
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOOKAHEADKV: FAST AND ACCURATE KV CACHE
EVICTION BY GLIMPSING INTO THE FUTURE WITHOUT
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based large language models (LLMs) rely on key–value (KV)
caching to avoid redundant computation during autoregressive inference. While
this mechanism greatly improves efficiency, the cache size grows linearly with
the input sequence length, quickly becoming a bottleneck for long-context tasks.
Existing solutions mitigate this problem by evicting prompt KV that are deemed
unimportant, guided by estimated importance scores. Notably, a recent line of
work improves eviction quality by “glimpsing into the future”, in which a low-cost
draft generator first produces a surrogate response that mimics the target model’s
true response, which is subsequently used to estimate the importance scores of
cached KV. In this paper, we propose LookaheadKV, a lightweight eviction frame-
work that leverages the strength of surrogate future response without the need
for costly draft generation. LookaheadKV augments transformer layers with
parameter-efficient modules trained to predict true importance scores with high
accuracy. Our design ensures negligible runtime overhead comparable to existing
inexpensive heuristics, while achieving accuracy superior to more costly approx-
imation methods. Extensive experiments on long-context understanding bench-
marks, across a wide range of models, demonstrate that our method not only
outperform recent competitive baselines in long-context understanding tasks by
25%, but also reduces the eviction cost by up to 14.5×, leading to significantly
faster time-to-first-token (TTFT).

1 INTRODUCTION

Long context length of Large Language Models (LLMs) is becoming increasingly critical for many
emerging applications: processing long documents (Bai et al., 2024; Wang et al., 2024a; Hsieh
et al., 2024), repository-level code understanding and generation (Luo et al., 2024; Liu et al., 2024;
Jimenez et al., 2024), in-context learning (Li et al., 2025), extension to long multi-modal inputs
such as video (Wang et al., 2024b), etc. However, a central challenge in enabling these applications
is that the key-value (KV) cache size grows linearly in sequence length, which rapidly becomes a
bottleneck for inference, restricting scalable deployment of such applications on both mobile devices
and the cloud. For example, even for moderate-sized models, such as LLaMA3.1–70B (Dubey et al.,
2024) in half-precision, storing a single 64K-token sequence already takes up 40GB of memory,
while scaling to 512K tokens requires 160GB, exceeding the memory capacity of high-end consumer
hardware.

A growing line of work addresses this challenge by identifying salient tokens to achieve effective
KV cache eviction without loss of performance (Li et al., 2024; Cai et al., 2024; Galim et al., 2025;
Wang et al., 2025; Zhang et al., 2023). Early methods often rely on simple heuristics, in which token
importance is estimated based on the self-attention scores of the input tokens. SnapKV (Li et al.,
2024), for instance, leverages the attention weights between the suffix of the input and the preceding
context to estimate the importance of each prompt token. However, investigations in recent studies
(SpecKV (Galim et al., 2025), LAQ (Wang et al., 2025)) reveal that leveraging the model’s response,
rather than the input suffix, can greatly improve the eviction quality. Furthermore, they show that

Source code to reproduce our results is available, released in supplementary.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) LookaheadKV training

W
∆𝐿𝑜𝑅𝐴

Lookahead LoRA on Prefill

W
∆𝐿𝑜𝑅𝐴

W

Lookahead LoRA on Decode

Input Model Response

(pre-generated)

Input Learnable

Lookahead Tokens
Input Learned

Lookahead Tokens

Model

Response

Learnable

Lookahead Tokens

True importance scores

Σ

Predicted importance scores

KL Div. Loss

Σ

Learned

Lookahead Tokens

Σ

Compressed KV

(b) LookaheadKV inference

: Trainable

: Frozen

Lookahead LoRA on Training

Figure 1: (a) Overview of LookaheadKV training (b) Overview of LookaheadKV inference.

a low-cost generated draft response, which closely approximates the true response, can serve as a
powerful proxy for accurately estimating the importance scores. For example, SpecKV employs a
smaller auxiliary model to produce draft tokens to approximate the target model’s response, while
Lookahead Q-Cache (LAQ) first applies a cheap KV eviction scheme to the target model, such as
SnapKV, to obtain draft tokens, which in turn are used to approximate true importance scores.

Figure 2: Accuracy-overhead Trade-off
across KV cache eviction methods.

While these draft-based methods substantially improve
eviction quality, they often struggle with a fundamental
trade-off between performance and efficiency, due to the
need for costly draft token generation. Figure 2 presents
the trade-off between accuracy and overhead of differ-
ent approaches using the QASPER benchmark (Dasigi
et al., 2021) and LLaMA3.1-8B-Instruct (Dubey et al.,
2024) with a cache budget size of 128. While cheaper
approaches like SnapKV are fast, inducing minimal over-
head, they suffer a severe performance degradation un-
der highly constrained budget settings. On the other
hand, LAQ (Wang et al., 2025), a draft-based approach,
shows impressive results even in extremely limited bud-
get settings. However, it incurs a prohibitive computa-
tional overhead by generating an extra draft response,
which limits its practicality in latency-sensitive applica-
tions such as mobile devices.

To overcome this limitation, we introduce LookaheadKV, a novel KV cache eviction method that
augments LLMs with parameter-efficient modules, capable of accurately predicting future attention
patterns, without the need for costly draft token generation. As shown in Figure 2, our method
effectively overcomes the accuracy-overhead trade-off, achieving minimal performance loss with
negligible overhead. LookaheaedKV, as depicted in Figure 1, our method employs a set of learnable
special tokens, together with Lookahead LoRA modules, novel low-rank adapters that selectively ac-
tivate for the special tokens, to produce queries that can reliably estimate token-importance scores.
By fine-tuning these modules to predict the true importance scores, LookaheadKV effectively mini-
mizes the quality loss incurred by KV cache eviction with marginal inference overhead.

To rigorously assess the effectiveness of LookaheadKV, we evaluate it on a diverse set of
long-context benchmarks (Bai et al., 2024; Hsieh et al., 2024; Ye et al., 2025) across multiple models
of varying sizes (Dubey et al., 2024; Yang et al., 2025). Experimental results consistently demon-
strate that LookaheadKV outperforms strong baselines across multiple budgets and context lengths
while incurring significantly less eviction latency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To summarize, our contributions are as follows:

• We propose LookaheadKV, the first KV cache eviction framework that employs learnable
lookahead tokens and special LoRA modules to accurately predict the importance scores
from the model’s true response without generating costly approximate response.

• Through extensive experiments, we demonstrate that the proposed approach is effective
and robust across different models and context lengths, and especially under low-budget
settings, making our method particularly useful in resource-constrained environments.

• By conducting a rigorous analysis of eviction latency, both theoretically and empirically,
we demonstrate that our method incurs negligible eviction overhead of less than 2.16% at
32K context length, while being 14.5× faster than draft-based methods.

