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Leveraging pretrained deep protein
language model to predict peptide
collision cross section
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Collision cross section (CCS) of peptide ions provides an important separation dimension in liquid
chromatography/tandem mass spectrometry-based proteomics that incorporates ion mobility
spectrometry (IMS), and its accurate prediction is the basis for advanced proteomics workflows. This
paper describes experimental data and a prediction model for challenging CCS prediction tasks
including longer peptides that tend to have higher charge states. The proposed model is based on a
pretrained deep protein language model. While the conventional prediction model requires training
from scratch, the proposed model enables training with less amount of time owing to the use of the
pretrainedmodel as a feature extractor. Results of experimentswith the novel experimental data show
that the proposedmodel succeeds in drastically reducing the training timewhilemaintaining the same
or even better prediction performance compared with the conventional method. Our approach
presents the possibility of prediction on the basis of “greener”manner training of various peptide
properties in proteomic liquid chromatography/tandem mass spectrometry experiments.

Proteins are important biological elements responsible for various functions
of living organisms, and a systematic understanding of when, where, and
how these proteins are expressed is necessary for system-wide analysis of
biological functions1. Therefore, an important issue in proteomics is how to
efficiently identify and quantify the vast number of proteins present in cells
and tissues2. Recent advances in liquid chromatography/tandem mass
spectrometry (LC/MS/MS) have significantly improved the coverage of
bottom-up proteomics3. However, a typical human proteome sample con-
sists ofmore than tenmillionprotease-digestedpeptides4,whose complexity
is beyond the separation capabilities of current LC/MS/MS systems5.

Recently, ion mobility spectrometry (IMS) has gained attention as yet
another promising separationmethod to be combined with LC/MS/MS6–10.
IMS separates molecules in terms of their charge and shape by measuring
the mobility of ions moving in a buffer gas flow under the influence of an
electric field11. The frequency of ion-gas collisions, also known as the col-
lision cross section (CCS), determines the ion mobility in the gas phase12.
Thus, even ion species of the samem/zmay exhibit differentCCS values due
to different conformations they take13. The extended separation space
provided by ion mobility resolves various problems caused by the insuffi-
cient separation of peptide ions in the conventional LC/MS/MS. For
example, it can improve the separation of peptide isomers, which are

peptideswith the same sequence but different positions of post-translational
modifications. Additionally, the improvement of peptide separation can
lead to better quantitation accuracy7,9,14.

IMS is not only effective for improving the separation efficiency of
peptide ions, but it also has the potential for improving peptide
identification15,16. While peptide identification primarily relies on MS/MS
spectra, utilizing additional information such as peptide retention time can aid
in the identification process, particularly for data from target acquisitions or
data-independent acquisitions. However, accurate prediction of peptide
retention time isnecessary for approachesutilizing retention time information
to be effective17,18. It is also the case with those utilizing IMS data: For better
analysis of proteomic IMS data, it would be desirable if one can accurately
predict CCS values of peptide ions. Several groups have so far proposed CCS
prediction algorithms. Clemmer and coworkers established the model called
intrinsic size parameter (ISP), which represents the relative size of each amino
acid residue in a peptide sequence13,19,20. While this model works for a specific
set of peptides, it has inherent limitations due to the use of the peptide’s amino
acid compositions but not the sequences. This ISP parameter has been further
expanded to incorporate some sequence information16.

