Under review as a conference paper at ICLR 2026

LOOKAHEADKYV: FAST AND ACCURATE KV CACHE
EVICTION BY GLIMPSING INTO THE FUTURE WITHOUT
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based large language models (LLMs) rely on key—value (KV)
caching to avoid redundant computation during autoregressive inference. While
this mechanism greatly improves efficiency, the cache size grows linearly with
the input sequence length, quickly becoming a bottleneck for long-context tasks.
Existing solutions mitigate this problem by evicting prompt KV that are deemed
unimportant, guided by estimated importance scores. Notably, a recent line of
work improves eviction quality by “glimpsing into the future”, in which a low-cost
draft generator first produces a surrogate response that mimics the target model’s
true response, which is subsequently used to estimate the importance scores of
cached KV. In this paper, we propose LookaheadKV, a lightweight eviction frame-
work that leverages the strength of surrogate future response without the need
for costly draft generation. LookaheadKV augments transformer layers with
parameter-efficient modules trained to predict true importance scores with high
accuracy. Our design ensures negligible runtime overhead comparable to existing
inexpensive heuristics, while achieving accuracy superior to more costly approx-
imation methods. Extensive experiments on long-context understanding bench-
marks, across a wide range of models, demonstrate that our method not only
outperform recent competitive baselines in long-context understanding tasks by
25%, but also reduces the eviction cost by up to 14.5%, leading to significantly
faster time-to-first-token (TTFT).

1 INTRODUCTION

Long context length of Large Language Models (LLMs) is becoming increasingly critical for many
emerging applications: processing long documents (Bai et al.l [2024; Wang et al., 2024a; |Hsieh
et al.,|2024), repository-level code understanding and generation (Luo et al., 2024} |Liu et al.| 2024;
Jimenez et al.| [2024)), in-context learning (Li et al. 2025)), extension to long multi-modal inputs
such as video (Wang et al., 2024b), etc. However, a central challenge in enabling these applications
is that the key-value (KV) cache size grows linearly in sequence length, which rapidly becomes a
bottleneck for inference, restricting scalable deployment of such applications on both mobile devices
and the cloud. For example, even for moderate-sized models, such as LLaMA3.1-70B (Dubey et al.,
2024) in half-precision, storing a single 64K-token sequence already takes up 40GB of memory,
while scaling to 512K tokens requires 160GB, exceeding the memory capacity of high-end consumer
hardware.

A growing line of work addresses this challenge by identifying salient tokens to achieve effective
KV cache eviction without loss of performance (Li et al.,[2024; Cai et al., 2024} |Galim et al., 2025
Wang et al., 2025 |Zhang et al.,[2023)). Early methods often rely on simple heuristics, in which token
importance is estimated based on the self-attention scores of the input tokens. SnapKV (Li et al.,
2024), for instance, leverages the attention weights between the suffix of the input and the preceding
context to estimate the importance of each prompt token. However, investigations in recent studies
(SpecKV (Galim et al., 2025), LAQ (Wang et al.,[2025)) reveal that leveraging the model’s response,
rather than the input suffix, can greatly improve the eviction quality. Furthermore, they show that

Source code to reproduce our results is available, released in supplementary.

Under review as a conference paper at ICLR 2026

Lookahead LoRA on Training

: Trainable
jﬁ 3% Frozen
O o FEE O o Bk OO o .
Input Model Response Input Learnable Input Learned
(pre-generated) Lookahead Tokens Lookahead Tokens

! |

Model Learnable Learned
Response Lookahead Tokens| Lookahead Token;[-E

W

1< Ix]
) e ——— X e EEE
Lookahead LoRA on Decode KL Div. Loss ‘
True importance scores Predicted importance scores Compressed KV
W
(a) LookaheadKYV training (b) LookaheadKV inference

Figure 1: (a) Overview of LookaheadKV training (b) Overview of LookaheadKYV inference.

a low-cost generated draft response, which closely approximates the true response, can serve as a
powerful proxy for accurately estimating the importance scores. For example, SpecKV employs a
smaller auxiliary model to produce draft tokens to approximate the target model’s response, while
Lookahead Q-Cache (LAQ) first applies a cheap KV eviction scheme to the target model, such as
SnapKYV, to obtain draft tokens, which in turn are used to approximate true importance scores.

While these draft-based methods substantially improve

eviction quality, they often struggle with a fundamental s S
trade-off between performance and efficiency, due to the wo i | QASPER score of FullKV: 46.66
need for costly draft token generation. Figure [2] presents ‘
the trade-off between accuracy and overhead of differ-
ent approaches using the QASPER benchmark (Dasigi
et all [2021)) and LLaMA3.1-8B-Instruct (Dubey et al.|
2024) with a cache budget size of 128. While cheaper
approaches like SnapKYV are fast, inducing minimal over- 23

head, they suffer a severe performance degradation un- 00— napiy——— PV

der highly constrained budget settings. On the other .. @ [

hand, LAQ (Wang et al., 2025), a draft-based approach, R eto-BrstToken, TTFT (ms) T
shows impressive results even in extremely limited bud-

get settings. However, it incurs a prohibitive computa- Figure 2: Accuracy-overhead Trade-off
tional overhead by generating an extra draft response, across KV cache eviction methods.
which limits its practicality in latency-sensitive applica-

tions such as mobile devices.

LookaheadKV
40.0 LAQ

A

QASPER Score

To overcome this limitation, we introduce LookaheadKYV, a novel KV cache eviction method that
augments LL.Ms with parameter-efficient modules, capable of accurately predicting future attention
patterns, without the need for costly draft token generation. As shown in Figure 2] our method
effectively overcomes the accuracy-overhead trade-off, achieving minimal performance loss with
negligible overhead. LookaheaedKYV, as depicted in Figure[T] our method employs a set of learnable
special tokens, together with Lookahead LoRA modules, novel low-rank adapters that selectively ac-
tivate for the special tokens, to produce queries that can reliably estimate token-importance scores.
By fine-tuning these modules to predict the true importance scores, LookaheadKV effectively mini-
mizes the quality loss incurred by KV cache eviction with marginal inference overhead.

To rigorously assess the effectiveness of LookaheadKV, we evaluate it on a diverse set of
long-context benchmarks (Bai et al.,|2024; Hsieh et al., [2024; Ye et al.,2025) across multiple models
of varying sizes (Dubey et al., 2024} |[Yang et al.,|2025). Experimental results consistently demon-
strate that LookaheadKV outperforms strong baselines across multiple budgets and context lengths
while incurring significantly less eviction latency.

Under review as a conference paper at ICLR 2026

To summarize, our contributions are as follows:

* We propose LookaheadKYV, the first KV cache eviction framework that employs learnable
lookahead tokens and special LoORA modules to accurately predict the importance scores
from the model’s true response without generating costly approximate response.

* Through extensive experiments, we demonstrate that the proposed approach is effective
and robust across different models and context lengths, and especially under low-budget
settings, making our method particularly useful in resource-constrained environments.

* By conducting a rigorous analysis of eviction latency, both theoretically and empirically,
we demonstrate that our method incurs negligible eviction overhead of less than 2.16% at
32K context length, while being 14.5x faster than draft-based methods.