2 BACKGROUND

The primary objective of the KV cache eviction methods considered in this work, including our
proposed approach, is to accurately estimate the importance score of individual key-value pairs of
prompt tokens using attention weights, in order to guide the eviction process. In the following
section, we formally define the problem of KV cache eviction and briefly discuss how prior methods
have approached it.

KV cache eviction using importance scores. Let X = {x1, ..., xnin} be an input token sequence
(e.g., a user instruction, part of a code snippet, etc.) and Y = {y1, ..., ynout} the model’s generated
response to X . For a given layer and attention head in an LLM, the attention scores of the complete
sequence are given by:

Q =

[
X
Y

]
Wq K =

[
X
Y

]
Wk A = Softmax

(
QK⊤
√
d

)
, (1)

where X = [x1, ...,xnin]
⊤ ∈ Rnin×d and Y = [y1, ...,ynout]

⊤ ∈ Rnout×d are the hidden states
of the input prompt and model-generated response, respectively. For better readability, we omit
the layer and head index. We define the ground-truth importance scores sGT = [s1, ..., snin] of the
KV cache as the average cross-attention scores between the queries of Y and the keys of X, i.e.,
sj =

1
nout

∑nin+nout
i=nin+1 A i,j . Intuitively, these scores quantify the relative contribution of each prompt

token’s key–value pair to the model’s response generation. Based on these scores, the pruned KV
cache can be obtained by retaining a subset of (e.g., TopK) important KV pairs to minimize the
attention output perturbation, such that:

Attn(x,KVorig) ≈ Attn(x,KVGT), (2)

where KVorig and KVGT are the original and evicted KV cache using the ground-truth importance
scores, respectively.

However, since the model’s true future response is unknown during the prefill phase, such scores
cannot be computed directly. Consequently, prior methods resorted to constructing a surrogate re-
sponse sequence Ỹ = [ỹ1, ..., ỹnwindow]

⊤ ∈ Rnwindow×d to approximate the model’s (partial) future
response and predict the attention pattern:

Q̃ =

[
X

Ỹ

]
Wq K̃ =

[
X

Ỹ

]
Wk Ã = Softmax

(
Q̃ K̃⊤
√
d

)
, (3)

resulting in the estimated importance score vector sapprox = [s̃1, ..., s̃nin], whose entries are computed
as s̃j = 1

nwindow

∑nin+nwindow
i=nin+1 Ã i,j . In short, these methods aim to obtain the estimated score vector

whose ranking is similar to that of the ground-truth, such that the overlap between the retained KV
pairs and KVGT is high. Various approaches have been suggested to approximate the future response
for effective KV cache eviction.

SnapKV. SnapKV (Li et al., 2024) proposes to use the suffix of input prompt to compute the estimate
of the true future importance scores. Because SnapKV requires only marginal extra computation to
perform eviction, as it uses attention weights that are already computed during the prefill forward
pass, it has widely been adopted as a cheap and effective heuristic for KV cache eviction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Theoretical latency overhead (b) Actual latency overhead

Figure 3: Time-to-First-Token (TTFT) latency overhead ratio across context lengths. Similar to
SnapKV, LookaheadKV introduces negligible TTFT overhead across all tested context lengths;
draft-based methods (LAQ, SpecKV) incur substantial latency, especially for shorter contexts.

SpecKV and LAQ. Recently, several methods have proposed to use a low-cost generator to generate
a (partial) approximate response first, and subsequently use it to estimate the true future importance
scores. Notably, SpecKV (Galim et al., 2025) employs a smaller LLM to first generate a draft
response, while Lookahead Q-Cache (LAQ) (Wang et al., 2025) first applies SnapKV to the target
model to generate a draft response, which is in turn used to approximate the future importance.

These draft-based methods have consistently shown superior performance compared to cheaper
heuristics (Li et al., 2024), demonstrating the effectiveness of employing surrogate future response,
i.e., by “glimpsing into the future”. However, the extra draft generation step still incurs substantial
additional compute, resulting in significant increase in latency, as shown in Figure 3. In summary,
existing methods face a clear trade-off: inexpensive heuristics are fast but less accurate, whereas
draft-based techniques improve performance at the cost of increased inference time.

3 PROPOSED METHOD: LOOKAHEADKV

To overcome the challenge of fast and accurate importance prediction, we introduce LookaheadKV, a
framework that augments the LLM with a set of lightweight learnable modules which are optimized
to predict ground-truth importance scores and guide the eviction process. LookaheadKV achieves
the best of both worlds: 1) it eliminates the need for generating a draft response for each query,
resulting in significantly faster KV cache eviction, and 2) it employs learned special tokens that serve
as approximate future response for importance estimation, leveraging the strength of draft-based
methods. The following section (and Figure 1) presents the detailed workflow of LookaheadKV.

3.1 MAIN COMPONENTS

Learnable Lookahead Tokens. LookaheadKV initially performs KV cache eviction using a set of
learnable special tokens during the pre-fill phase, and subsequently decodes auto-regressively with
the retained KV cache. Specifically, for given input prompt tokens X , LookaheadKV appends a
sequence of trainable “soft” lookahead tokens L = {l1, ..., lnlookahead} whose queries in the attention
layers are used to estimate the attention pattern of the true model response. In essence, these tokens
are trained to compress the attention information of the true response to serve as the “observation
window” in the eviction phase. These tokens are used during the pre-fill stage only for eviction, and
adds zero additional overhead for decoding.

Lookahead LoRA. To enhance the quality of estimation, we introduce Lookahead LoRA, a novel
low-rank adapter module that only activates for the lookahead tokens. Lookahead LoRA allows
these tokens to learn richer representations to compress the information of the true future attention
pattern, while ensuring that the outputs of normal input tokens are unchanged, preserving the orig-
inal model behavior. Moreover, since the original model weights remain unaltered, LookaheadKV
modules can be selectively enabled or disabled depending on the particular requirements of a given
application, thereby broadening the method’s applicability.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Combining the modules together, LookaheadKV computes the queries and keys of the complete
sequence as follows:

QLKV =

[
X
L

]
Wq +

[
0
L

]
∆Wq KLKV =

[
X
L

]
Wk +

[
0
L

]
∆Wk (4)

where L ∈ Rnlookahead×d denotes the hidden states of the lookahead embeddings, and ∆Wq ,
∆Wk are the Lookahead LoRA modules for query and key projections. Accordingly, the at-
tention pattern ALKV = Softmax(

QLKV K⊤
LKV√

d
), is used to estimate the importance score s̃j =

1
nlookahead

∑nin+nlookahead
i=nin+1 ALKV i,j , which is in turn used for effective KV cache eviction.

3.2 LOOKAHEADKV TRAINING

We train LookaheadKV modules to compress the attention pattern of the true future response, using
the model-generated responses as target. Specifically, given a data pair (X,Y), one iteration of
LookaheadKV training consists of the following steps:

1. GT Forward Pass. For each layer l = 1, ..., L and head h = 1, ...,H , the ground-truth
importance scores sl,hGT between the input prompt X and model-generated response Y are
computed.