On the other hand, inspired by great successes of deep learning in
various research fields, the use of a deep neural network (NN)model for the
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CCS prediction problem has been proposed in ref. 15, where a bidirectional
LSTM model21, trained from scratch with a dataset of 559,979 unique
peptide ion data, was used for CCS prediction. The dataset contains peptide
sequences of less than 30 amino acid residues, and mostly with the doubly
charged species, which are typically observed in proteomic experiments.
The prediction of CCS values of longer peptides is challenging due to the
limited availability of data and their enhanced structural variability. Longer
peptides tend to have higher charge states, such as triple, quadruple charges
and more, which results in higher variability in CCS among species even
within similar m/z ranges. Therefore, it is desirable to provide data con-
sisting of a greater variety of peptides and verify the predictive performance
of prediction models on such a dataset. In deep NN models, training time
and computational load become bottlenecks for such performance ver-
ification. There is generally a trade-off between models’ performance and
such complexities. This problem is serious, especially in many laboratories
where computational resources are limited. Developing models that can
achieve reasonable performance at lower cost is a new direction to aim for.

Our proposal for CCS prediction is to use a pretrained deep protein
language model as a feature extractor from peptide sequences, and train a
separate NN, which we call a prediction NN, to predict CCS values on the
basis of the extracted features. The overall model architecture of our pro-
posal, which we name the pretrained protein language model-based net-
work (PPLN), is depicted in Fig. 1. It has been argued22 that a deep (natural)
languagemodel trainedwith a large corpus of a language implicitly acquires
grammatical information of that language. Likewise, a pretrained deep
protein language model trained with a large-scale database of protein
sequences is believed to acquire structural information of proteins23 (so
called “protein grammar”). The possibility of utilizing pretrained protein
language models for various prediction tasks was suggested in ref. 24.
Indeed, it has been demonstrated in ref. 25 that the feature representation
provided by a pretrained deep protein languagemodel named evolutionary
scale modeling-1b (ESM-1b) is useful in prediction of secondary structure
and residue-residue contacts in proteins.As theCCSvalue of a peptide ion is

regarded as being determinedby the conformation of the ion particles in the
drift tube, one can expect that the features obtained by such a deep protein
language model that encodes structural information of proteins will be
useful in prediction of CCS values of peptide ions as well.

Use of a pretrained protein language model as a feature extractor for
CCS predictionmight limit performance of CCS prediction compared with
the approach of training a dedicated complex deepNNmodel from scratch,
when the quality of the extracted features by the pretrained model is not
good. It will have several advantages, on the other hand, when the quality of
the features is good. It will make the CCS prediction problemeasier to solve:
One can use a simpler prediction NN, and train it with a smaller-sized
trainingdataset andwith less amount of time.Trainingof thepredictionNN
will thus be performed in a “greener” manner than training a dedicated
complex NNmodel from scratch, on cheaper computer hardware and with
less energy consumption.

In this study, we used a newly measured CCS dataset containing a
widervariety of peptides to investigate howeffectivePPLN is comparedwith
traditional deep learning models and how “green” the steps required to
create a CCS predictor can be performed.

Results
Model architecture of PPLN
A number of deep protein language models for general purpose25–31 and
specific tasks32,33 have so far been proposed. Such a deep protein language
model, especially one for general purpose, can be used as a feature extractor,
by removing the output layer of the model and regarding the outputs of the
pre-output layer as a feature representation of the input. Although we used
ESM-1b25 as the feature extractor of PPLN in our experiments, any pre-
trained protein language model can in principle be used as the feature
extractor.A feature extractor that is based on a deepprotein languagemodel
typically takes as its input a variable-length amino-acid sequence, and
outputs a sequence of features, whose length is the same as the length of the
input sequence. One then has to aggregate the variable-length feature
sequence into afixed-size representation to feed it into the predictionNN, as
shown in Fig. 1.

Although aggregation with simple averaging as used in the original
ESM-1b would work well in certain tasks as in ref. 25, we found that
introduction of aggregation considering amino acid positions, i.e., positional
encoding (PE) in the aggregation, worked better than simple averaging. The
fixed-size feature representation, alongwith the chargenumber and themass
of the ion, is then fed into thepredictionNN,whichoutputs aprediction Ω̂ of
the CCS value Ω of the input peptide ion. We included the charge number
and the mass as the input of the prediction NN because the masses of
peptides obviously have a strong correlation with the CCS values, and the
charge numbers of peptide ions also have a strong influence on the CCS
values. Inclusion of the charge number and the mass to the input of the
predictionNNis thus expected to facilitate the learningof thepredictionNN.