2 BACKGROUND

The primary objective of the KV cache eviction methods considered in this work, including our
proposed approach, is to accurately estimate the importance score of individual key-value pairs of
prompt tokens using attention weights, in order to guide the eviction process. In the following
section, we formally define the problem of KV cache eviction and briefly discuss how prior methods
have approached it.

KYV cache eviction using importance scores. Let X = {z1, ..., x,, } be an input token sequence
(e.g., a user instruction, part of a code snippet, etc.) and Y = {y1, ..., Yn,, } the model’s generated
response to X . For a given layer and attention head in an LLM, the attention scores of the complete
sequence are given by:

-
Q= [é] W, K= [é] W, A = Softmax(Qj{& >, ey

where X = [X1,...,%X,,] € R"*?and Y = [y1,...,yn,] € R™ < are the hidden states
of the input prompt and model-generated response, respectively. For better readability, we omit
the layer and head index. We define the ground-truth importance scores sgr = [s1, ..., Sy,] Of the
KV cache as the average cross-attention scores between the queries of Y and the keys of X, i.e.,
5; = nim :’2271‘3‘;‘1 A ; ;. Intuitively, these scores quantify the relative contribution of each prompt
token’s key—value pair to the model’s response generation. Based on these scores, the pruned KV
cache can be obtained by retaining a subset of (e.g., TopK) important KV pairs to minimize the
attention output perturbation, such that:

Attn(z, KVorig) =~ Attn(z, KVgr), 2)

where KV, and KVgr are the original and evicted KV cache using the ground-truth importance
scores, respectively.

However, since the model’s true future response is unknown during the prefill phase, such scores
cannot be computed directly. Consequently, prior methods resorted to constructing a surrogate re-

sponse sequence Y = [J1, -, Jnypao] € R™mv X4 to approximate the model’s (partial) future
response and predict the attention pattern:

-~ [X - [X . QK"

Q = [Y] Wq K= [Y] Wk A = Softmax(\/g >, (3)

resulting in the estimated importance Score Vector Sypprox = [51, ..., Sny,], Wwhose entries are computed

as §; = - _1d - ZZL:J;Z:_?W Ai, ;- In short, these methods aim to obtain the estimated score vector
whose ranking is similar to that of the ground-truth, such that the overlap between the retained KV
pairs and KV gr is high. Various approaches have been suggested to approximate the future response

for effective KV cache eviction.

SnapKV. SnapKV (Li et al.,|2024) proposes to use the suffix of input prompt to compute the estimate
of the true future importance scores. Because SnapKV requires only marginal extra computation to
perform eviction, as it uses attention weights that are already computed during the prefill forward
pass, it has widely been adopted as a cheap and effective heuristic for KV cache eviction.

Under review as a conference paper at ICLR 2026

400%

200% % Method) Method
—e— Ours 350% —e— Qurs
;\5 150% —e— SnapKV ;\s 300% —e— SnapKV
= ° —e— SpeckV = —e— SpeckV
2 B 250%
8§ —o— LAQ 8 —e— LAQ
£ £ 200%
g 100% . 3 \
o O 150%
= =
E so% E 100%
t: '\ o o -
N 50% \
. .
0% 0% *°
5000 10,000 15,000 20,000 25,000 30,000 5000 10,000 15,000 20,000 25,000 30,000
Context size (tokens) Context size (tokens)
(a) Theoretical latency overhead (b) Actual latency overhead

Figure 3: Time-to-First-Token (TTFT) latency overhead ratio across context lengths. Similar to
SnapKV, LookaheadKV introduces negligible TTFT overhead across all tested context lengths;
draft-based methods (LAQ, SpecKV) incur substantial latency, especially for shorter contexts.

SpecKYV and LAQ. Recently, several methods have proposed to use a low-cost generator to generate
a (partial) approximate response first, and subsequently use it to estimate the true future importance
scores. Notably, SpecKV (Galim et al.| |2025) employs a smaller LLM to first generate a draft
response, while Lookahead Q-Cache (LAQ) (Wang et al., 2025) first applies SnapKV to the target
model to generate a draft response, which is in turn used to approximate the future importance.

These draft-based methods have consistently shown superior performance compared to cheaper
heuristics (Li et al.,|2024), demonstrating the effectiveness of employing surrogate future response,
i.e., by “glimpsing into the future”. However, the extra draft generation step still incurs substantial
additional compute, resulting in significant increase in latency, as shown in Figure 3] In summary,
existing methods face a clear trade-off: inexpensive heuristics are fast but less accurate, whereas
draft-based techniques improve performance at the cost of increased inference time.

3 PROPOSED METHOD: LOOKAHEADKYV

To overcome the challenge of fast and accurate importance prediction, we introduce LookaheadKYV, a
framework that augments the LLM with a set of lightweight learnable modules which are optimized
to predict ground-truth importance scores and guide the eviction process. LookaheadKV achieves
the best of both worlds: 1) it eliminates the need for generating a draft response for each query,
resulting in significantly faster KV cache eviction, and 2) it employs learned special tokens that serve
as approximate future response for importance estimation, leveraging the strength of draft-based
methods. The following section (and Figure|[T) presents the detailed workflow of LookaheadKV.

3.1 MAIN COMPONENTS

Learnable Lookahead Tokens. LookaheadKYV initially performs KV cache eviction using a set of
learnable special tokens during the pre-fill phase, and subsequently decodes auto-regressively with
the retained KV cache. Specifically, for given input prompt tokens X, LookaheadKV appends a
sequence of trainable “soft” lookahead tokens L = {l1, ..., ln, . | Whose queries in the attention
layers are used to estimate the attention pattern of the true model response. In essence, these tokens
are trained to compress the attention information of the true response to serve as the “observation
window” in the eviction phase. These tokens are used during the pre-fill stage only for eviction, and
adds zero additional overhead for decoding.

Lookahead LoRA. To enhance the quality of estimation, we introduce Lookahead LoRA, a novel
low-rank adapter module that only activates for the lookahead tokens. Lookahead LoRA allows
these tokens to learn richer representations to compress the information of the true future attention
pattern, while ensuring that the outputs of normal input tokens are unchanged, preserving the orig-
inal model behavior. Moreover, since the original model weights remain unaltered, LookaheadKV
modules can be selectively enabled or disabled depending on the particular requirements of a given
application, thereby broadening the method’s applicability.

Under review as a conference paper at ICLR 2026

Combining the modules together, LookaheadKV computes the queries and keys of the complete
sequence as follows:

Qrky = {}Iﬂ W, + [g] AW, Kixv = {}Iﬂ W + [;j AW, “4)

where I, € R™eokieaXd dopnotes the hidden states of the lookahead embeddings, and AW,

AW . are the Lookahead LoRA modules for query and key projections. Accordingly, the at-
T

tention pattern Ajgy = Softmax(L\/gL”)

1 Znin ~+Mookahead

Tlookahead i =mnin+1

, is used to estimate the importance score 5; =

Ajkv i j, which is in turn used for effective KV cache eviction.

3.2 LOOKAHEADKYV TRAINING

We train LookaheadKV modules to compress the attention pattern of the true future response, using
the model-generated responses as target. Specifically, given a data pair (X,Y’), one iteration of
LookaheadKV training consists of the following steps:

1. GT Forward Pass. For each layer [= 1,...,L and head h = 1, ..., H, the ground-truth

importance scores slG'Tl between the input prompt X and model-generated response Y are
computed.

