45.29 38.98 39.06
KV Cache Size = 512
StreamingLLM 13.92 1840 25.10 2491 2477 7.67 20.38 19.63 20.78 61.00 81.80 40.38 0.00 12.50 47.28 38.62 28.57
SnapKV 1932 2222 4407 3625 30.04 15.66 2220 22.15 21.73 70.50 84.81 40.54 0.14 94.50 46.75 40.26 38.20
PyramidKV 17.95 20.69 4143 36.22 29.68 14.96 20.39 21.52 20.01 66.00 84.65 40.16 0.14 93.50 45.61 38.83 36.98
LAQ 16.99 22.67 4697 38.10 33.62 16.38 24.58 23.39 2299 7150 8471 42.25 0.00 94.00 40.85 40.30 38.71
LookaheadKV 19.04 24.66 44.68 39.04 33.66 17.64 27.46 23.31 24.17 73.00 8537 42.87 0.17 94.00 45.27 39.25 39.60
KV Cache Size = 1024
StreamingLLM 15.32 18.63 2690 27.88 26.44 8.47 23.56 20.34 2382 6550 84.00 41.69 0.00 18.00 46.93 39.71 30.45
SnapKV 18.68 24.05 4425 3857 30.72 16.63 2497 2228 2362 7150 85.26 4043 0.50 95.00 46.39 39.03 38.87
PyramidKV 1876 23.44 4347 36.96 29.98 16.21 23.08 2221 22.68 7250 84.76 40.19 0.50 95.50 46.89 39.98 38.57
LA 16.76 22.60 4545 38.65 33.44 17.15 26.68 2332 24.11 73.00 84.71 43.11 0.00 95.00 39.42 41.02 39.03
LookaheadKV 1920 25.15 4448 39.09 32.85 18.39 29.18 23.24 25.14 73.00 84.84 43.19 0.17 95.00 46.24 39.86 39.94
KV Cache Size = 2048
StreamingLLM 16.32 22.12 2996 31.34 28.13 9.37 26.32 20.96 24.58 68.50 84.59 42.84 0.00 31.00 46.63 39.92 32.66
SnapKV 19.44 2489 4518 38.97 32.65 17.32 27.89 22.60 24.81 7250 8521 42.37 0.17 95.00 46.50 40.43 39.75
PyramidKV 19.52 2401 44.53 39.48 31.94 16.37 26.16 22.68 24.68 7200 84.84 41.79 0.50 95.00 46.57 40.12 39.39
LA 1642 2265 4581 38.66 33.44 17.38 28.79 23.41 25.14 73.00 84.71 42.94 0.00 95.00 43.38 40.30 39.44
LookaheadKV 19.08 25.15 4504 38.79 33.00 17.85 29.86 23.00 2526 7350 85.21 43.06 0.17 94.00 46.62 40.53 40.01