Wenextdiscuss ourdesignofPE.TheCCSvalueof apeptide ioncanbe
affected by several factors. Among them, one can expect that amino acid
residues located near the terminals have stronger effects than those located
in the central part of the peptide, as suggested, e.g., by the length-specific
multiple linear regression (LS-MLR) study16.We thusdesignedourPE in the
aggregation stage in such a way that it reflects features of those residues
located near either of the terminals of a peptide ion, rather than the absolute
positions of the residues relative to theN-terminal, the latter ofwhichwe call
the unidirectional PE in this paper.

The concrete mathematical explanations of feature extraction and PE,
and the detailed settings of the prediction model PPLN in the following
experiments are shown in “Methods”.

Dataset construction
The emergence of proteomic IMS technologies and the availability of large-
scale peptide CCS data have significantly improved the performance of
peptide CCS prediction15,16. However, the current proteomic data mainly
cover peptides with a length of less than 30 amino acids, which limits our

Fig. 1 | Model architecture of pretrained protein language model-based network
(PPLN) for prediction of collision cross section (CCS) value. An amino-acid
sequence is input into a pretrained protein language model. Positional encoding is
applied to the obtained feature sequence. The feature sequence is aggregated to form
a fixed-size feature, which is then input into the prediction neural network (NN)
along with charge and mass.
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understanding of the behaviors of longer peptides that are of general
interest. Toaddress this gap inknowledge and tomakeCCSdatahave awide
variety, we constructed an experimental peptide CCS dataset using phos-
phoproteome data. Phosphopeptides are known to have more missed
cleavages and tend to be longer than non-phosphopeptides34. To obtain a
unique set of peptides, we digested HeLa cell extracts with seven proteases
(trypsin, LysargiNase, Lys-C, Lys-N, Glu-C, Asp-N, and chymotrypsin) as
described previously16, enriched phosphopeptides from the digests35, and
fractionated the resulting phosphopeptides with SCX-StageTip36. We then
dephosphorylated the phosphopeptides using calf intestine alkaline
phosphatase34 to generate non-phosphorylated peptides with more missed
cleavages.Mascot automated database searchalgorithmwas used to identify
the peptides, and IonQuant37 was used to extract the peptide precursor ion
features (mass, retention time, ion mobility, and intensity). We filtered out
peptide ions bearing variable modifications and only considered the most
abundant feature for each peptide ion. Phosphoproteomes contain distinct,
longer sequences compared with conventional peptide CCS datasets,
although they do not occupy the majority of our dataset (Supplemen-
tary Fig. 1).

The dataset consists of 91,677 unique peptide ion data. It includes 11%
of singly charged, 57% of doubly charged, 25% of triply charged, and 7% of

quadruply charged ions, which are shown in Fig. 2a. Frequencies of peptide
C-terminal and N-terminal amino acids are also summarized in Fig. 2b, c,
respectively. Figure 3 shows a plot of the experimental CCS valuesΩ vs. the
m/z values. The experimental CCS values and m/z range from 289 to
1162Å2 and 381 to 1798, respectively.

Evaluation of prediction error from and correlation with experi-
mental CCS values
For performance evaluations, the dataset mentioned in the previous section
was randomly divided in two parts, where 73,342 ions (80% of the total) for
training and the remaining 18,335 (20%) for testing. Figure 4 shows scatter
plots of the predictedCCS values obtained by the proposed PPLN. Figure 4a
includes results of predicted CCS values vs. experimental CCS values and
four statistics, Pearson’s correlation coefficient r, root mean squared error
(RMSE), mean absolute error (MAE), and Δ95% error. The definitions are
summarized in “Methods”. This figure also includes the results of LS-MLR16

and the bidirectional LSTM-based method15. The LS-MLR model was
constructed to be fitted on all data of the dataset. The deep NN used in the
bidirectional LSTM-based method was trained from scratch using the
training dataset of this paper, rather than the pretrained model using the
dataset provided in ref. 15. Prediction error evolutions for the bidirectional
LSTM-basedmethod and PPLN are shown in Supplementary Figs. 3 and 4.