2. Lookahead Forward Pass. Similarly, for each layer [and head h, we obtain the impor-
tance score estimates si’gv between the input prompt X and the lookahead tokens L.

3. Loss Computation. We first normalize all score vectors so that they sum to 1, and com-
pute the average KL divergence loss between the GT and LookaheadKV importance scores
across all heads and layers:

1 1

L H
= m@ Z Z KL(Norm(sé}TL) I Norm(sf"l}(”\,)) 5)
1 h

The loss is backpropagated to update the weights of the lookahead embeddings and Looka-
head LoRA modules, while all other LLM layers remain frozen. The pseudo-code for
LookaheadKYV training and eviction is given in Algorithm [T]and Algorithm 2]

Training Objective. We want to ultimately optimize the similarity of the ranking between the
two attention score vectors, such that we obtain TopK indices identical to those from ground-truth
importance scores. Inspired from works on distilling attention scores (Wang et al., [2020; Izacard &
Grave, 2021), we minimize the KL divergence between these normalized attention scores. As our
attentions scores are normalized, this KL divergence is equivalent to the popular ListNet (Cao et al.,
2007) ranking loss, with ¢ of ListNet as identity instead of exp.

Lookahead LoRA Overhead. LookaheadKV consistently achieves strong performance with negli-
gible eviction overhead. In principle, one can apply Lookahead LoRA to only a subset of the linear
layers to tradeoff accuracy and latency. However, even when Lookahead LoRA is applied to every
linear layer, there is a mere 1.6% increase in the latency compared to not using Lookahead LoRA
at all (see Table [3] for ablation results). Further, appending a small number of lookahead tokens
(£ 32 in our experiments) during prefill for importance estimation similarly incurs minimal cost.
Consequently, we train LookaheadKV with LoRA modules applied to all linear layers.

To avoid materializing the full attention score matrix, we use FlashAttention (Dao et al.| [2022)) in
the forward pass, coupled with eager attention for importance score computation and loss backprop-
agation, as detailed in Section Q

4 EXPERIMENTS

4.1 TRAINING

Dataset. To encourage the model to learn from diverse attention patterns, we curate training samples
of varying lengths and sources, comprising of both instruction-following datasets as well as pretrain-
ing texts. We collect 50K samples from the long_sft subset of the ChatQA2 (Xu et al., 2025) dataset,

Under review as a conference paper at ICLR 2026

20K samples from the Tulu (Lambert et al.| 2025) instruction-following dataset, 7K samples from
the Stack (Kocetkov et al.,2023), and 9K few-shot completion data samples that we create based on
the training splits of the MetaMath, ARC, and HellaSwag datasets, originally curated in [Pal et al.
(2024). For instruction-following data, we remove the last assistant response, and use the target
model to obtain the (X,Y") pairs of input prompt and model response. For pretraining documents,
we first truncate the text at random positions to obtain X, and use the target model to complete
the sequence to obtain Y. We limit the maximum input sequence length to 16K, and generate all
training responses using greedy decoding and max generation length of 512.

Training Details. We apply LookaheadKV on two widely
used open-source architectures, LLaMA (Dubey et al.|
2024) and Qwen (Yang et al., [2025)), covering three model
sizes each: LLaMA3.2-1B, LLaMA3.2-3B, LLaMA3.1-8B,
Qwen3-1.7B, Qwen3-4B, and Qwen3-8B. For all models, Model
we set the lookahead size Njookahead = 32, and apply LoRA

Table 1: Additional trainable param-
eters introduced by LookaheadKV.

Trainable Params
Params % of Model

to all projection and feed-forward modules (W4, Wy, W,,, LLaMA32-1B 5.4M 0.44
W, Wy, Waown, and W g4e) with rank 7 = 8 and scal- iidmgfgg ;égm 3;2
ing factor « = 32. This configuration introduces less than avAs - : :
0.5% additional trainable parameters across all models, as ~ Qwen3-1.7B 8.5M 0.49
summarized in Table [Full hyperparameter settings are Qwen3-4B 16.2M 0.40

. . Qwen3-8B 21.5M 0.26
provided in Table|[6]

4.2 EVALUATION SETUP

We evaluate our method on two popular long-context benchmarks: LongBench (Bai et al.,[2024) and
RULER (Hsieh et al., [2024). LongBench is a multi-task benchmark that comprehensively assesses
long-context understanding across diverse tasks, such as question answering, summarization, few-
shot learning, and code completion. We report results on the 16 English tasks, and use the average
score as the main metric. RULER is another multi-task synthetic benchmark, primarily compris-
ing 13 Needle-in-a-Haystack-style subtasks. Each sample can be constructed at varying sequence
lengths, allowing systematic evaluation of scaling behavior. Similar to LongBench, we use average
score as the main metric, and report the results at 4K, 8K, 16K and 32K context lengths.

Baselines. We compare our method against popular KV-cache eviction methods: 1) SnapKV (Li
et al.,[2024), 2) PyramidKYV (Cai et al., 2024)), and 3) StreamingL.LLM (Xiao et al., 2024). Addi-
tionally, we include stronger, more recent baselines that involve costly approximate future response
generation, including 4) Lookahead Q-Cache (LAQ) (Wang et al.| [2025), and for 8B-scale models,
5) SpecKV (Galim et al., [2025). In all experiments, Llama3.2-1B-Instruct and Qwen3-1.7B are
used as draft models for Llama3.1-8B-Instruct and Qwen3-8B, respectively. We follow the standard
eviction configuration settings for all baseline methods, which we detail in Section|[H

4.3 PERFORMANCE RESULTS

LongBench evaluation. Figure | shows the average LongBench scores of LookaheadKV and base-
lines, across cache budget settings ranging from 64 to 2048. Our method consistently demonstrates
superior performance across all models and all budgets tested, demonstrating the effectiveness and
robustness of our approach. Overall, results show that expensive draft-based methods, e.g., LAQ and
SpecKYV, outperform cheaper baselines, corroborating that employing approximate future response
for importance estimation is effective. Nevertheless, our method significantly outperforms the draft-
based approaches, especially at lower budget settings, highlighting that learning to estimate future
importance is crucial for performance preservation. Due to space limitation, we report the results of
1B-scale models in Section [El

RULER evaluation. We report the RULER evaluation results of all methods with a fixed budget of
128 in Figure] (1B-scale results are provided in Section[E). LookaheadKV consistently outperforms
other baseline approaches here as well, maintaining strong performance across all evaluated context
lengths. Further, note that while we limit the maximum training sequence length of LookaheadKV
to 16K, our method generalizes to longer context length of 32K. We conduct additional experiments
on the impact of training context length in Section

Under review as a conference paper at ICLR 2026

Llama3.2-3B-Instruct Llama3.1-8B-Instruct Qwen3-4B Qwen3-88

LongBench Score

S
8
=
8

RULER Score
3
RULER Score
N
3
| W
&
RULER Score
2
8
RULER Score
Y
g

|
;//

32 4

8 16 6 8 16
Context (x219) Context (x21°) Context (x21°) Context (x21°)

l— Ours —— LAQ —— SnapKV —— PyramidKV ~— StreamingLLM —— SpeckV oo Fullkv

Figure 4: Top row: Average LongBench results across multiple budgets and models. Bottom row:
Average RULER results across varying context lengths with a fixed budget of 128. Across all tested
models, budgets and context lengths, our method consistently demonstrates superior performance.