20

Under review as a conference paper at ICLR 2026

Table 11: LongBench evaluation results for Llama3.2-3B

LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Ave
NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lcc RB-P =
FullKV 2745 4330 5445 55.63 43.43 31.61 3224 24.61 25.00 73.00 88.76 43.65 0.75 96.50 64.29 61.39 47.88
KV Cache Size = 64
StreamingLLM 1246 23.96 2593 38.56 33.40 19.47 13.74 19.71 13.04 3950 7548 3433 0.50 64.50 51.42 48.46 32.15
SnapKV 1528 2503 31.61 40.00 34.95 18.83 12.88 19.78 1249 4050 75.62 33.69 1.00 69.00 51.48 47.38 33.10
PyramidKV 1550 24.84 3433 40.70 35.07 19.39 13.48 19.85 13.03 41.50 76.69 33.95 1.50 73.00 52.98 47.77 33.97
LAQ 16.55 30.74 46.21 40.58 38.10 18.35 14.96 20.74 1448 4350 7125 34.40 1.50 81.25 53.45 48.45 3591
LookaheadKV 2049 37.99 5137 5471 4230 30.90 22.10 2298 18.71 58.50 88.85 39.71 1.00 92.00 55.89 52.33 43.11
KV Cache Size = 128
StreamingLLM 15.69 23.56 26.02 38.03 32.38 18.86 14.79 19.67 1520 4550 7832 3732 0.50 65.50 55.83 51.76 33.68
SnapKV 19.56 2948 4355 4981 37.95 25.99 16.27 21.17 16.16 49.50 86.31 38.10 1.50 95.00 58.75 53.78 40.18
PyramidKV 1588 27.32 3851 40.25 33.56 2045 14.72 20.88 14.65 4500 76.75 35.06 1.50 89.50 55.58 49.49 36.19
LA 2144 3782 5326 5498 42.75 32.08 20.44 23.69 1886 60.50 87.55 40.48 2.50 93.00 60.85 57.87 44.25
LookaheadKV 25.17 40.13 5228 55.10 43.47 31.38 24.83 24.46 21.57 67.00 88.85 41.37 1.00 96.50 61.00 57.77 45.74
KV Cache Size = 256
StreamingLLM 15.66 25.74 2899 37.34 32.47 19.02 17.65 20.12 18.02 4950 81.97 38.87 1.00 66.50 59.45 55.05 35.46
SnapKV 24.64 3580 47.67 5445 40.78 29.60 19.84 2275 19.68 60.00 87.64 39.46 1.00 96.00 62.57 58.24 43.76
PyramidKV 1831 3130 44.14 51.08 36.87 25.14 18.68 22.04 1778 56.50 85.53 38.77 1.50 9550 59.16 53.92 41.01
LA 2688 4094 5382 5576 43.22 31.53 23.34 24.03 21.57 6850 87.72 41.61 2.00 93.50 62.60 62.03 46.19
LookaheadKV 2625 41.08 53.03 55.21 43.28 31.99 27.13 25.09 2346 7150 88.76 41.89 1.00 96.50 63.42 60.09 46.86
KV Cache Size = 512
StreamingLLM 18.02 27.64 30.11 39.03 3332 20.70 2147 20.39 2196 60.50 85.45 40.27 0.50 59.50 62.54 57.33 37.42
SnapKV 2527 39.10 5145 5422 4221 32.86 23.30 23.53 2233 70.00 88.76 40.24 1.00 96.50 64.28 60.45 45.97
PyramidKV 2193 3453 4940 53.99 40.38 30.21 21.87 2272 2077 67.00 88.24 40.05 1.00 96.50 61.47 57.70 44.24
LA 2650 4256 5388 5524 43.25 32.14 25.92 24.46 2342 73.00 87.72 42.94 150 93.50 62.99 61.47 46.91
LookaheadKV 26.86 4197 53.10 55.59 43.97 32.09 29.57 25.35 24.61 72.00 88.76 42.85 1.50 96.50 63.83 60.96 47.47
KV Cache Size = 1024
StreamingLLM 20.48 30.08 3230 42.20 34.23 20.65 24.81 20.84 2419 6450 87.39 40.95 1.00 47.00 64.74 59.17 38.41
SnapKV 2591 41.72 5226 56.50 43.15 32.08 26.69 24.53 2402 7150 88.76 41.77 1.00 96.50 64.46 61.91 47.05
PyramidKV 2581 3940 5189 5326 42.26 32.08 25.11 23.72 23.61 70.00 88.76 41.10 1.00 96.50 63.93 61.88 46.27
LA 2740 4393 5430 5595 43.62 31.66 28.18 25.16 2464 73.00 87.77 43.33 1.75 93.50 62.54 62.00 47.42
LookaheadKV 2747 4245 5370 55.64 43.85 32.40 30.68 24.98 25.21 73.00 88.76 42.96 1.00 96.50 64.61 61.89 47.82
KV Cache Size = 2048
StreamingLLM 20.87 34.01 3639 44.11 37.06 21.93 28.06 21.64 25.16 6750 88.39 41.55 0.50 52.00 63.58 60.98 40.23
SnapKV 26.80 43.04 5350 5554 44.01 33.33 29.49 24.64 2486 73.00 88.76 41.94 1.25 96.50 64.10 62.08 47.68
PyramidKV 2574 4242 5391 55.34 43.12 33.06 27.70 24.21 2474 7200 88.76 41.54 125 9650 63.81 61.78 47.24
LA 2721 4352 5362 55.67 43.89 31.73 30.42 24.93 2504 73.00 87.72 4377 1.50 93.25 63.02 61.92 47.51
LookaheadKV 2748 42.86 53.71 55.31 43.82 3242 31.79 24.75 2533 73.00 88.76 43.34 125 96.50 64.18 62.23 47.92