From Fig. 4, the predicted CCS values by LS-MLR tended to over-
estimate the experimental CCS values, especially for ions with larger CCS
values. It is worth noting that the distribution of larger CCS peptides was
split into two populations: Onewith overestimated CCS values predicted by
LS-MLR and the other with fairly predicted CCS values. This can bemostly
explained by the length of the peptides: The peptides with overestimated
CCS were longer than the other ones (Supplementary Fig. 2). On the other
hand, the proposed PPLN provided better predictive performance with the
lower RMSE and the higher correlation coefficient. Figure 4b, c shows the
relation to m/z and length of the ions. We can see that scatter plots of LS-
MLR and the others differ, especially in higher m/z and longer-length
regions.These results indicate that theCCSpredictionof longer peptide ions
with higher m/z is difficult with simpler prediction models. To establish a
better CCS prediction model, improving the prediction accuracy of these
ions is mandatory.

The predicted CCS values and the four statistics are summarized by
charge number in Fig. 5. From the figure, we can see that the predictions for
triply and quadruply charged ions were more difficult than the singly and
doubly charged ions because the performance of all the three methods
compared became worse as the charge number was higher.We can also see
in Fig. 5d that the peptides with CCS values overestimated by LS-MLR are
typically quadruply charged. This is consistent with the fact that longer
peptides tend to have higher charge states. The proposedPPLNachieved the
best performance among the methods in all the cases. The results imply the
high applicability of the proposed method.

Fig. 2 | Summary statistics for the peptide dataset prepared from HeLa lysate using seven proteases. a Frequency of peptide charge numbers. b Frequency of peptide
C-terminal amino acids. c Frequency of peptide N-terminal amino acids.

Fig. 3 | Distribution of 91,677 unique peptide ions. The dots 1, 2, 3, and 4 means
the experimental CCS values of singly, doubly, triply, and quadruply charged ions vs.
m/z, respectively.

https://doi.org/10.1038/s42004-025-01540-z Article

Communications Chemistry |           (2025) 8:137 3

www.nature.com/commschem


It should be noted that the proposed PPLN does not always achieve
better predictive performance than the conventional LSTM-based method,
although it performs better in the results of Fig. 4 using the training/test data
splitting in this section. Supplementary Table 1 summarizes the average
performance metrics of 10 trials including other random splittings of the
80% training/20% test data and the corresponding results of statistical
testing (paired t-test, p = 0.05). The results show that the performance of the
PPLN is better or worse depending on the performance metrics. Therefore,
it can be concluded that the proposed PPLN achieves predictions that are
competitive with the LSTM-based method. This is consistent with the ori-
ginal goal of the paper to leverage a pretrained deep protein languagemodel
to achieve reasonable performance.

We further analyzed and visualized the contributions of amino acid
positions using Shapley additive explanation (SHAP) values to make the
relation between input sequences and prediction of the proposed PPLN
more interpretable. The results are shown in Supplementary Figs. 5 and 6.

Ablation study
In this section, we verify necessity of the components of the proposed PPLN
via ablation study, where we compared the predictive performance of the
proposed method with the same method except that a part of the compo-
nents was removed from it, in order to see if the removed part was
important. Table 1 summarizes RMSE and Pearson’s correlation coefficient
r obtained by the proposed method and methods with the removal.