2. Lookahead Forward Pass. Similarly, for each layer l and head h, we obtain the impor-
tance score estimates sl,hLKV between the input prompt X and the lookahead tokens L.

3. Loss Computation. We first normalize all score vectors so that they sum to 1, and com-
pute the average KL divergence loss between the GT and LookaheadKV importance scores
across all heads and layers:

L =
1

|L|
1

|H|

L∑
l

H∑
h

KL
(
Norm(sl,hGT) ∥ Norm(sl,hLKV)

)
. (5)

The loss is backpropagated to update the weights of the lookahead embeddings and Looka-
head LoRA modules, while all other LLM layers remain frozen. The pseudo-code for
LookaheadKV training and eviction is given in Algorithm 1 and Algorithm 2.

Training Objective. We want to ultimately optimize the similarity of the ranking between the
two attention score vectors, such that we obtain TopK indices identical to those from ground-truth
importance scores. Inspired from works on distilling attention scores (Wang et al., 2020; Izacard &
Grave, 2021), we minimize the KL divergence between these normalized attention scores. As our
attentions scores are normalized, this KL divergence is equivalent to the popular ListNet (Cao et al.,
2007) ranking loss, with ϕ of ListNet as identity instead of exp.

Lookahead LoRA Overhead. LookaheadKV consistently achieves strong performance with negli-
gible eviction overhead. In principle, one can apply Lookahead LoRA to only a subset of the linear
layers to tradeoff accuracy and latency. However, even when Lookahead LoRA is applied to every
linear layer, there is a mere 1.6% increase in the latency compared to not using Lookahead LoRA
at all (see Table 3 for ablation results). Further, appending a small number of lookahead tokens
(≤ 32 in our experiments) during prefill for importance estimation similarly incurs minimal cost.
Consequently, we train LookaheadKV with LoRA modules applied to all linear layers.

To avoid materializing the full attention score matrix, we use FlashAttention (Dao et al., 2022) in
the forward pass, coupled with eager attention for importance score computation and loss backprop-
agation, as detailed in Section C.

4 EXPERIMENTS

4.1 TRAINING

Dataset. To encourage the model to learn from diverse attention patterns, we curate training samples
of varying lengths and sources, comprising of both instruction-following datasets as well as pretrain-
ing texts. We collect 50K samples from the long sft subset of the ChatQA2 (Xu et al., 2025) dataset,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

20K samples from the Tulu (Lambert et al., 2025) instruction-following dataset, 7K samples from
the Stack (Kocetkov et al., 2023), and 9K few-shot completion data samples that we create based on
the training splits of the MetaMath, ARC, and HellaSwag datasets, originally curated in Pal et al.
(2024). For instruction-following data, we remove the last assistant response, and use the target
model to obtain the (X,Y) pairs of input prompt and model response. For pretraining documents,
we first truncate the text at random positions to obtain X , and use the target model to complete
the sequence to obtain Y . We limit the maximum input sequence length to 16K, and generate all
training responses using greedy decoding and max generation length of 512.

Training Details. We apply LookaheadKV on two widely
used open-source architectures, LLaMA (Dubey et al.,
2024) and Qwen (Yang et al., 2025), covering three model
sizes each: LLaMA3.2-1B, LLaMA3.2-3B, LLaMA3.1-8B,
Qwen3-1.7B, Qwen3-4B, and Qwen3-8B. For all models,
we set the lookahead size nlookahead = 32, and apply LoRA
to all projection and feed-forward modules (Wq , Wk, Wv ,
Wo, Wup, Wdown, and Wgate) with rank r = 8 and scal-
ing factor α = 32. This configuration introduces less than
0.5% additional trainable parameters across all models, as
summarized in Table 1. Full hyperparameter settings are
provided in Table 6.

Table 1: Additional trainable param-
eters introduced by LookaheadKV.

Model Trainable Params

Params % of Model

LLaMA3.2-1B 5.4M 0.44
LLaMA3.2-3B 11.9M 0.37
LLaMA3.1-8B 20.6M 0.26

Qwen3-1.7B 8.5M 0.49
Qwen3-4B 16.2M 0.40
Qwen3-8B 21.5M 0.26

4.2 EVALUATION SETUP

We evaluate our method on two popular long-context benchmarks: LongBench (Bai et al., 2024) and
RULER (Hsieh et al., 2024). LongBench is a multi-task benchmark that comprehensively assesses
long-context understanding across diverse tasks, such as question answering, summarization, few-
shot learning, and code completion. We report results on the 16 English tasks, and use the average
score as the main metric. RULER is another multi-task synthetic benchmark, primarily compris-
ing 13 Needle-in-a-Haystack-style subtasks. Each sample can be constructed at varying sequence
lengths, allowing systematic evaluation of scaling behavior. Similar to LongBench, we use average
score as the main metric, and report the results at 4K, 8K, 16K and 32K context lengths.

Baselines. We compare our method against popular KV-cache eviction methods: 1) SnapKV (Li
et al., 2024), 2) PyramidKV (Cai et al., 2024), and 3) StreamingLLM (Xiao et al., 2024). Addi-
tionally, we include stronger, more recent baselines that involve costly approximate future response
generation, including 4) Lookahead Q-Cache (LAQ) (Wang et al., 2025), and for 8B-scale models,
5) SpecKV (Galim et al., 2025). In all experiments, Llama3.2-1B-Instruct and Qwen3-1.7B are
used as draft models for Llama3.1-8B-Instruct and Qwen3-8B, respectively. We follow the standard
eviction configuration settings for all baseline methods, which we detail in Section F

4.3 PERFORMANCE RESULTS

LongBench evaluation. Figure 4 shows the average LongBench scores of LookaheadKV and base-
lines, across cache budget settings ranging from 64 to 2048. Our method consistently demonstrates
superior performance across all models and all budgets tested, demonstrating the effectiveness and
robustness of our approach. Overall, results show that expensive draft-based methods, e.g., LAQ and
SpecKV, outperform cheaper baselines, corroborating that employing approximate future response
for importance estimation is effective. Nevertheless, our method significantly outperforms the draft-
based approaches, especially at lower budget settings, highlighting that learning to estimate future
importance is crucial for performance preservation. Due to space limitation, we report the results of
1B-scale models in Section E.

RULER evaluation. We report the RULER evaluation results of all methods with a fixed budget of
128 in Figure 4 (1B-scale results are provided in Section E). LookaheadKV consistently outperforms
other baseline approaches here as well, maintaining strong performance across all evaluated context
lengths. Further, note that while we limit the maximum training sequence length of LookaheadKV
to 16K, our method generalizes to longer context length of 32K. We conduct additional experiments
on the impact of training context length in Section 5.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Top row: Average LongBench results across multiple budgets and models. Bottom row:
Average RULER results across varying context lengths with a fixed budget of 128. Across all tested
models, budgets and context lengths, our method consistently demonstrates superior performance.