Table 12: LongBench evaluation results for Qwen3-4B
LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
) NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lcc RB-P :
FullKV 2745 4330 5445 55.63 4343 31.61 3224 24.61 2500 73.00 88.76 43.65 0.75 96.50 64.29 61.39 47.88
KV Cache Size = 64
StreamingLLM 12.46 23.96 2593 38.56 33.40 19.47 13.74 19.71 13.04 3950 7548 3433 0.50 64.50 51.42 48.46 32.15
SnapKV 1528 25.03 31.61 40.00 34.95 18.83 12.88 19.78 1249 4050 75.62 33.69 1.00 69.00 51.48 47.38 33.10
PyramidKV 1550 24.84 3433 40.70 35.07 19.39 13.48 19.85 13.03 41.50 76.69 33.95 1.50 73.00 52.98 47.77 33.97
LAQ 16.55 30.74 46.21 40.58 38.10 18.35 14.96 20.74 1448 4350 7125 34.40 1.50 81.25 53.45 48.45 3591
LookaheadKV 2049 37.99 5137 5471 4230 30.90 22.10 22.98 18.71 5850 8885 39.71 1.00 92.00 55.89 52.33 43.11
KV Cache Size = 128
StreamingLLM 15.69 23.56 26.02 38.03 32.38 18.86 14.79 19.67 1520 4550 7832 37.32 0.50 65.50 55.83 51.76 33.68
SnapKV 19.56 2948 4355 4981 37.95 25.99 16.27 21.17 16.16 49.50 86.31 38.10 1.50 95.00 58.75 53.78 40.18
PyramidKV 1588 27.32 3851 40.25 33.56 2045 14.72 20.88 14.65 45.00 76.75 35.06 1.50 89.50 55.58 49.49 36.19
LAQ 2144 37.82 5326 5498 42.75 32.08 20.44 23.69 1886 60.50 87.55 40.48 2.50 93.00 60.85 57.87 44.25
LookaheadKV 25.17 40.13 5228 55.10 43.47 31.38 24.83 24.46 21.57 67.00 88.85 41.37 1.00 96.50 61.00 57.77 45.74
KV Cache Size = 256
StreamingLLM 15.66 25.74 2899 37.34 3247 19.02 17.65 20.12 18.02 4950 8197 38.87 1.00 66.50 59.45 55.05 35.46
SnapKV 2464 3580 47.67 5445 40.78 29.60 19.84 2275 19.68 60.00 87.64 39.46 1.00 96.00 62.57 58.24 43.76
PyramidKV 1831 3130 44.14 51.08 36.87 25.14 18.68 22.04 1778 56.50 85.53 38.77 1,50 95.50 59.16 53.92 41.01
LAQ 2688 4094 5382 5576 4322 31.53 23.34 24.03 21.57 6850 87.72 41.61 2.00 93.50 62.60 62.03 46.19
LookaheadKV 2625 41.08 53.03 55.21 43.28 31.99 27.13 25.09 2346 7150 88.76 41.89 1.00 96.50 63.42 60.09 46.85
KV Cache Size = 512
StreamingLLM 18.02 27.64 30.11 39.03 3332 20.70 21.47 20.39 2196 60.50 8545 40.27 0.50 59.50 62.54 57.33 37.42
SnapKV 2527 39.10 5145 5422 4221 32.86 23.30 23.53 2233 70.00 88.76 40.24 1.00 96.50 64.28 60.45 45.97
PyramidKV 2193 3453 4940 53.99 40.38 30.21 21.87 2272 2077 67.00 88.24 40.05 1.00 96.50 61.47 57.70 44.24
LAQ 26.50 4256 5388 5524 43.25 32.14 25.92 24.46 2342 7300 87.72 4294 1.50 93.50 62.99 61.47 46.91
LookaheadKV 26.86 4197 53.10 55.59 43.97 32.09 29.57 25.35 24.61 7200 88.76 42.85 1.50 96.50 63.83 60.96 47.47
KV Cache Size = 1024
StreamingLLM 2048 30.08 3230 4220 34.23 20.65 24.81 20.84 2419 6450 87.39 40.95 1 47.00 64.74 59.17 38.41
SnapKV 2591 41.72 5226 56.50 43.15 32.08 26.69 24.53 24.02 7150 88.76 41.77 1.00 9650 64.46 61.91 47.05
PyramidKV 25.81 3940 5189 5326 42.26 32.08 25.11 23.72 23.61 70.00 88.76 41.10 1.00 96.50 63.93 61.88 46.27
LAQ 2740 4393 5430 5595 43.62 31.66 28.18 25.16 2464 73.00 87.77 43.33 1.75 9350 62.54 62.00 47.42
LookaheadKV 2747 4245 5370 55.64 43.85 32.40 30.68 24.98 25.21 73.00 88.76 42.96 1.00 96.50 64.61 61.89 47.82
KV Cache Size = 2048
StreamingLLM 20.87 34.01 3639 44.11 37.06 21.93 28.06 21.64 25.16 67.50 88.39 41.55 0.50 52.00 63.58 60.98 40.23
SnapKV 26.80 43.04 5350 5554 44.01 33.33 29.49 24.64 2486 73.00 88.76 41.94 125 96.50 64.10 62.08 47.68
PyramidKV 2574 4242 5391 55.34 43.12 33.06 2770 24.21 2474 72.00 88.76 41.54 1.25 96.50 63.81 61.78 47.24
LA 2721 4352 5362 55.67 43.89 31.73 30.42 24.93 25.04 73.00 87.72 43.77 1.50 93.25 63.02 61.92 47.51
LookaheadKV 27.48 4286 53.71 5531 43.82 3242 31.79 24.75 2533 73.00 88.76 43.34 1.25 96.50 64.18 62.23 47.92