We first validate the necessity of including the charge number and the
mass into the input of the prediction NN in the proposed PPLN. The
performance of the method that does not use charge numbers of ions was
much worse than the proposed method, indicating that charge number
bears important information for CCS value prediction. It is in contrast with
the conventional CCS prediction method15 which does not use the charge
number information. The method which excludes mass and that which
excludes both charge and mass also showed worse performance. From the
results, we can argue that the information of charge and mass of the ions is
valuable for the CCS prediction.

We also validate the necessity of the bidirectional PE by comparing the
predictive performance of the following four methods: the method with the
bidirectional PE (i.e., the proposedmethod), the onewith the unidirectional
PE, the one with the bidirectional aggregation without PE (i.e., setting cp in

Eq. (4) to be equal to the all-1 vector), and the one adopting aggregationwith
simple averaging (i.e., the original ESM-1b25, setting cp in Eq. (5) to be equal
to the all-1 vector). From Table 1, none of the compared methods showed
better performance than the proposed method. The disuse of the bidirec-
tional aggregation especially degraded the performance. This implies that
the N-terminal and C-terminal sides of the ions have different effects on
peptide structures and on the resulting CCS values, and those effects can be
successfully learned by the network with the bidirectional aggregation.

Comparison of execution time for training
The proposed PPLN can simplify the training process by using the pre-
trained model as the feature extractor, compared with the conventional
bidirectional LSTM-based method15 that needs training from scratch. We
numerically evaluated the execution time required for training of the pro-
posed PPLN and the conventional bidirectional LSTM-based method.

Figure 6 shows time (in seconds) spent on training for each method
and that required for preprocessing, i.e., feature extraction, for the proposed
PPLN.Weused aLinux computerwith twoCPUs (IntelXeonGold 5320, 26
cores, 2.2GHzbase clock) and256GBRAM.Thepreprocessing timemeans
the time taken to obtain the features for all peptides in the dataset. The
training time was measured when 20%, 50%, and 80% of peptides in the
datasetwere used for training (the numbers of training sampleswere 18,335,
45,839, and 73,342, respectively). The average time of three runs is shown in
thefigure.Allmeasured valueswerewithin plus orminus 120 s of the shown
average values. For the bidirectional LSTM-based model, the results were
obtained using the recommended configuration provided in a GitHub
repository tied to the original paper15, where the number of training itera-
tions is fixed to 55,000 regardless of the number of training samples. The
results of comparisonwhen the total number of the training data used is the
same are shown in Supplementary Fig. 7.

From Fig. 6, the training of the proposed PPLN not including the
preprocessingwas executed in1/78, 1/30, and1/18of the timeof the training
of the conventional bidirectional LSTM-based method, when 20%, 50%,
and 80% samples were used for training, respectively. Even taking the
preprocessing time into consideration, execution time for the proposed
PPLN was reduced to 1/4 to 1/3 of that of the conventional method.
Moreover, it should be noted that the proposed PPLN achieved test pre-
diction with Pearson’s correlation coefficient over 0.99 for all runs. CPU

Fig. 4 | Scatter diagrams and statistics in terms of predicted CCS values. a Predicted CCS values vs. experimental CCS values including Pearson’s correlation coefficient,
RMSE, MAE, and Δ95% error. b Predicted CCS values vs. m/z. c Predicted CCS values vs. length.
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usage during the training process was 1057% and 176.1% for the bi-
directional LSTM-based method and the proposed PPLN, respectively.
These were measured per 10 s and averaged over 10 training trials. One can
therefore state that the proposed model is also “greener” in terms of
energy usage.

The execution time for prediction was also measured in terms of 80%
trainingdata case.The averageprediction timeover three trialswas 44.0 s for
the bidirectional LSTM-based method and 0.5 s for the proposed PPLN,
respectively. In other words, in this training and test data splitting, the
proposed method could also perform prediction in a shorter time than the
conventional method, owing to the simple model structure of the
prediction NN.