Figure 5: HTML-to-TSV evaluation results.

Long-Form output Evaluation. We further
evaluate LookaheadKV on the HTML to TSV
task from LongProc (Ye et al., 2025), which
involves extracting structured information from
long HTML documents and converting it into
TSV format. This benchmark tests not only the
model’s ability to process long-context inputs, but
also its capacity to generate long-form outputs.
We assess LookaheadKV and baseline methods
under two input–output settings: 12K–0.5K and
23K–2K tokens, both at a fixed cache budget ra-
tio of 30%.

Figure 5 presents the results on the HTML to
TSV task. Across both sequence-length config-
urations, LookaheadKV consistently outperforms prior approaches. We hypothesize that Looka-
heaKV, which learns to predict the attention pattern of the entire future response, is particularly
superior in long-form generation tasks compared to draft-based methods that rely only on partial
future response as the observation window.

5 ANALYSIS

5.1 EFFICIENCY COMPARISON

To assess the efficiency of our method against the baselines, we measure the Time-To-First-Token
(TTFT) across multiple context lengths using their official implementations, with the exception of
LAQ which we re-implement since it does not have an official implementation. Furthermore, since
the latency of a method can vary significantly depending on the implementation, we conduct rigorous
analysis and derive the theoretical latency for each method, based on the analytical model proposed
in Davies et al. (2025). We discuss further details in Section B.

Table 2 presents the results of the TTFT analysis for 8K and 32K context lengths (see Table 5 for 4K
and 16K results). Overall, we observe that draft-based methods incur significant overhead, either
due to increased computation (SpecKV) or memory traffic (LAQ). On the contrary, LookaheadKV
requires marginal additional cost across all tested context lengths, achieving 14.5 times faster evic-
tion overhead compared to LAQ at 32K sequence length.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Theoretical and Practical Analysis across various context lengths and methods.

Theoretical Cost Empirical Cost

Context Length Method
Compute
(TFLOPs)

Memory Traffic
(GB)

TTFT
(ms)

TTFT
Overhead (ms)

TTFT
(ms)

TTFT
Overhead (ms)

8192

Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 11

SnapKV 136 13 257 0.01 311 20

SpecKV 159 81 337 79.53 411 121

LAQ 137 445 492 234.59 800 509

32768

Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38

SnapKV 928 13 1754 0.01 1838 78

SpecKV 1115 106 2156 402.80 2263 503

LAQ 930 406 1993 239.26 2314 554

5.2 ABLATION ON TRAINABLE MODULES

We study the impact of lookahead size nlookahead and LoRA placement through a 2D ablation across
four lookahead sizes (4, 8, 16, 32) and three configurations: emb-only (No LoRA applied), QV
(LoRA applied to Q and V), and all (LoRA applied to all linear layers). The results show that
both larger lookahead sizes and broader LoRA coverage consistently improve average LongBench
performance. Importantly, these gains come with negligible inference overhead, as the additional pa-
rameters account for only a tiny fraction of pre-filling compute and memory. Based on this analysis,
we set nlookahead = 32 and apply LoRA to all linear modules in our main experiments.

Table 3: 2D ablation across lookahead sizes and trainable modules, on LLaMA 1B. Average Long-
Bench scores and TTFT overhead are reported.

nlookahead = 4 nlookahead = 8 nlookahead = 16 nlookahead = 32

Module score overhead(%) score overhead(%) score overhead(%) score overhead(%)

emb-only 25.5 3.4 25.7 3.8 26.4 3.4 26.4 4.2

QV 26.5 3.7 26.4 4.1 26.9 4.0 26.9 4.4

all 26.6 4.2 27.0 4.2 27.0 4.7 27.1 5.0

5.3 ROBUSTNESS TO TRAINING CONTEXT LENGTH

Transformer-based language models trained with
fixed context lengths often struggle to generalize be-
yond their training window. Similarly, one may raise
concern about the context length generalization of our
method. To examine this effect, we apply Looka-
headKV training to LLaMA-3B with limited training
context lengths of 2K, 4K, and 8K, and evaluate on
RULER (Figure 6). We observe that while longer
training context lengths yield better performance as
expected, training on shorter contexts still remains ef-
fective with relatively minor degradation in perfor-
mance, demonstrating that our method generalizes ro-
bustly to unseen sequence lengths. Figure 6: RULER evaluation on Looka-

headKV trained with shorter contexts.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 RELATED WORK

KV Cache Eviction. Early analyses revealed that attention scores tend to be sparse (Zhang et al.,
2023), implying that only a small subset of KV entries substantially contributes to the attention
output. Subsequent work showed that the importance of these tokens remains stable throughout
generation, i.e., tokens deemed important early on tend to stay important (Liu et al., 2023). These ob-
servations motivated a range of eviction methods aimed at discarding unimportant KV entries while
preserving model performance. A representative method is H2O (Heavy-Hitter Oracle) (Zhang et al.,
2023), which proposes an eviction policy that considers the historical importance of tokens based on
attention weights. NACL (Chen et al., 2024) performs eviction in a chunk-wise fashion, computing
token importance locally within each chunk.

Prefill KV Cache Eviction. Another line of work, which we discuss extensively in our paper,
focuses on eviction of prefill KV-cache. SnapKV (Li et al., 2024) introduced the notion of an “ob-
servation window” consisting of the suffix of the input prompt, which is used to predict important
tokens to keep for subsequent response generation. Further, SpecKV (Galim et al., 2025) proposed
to generate an approximate response with a smaller model and use the resulting tokens as a more re-
liable observation window for future importance prediction. Similarly, Lookahead Q-Cache (Wang
et al., 2025) first applies a cheap eviction method, such as SnapKV, to obtain a partial low-cost
draft response, then re-evicts KV entries based on the importance scores derived from the draft.
KV-zip (Kim et al., 2025) adopts a query-agnostic strategy by inserting a repeated prompt and mea-
suring which KV entries are essential for accurately reconstructing the input. Orthogonal to these
approaches, several works proposed to allocate non-uniform budgets for each layer (Cai et al., 2024)
and head (Feng et al., 2024) to further improve performance.

Prompt Tuning for Task Adaptation. Another line of work closely related to ours is parameter-
efficient finetuning through learned prompts. Prompt Tuning (Lester et al., 2021) inserts a sequence
of continuous, learnable embeddings into the frozen LLM for downstream task adaptation, while
Prefix-Tuning (Li & Liang, 2021) extends this idea by pre-pending learned vectors across multiple
layers. Further, P-Tuning v2 (Liu et al., 2022) demonstrated that prompt-based adaptation scales
well across a wide range of model sizes. Unlike conventional prompt-tuning methods that aim to
improve task performance, our work leverages learned prompts to predict internal model statistics,
thereby enhancing computational efficiency rather than accuracy.