21

Under review as a conference paper at ICLR 2026

Table 13: LongBench evaluation results for Llama3.1-8B

LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Ave
) NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lec RB-P
FullKV 31.63 46.66 5693 58.10 48.50 31.57 34.46 25.28 26.98 7250 91.65 43.79 6.64 99.50 65.12 58.78 49.88
KV Cache Size = 64
StreamingLLM 25.75 21.75 3122 49.09 42.11 23.98 17.29 20.99 16.04 3850 8281 34.50 7.50 99.50 54.27 48.14 38.34
SnapKV 2737 2499 41.77 5427 45.27 27.52 16.75 21.73 1632 39.00 86.32 36.58 7.50 98.50 55.57 48.07 40.47
PyramidKV 2425 2287 41.03 53.07 43.55 26.36 16.46 21.52 15.61 3850 81.95 36.68 7.50 99.50 54.40 47.20 39.40
LAQ 27.62 3371 5235 55.85 48.92 28.06 19.74 23.19 1890 46.00 88.29 40.62 6.83 100.00 55.55 51.49 43.57
SpecKV 2487 2657 5122 5529 46.57 2542 19.78 2229 1920 3350 85.12 39.14 850 97.00 57.78 57.19 41.84
LookaheadKV 30.62 4146 5577 5642 48.56 30.30 23.54 24.08 21.23 60.50 91.62 42.56 7.50 99.50 58.74 53.86 46.64
KV Cache Size = 128
StreamingLLM 2495 21.50 32.56 50.67 42.89 24.31 18.49 21.25 18.19 40.50 85.57 38.28 7.50 99.50 59.03 49.72 39.68
SnapKV 29.13 28.06 51.23 56.79 4530 27.81 19.99 23.03 1973 46.00 89.72 40.44 7.50 99.50 59.50 52.19 43.50
PyramidKV 2770 28.86 52.00 56.76 46.11 28.13 19.86 22.81 20.03 4450 8841 39.73 7.50 99.50 59.84 51.96 43.36
LAQ 3048 3831 55.73 57.50 49.13 29.67 2242 24.20 21.59 60.50 92.09 41.04 7.25 99.50 60.54 55.83 46.61
SpecKV 2922 29.12 5405 56.54 46.30 29.90 22.65 23.18 21.25 52.00 90.02 42.14 8.83 99.50 61.11 61.38 4545
LookaheadKV 31.32 4285 56.78 57.04 47.44 30.82 25.18 24.33 23.09 6550 92.24 42.96 7.50 99.50 61.75 55.29 47.72
KV Cache Size = 256
StreamingLLM 25.96 24.08 33.73 50.56 42.61 23.49 20.86 21.60 20.64 46.00 87.50 41.09 7.50 99.50 61.19 51.53 41.12
SnapKV 27.96 3449 5507 57.40 46.57 29.50 22.49 23.51 2242 5400 91.10 40.61 7.33 99.50 62.48 55.36 45.61
PyramidKV 28.09 36.64 5586 57.68 46.28 29.56 22.23 23.86 22.53 56.50 91.56 41.23 7.33 99.50 62.47 53.92 45.95
LAQ 31.03 4397 5593 5778 49.42 30.42 24.48 24.60 2329 68.00 92.20 42.61 7.08 100.00 62.70 58.09 48.23
SpecKV 28.66 36.19 5726 58.17 48.51 30.85 24.83 24.60 2332 6100 91.16 42.46 833 9950 64.21 63.18 47.64
LookaheadKV 31.96 44.01 5680 57.99 4741 31.46 27.26 24.56 2459 69.00 92.55 42.93 7.33 100.00 62.81 57.02 48.61
KV Cache Size = 512
StreamingLLM 27.20 26.66 34.51 50.04 42.70 23.35 23.33 21.35 23.51 5750 87.68 41.87 7.50 97.50 62.34 53.63 42.54
SnapKV 30.08 4124 56.84 56.92 47.75 29.67 24.58 24.47 24.23 64.00 9235 41.38 7.17 99.50 64.72 57.12 47.63
PyramidKV 29.50 4046 5647 57.30 47.55 30.34 24.26 24.46 24.00 66.50 91.32 41.64 720 99.50 63.65 55.49 47.48
LAQ 31.64 4555 5521 57.73 49.60 30.99 26.67 24.79 24.85 71.00 9233 43.06 6.92 100.00 62.16 58.45 48.81
SpecKV 31.12 4377 5722 5751 49.32 31.06 26.34 24.61 2490 6500 92.13 4332 7.00 100.00 65.31 61.89 48.78