These results indicate that the proposed PPLN enables a significant
reduction in training and test time by virtue of the simplification of back-
ward and forward calculation for training and test, respectively, through the
use of the pretrainedmodel, whilemaintaining high predictive performance
and lower energy usage.

CCS prediction for improving peptide identification
In this section, we show that accurate CCS prediction provided by the pro-
posedPPLNallowsus to improveperformanceofdownstreamtasks.We take
the peptide identification task as our demonstrative example, as it has been
shown that it is possible to reduce the false hits using the difference between
the predicted and experimental CCS values after the candidate sequences are
determined by the search engine16,38,39. We used tryptic peptides from E. coli
K12 strain BW25113 cells to verify the improvement in the identification
number using PPLN, as reported previously16. The additional parameter,
CCS error, defined as the difference between the predicted and experimental
values divided by the experimental value, was used for theMascot/Percolator

approach40. The CCS predictions were performed by both the LSTM-based
method and the PPLN trained with the HeLa dephosphorylated dataset.
Figure 7 shows theVenndiagramof the identification results with orwithout
CCS error. From the figure, Percolator with CCS error identified more
peptide spectrum matches (PSMs) and stripped sequences at 1% FDR
comparedwith Percolator without CCS error, indicating the utility of PPLN-
based CCS prediction for peptide identification in proteomics.

Discussion
In this work, we proposed a novel approach to predict the CCS values of
peptides using a deep learningmodel called the PPLN. The proposed PPLN
incorporates a pretrained deep protein languagemodel trainedwith a large-
scale database of protein sequences as a feature extractor to perform the
training process in a “greener”manner. Our results demonstrated that the
proposed PPLN can achieve a more accurate prediction of CCS values
compared with the conventional LS-MLR and competitive performance
with the bidirectional LSTM-based approach.A remarkable point is that the
training with the PPLN was made in a significantly shorter time than with
the conventional bidirectional LSTM-basedmethod requiring training from
scratch. The LSTM-based method includes 0.4M trainable parameters and
the PPLN with the architecture used in the experiments of the paper
includes 650M frozen and 11M trainable parameters. The PPLN includes a
larger number of weights to be optimized, but the computational load for
forward path and backpropagation is larger for LSTM.That is the reason for
the difference in execution times of both models.

PPLN can also achieve reasonable performance in predicting CCS
values of longer peptides, which is difficult with simple prediction models
such as LS-MLR. This can be attributed to the use of the pretrained protein
language model, such as ESM-1b, in PPLN: A pretrained protein language
model can capture the complex relationships between amino acid sequences
and protein structures more effectively than traditional methods, which
might contribute to the better prediction performance of PPLN because the
peptide CCS reflects the peptide structure, which is the part of the protein
structure. The difficulty in predicting triply and quadruple charged peptide
ions is due to the variety of their structures and the small number of them in
the training data. The latter problem corresponds to imbalanced data in
machine learning41, which causes performance degradation for data with
minor attributes, in our case for highly charged ions. By constructing a
dataset rich in highly charged ions, one can expect to significantly improve
the performance of prediction models.

Our study demonstrates the potential effectiveness of utilizing pre-
trained protein language models in predicting various peptide properties in
proteomic LC/MS experiments, including not only CCS but also peptide

Table 1 | Summary of ablation study

Status RMSE Pearson r

w/o charge 31.8161 0.9721

w/o mass 16.7563 0.9914

w/o charge, mass 38.7438 0.9533

unidirectional PE 15.6560 0.9927

bidirectional aggregation w/o PE 15.9156 0.9929

aggregation with simple averaging (original ESM-1b) 16.3448 0.9923

Proposed PPLN 15.1169 0.9930

The bold values mean the best of the methods.