Training objectives similar to ours have been used in distillation (Wang et al., 2020), or in rank-
ing/retrieval (Cao et al., 2007; Izacard & Grave, 2021). Some contemporaneous works (Greenewald
et al., 2025; Peng et al., 2025; Samragh et al., 2025) also propose LoRA modules that selectively
activate only for some tokens.

7 CONCLUSION AND LIMITATION

We introduce LookaheadKV, a trainable prefill-time KV cache eviction framework that accurately
predicts token importance without relying on draft generation. The method augments a frozen LLM
with a small set of learnable lookahead tokens and Lookahead LoRA modules that activate only
on these tokens. Trained to match ground-truth importance distributions across layers and heads,
LookaheadKV achieves performance superior to costly draft generation-based approaches while
adding negligible inference overhead. Empirically, across LLaMA and Qwen model families and
multiple long-context benchmarks, our approach consistently outperforms training-free heuristics
and draft-based baselines, especially in low-budget regimes and long-from output tasks, while in-
troducing less than 0.5% additional parameters and incurring only a marginal increase in prefill
latency.

Due to limited compute resources, we were unable to conduct experiments on larger-sized models.
Experiments on longer contexts should also be explored, but our analysis indicates that Looka-
headKV training generalizes to longer context lengths. We greedily generate all responses for train-
ing, but the interaction between the decoding parameters, e.g., temperature, and LookaheadKV per-
formance could be further explored. Lastly, LookaheadKV focuses on the prefill KV cache eviction;
extending LookaheadKV to also perform decoding-stage eviction remains a future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

Our source code is released in supplementary to reproduce our results, and pseudo-code is also
provided in Section A. Section G provides links to datasets and evaluation benchmarks used, and
Section 4.1 describes the pre-processing steps on the data.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A
bilingual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand,
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne
Xiong, Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyra-
midal information funneling. ArXiv preprint, abs/2406.02069, 2024. URL https://arxiv.
org/abs/2406.02069.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pair-
wise approach to listwise approach. In Proceedings of the 24th International Conference on
Machine Learning, ICML ’07, pp. 129–136, New York, NY, USA, 2007. Association for Com-
puting Machinery. ISBN 9781595937933. doi: 10.1145/1273496.1273513. URL https:
//doi.org/10.1145/1273496.1273513.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuo-
huan Wang, Yu Sun, Dianhai Yu, and Hua Wu. NACL: A general and effective KV cache
eviction framework for LLM at inference time. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 7913–7926, Bangkok, Thailand, 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.428. URL https:
//aclanthology.org/2024.acl-long.428/.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 4599–4610, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.365. URL https://aclanthology.org/2021.
naacl-main.365/.

Michael Davies, Neal Crago, Karthikeyan Sankaralingam, and Christos Kozyrakis. Efficient llm
inference: Bandwidth, compute, synchronization, and capacity are all you need, 2025. URL
https://arxiv.org/abs/2507.14397.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

10

https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://aclanthology.org/2024.acl-long.428/
https://aclanthology.org/2024.acl-long.428/
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://aclanthology.org/2021.naacl-main.365/
https://aclanthology.org/2021.naacl-main.365/
https://arxiv.org/abs/2507.14397

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. ArXiv preprint, abs/2407.11550,
2024. URL https://arxiv.org/abs/2407.11550.

Kevin Galim, Ethan Ewer, Wonjun Kang, Minjae Lee, Hyung Il Koo, and Kangwook Lee. Draft-
based approximate inference for llms. ArXiv preprint, abs/2506.08373, 2025. URL https:
//arxiv.org/abs/2506.08373.

Kristjan Greenewald, Luis Lastras, Thomas Parnell, Vraj Shah, Lucian Popa, Giulio Zizzo, Chulaka
Gunasekara, Ambrish Rawat, and David Cox. Activated lora: Fine-tuned llms for intrinsics, 2025.
URL https://arxiv.org/abs/2504.12397.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for question
answering. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=NTEz-6wysdb.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, and Hyun Oh Song. KVzip:
Query-agnostic KV cache compression with context reconstruction. In ES-FoMo III: 3rd Work-
shop on Efficient Systems for Foundation Models, 2025. URL https://openreview.net/
forum?id=gcqzyyF654.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI, Chenghao Mou, Yacine Jernite, Margaret
Mitchell, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro Von
Werra, and Harm de Vries. The stack: 3 TB of permissively licensed source code. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=pxpbTdUEpD.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christo-
pher Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training. In Second Conference on
Language Modeling, 2025. URL https://openreview.net/forum?id=i1uGbfHHpH.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.
3045–3059, Online and Punta Cana, Dominican Republic, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/
2021.emnlp-main.243.

Cheng Li. Llm-analysis: Latency and memory analysis of transformer models for training and
inference. https://github.com/cli99/llm-analysis, 2023.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context LLMs struggle with
long in-context learning. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.
URL https://openreview.net/forum?id=Cw2xlg0e46.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th

11

https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2506.08373
https://arxiv.org/abs/2506.08373
https://arxiv.org/abs/2504.12397
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=gcqzyyF654
https://openreview.net/forum?id=gcqzyyF654
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=i1uGbfHHpH
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://github.com/cli99/llm-analysis
https://openreview.net/forum?id=Cw2xlg0e46

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL
https://aclanthology.org/2021.acl-long.353.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: LLM knows what you are
looking for before generation. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in
Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
28ab418242603e0f7323e54185d19bde-Abstract-Conference.html.

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. In The Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=pPjZIOuQuF.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Mure-
san, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ire-
land, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anas-
tasios Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of
importance hypothesis for LLM KV cache compression at test time. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. RepoAgent: An
LLM-powered open-source framework for repository-level code documentation generation. In
Delia Irazu Hernandez Farias, Tom Hope, and Manling Li (eds.), Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 436–
464, Miami, Florida, USA, 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.emnlp-demo.46. URL https://aclanthology.org/2024.emnlp-demo.46/.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive. ArXiv preprint,
abs/2402.13228, 2024. URL https://arxiv.org/abs/2402.13228.

Yuqi Peng, Lingtao Zheng, Yufeng Yang, Yi Huang, Mingfu Yan, Jianzhuang Liu, and Shifeng
Chen. Tara: Token-aware lora for composable personalization in diffusion models, 2025. URL
https://arxiv.org/abs/2508.08812.

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential,
2025. URL https://arxiv.org/abs/2507.11851.

Minzheng Wang, Longze Chen, Fu Cheng, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, Yunshui Li, Min Yang, Fei Huang, and Yongbin Li. Leave no
document behind: Benchmarking long-context LLMs with extended multi-doc QA. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 5627–5646, Miami, Florida, USA,
2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.322. URL
https://aclanthology.org/2024.emnlp-main.322/.