LookaheadKV 31.39 44.92 5756 5856 47.72 30.82 29.24 24.82 25.83 7250 91.92 43.39 7.08 100.00 64.87 58.36 49.31
KV Cache Size = 1024
StreamingLLM 27.23 30.80 36.64 50.59 43.26 23.45 25.73 21.67 2549 6350 88.84 42.56 7.50 93.50 63.15 55.73 43.73
SnapKV 29.64 4460 5730 57.62 4831 31.18 27.57 24.17 2584 69.50 92.04 4278 7.08 99.50 64.57 58.46 48.76
PyramidKV 30.79 4491 56.65 58.13 48.17 30.56 26.65 24.53 25.88 68.00 91.78 4220 6.83 99.50 64.41 57.77 48.55
LAQ 31.63 4563 5502 57.70 50.27 31.28 28.82 25.10 26.18 7250 9233 4331 6.50 100.00 62.75 59.04 49.25
SpecKV 31.59 4544 5798 5751 49.16 31.95 28.67 24.95 25.77 67.50 92.23 43.94 6.00 99.50 65.21 62.30 49.36
LookaheadKV 31.14 46.04 5777 5822 48.43 30.72 30.75 25.31 26.66 7250 91.92 43.39 7.08 100.00 64.87 58.36 49.57
KV Cache Size = 2048
StreamingLLM 28.53 37.02 39.90 51.22 45.83 23.69 28.41 21.91 2650 67.50 90.98 42.53 7.25 90.50 64.88 57.52 45.26
SnapKV 3122 46.14 5694 58.12 48.21 31.74 30.24 24.81 26.78 7150 91.49 43.16 6.38 99.50 64.98 58.80 49.38
PyramidKV 31.37 46.01 56.61 58.02 48.21 31.50 29.73 24.70 26.57 7150 91.65 42.83 6.64 99.50 64.94 58.32 49.26
LAQ 3130 4569 55.62 57.61 49.91 31.33 30.96 25.51 26.77 7250 9233 43.54 6.83 100.00 63.77 59.28 49.56
SpecKV 31.88 46.64 5739 5797 48.80 3272 30.96 25.38 2682 71.00 91.48 43.65 5.88 99.50 65.79 61.16 49.81
LookaheadKV 31.01 46.37 5724 5815 48.31 31.12 32.56 2522 27.07 7250 9148 43.56 6.38 99.50 64.96 59.13 49.66
Table 14: LongBench evaluation results for Qwen3-8B
LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg
NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Leec RB-P .
FullKV 26.04 4776 5333 59.23 43.37 36.05 33.66 24.05 2479 7150 90.21 44.43 2.00 100.00 69.39 65.57 49.46
KV Cache Size = 64
StreamingLLM 16.62 25.37 2556 40.57 33.95 18.48 13.97 18.98 1240 3950 80.65 35.10 1.50 69.00 59.25 53.13 34.00
SnapKV 1587 28.01 3593 4197 33.93 21.23 14.24 19.01 1220 42.00 80.85 32.86 3.50 69.00 58.23 51.93 35.05
PyramidKV 1545 2742 36.67 4279 34.00 19.69 14.67 18.95 12.89 43.00 80.62 33.89 2.00 71.50 58.34 5226 3526
LAQ 1622 3211 4502 4235 37.53 21.07 15.71 19.56 1347 4400 76.64 35.15 3.50 83.50 59.06 52.04 37.31
SpecKV 1530 27.73 4479 37.60 36.56 12.94 16.55 19.59 14.67 3200 58.10 32.81 450 7450 60.22 54.75 3391
LookaheadKV 22.11 43.13 5185 59.01 42.50 34.34 22.66 21.61 1849 6450 88.75 39.48 1.50 67.75 62.78 56.07 43.53
KV Cache Size = 128
StreamingLLM 17.65 26.69 2840 41.05 33.46 20.82 15.72 19.15 15.14 4300 8257 38.44 1.50 70.00 62.86 56.69 35.82
SnapKV 19.14 32.65 4599 54.81 38.95 26.59 17.66 20.83 16.04 4950 87.10 38.90 3.50 99.50 64.62 58.29 42.13
PyramidKV 1557 30.19 41.84 46.01 35.73 19.57 16.51 19.67 1486 47.00 83.51 35.56 250 92.00 62.14 53.07 38.48
LAQ 2274 4215 5355 57.89 42.84 36.74 21.33 2225 1834 6450 89.55 40.93 3.00 100.00 66.74 61.70 46.52