Long-Form output Evaluation. We further
evaluate LookaheadKV on the HTML to TSV 50 . o
task from LongProc 2025), which =

involves extracting structured information from
long HTML documents and converting it into
TSV format. This benchmark tests not only the
model’s ability to process long-context inputs, but
also its capacity to generate long-form outputs.
We assess LookaheadKV and baseline methods
under two input—output settings: 12K-0.5K and

F1-Score

Fullkv ours LAQ SpeckV Snapkv

23K-2K tokens, both at a fixed cache budget ra- Method
tio of 30%.

Figure [presents the results on the HTML to Figure 5: HTML-to-TSV evaluation results.

TSV task. Across both sequence-length config-

urations, LookaheadKV consistently outperforms prior approaches. We hypothesize that Looka-
heaKV, which learns to predict the attention pattern of the entire future response, is particularly
superior in long-form generation tasks compared to draft-based methods that rely only on partial
future response as the observation window.

5 ANALYSIS

5.1 EFFICIENCY COMPARISON

To assess the efficiency of our method against the baselines, we measure the Time-To-First-Token
(TTFT) across multiple context lengths using their official implementations, with the exception of
LAQ which we re-implement since it does not have an official implementation. Furthermore, since
the latency of a method can vary significantly depending on the implementation, we conduct rigorous
analysis and derive the theoretical latency for each method, based on the analytical model proposed
inDavies et al.| (2025). We discuss further details in Section B}

Table 2] presents the results of the TTFT analysis for 8K and 32K context lengths (see Table[5|for 4K
and 16K results). Overall, we observe that draft-based methods incur significant overhead, either
due to increased computation (SpecKV) or memory traffic (LAQ). On the contrary, LookaheadKV
requires marginal additional cost across all tested context lengths, achieving 14.5 times faster evic-
tion overhead compared to LAQ at 32K sequence length.

Under review as a conference paper at ICLR 2026

Table 2: Theoretical and Practical Analysis across various context lengths and methods.

Theoretical Cost Empirical Cost
Compute Memory Traffic TTFT TTFT TTFT TTFT
Context Length Method (TFLOPs) (GB) (ms) Overhead (ms) (ms) Overhead (ms)

Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 11
8192 SnapKV 136 13 257 0.01 311 20
SpecKV 159 81 337 79.53 411 121
LAQ 137 445 492 234.59 800 509
Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38
32768 SnapKV 928 13 1754 0.01 1838 78
SpecKV 1115 106 2156 402.80 2263 503
LAQ 930 406 1993 239.26 2314 554

5.2 ABLATION ON TRAINABLE MODULES

We study the impact of lookahead size njookanead and LORA placement through a 2D ablation across
four lookahead sizes (4, 8, 16, 32) and three configurations: emb—only (No LoRA applied), Qv
(LoRA applied to Q and V), and a1l (LoRA applied to all linear layers). The results show that
both larger lookahead sizes and broader LoRA coverage consistently improve average LongBench
performance. Importantly, these gains come with negligible inference overhead, as the additional pa-
rameters account for only a tiny fraction of pre-filling compute and memory. Based on this analysis,
We set Njookahead = 32 and apply LoRA to all linear modules in our main experiments.

Table 3: 2D ablation across lookahead sizes and trainable modules, on LLaMA 1B. Average Long-
Bench scores and TTFT overhead are reported.

TMiookahead = 4 Mlookahead = 8 Miookahead = 16 Miookahead = 32
Module score overhead(%) score overhead(%) score overhead(%) score overhead(%)
emb-only 25.5 34 25.7 3.8 26.4 34 26.4 4.2
Qv 26.5 3.7 26.4 4.1 26.9 4.0 26.9 4.4
all 26.6 4.2 27.0 4.2 27.0 4.7 27.1 5.0

5.3 ROBUSTNESS TO TRAINING CONTEXT LENGTH

Transformer-based language models trained with
fixed context lengths often struggle to generalize be-
yond their training window. Similarly, one may raise 72
concern about the context length generalization of our
method. To examine this effect, we apply Looka-
headKV training to LLaMA-3B with limited training
context lengths of 2K, 4K, and 8K, and evaluate on 6

RULER (Figure [6). We observe that while longer

training context lengths yield better performance as e 8 16 32
expc?cted, .training.on shorFer contexts st.ill rqmains ef- K —— 4§°”tex_tfflg)|< — 1AQ
fective with relatively minor degradation in perfor-

mance, demonstrating that our method generalizes ro-
bustly to unseen sequence lengths.

RULER Score

Figure 6: RULER evaluation on Looka-
headKV trained with shorter contexts.

Under review as a conference paper at ICLR 2026

6 RELATED WORK

KYV Cache Eviction. Early analyses revealed that attention scores tend to be sparse (Zhang et al.,
2023)), implying that only a small subset of KV entries substantially contributes to the attention
output. Subsequent work showed that the importance of these tokens remains stable throughout
generation, i.e., tokens deemed important early on tend to stay important (Liu et al., 2023)). These ob-
servations motivated a range of eviction methods aimed at discarding unimportant KV entries while
preserving model performance. A representative method is H20 (Heavy-Hitter Oracle) (Zhang et al.,
2023)), which proposes an eviction policy that considers the historical importance of tokens based on
attention weights. NACL (Chen et al., 2024) performs eviction in a chunk-wise fashion, computing
token importance locally within each chunk.

Prefill KV Cache Eviction. Another line of work, which we discuss extensively in our paper,
focuses on eviction of prefill KV-cache. SnapKV (Li et al.| 2024)) introduced the notion of an “ob-
servation window” consisting of the suffix of the input prompt, which is used to predict important
tokens to keep for subsequent response generation. Further, SpecKV (Galim et al.| 2025) proposed
to generate an approximate response with a smaller model and use the resulting tokens as a more re-
liable observation window for future importance prediction. Similarly, Lookahead Q-Cache (Wang
et al., [2025) first applies a cheap eviction method, such as SnapKYV, to obtain a partial low-cost
draft response, then re-evicts KV entries based on the importance scores derived from the draft.
KV-zip (Kim et al., 2025) adopts a query-agnostic strategy by inserting a repeated prompt and mea-
suring which KV entries are essential for accurately reconstructing the input. Orthogonal to these
approaches, several works proposed to allocate non-uniform budgets for each layer (Cai et al., 2024)
and head (Feng et al.,2024) to further improve performance.

Prompt Tuning for Task Adaptation. Another line of work closely related to ours is parameter-
efficient finetuning through learned prompts. Prompt Tuning (Lester et al.||2021) inserts a sequence
of continuous, learnable embeddings into the frozen LLM for downstream task adaptation, while
Prefix-Tuning (Li & Liang} [2021)) extends this idea by pre-pending learned vectors across multiple
layers. Further, P-Tuning v2 (Liu et al), [2022) demonstrated that prompt-based adaptation scales
well across a wide range of model sizes. Unlike conventional prompt-tuning methods that aim to
improve task performance, our work leverages learned prompts to predict internal model statistics,
thereby enhancing computational efficiency rather than accuracy.