12

https://aclanthology.org/2021.acl-long.353
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://openreview.net/forum?id=pPjZIOuQuF
https://openreview.net/forum?id=pPjZIOuQuF
https://aclanthology.org/2022.acl-short.8
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://aclanthology.org/2024.emnlp-demo.46/
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2508.08812
https://arxiv.org/abs/2507.11851
https://aclanthology.org/2024.emnlp-main.322/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained transformers. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 5776–5788. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
understanding with large language model as agent. In European Conference on Computer Vision,
pp. 58–76. Springer, 2024b.

Yixuan Wang, Shiyu Ji, Yijun Liu, Yuzhuang Xu, Yang Xu, Qingfu Zhu, and Wanxiang Che. Looka-
head q-cache: Achieving more consistent kv cache eviction via pseudo query. ArXiv preprint,
abs/2505.20334, 2025. URL https://arxiv.org/abs/2505.20334.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=NG7sS51zVF.

Peng Xu, Wei Ping, Xianchao Wu, Chejian Xu, Zihan Liu, Mohammad Shoeybi, and Bryan Catan-
zaro. Chatqa 2: Bridging the gap to proprietary llms in long context and RAG capabilities. In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
cPD2hU35x3.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation.
In Second Conference on Language Modeling, 2025. URL https://openreview.net/
forum?id=ruWC5LIMSo.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2505.20334
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=cPD2hU35x3
https://openreview.net/forum?id=cPD2hU35x3
https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=ruWC5LIMSo
https://openreview.net/forum?id=ruWC5LIMSo
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PSEUDO-CODE

The pseudocode for LookaheadKV training and eviction is described in Algorithm 1 and Algo-
rithm 2, respectively.

Algorithm 1 LookaheadKV Training

Require: dataset D of input-response pairs
1: scores← [] ▷ GT importance scores
2: estimates← [] ▷ score estimates using LookaheadKV
3: for each training sample (X,Y) in dataset D do
4: for each layer l do ▷ GT pass
5: for each head h in layer l do
6: S ← GT importance score for head (l, h)
7: scores.append(S)
8: end for
9: end for

10: for each layer l do ▷ lookahead pass
11: for each head h in layer l do
12: Ŝ ← importance scores using lookahead embeddings for head (l, h)

13: estimates.append(Ŝ)
14: end for
15: end for
16: L← 0 ▷ compute loss
17: for all (S, Ŝ) in scores, estimates do
18: L← L+KL

(
Norm(S) ∥ Norm(Ŝ)

)
19: end for
20: L← L

|scores|
21: L.backward()
22: end for

Algorithm 2 LookaheadKV Eviction

Require: Input prompt X = (x1, . . . , xnin)
Require: cache budget k
Require: learned lookahead tokens L = (l1, . . . , lnlookahead)

1: X̂ ← (x1, . . . , xnin , l1, . . . , lnlookahead) ▷ append learned lookahead tokens to input
2: Perform a forward pass with X̂ to populate KV cache
3: For each layer l and head h we now have

Kl,h ∈ R(nin+nlookahead)×d,
Vl,h ∈ R(nin+nlookahead)×d

4: for each layer l do
5: for each head h in layer l do
6: Qlookahead

l,h ← Llookahead
l,h W q

l,h + Llookahead
l,h ∆W q

l,h ▷ queries of lookahead tokens

7: Al,h ← Softmax
(

Qlookahead
l,h K⊤

l,h√
d

)
8: sl,h ← 1

nlookahead

∑nlookahead
i=1 Al,h[i, :] ▷ score vector of length nin

9: Il,h ← TopK(sl,h, k) ▷ select Top-k indices
10: Kpruned

l,h ← Kl,h[Il,h]
11: V pruned

l,h ← Vl,h[Il,h]
12: Cache (Kpruned

l,h , V pruned
l,h)

13: end for
14: end for
15: return Pruned KV cache {(Kpruned

l,h , V pruned
l,h)}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B THEORETICAL ESTIMATION DETAILS

This section details our methodology for theoretically estimation the Time-to-First-Token (TTFT)
latency for various KV cache eviction algorithms. Our analysis is based on the analytical model for
FLOPs and memory traffic proposed by Davies et al. (2025). To align configurations of theoretical
estimates with them of actual measurements, we simulate the execution of LLaMA3.1-8B on a
single NVIDIA H100 80GB GPU with a batch size of 1, assuming all weights and activations are
in half-precision. We set KV cache budget size of 128, lookahead size as 32, and window size as
32. We only consider tensor operations which are dominant parts of the computations. To provide
estimates that closely reflect real-world performance, our calculations incorporate practical hardware
utilization by assuming a flops efficiency of 0.7 and a memory efficiency of 0.9, as described in Li
(2023).

To isolate the specific overhead introduced by each eviction algorithm, we first establish a baseline
by calculating the theoretical latency of a single forward pass. The TTFT overhead for each eviction
method is then determined by subtracting this baseline forward pass latency from the method’s total
estimated TTFT. Notably, we do not add memory IO overhead incurred by KV cache unlike other
eviction methods, since we only aim to calculate the computational overhead of a single forward
pass operation. For LAQ, the total latency is calculated by summing the costs of its three costituent
steps—the first eviction, low-cost generation of pseudo response, and the second eviction. Similarly,
the total latency of SpecKV is estimated by aggregating the latencies of its draft prefill, draft decode,
and target model eviction phases. A comprehensive implementation of the code to derive theoretical
estimates of all baselines is available in the Suppplementary Materials.

C IMPLEMENTATION OPTIMIZATION

Efficient attention implementations such as FlashAttention (Dao et al., 2022) do not materialize the
full attention score matrix, but is required in our setting to compute importance scores and enable
gradient backpropagation. A possible solution is to compute the complete attention matrix using
native PyTorch (i.e., eager attention), but this quickly leads to an out-of-memory error as the matrix
size grows quadratically with the sequence length, which is incompatible with our training setting
(upto 16K sequence length). Fortunately, for our objective, we only require the cross-attention scores
between the generated response and the entire input sequence, and the response length is typically
much shorter than the input prompt.

Leveraging this observation, we adopt the following approach: for the attention layers’ forward
computation, we use flash attention, while for the importance score computation and loss back-
propagation, we employ eager attention to only compute the partial attention score matrix with the
queries of model response and keys of the entire sequence. This reduces the memory requirement of
eager attention fromO((|X|+ |Y |)2) toO(|X| · |Y |+ |Y |2), where |X| and |Y | denote the lengths
of the input prompt and model response, respectively, with |X| ≫ |Y |.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D NEED FOR DATA GENERATION

One of the requirements of LookaheadKV training is that the target model’s generated responses
must be available as training data. However, generating these responses from the model can some-
times be costly, e.g., when applying LookaheadKV across multiple models. Hence, to assess
whether this requirement of can be relaxed, we evaluate an alternative setting where training uses
the responses from the source datasets instead of model-generated outputs.

We observe in Figure 7 that this substitution leads to a relatively minor drop in average LongBench
performance in lower-budget regimes. We hypothesize that if the attention distribution of the model-
generated responses and that of the source dataset responses are moderately similar, our method can
still successfully learn to accurately predict the importance scores. Overall, these results suggest
that, in scenarios where training data generation is impractical, using source responses provides a
viable and effective alternative.