SpecKV 23.03 37.14 5358 56.77 42.24 31.82 21.33 22.86 19.04 60.00 88.31 41.50 3.50 100.00 66.82 61.96 45.62
LookaheadKV 26.06 44.30 5324 5878 42.79 35.89 2529 22.95 21.13 66.50 88.95 41.64 3.50 99.50 65.95 62.88 47.46
KV Cache Size = 256
StreamingLLM 18.18 28.53 28.52 4281 33.58 21.34 18.63 19.20 1776 48.00 85.58 40.08 1.00 69.00 6550 59.41 37.32
SnapKV 23.03 3832 51.04 5736 40.67 32.82 21.51 21.89 18.97 59.50 89.46 41.06 2.00 100.00 67.62 61.88 45.45
PyramidKV 18.47 3487 4744 55.68 37.89 26.67 20.43 20.92 17.43 5850 85.20 38.98 3.50 100.00 65.51 57.32 43.05
LAQ 26.00 4544 53.84 57.00 43.53 36.62 24.22 23.38 20.38 70.00 89.05 42.47 3.00 100.00 68.17 64.03 47.95
SpecKV 2258 41.09 53.89 59.85 42.42 34.50 24.53 23.64 21.25 68.00 88.13 43.12 3.00 100.00 68.39 64.40 47.42
LookaheadKV 2588 4540 52.68 5847 44.05 36.13 271.77 23.71 22.88 69.00 89.05 43.32 2.00 100.00 67.83 64.71 4831
KV Cache Size = 512
StreamingLLM 18.94 30.86 30.21 43.89 33.26 22.51 2224 19.62 21.16 5850 87.48 41.11 2.00 57.00 67.06 61.59 38.59
SnapKV 24.63 4372 5196 5837 42.36 34.04 25.03 22.55 21.66 69.00 89.53 42.06 3.00 100.00 69.37 64.96 47.64
PyramidKV 23.12 4052 5143 5757 40.89 32.85 23.85 21.92 19.70 68.50 89.55 40.89 3.00 100.00 67.47 61.73 46.44
LAQ 2734 4698 5370 5731 4335 37.64 26.93 23.67 22.19 7250 88.96 43.81 3.00 100.00 68.23 64.71 48.77
SpecKV 2422 4565 5434 60.53 43.85 35.26 27.21 24.04 22.53 70.50 90.20 43.71 3.50 100.00 69.25 65.85 48.79
LookaheadKV 2533 4649 5204 5932 43.09 36.92 29.56 23.80 24.01 71.50 9021 44.20 2.00 100.00 68.88 65.58 48.93
KV Cache Size = 1024
StreamingLLM 2125 32.82 31.44 4594 34.38 23.34 25.73 20.25 2350 62.00 88.71 41.18 0.50 44.00 68.39 63.65 39.19
SnapKV 2426 46.13 5248 5852 42.66 36.89 28.39 23.61 23.33 69.00 89.55 43.13 2.00 100.00 69.05 66.27 48.45
PyramidKV 2377 4289 53.01 58.86 4232 35.47 27.32 23.07 2272 7100 89.95 42.56 2.00 100.0 68.81 64.25 48.00
LAQ 26.11 4727 5345 5701 43.52 37.26 29.50 23.88 23.47 71.50 89.63 44.00 2.00 100.00 67.94 64.83 48.84
SpecKV 2498 4656 5407 59.04 43.37 34.12 29.32 24.18 23.68 71.00 90.11 44.56 3.00 100.00 69.09 66.53 48.98
LookaheadKV 2536 47.23 5256 59.30 43.25 36.39 31.65 23.72 24.61 71.00 9021 44.69 0.50 100.00 68.93 65.22 49.04
KV Cache Size = 2048
StreamingLLM 21.73 38.54 38.02 47.96 36.78 25.53 28.69 21.47 24.11 65.00 90.30 42.85 1.00 48.50 68.37 64.63 41.47
SnapKV 2555 4752 5320 5873 42.70 36.08 30.64 23.78 2440 7150 90.21 43.27 1.10 100.00 69.33 65.36 48.96
PyramidKV 2547 46.69 53.21 58.41 42,90 36.61 29.41 23.61 24.18 71.50 90.05 4290 1.10 100.00 69.28 65.21 48.78
LAQ 2494 4722 5371 5772 4345 37.40 31.24 24.03 24.51 7250 90.13 4454 2.00 100.00 68.29 64.68 49.15
SpecKV 2486 47.00 53.80 6143 43.74 34.94 31.38 23.98 24.57 70.50 91.11 44.46 0.00 100.00 69.12 65.87 49.17
LookaheadKV 26.76 48.01 5292 5943 43.20 36.21 32.64 23.93 24.93 71.00 9021 44.74 1.00 100.00 69.23 65.01 49.33