Training objectives similar to ours have been used in distillation (Wang et al., 2020), or in rank-
ing/retrieval (Cao et al., 2007} Izacard & Gravel 2021)). Some contemporaneous works (Greenewald
et al.l 2025} [Peng et al.l |2025}; [Samragh et al.l 2025) also propose LoRA modules that selectively
activate only for some tokens.

7 CONCLUSION AND LIMITATION

We introduce LookaheadKYV, a trainable prefill-time KV cache eviction framework that accurately
predicts token importance without relying on draft generation. The method augments a frozen LLM
with a small set of learnable lookahead tokens and Lookahead LoRA modules that activate only
on these tokens. Trained to match ground-truth importance distributions across layers and heads,
LookaheadKV achieves performance superior to costly draft generation-based approaches while
adding negligible inference overhead. Empirically, across LLaMA and Qwen model families and
multiple long-context benchmarks, our approach consistently outperforms training-free heuristics
and draft-based baselines, especially in low-budget regimes and long-from output tasks, while in-
troducing less than 0.5% additional parameters and incurring only a marginal increase in prefill
latency.

Due to limited compute resources, we were unable to conduct experiments on larger-sized models.
Experiments on longer contexts should also be explored, but our analysis indicates that Looka-
headKV training generalizes to longer context lengths. We greedily generate all responses for train-
ing, but the interaction between the decoding parameters, e.g., temperature, and LookaheadKV per-
formance could be further explored. Lastly, LookaheadKV focuses on the prefill KV cache eviction;
extending LookaheadKV to also perform decoding-stage eviction remains a future work.

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Our source code is released in supplementary to reproduce our results, and pseudo-code is also
provided in Section [A] Section |G| provides links to datasets and evaluation benchmarks used, and
Section[4.1] describes the pre-processing steps on the data.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A
bilingual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3119-3137, Bangkok, Thailand,
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-1ong.172/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. ArXiv preprint, abs/2406.02069, 2024. URL https://arxiv.
org/abs/2406.020609.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pair-
wise approach to listwise approach. In Proceedings of the 24th International Conference on
Machine Learning, ICML 07, pp. 129-136, New York, NY, USA, 2007. Association for Com-
puting Machinery. ISBN 9781595937933. doi: 10.1145/1273496.1273513. URL https:
//doi.orqg/10.1145/1273496.1273513.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuo-
huan Wang, Yu Sun, Dianhai Yu, and Hua Wu. NACL: A general and effective KV cache
eviction framework for LLM at inference time. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 7913-7926, Bangkok, Thailand, 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.428. URL |https:
//aclanthology.org/2024.acl-1long.428/.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Pradeep Dasigi, Kyle Lo, 1z Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 4599-4610, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.365. URL https://aclanthology.org/2021.
naacl-main.365/.

Michael Davies, Neal Crago, Karthikeyan Sankaralingam, and Christos Kozyrakis. Efficient llm
inference: Bandwidth, compute, synchronization, and capacity are all you need, 2025. URL
https://arxiv.orqg/abs/2507.14397.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv-2407, 2024.

10

https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://aclanthology.org/2024.acl-long.428/
https://aclanthology.org/2024.acl-long.428/
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://aclanthology.org/2021.naacl-main.365/
https://aclanthology.org/2021.naacl-main.365/
https://arxiv.org/abs/2507.14397

Under review as a conference paper at ICLR 2026

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient Ilm inference. ArXiv preprint, abs/2407.11550,
2024. URL https://arxiv.org/abs/2407.11550.

Kevin Galim, Ethan Ewer, Wonjun Kang, Minjae Lee, Hyung Il Koo, and Kangwook Lee. Draft-
based approximate inference for llms. ArXiv preprint, abs/2506.08373, 2025. URL https:
//arxiv.org/abs/2506.08373.

Kristjan Greenewald, Luis Lastras, Thomas Parnell, Vraj Shah, Lucian Popa, Giulio Zizzo, Chulaka
Gunasekara, Ambrish Rawat, and David Cox. Activated lora: Fine-tuned llms for intrinsics, 2025.
URL https://arxiv.org/abs/2504.12397.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for question
answering. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=NTEz-6wysdb.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTE8yNQOM6 6.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, and Hyun Oh Song. KVzip:
Query-agnostic KV cache compression with context reconstruction. In ES-FoMo II1: 3rd Work-
shop on Efficient Systems for Foundation Models, 2025. URL https://openreview.net/
forum?id=gcqzyyF654.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, Yacine Jernite, Margaret
Mitchell, Carlos Mufioz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
Werra, and Harm de Vries. The stack: 3 TB of permissively licensed source code. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=pxpbTdUEpPD.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christo-
pher Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=11uGbfHHpH.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
3045-3059, Online and Punta Cana, Dominican Republic, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/
2021 .emnlp-main.243.

Cheng Li. Llm-analysis: Latency and memory analysis of transformer models for training and
inference. https://github.com/cli99/11m-analysis), 2023.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context LLMs struggle with
long in-context learning. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.
URLhttps://openreview.net/forum?id=Cw2x1g0e46l

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th

11

https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2506.08373
https://arxiv.org/abs/2506.08373
https://arxiv.org/abs/2504.12397
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=gcqzyyF654
https://openreview.net/forum?id=gcqzyyF654
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=i1uGbfHHpH
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://github.com/cli99/llm-analysis
https://openreview.net/forum?id=Cw2xlg0e46

Under review as a conference paper at ICLR 2026

Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582-4597, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL
https://aclanthology.org/2021.acl-1long.353|

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are
looking for before generation. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
28ab418242603e0£7323e54185d19bde-Abstract-Conference.htmll

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. In The Tivelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=pP JZ2I0uQuF.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Mure-
san, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 61-68, Dublin, Ire-
land, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8l

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anas-
tasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of
importance hypothesis for LLM KV cache compression at test time. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ad52a7cb6cdo63edae8fbdcolicbe983eb6-Abstract-Conference.html.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. RepoAgent: An
LLM-powered open-source framework for repository-level code documentation generation. In
Delia Irazu Hernandez Farias, Tom Hope, and Manling Li (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 436—
464, Miami, Florida, USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-demo.46. URL https://aclanthology.org/2024.emnlp—demo.46/.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. ArXiv preprint,
abs/2402.13228, 2024. URL https://arxiv.org/abs/2402.13228.

Yuqi Peng, Lingtao Zheng, Yufeng Yang, Yi Huang, Mingfu Yan, Jianzhuang Liu, and Shifeng
Chen. Tara: Token-aware lora for composable personalization in diffusion models, 2025. URL
https://arxiv.orqg/abs/2508.08812.

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential,
2025. URL https://arxiv.org/abs/2507.11851.

Minzheng Wang, Longze Chen, Fu Cheng, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and Yongbin Li. Leave no
document behind: Benchmarking long-context LLMs with extended multi-doc QA. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 5627-5646, Miami, Florida, USA,
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.322. URL
https://aclanthology.org/2024.emnlp—-main.322/.