Figure 7: Performance ratio of training using model-generated data vs. source data.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

We provide a comprehensive experimental results excluded from the main text due the page limita-
tion.

E.1 RESULTS ON LONGBENCH

Figure 8: Full Longbench results across multiple cache budgets.

Table 4: Performance comparison of different methods across various LLMs on LongBench.

LLMs Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.
NrtQA Qasper MF-en HotpotQA 2WikiMQA Musique GovReport QMSum MultiNews TREC TriviaQA SAMSum PCount Pre Lcc RB-P

L
la

m
a3

.1
-8

B
-I

ns
tr

uc
t

FullKV 31.63 46.66 56.93 58.10 48.50 31.57 34.46 25.28 26.98 72.50 91.65 43.79 6.64 99.50 65.12 58.78 49.88
KV Cache Size = 128

StreamingLLM 24.95 21.50 32.56 50.67 42.89 24.31 18.49 21.25 18.19 40.50 85.57 38.28 7.50 99.50 59.03 49.72 39.68
SnapKV 29.13 28.06 51.23 56.79 45.30 27.81 19.99 23.03 19.73 46.00 89.72 40.44 7.50 99.50 59.50 52.19 43.50
PyramidKV 27.70 28.86 52.00 56.76 46.11 28.13 19.86 22.81 20.03 44.50 88.41 39.73 7.50 99.50 59.84 51.96 43.36
LAQ 30.48 38.31 55.73 57.50 49.13 29.67 22.42 24.20 21.59 60.50 92.09 41.04 7.25 99.50 60.54 55.83 46.61
SpecKV 29.22 29.12 54.05 56.54 46.30 29.90 22.65 23.18 21.25 52.00 90.02 42.14 8.83 99.50 61.11 61.38 45.45
LookaheadKV 31.32 42.85 56.78 57.04 47.44 30.82 25.18 24.33 23.09 65.50 92.24 42.96 7.50 99.50 61.75 55.29 47.72

KV Cache Size = 256
StreamingLLM 25.96 24.08 33.73 50.56 42.61 23.49 20.86 21.60 20.64 46.00 87.50 41.09 7.50 99.50 61.19 51.53 41.12
SnapKV 27.96 34.49 55.07 57.40 46.57 29.50 22.49 23.51 22.42 54.00 91.10 40.61 7.33 99.50 62.48 55.36 45.61
PyramidKV 28.09 36.64 55.86 57.68 46.28 29.56 22.23 23.86 22.53 56.50 91.56 41.23 7.33 99.50 62.47 53.92 45.95
LAQ 31.03 43.97 55.93 57.78 49.42 30.42 24.48 24.60 23.29 68.00 92.20 42.61 7.08 100.00 62.70 58.09 48.23
SpecKV 28.66 36.19 57.26 58.17 48.51 30.85 24.83 24.60 23.32 61.00 91.16 42.46 8.33 99.50 64.21 63.18 47.64
LookaheadKV 31.96 44.01 56.80 57.99 47.41 31.46 27.26 24.56 24.59 69.00 92.55 42.93 7.33 100.00 62.81 57.02 48.61

KV Cache Size = 1024
StreamingLLM 27.23 30.80 36.64 50.59 43.26 23.45 25.73 21.67 25.49 63.50 88.84 42.56 7.50 93.50 63.15 55.73 43.73
SnapKV 29.64 44.60 57.30 57.62 48.31 31.18 27.57 24.17 25.84 69.50 92.04 42.78 7.08 99.50 64.57 58.46 48.76
PyramidKV 30.79 44.91 56.65 58.13 48.17 30.56 26.65 24.53 25.88 68.00 91.78 42.20 6.83 99.50 64.41 57.77 48.55
LAQ 31.63 45.63 55.02 57.70 50.27 31.28 28.82 25.10 26.18 72.50 92.33 43.31 6.50 100.00 62.75 59.04 49.25
SpecKV 31.59 45.44 57.98 57.51 49.16 31.95 28.67 24.95 25.77 67.50 92.23 43.94 6.00 99.50 65.21 62.30 49.36
LookaheadKV 31.14 46.04 57.77 58.22 48.43 30.72 30.75 25.31 26.66 72.50 91.92 43.39 7.08 100.00 64.87 58.36 49.57

Q
w

en
3-

8B

FullKV 26.04 47.76 53.33 59.23 43.37 36.05 33.66 24.05 24.79 71.50 90.21 44.43 2.00 100.00 69.39 65.57 49.46
KV Cache Size = 128

StreamingLLM 17.65 26.69 28.40 41.05 33.46 20.82 15.72 19.15 15.14 43.00 82.57 38.44 1.50 70.00 62.86 56.69 35.82
SnapKV 19.14 32.65 45.99 54.81 38.95 26.59 17.66 20.83 16.04 49.50 87.10 38.90 3.50 99.50 64.62 58.29 42.13
PyramidKV 15.57 30.19 41.84 46.01 35.73 19.57 16.51 19.67 14.86 47.00 83.51 35.56 2.50 92.00 62.14 53.07 38.48
LAQ 22.74 42.15 53.55 57.89 42.84 36.74 21.33 22.25 18.34 64.50 89.55 40.93 3.00 100.00 66.74 61.70 46.52
SpecKV 23.03 37.14 53.58 56.77 42.24 31.82 21.33 22.86 19.04 60.00 88.31 41.50 3.50 100.00 66.82 61.96 45.62
LookaheadKV 26.06 44.30 53.24 58.78 42.79 35.89 25.29 22.95 21.13 66.50 88.95 41.64 3.50 99.50 65.95 62.88 47.46

KV Cache Size = 256
StreamingLLM 18.18 28.53 28.52 42.81 33.58 21.34 18.63 19.20 17.76 48.00 85.58 40.08 1.00 69.00 65.50 59.41 37.32
SnapKV 23.03 38.32 51.04 57.36 40.67 32.82 21.51 21.89 18.97 59.50 89.46 41.06 2.00 100.00 67.62 61.88 45.45
PyramidKV 18.47 34.87 47.44 55.68 37.89 26.67 20.43 20.92 17.43 58.50 85.20 38.98 3.50 100.00 65.51 57.32 43.05
LAQ 26.00 45.44 53.84 57.00 43.53 36.62 24.22 23.38 20.38 70.00 89.05 42.47 3.00 100.00 68.17 64.03 47.95
SpecKV 22.58 41.09 53.89 59.85 42.42 34.50 24.53 23.64 21.25 68.00 88.13 43.12 3.00 100.00 68.39 64.40 47.42
LookaheadKV 25.88 45.40 52.68 58.47 44.05 36.13 27.77 23.71 22.88 69.00 89.05 43.32 2.00 100.00 67.83 64.71 48.31