Fig. 5 | Predicted CCS values and statistics by charge. a Scatter diagram for singly charged ions including Pearson’s correlation coefficient, RMSE, MAE, and Δ95% error.
b For doubly charged ions. c For triply charged ions. d For quadruply charged ions.
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retention time,MS/MS fragmentation pattern, anddetectability. In addition
to the improved prediction performance, utilizing a pretrained protein
language model offers several advantages, such as requiring less training
data for accurate predictions, leading to lower computational resource
requirements and reducing the time and energy consumption. By utilizing
these advantages, transfer learning approaches allow themodel to be readily
applicable to the prediction ofCCS values fromdifferent experimental setup
such as the use of the ion mobility spectrometer with different modes of
separation. Although the PPLN cannot directly incorporate modified resi-
dues resulting from chemical and post-translational modifications—due to
its reliance on the protein languagemodel, whichdoes not account for these
modifications—it is possible to extend its applicability tomodified peptides
by consideringmodification tokens (themodificationpositionwith theCCS
shift), as reported recently42.

It has been suggested that model size contributes to downstream task
performance27,43 so that the introduction of protein language models with a
hugenumberofparameters, suchasESM-227 andxTrimoPGLM31 insteadof
ESM-1b used in our PPLN is expected to offer even better prediction
accuracy. On the other hand, the magnitude of the pretrained model
influences the execution time of preprocessing. The use of smaller models
directly leads to time savings in the training and test processes of the pro-
posed model. The preprocessing time using ESM-1b was 5316.9/
91,677 = 0.058 s per peptide ion. The amount of preprocessing timemay be
a limitationwhen the number of peptide ions to be predicted is large. One of
the prompt solutions to reduce the prediction time is to replace it with a
smaller protein language model. For example, ESM-227 is a model with a
minimumof 8Mandamaximumof 15Bparameters. Itwould be interesting
to verify prediction accuracy and execution time using a larger or smaller
protein language model as the feature extractor in future work. Moreover,
the current model is not applicable to variable modifications. The
exploration of applicable models is one of the important future directions.

TheCCSdataset provided in this paper contains longer andmorehighly
charged peptide ions than that in ref. 15. It allows the training of themodel on
a wider variety of peptide ions. Note that the architecture of the proposed
PPLN is not specialized for this dataset. The PPLN also achieves reasonable
performance on another dataset, which is shown in Supplementary Fig. 8. In
other words, the proposed PPLN is robust to data of different nature while
enjoying the benefits of “greener” training processes.

In summary, our approach represents a significant advance in the
prediction of peptideCCS values. By leveraging pretrained protein language
models,wehave shown that it is possible to accurately predictCCSvalues for
longer peptides with short training times.We believe that our approach can

be extended to predict other peptide properties and that the use of pre-
trainedmodelswill become increasingly important for efficient andaccurate
peptide property prediction.

Methods
Materials
Titanium dioxide (TiO2) beads were obtained from GL Sciences (Tokyo,
Japan). 2-amino-2-(hydroxymethyl)-1,3-propanediol hydrochloride (Tris-
HCl), acetonitrile, acetic acid, ammonium bicarbonate (ABC), tri-
fluoroacetic acid, lysyl endopeptidase (Lys-C), V8 protease (Glu-C), and
other chemicals were purchased from Fujifilm Wako (Osaka, Japan).
Modified trypsin and chymotrypsin were purchased from Promega
(Madison, WI, USA). Asp-N was purchased from Roche diagnostics
(Indianapolis, IN, USA). Lys-N was purchased from Thermo Fisher Sci-
entific (Waltham, MA, USA). LysargiNase was purchased from Merck
(Darmstadt, Germany). Alkaline phosphatase was purchased from Takata
Bio Inc. (Shiga, Japan). Empore C8, Empore SDB-XC (poly-
styrenedivinylbenzene) and Empore SCX (strong cation exchange)
extraction disks were purchased from CDS Analytical (Oxford, PA, USA).
Water was purified by a Millipore Milli-Q system (Bedford, MA, USA).