12

https://aclanthology.org/2021.acl-long.353
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=pPjZIOuQuF
https://aclanthology.org/2022.acl-short.8
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://aclanthology.org/2024.emnlp-demo.46/
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2508.08812
https://arxiv.org/abs/2507.11851
https://aclanthology.org/2024.emnlp-main.322/

Under review as a conference paper at ICLR 2026

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 5776-5788. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/3f5ee243547dee91fbd053clcd4a845aa—Paper.pdfl

Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
understanding with large language model as agent. In European Conference on Computer Vision,
pp- 58-76. Springer, 2024b.

Yixuan Wang, Shiyu Ji, Yijun Liu, Yuzhuang Xu, Yang Xu, Qingfu Zhu, and Wanxiang Che. Looka-
head g-cache: Achieving more consistent kv cache eviction via pseudo query. ArXiv preprint,
abs/2505.20334, 2025. URL https://arxiv.org/abs/2505.20334,

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=NG7sS51zVF.

Peng Xu, Wei Ping, Xianchao Wu, Chejian Xu, Zihan Liu, Mohammad Shoeybi, and Bryan Catan-
zaro. Chatqa 2: Bridging the gap to proprietary llms in long context and RAG capabilities. In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
cPD2hU35x3.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388|

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation.
In Second Conference on Language Modeling, 2025. URL https://openreview.net/
forum?id=ruWC5LIMSo.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
bceefa’/bl5572587b/8ecfcebb2827f8-Abstract-Conference.html.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2505.20334
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cPD2hU35x3
https://openreview.net/forum?id=cPD2hU35x3
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=ruWC5LIMSo
https://openreview.net/forum?id=ruWC5LIMSo
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

A PSEUDO-CODE

The pseudocode for LookaheadKV training and eviction is described in Algorithm (1| and Algo-
rithm [2] respectively.

Algorithm 1 LookaheadKV Training

Require: dataset D of input-response pairs

I: scores « || > GT importance scores
2: estimates « [] > score estimates using LookaheadKV
3: for each training sample (X, Y") in dataset D do
4 for each layer [do > GT pass
5: for each head h in layer [do
6: S <~ GT importance score for head (I, h)
7: scores.append(S)
8 end for
9: end for
10: for each layer [do > lookahead pass
11: for each head h in layer [do
12: S importance scores using lookahead embeddings for head (I, i)
13: estimates.append(S)
14: end for
15: end for
16: L<+0 > compute loss
17: for all (S, S) in scores, estimates do
18: L + L + KL(Norm(S) || Norm(S’))
19: end for
20: L+ m
21: L .backward()
22: end for

Algorithm 2 LookaheadKV Eviction

Require: Input prompt X = (z1,...,2Z,,)
Require: cache budget k
Require: learned lookahead tokens L = (I1, ..., ln)

1 X (21,0 @, b1yl) > append learned lookahead tokens to input

? YMookahead
2: Perform a forward pass with X to populate KV cache
3: For each layer [and head i we now have

K, € R(intiookaneas) xd

Vin € R (RinF7viookahead) X &

4: for each layer [do

5 for each head h in layer [do

6: lookahead , _ lookahead y174 4 lookahead Ay > queries of lookahead tokens

’ ’ Qlloo}kmhemd’ K;I' , ’ ’

7 Ay Softmax(#)

8 Sih mmi\head Z?:l“‘d A i, B> score vector of length ny,

9: Iy » < TopK(s 5, k) > select Top-k indices
d

10: KEI}LLIM — Klth[ILh]
d

11: VI = Vin[T n]

12: Cache (Klpr;:“ed, Vlf’;“"ed)

13: end for

14: end for
15: return Pruned KV cache {(K Er;bl"ed, ‘/lf’;"md)}

14

Under review as a conference paper at ICLR 2026

B THEORETICAL ESTIMATION DETAILS

This section details our methodology for theoretically estimation the Time-to-First-Token (TTFT)
latency for various KV cache eviction algorithms. Our analysis is based on the analytical model for
FLOPs and memory traffic proposed by |Davies et al.| (2025). To align configurations of theoretical
estimates with them of actual measurements, we simulate the execution of LLaMA3.1-8B on a
single NVIDIA H100 80GB GPU with a batch size of 1, assuming all weights and activations are
in half-precision. We set KV cache budget size of 128, lookahead size as 32, and window size as
32. We only consider tensor operations which are dominant parts of the computations. To provide
estimates that closely reflect real-world performance, our calculations incorporate practical hardware
utilization by assuming a flops efficiency of 0.7 and a memory efficiency of 0.9, as described in [Li
(2023)).

To isolate the specific overhead introduced by each eviction algorithm, we first establish a baseline
by calculating the theoretical latency of a single forward pass. The TTFT overhead for each eviction
method is then determined by subtracting this baseline forward pass latency from the method’s total
estimated TTFT. Notably, we do not add memory IO overhead incurred by KV cache unlike other
eviction methods, since we only aim to calculate the computational overhead of a single forward
pass operation. For LAQ, the total latency is calculated by summing the costs of its three costituent
steps—the first eviction, low-cost generation of pseudo response, and the second eviction. Similarly,
the total latency of SpecKYV is estimated by aggregating the latencies of its draft prefill, draft decode,
and target model eviction phases. A comprehensive implementation of the code to derive theoretical
estimates of all baselines is available in the Suppplementary Materials.

C IMPLEMENTATION OPTIMIZATION

Efficient attention implementations such as FlashAttention (Dao et al.,|2022) do not materialize the
full attention score matrix, but is required in our setting to compute importance scores and enable
gradient backpropagation. A possible solution is to compute the complete attention matrix using
native PyTorch (i.e., eager attention), but this quickly leads to an out-of-memory error as the matrix
size grows quadratically with the sequence length, which is incompatible with our training setting
(upto 16K sequence length). Fortunately, for our objective, we only require the cross-attention scores
between the generated response and the entire input sequence, and the response length is typically
much shorter than the input prompt.

Leveraging this observation, we adopt the following approach: for the attention layers’ forward
computation, we use flash attention, while for the importance score computation and loss back-
propagation, we employ eager attention to only compute the partial attention score matrix with the
queries of model response and keys of the entire sequence. This reduces the memory requirement of
eager attention from O((|X |+ |Y])?) to O(|X| - [Y|+ |[Y|?), where | X | and | Y| denote the lengths
of the input prompt and model response, respectively, with | X | > |Y|.

15

Under review as a conference paper at ICLR 2026

D NEED FOR DATA GENERATION

One of the requirements of LookaheadKV training is that the target model’s generated responses
must be available as training data. However, generating these responses from the model can some-
times be costly, e.g., when applying LookaheadKV across multiple models. Hence, to assess
whether this requirement of can be relaxed, we evaluate an alternative setting where training uses
the responses from the source datasets instead of model-generated outputs.

We observe in Figure[7] that this substitution leads to a relatively minor drop in average LongBench
performance in lower-budget regimes. We hypothesize that if the attention distribution of the model-
generated responses and that of the source dataset responses are moderately similar, our method can
still successfully learn to accurately predict the importance scores. Overall, these results suggest
that, in scenarios where training data generation is impractical, using source responses provides a
viable and effective alternative.

1.010
1.005

1.000 ---- /\--

0.995

A (%)

0.990

0.985

0.980

64 128 256 512 1024 2048
Cache Budget
—— Llama3.1-8B-Instruct —— Llama3.2-3B-Instruct

Figure 7: Performance ratio of training using model-generated data vs. source data.