22

Under review as a conference paper at ICLR 2026

E.5

RESULTS ON RULER

We report the RULER results across all six models tested, with cache budget settings at 64 (Figure[J))
and 128 (Figure [T0).

Llama3.2-1B-Instruct

Llama3.2-3B-Instruct

Llama3.1-8B-Instruct

..... 90| ...,
of Tt T e o T
....................... 80 -
o 60 [o 80
S S 70 S ’\\,
B0 7 %7
=] o 60 __ S 60
2 40 \\ 3 El ’\—_.\
z @ 50 950
830 ____' g |l .| ¥ B—
Lo i fn
10| o El] R G— 30 _
20 ——t 20
7 B T6 32 0 0 T6 R 0 g T6 R
Context (x21) Context (x21°) Context (x21°)
Qwen3-1.7B Qwen3-4B Qwen3-8B
o e o .
o o o
S s S
& & &
-4 60 o 60 o 60
| | E|
=} =] =]
o o o
Y 40 2 40 240
I o e
g \\ g g
<30 < \ 2,
0
Z B T6 2 7 B T6 E7) 7 B T6 E?)
Context (x21°) Context (x21°) Context (x21°)
[—-— Ours —— LAQ —— SnapkKV ~ —— PyramidKV —— SpecKV - FullkV
Figure 9: Full RULER results across context lengths (budget = 64)
Llama3.2-1B-Instruct Llama3.2-3B-Instruct Llama3.1-8B-Instruct
....... E Tt
of Tt e Lt SR LLL T PR,
S A R Rt gl T o
Ltncj § g 80 \\
x 50 « 70 \/\ <
g e] -
240 2 z 70
30 g g
o —_— o o
[[@ 60
22 . z
10 — sl T ————,
40
Z B 16 32 7 g 16 2 7 g 16 32
Context (x21) Context (x21) Context (x210)
Qwen3-1.7B Qwen3-4B Qwen3-8B
of .| [[
w e 80 80
o @ |)
570 5 s
] & &
o 60 o 60 « 60
=] =] |
2% z z
%40 “%’,40 %40
20 2 H
20 \ 20 20
10 - \
7 B T6 32 0 8 T6 32 0 8 T6 32
Context (x21) Context (x210) Context (x210)
[—— Ours —— LAQ —— SnapKV —— PyramidkV —— SpecKV - FuIIKV]

Figure 10: Full RULER results across context lengths (budget = 128)

23

Under review as a conference paper at ICLR 2026

E.6 ADDITIONAL EFFICIENCY ANALYSIS

We show the full results of the latency analysis that were omitted in the main paper due to space
limitation in this section. Note that the empirical TTFT overheads for some methods can be larger
than theoretical estimations. These are probably due to a combination of measurement noise and
inefficient implementation of these methods in KVCache-Factory or their official implementation.
Better implementations may reduce these overheads significantly, more in line with the theoretical

cost.

Table 15: Theoretical and Practical Analysis across various context lengths and methods.