KV Cache Size = 1024
StreamingLLM 21.25 32.82 31.44 45.94 34.38 23.34 25.73 20.25 23.50 62.00 88.71 41.18 0.50 44.00 68.39 63.65 39.19
SnapKV 24.26 46.13 52.48 58.52 42.66 36.89 28.39 23.61 23.33 69.00 89.55 43.13 2.00 100.00 69.05 66.27 48.45
PyramidKV 23.77 42.89 53.01 58.86 42.32 35.47 27.32 23.07 22.72 71.00 89.95 42.56 2.00 100.00 68.81 64.25 48.00
LAQ 26.11 47.27 53.45 57.01 43.52 37.26 29.50 23.88 23.47 71.50 89.63 44.00 2.00 100.00 67.94 64.83 48.84
SpecKV 24.98 46.56 54.07 59.04 43.37 34.12 29.32 24.18 23.68 71.00 90.11 44.56 3.00 100.00 69.09 66.53 48.98
LookaheadKV 25.36 47.23 52.56 59.30 43.25 36.39 31.65 23.72 24.61 71.00 90.21 44.69 0.50 100.00 68.93 65.22 49.04

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.2 RESULTS ON RULER

We report the RULER results across all six models tested, with cache budget settings at 64 (Figure 9)
and 128 (Figure 10).

Figure 9: Full RULER results across context lengths (budget = 64)

Figure 10: Full RULER results across context lengths (budget = 128)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.3 ADDITIONAL EFFICIENCY ANALYSIS

We show the full results of the latency analysis that were omitted in the main paper due to space lim-
itation in this section. Note that the empirical TTFT overheads for some methods, SnapKV in partic-
ular, can be larger than theoretical estimations. These are probably due to inefficient implementation
of these methods in KVCache-Factory or their official implementation. Better implementations may
reduce these overheads significantly, more in line with the theoretical cost.

Table 5: Theoretical and Practical Analysis across various context lengths and methods.

Theoretical Cost Empirical Cost

Context Length Method
Compute
(TFLOPs)

Memory Traffic
(GB)

TTFT
(ms)

TTFT
Overhead (ms)

TTFT
(ms)

TTFT
Overhead (ms)

4096

Forward Pass Only 60 13 113 N/A 130 N/A
LookaheadKV (ours) 60 13 114 0.92 141 11.38

SnapKV 60 13 113 0.01 143 13.14

SpecKV 70 77 165 52.10 223 92.42

LAQ 61 444 347 233.81 637 506.58

8192

Forward Pass Only 136 13 257 N/A 291 N/A
LookaheadKV (ours) 137 13 258 1.03 302 10.88

SnapKV 136 13 257 0.01 311 20.17

SpecKV 159 81 337 79.53 411 120.51

LAQ 137 445 492 234.59 800 509.38

16384

Forward Pass Only 336 13 635 N/A 658 N/A
LookaheadKV (ours) 337 13 636 1.27 677 18.50

SnapKV 336 13 635 0.01 695 37.12

SpecKV 398 89 792 157.05 866 207.31

LAQ 337 447 871 236.15 1182 523.54

32768

Forward Pass Only 928 13 1754 N/A 1760 N/A
LookaheadKV (ours) 929 13 1755 1.74 1798 38.04

SnapKV 928 13 1754 0.01 1838 77.67

SpecKV 1115 106 2156 402.80 2263 502.87

LAQ 930 406 1993 239.26 2314 553.68

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F HYPER-PARAMETERS

Training hyper-parameters.

Learning rate was searched for Llama and Qwen model family among [5×10−5, 1×10−4, 2×10−4,
1× 10−3]. The final hyper-parameters for all experiments are shown in Table 6.

Table 6: Training hyperparameters.

Parameters Values
Optimizer Adam
β1, β2 0.9, 0.95
Effective Batch Size 32
Drop-out (p) 0.0
Max Sequence Length 16384 (prompt length) + 512 (response length)
Train Iters 7600
Learning rate 1× 10−3 (for Llama), 2× 10−4 (for Qwen)
Schedule Cosine
Warmup steps 2%
Min LR 0.0
Gradient clipping 1.0

Eviction hyper-parameters. We use the implementations in KVCache-Factory or their official im-
plementations (SpecKV) for all our methods, except for LAQ which we re-implement ourselves.
Following prior works (Li et al., 2024; Cai et al., 2024; Galim et al., 2025), we use standard config-
uration settings for all baseline methods, including an observation window size of 32, maxpooling
kernel size of 7, and mean reduction for GQA compatibility (Feng et al., 2024). For LookaheadKV
we use the same settings, except we do not use window size, as our method does not train with the
suffix window for prediction. Further, since our lookahead size nlookahead is 32, we set the maximum
generation limit of LAQ and SpecKV to 32 tokens so that the methods can be compared using the
same number of draft tokens.

G DATASETS, BENCHMARKS, AND SOFTWARE

Software Our source code is available in the supplementary, and our implementation is built on
KVCache-Factory.

Training Dataset Our training dataset mixture consist of random samples from publicly available
datasets: 50K long sft subset of ChatQA2-Long-SFT-data, 20K subset of tulu-3-sft-olmo-2-mixture,
7K samples from The Stack, and 3K samples from MetaMathFewshot, HellaSwag DPO Fewshot,
and ARC DPO Fewshot, respectively.

Evaluation Benchmarks We used LongBench dataset as fetched and processed by KVCache-
Factory, see HF Dataset for the official source. For RULER, we used RULER Github. For LongProc,
we used LongProc Github.

H LLM USAGE

LLM assistants were used to refine the wording of selected sentences, while the majority of the text
was written by human. All LLM-generated text was carefully inspected to ensure that it contained
no harmful or controversial content. Additionally, we used LLMs to help in finding some of the
related literature discussed in the paper.

20

https://github.com/Zefan-Cai/KVCache-Factory
https://huggingface.co/datasets/nvidia/ChatQA2-Long-SFT-data
https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture
https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/abacusai/MetaMathFewshot
https://huggingface.co/datasets/abacusai/HellaSwag_DPO_FewShot
https://huggingface.co/datasets/abacusai/ARC_DPO_FewShot
https://huggingface.co/datasets/zai-org/LongBench
https://github.com/NVIDIA/RULER
https://github.com/princeton-pli/LongProc

	Introduction
	Background
	Proposed Method: LookaheadKV
	Main Components
	LookaheadKV Training

	Experiments
	Training
	Evaluation Setup
	Performance Results

	Analysis
	Efficiency Comparison
	Ablation on Trainable Modules
	Robustness to Training Context Length

	Related Work
	Conclusion and Limitation
	Reproducibility Statement
	Pseudo-code
	Theoretical Estimation Details
	Implementation Optimization
	Need for Data Generation
	Additional Results
	Results on LongBench
	Results on RULER
	Additional Efficiency Analysis

	Hyper-Parameters
	Datasets, Benchmarks, and Software
	LLM Usage