16

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

We provide a comprehensive experimental results excluded from the main text due the page limita-
tion.

E.1 RESULTS ON LONGBENCH

Llama3.2-1B-Instruct

Llama3.1-8B-Instruct

LongBench Score
LongBench Score
LongBench Score

Do > o Moo > ® 2o > o

SR P o R S o K SRL) o R

WA 9 K R P o RS R WA S K S
Cache Budget Cache Budget Cache Budget

Qwen3-1.7B Qwen3-4B Qwen3-8B

@ g ¢
S S S a4
3 & &
S k] Sa
2 g 2
& & &
[=J =3 [=J 40
2 2 2
5 s S8
36
2 34
XPP S & KPP Kd & XL S <
Cache Budget Cache Budget Cache Budget
—— Ours —— LAQ —— SnapkKV —— PyramidKV —— StreamingLLM —— SpeckV - Fullkv

Figure 8: Full Longbench results across multiple cache budgets.

Table 4: Performance comparison of different methods across various LLMs on LongBench.

LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Ave
NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lecc RB-P
FullKV 3163 4666 5693 58.10 48.50 31.57 2698 7250 9165 43.79 6.64 9950 65.12 5878 49.88
StreamingLLM 2495 2150 32.56 50.67 42.89 2431 1819 4050 8557 38.28 750 99.50 59.03 49.72 39.68
SnapKV 29.13 2806 5123 56.79 4530 27.81 1973 4600 89.72 4044 750 99.50 5950 52.19 4350
PyramidKV 2770 2886 5200 56.76 46.11 28.13 2003 4450 8841 39.73 750 99.50 59.84 51.96 4336
LAQ 3048 3831 5573 57.50 49.13 29.67 2159 6050 92.09 41.04 725 9950 6054 5583 46.61
SpecKV 2922 2912 5405 56.54 4630 29.90 2125 5200 90.02 42.14 883 9950 6LIl 6138 4545
3 LookaheadKV 3132 4285 5678 57.04 47.44 30.82 2309 6550 9224 42.96 750 9950 6175 5529 4172
z KV Cache Size = 256
Z SweamingLLM 2596 2408 3373 50.56 4261 2349 20.86 21.60 4600 87.50 41.09 750 99.50
% SnapKV 2796 3449 5507 57.40 4657 29.50 2249 2351 5400 9110 40.61 733 99.50
= PyramidKV 2809 3664 5586 57.68 46.28 29.56 223 23.86 5650 9156 4123 733 9950
g LAQ 3103 4397 5593 5778 49.42 3042 24.48 24.60 68.00 9220 42,61 7.08 100.00
5 SpecKV 2866 3619 5726 58.17 48.51 30.85 24.83 24.60 61.00 9116 42.46 833 9950
~ LookaheadKV 3196 44.01 5680 57.99 4741 31.46 27.26 24.56 69.00 9255 4293 733 100.00
KV Cache Size = 1024
StreamingLLM 2723 30.80 3664 50.59 43.26 23.45 25.73 21.67 2549 6350 88.84 42.56 750 9350 63.15 5573 4373
SnapKV 29.64 4460 5730 57.62 4831 3118 21.57 24.17 2584 6950 92.04 4278 708 9950 6457 58.46 48.76
PyramidKV 3079 4491 5665 58.13 48.17 30.56 26.65 24.53 2588 6800 9178 42.20 683 9950 6441 57.77 4855
LAQ 3163 4563 5502 5770 50.27 31.28 28.82 25.10 2618 7250 92.33 4331 650 10000 6275 59.04 d9.25
SpecKV 3159 4544 5798 5751 49.16 3195 28.67 24.95 2577 6750 92.23 43.94 600 9950 6521 6230 4936
LookaheadKV 3114 4604 5777 5822 48.43 30.72 30.75 25.31 2666 7250 9192 4339 7.08 10000 64.87 5836 d9.57
FullKV 2604 4776 5333 5923 4337 36.05 33.66 24.05 2479 7150 9021 44.43 200 10000 69.39 6557 49.46
KV Cache Size = 128
StreamingLLM ~ 17.65 26.69 2840 41.05 33.46 20.82 15.72 19.15 1514 4300 8257 38.44 150 7000 6286 5669 3582
SnapKV 1914 3265 4599 5481 38.95 26.59 17.66 20.83 1604 4950 87.10 38.90 350 99.50 64.62 5829 4213
PyramidKV 1557 3019 4184 4601 35.73 19.57 16.51 19.67 1486 4700 8351 35.56 250 9200 6214 53.07 3848
LAQ 2274 4215 5355 57.89 4284 36.74 21.33 2225 1834 6450 8955 4093 300 10000 6674 6170 4652
SpecKV 2303 3714 5358 5677 4224 31.82 22.86 1904 6000 8831 41.50 350 10000 6682 61.96 4562
LookaheadKV 2606 4430 5324 5878 42.79 35.89 22.95 2113 6650 8895 41.64 350 9950 6595 62.88 d7.46
o KV Cache Size = 256
% SteamingLLM 18.18 2853 2852 42381 33.58 21.34 18.63 19.20 1776 4800 85.58 40.08 100 69.00 6550 59.41 37.32
2 SnapKV 2303 3832 5104 5736 40.67 3282 2151 21.89 1897 5950 89.46 41.06 200 10000 67.62 61.88 4545
2 PyramidKV 1847 3487 4744 5568 37.89 26.67 2043 2092 1743 5850 85.20 38.98 350 10000 6551 57.32 43.05
9 raQ 2600 4544 5384 57.00 4353 36.62 24.22 2338 2038 70.00 89.05 4247 300 10000 68.17 64.03 47.95
SpecKV 2258 4109 5389 59.85 4242 34.50 24.53 23.64 2125 6800 88.13 43.12 300 10000 6839 6440 47.42
LookaheadKV 2588 4540 5268 58.47 44.05 36.13 27.77 23.71 2288 69.00 89.05 4332 200 10000 6783 64.71 4831
KV Cache Size = 1024
StreamingLLM 2125 3282 3144 4594 34.38 2334 25.73 20.25 2350 6200 88.71 4118 050 4400 6839 63.65 39.19
SnapKV 2426 4613 5248 5852 42.66 36.89 28.39 23.61 2333 69.00 89.55 43.13 200 10000 69.05 6627 48.45
PyramidKV 2377 4289 5301 58.86 4232 3547 27.32 23.07 2272 7100 89.95 42.56 200 10000 68.81 64.25 48.00
LAQ 2611 4727 5345 5701 4352 37.26 29.50 23.88 2347 7150 89.63 44.00 200 10000 67.94 64.83 48.84
SpecKV 2498 4656 5407 59.04 4337 34.12 29.32 24.18 2368 7100 90.11 44.56 300 10000 69.09 6653 4898
LookaheadKV 2536 47.23 5256 59.30 43.25 36.39 3165 23.72 2461 7100 9021 44.69 050 10000 68.93 6522 d9.04

17

Under review as a conference paper at ICLR 2026

E.2 RESULTS ON RULER

We report the RULER results across all six models tested, with cache budget settings at 64 (Figure[J))
and 128 (Figure [T0).