Theoretical Cost

Empirical Cost

Compute Memory Traffic TTFT TTFT TTFT TTFT
Context Length Method (TFLOPs) (GB) (ms) Overhead (ms) (ms) Overhead (ms)
Forward Pass Only 60 13 113 N/A 130 N/A
LookaheadKV (ours) 60 13 114 0.92 141 11.38
4096 SnapKV 60 13 113 0.01 143 13.14
SpecKV 70 7 165 52.10 223 92.42
LAQ 61 444 347 233.81 637 506.58
Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 10.88
8192 SnapKV 136 13 257 0.01 311 20.17
SpecKV 159 81 337 79.53 411 120.51
LAQ 137 445 492 234.59 800 509.38
Forward Pass Only 336 13 635 N/A 658 N/A
LookaheadKV (ours) 337 13 636 1.27 677 18.50
16384 SnapKV 336 13 635 0.01 695 37.12
SpecKV 398 89 792 157.05 866 207.31
LAQ 337 447 871 236.15 1182 523.54
Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38.04
32768 SnapKV 928 13 1754 0.01 1838 77.67
SpecKV 1115 106 2156 402.80 2263 502.87
LAQ 930 451 1993 239.26 2314 553.68

24

Under review as a conference paper at ICLR 2026

F HYPER-PARAMETERS

Training hyper-parameters. Learning rate was searched for Llama and Qwen model family
among [5 x 107°, 1 x 1074, 2 x 1074, 1 x 10~2]. The final hyper-parameters for all experiments
are shown in Table[I6]

Table 16: Training hyperparameters.

Parameters Values

Optimizer Adam

B, B2 0.9,0.95

Effective Batch Size 32

Drop-out (p) 0.0

Max Sequence Length 16384 (prompt length) + 512 (response length)
Train Iters 7600

Learning rate 1 x 1073 (for Llama), 2 x 10~* (for Qwen)
Schedule Cosine

Warmup steps 2%

Min LR 0.0

Gradient clipping 1.0

Eviction hyper-parameters. We use the implementations in KVCache-Factory or their official
implementations (SpecKV) for all baseline methods, except for LAQ which we re-implement our-
selves. Following prior works (Li et al., [2024; |Cai et al., 2024} |Galim et al., [2025), we use stan-
dard configuration settings for all baseline methods, including an observation window size of 32,
maxpooling kernel size of 7, and mean reduction for GQA compatibility (Feng et al.| [2024). For
LookaheadKV we use the same settings, except we do not use window size, as our method does
not train with the suffix window for prediction. Further, since our lookahead size njookahead 15 32,
we set the maximum generation limit of LAQ and SpecKV to 32 tokens so that the methods can be
compared using the same number of draft tokens.

G DATASETS, BENCHMARKS, AND SOFTWARE

Software Our source code is available in the supplementary, and our implementation is built on
KVCache-Factory.

Training Dataset Our training dataset mixture consist of random samples from publicly available
datasets: 50K long_sft subset of ChatQA2-Long-SFT-data, 20K subset of tulu-3-sft-olmo-2-mixture,
7K samples from The Stack, and 3K samples from MetaMathFewshot, HellaSwag_DPO_Fewshot,
and ARC_DPO _Fewshot, respectively.

Evaluation Benchmarks We used LongBench dataset as fetched and processed by KVCache-
Factory, see HF Dataset for the official source. For RULER, we used RULER Github. For LongProc,
we used LongProc Github.

H LLM USAGE

LLM assistants were used to refine the wording of selected sentences, while the majority of the text
was written by human. All LLM-generated text was carefully inspected to ensure that it contained
no harmful or controversial content. Additionally, we used LLMs to help in finding some of the
related literature discussed in the paper.

25

https://github.com/Zefan-Cai/KVCache-Factory
https://huggingface.co/datasets/nvidia/ChatQA2-Long-SFT-data
https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture
https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/abacusai/MetaMathFewshot
https://huggingface.co/datasets/abacusai/HellaSwag_DPO_FewShot
https://huggingface.co/datasets/abacusai/ARC_DPO_FewShot
https://huggingface.co/datasets/zai-org/LongBench
https://github.com/NVIDIA/RULER
https://github.com/princeton-pli/LongProc

	Introduction
	Background
	Proposed Method: LookaheadKV
	Main Components
	LookaheadKV Training

	Experiments
	Training
	Evaluation Setup
	Performance Results

	Analysis
	Efficiency Comparison
	Effect of Stochastic Decoding
	Ablation on Trainable Modules
	Robustness to Training Context Length

	Related Work
	Conclusion and Limitation
	Reproducibility Statement
	Pseudo-code
	Theoretical Estimation Details
	Implementation Optimization
	Need for Data Generation
	Additional Results
	RULER Evaluation on Longer Contexts
	Effect of combining suffix window
	Discussion of Generation Stochasticity in LookaheadKV Training
	Results on LongBench
	Results on RULER
	Additional Efficiency Analysis

	Hyper-Parameters
	Datasets, Benchmarks, and Software
	LLM Usage