Llama3.2-1B-Instruct Llama3.2-3B-Instruct Llama3.1-8B-Instruct

=
=)

80

@
3

Average RULER Score
8
Average RULER Score
3
IS
o
o
3
Average RULER Score
y
3

w
3

30 -\‘\‘___‘ 50
40
2 40
] e e 30 30
20 20
7 8 16 32 7 B 16 32
Context (x210) Context (x21°) Context (x210)
Qwen3-1.7B Qwen3-4B Qwen3-8B
w T
------- 80 80
o 4 4
s s S
@ 60 &a a
< « 60 o 60
i} 0 i
= = =
2 2 2
o 20 o o
& g 40 2 40
o o o
s | TT——— |8 g
< 5 2, \ <0
0
4 8 16 32 2 8 16 32 7 B 16 32
Context (x210) Context (x21°) Context (x210)
[—— Ours —— LAQ —— SnapKV ~ —— PyramidkV ~ —— SpeckKV - Fullkv

Figure 9: Full RULER results across context lengths (budget = 64)

Llama3.2-1B-Instruct Llama3.2-3B-Instruct Llama3.1-8B-Instruct

~

S
©
3

80

o

3
®
3

Average RULER Score
8
Average RULER Score
3
Average RULER Score
o
3

«

3
~
S

. -\'\._——- *
40
20 40
B B % *
20 20
z 8 16 32 7 8 16 32 2 8 16 32
Context (x21%) Context (x21%) Context (x21°)
Qwen3-1.7B Qwen3-4B Qwen3-8B
wf e 80 .

60

N
3

Average RULER Score
3
Average RULER Score
3
Average RULER Score

N
3

40

20 \\ 20 \\ 20
.
4 8 16 32 4 8 16 32 4 8 16 32
Context (x21°) Context (x21°) Context (x210)
[—-— Ours —— LAQ —— SnapKV —— PyramidkV —— SpecKV - FuIIKV]

Figure 10: Full RULER results across context lengths (budget = 128)

Under review as a conference paper at ICLR 2026

E.3 ADDITIONAL EFFICIENCY ANALYSIS

We show the full results of the latency analysis that were omitted in the main paper due to space lim-
itation in this section. Note that the empirical TTFT overheads for some methods, SnapKYV in partic-
ular, can be larger than theoretical estimations. These are probably due to inefficient implementation
of these methods in KVCache-Factory or their official implementation. Better implementations may
reduce these overheads significantly, more in line with the theoretical cost.

Table 5: Theoretical and Practical Analysis across various context lengths and methods.

Theoretical Cost

Empirical Cost

Compute Memory Traffic TTFT TTFT TTFT TTFT
Context Length Method (TFLOPs) (GB) (ms) Overhead (ms) (ms) Overhead (ms)
Forward Pass Only 60 13 113 N/A 130 N/A
LookaheadKV (ours) 60 13 114 0.92 141 11.38
4096 SnapKV 60 13 113 0.01 143 13.14
SpecKV 70 7 165 52.10 223 92.42
LAQ 61 444 347 233.81 637 506.58
Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 10.88
8192 SnapKV 136 13 257 0.01 311 20.17
SpecKV 159 81 337 79.53 411 120.51
LAQ 137 445 492 234.59 800 509.38
Forward Pass Only 336 13 635 N/A 658 N/A
LookaheadKV (ours) 337 13 636 1.27 677 18.50
16384 SnapKV 336 13 635 0.01 695 37.12
SpecKV 398 89 792 157.05 866 207.31
LAQ 337 447 871 236.15 1182 523.54
Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38.04
32768 SnapKV 928 13 1754 0.01 1838 77.67
SpecKV 1115 106 2156 402.80 2263 502.87
LAQ 930 406 1993 239.26 2314 553.68

19

Under review as a conference paper at ICLR 2026

F HYPER-PARAMETERS

Training hyper-parameters.

Learning rate was searched for Llama and Qwen model family among [5x 107°, 1x107%,2x 1074,
1 x 10~3]. The final hyper-parameters for all experiments are shown in Table@

Table 6: Training hyperparameters.

Parameters Values

Optimizer Adam

51, B2 0.9,0.95

Effective Batch Size 32

Drop-out (p) 0.0

Max Sequence Length 16384 (prompt length) + 512 (response length)
Train Iters 7600

Learning rate 1 x 1073 (for Llama), 2 x 10~* (for Qwen)
Schedule Cosine

Warmup steps 2%

Min LR 0.0

Gradient clipping 1.0

Eviction hyper-parameters. We use the implementations in KVCache-Factory or their official im-
plementations (SpecKV) for all our methods, except for LAQ which we re-implement ourselves.
Following prior works (Li et al.,|2024; |Cai et al.| 2024} |Galim et al., [2025)), we use standard config-
uration settings for all baseline methods, including an observation window size of 32, maxpooling
kernel size of 7, and mean reduction for GQA compatibility (Feng et al.,|2024). For LookaheadKV
we use the same settings, except we do not use window size, as our method does not train with the
suffix window for prediction. Further, since our lookahead size njookanead 1S 32, we set the maximum
generation limit of LAQ and SpecKV to 32 tokens so that the methods can be compared using the
same number of draft tokens.

G DATASETS, BENCHMARKS, AND SOFTWARE

Software Our source code is available in the supplementary, and our implementation is built on
KVCache-Factory.

Training Dataset Our training dataset mixture consist of random samples from publicly available
datasets: 50K long_sft subset of ChatQA2-Long-SFT-data, 20K subset of tulu-3-sft-olmo-2-mixture,
7K samples from The Stack, and 3K samples from MetaMathFewshot, HellaSwag_DPO_Fewshot,
and ARC_DPO_Fewshot, respectively.

Evaluation Benchmarks We used LongBench dataset as fetched and processed by KVCache-
Factory, see HF Dataset for the official source. For RULER, we used RULER Github. For LongProc,
we used LongProc Github.

H LLM USAGE

LLM assistants were used to refine the wording of selected sentences, while the majority of the text
was written by human. All LLM-generated text was carefully inspected to ensure that it contained
no harmful or controversial content. Additionally, we used LLMs to help in finding some of the
related literature discussed in the paper.

20

https://github.com/Zefan-Cai/KVCache-Factory
https://huggingface.co/datasets/nvidia/ChatQA2-Long-SFT-data
https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture
https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/abacusai/MetaMathFewshot
https://huggingface.co/datasets/abacusai/HellaSwag_DPO_FewShot
https://huggingface.co/datasets/abacusai/ARC_DPO_FewShot
https://huggingface.co/datasets/zai-org/LongBench
https://github.com/NVIDIA/RULER
https://github.com/princeton-pli/LongProc

	Introduction
	Background
	Proposed Method: LookaheadKV
	Main Components
	LookaheadKV Training

	Experiments
	Training
	Evaluation Setup
	Performance Results

	Analysis
	Efficiency Comparison
	Ablation on Trainable Modules
	Robustness to Training Context Length

	Related Work
	Conclusion and Limitation
	Reproducibility Statement
	Pseudo-code
	Theoretical Estimation Details
	Implementation Optimization
	Need for Data Generation
	Additional Results
	Results on LongBench
	Results on RULER
	Additional Efficiency Analysis

	Hyper-Parameters
	Datasets, Benchmarks, and Software
	LLM Usage