Sample preparation
The HeLa S3 cell line (Japan Health Sciences Foundation) was cultured in
10 cm diameter dishes following standard protocols. The cells were col-
lected, and pelleted down by centrifugation. The cell pellets were suspended
in a lysis buffer, reduced and alkylated as previously reported44. The samples
were diluted five times with 50mM ABC buffer or ten times with 10mM
CaCl2 in the case of LysargiNase digestion. The digestion was performed at
37 °C by adding trypsin, Lys-C, Lys-N, Asp-N, LysargiNase, chymotrypsin
or Glu-C. The appropriate enzyme-to-protein ratios were used for each
enzyme (Supplementary Table 2). The resulting peptides were desalted and
purified via SDB-XC StageTip according to the previously published
protocol45,46. The desalted peptides were further processed with C8 Stage-
Tips packed with TiO2 to enrich phosphopeptides as previously reported

35.
Phosphopeptides were eluted with 0.5% piperidine followed by 5% pyrro-
lidine, acidified immediately by adding equal volume of 20% phosphoric
acid (final concentration: 10%), and desalted using SDB-XC StageTips47.
Enriched phosphopeptides were fractionated using SCX StageTips as
described previously36, followed by dephosphorylation with 6 units of
alkaline phosphatase in 30 μL of 100mM Tris-HCl buffer (pH 9.0), incu-
bated for 3 h at 37 °C. After the reaction, the buffer was acidified by adding
10% TFA 10 μL. The samples were desalted using SDB-XC StageTips.

LC/IMS/MS/MS analysis
LC/IMS/MS/MS was performed on an Ultimate 3000 RSLCnano (Thermo
Fisher Scientific,Waltham,MA,USA) LCpump coupledwith a PALHTC-xt
(CTC analytics, Zwingen, Switzerland) autosampler and a timsTOF Pro
(Bruker Daltonics, Bremen, Germany) mass spectrometer. Peptides were
separated on a 15 cm× 100 μm in-house-packed with 1.9 μm Reprosil-Pur
AQC18 beads (Dr.Maisch, Ammerbuch, Germany) column at a flow rate of
500 nL=min with an PRSO-V2 (Sonation, Biberach, Germany) column oven
heated at 50 °C. Mobile phases A and B were water and 20%/80% water/
acetonitrile (v/v), respectively, both with 0.5% acetic acid as an ion-pair
reagent48. A total run time was 120min with gradient starting with a linear
increase from5%Bto40%Bover90min followedby linear increases to99%B
in 1min. The mass spectrometer was operated in data-dependent PASEF9

mode, with 1 survey TIMS-MS followed by 10 PASEF MS/MS scans per
acquisition cycle. An ion mobility scan range from 1/K0 = 0.6 to 1.5 Vs/cm2

was employed with 100ms ion accumulation and ramp time. Precursor ions
for MS/MS analysis were selected and isolated in a window of 2m/z for
m/z < 700 and 3m/z for m/z > 700. Singly charged ions were excluded from
the precursor ions according to theirm/z and 1/K0 values. The TIMS elution
voltage was calibrated linearly to obtain the reciprocal of reduced ionmobility
(1/K0) using three selected ions (m/z= 622, 922, and 1222) of the ESI-L
Tuning Mix (Agilent, Santa Clara, CA, USA)

Fig. 6 | Execution time (in seconds) for the proposed PPLN and the conventional
bidirectional LSTM-based method in the cases of using 20%, 50%, and 80%
samples for training. For the PPLN, the training time for predictionNNand execution
time for preprocessing required for obtaining features via ESM-1b are shown.
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Database search and data processing
MS raw files were first processed by Bruker DataAnalysis software to gen-
erate mgf files. Database search was performed with Mascot version 2.7.0
against Swissprot (downloaded on 20200318) human database containing
isoforms using the appropriate digestion rules for each protease (Supple-
mentaryTable 1).Carbamidomethyl (C)was set as afixedmodification, and
Phospho (STY), Oxidation (M) and Acetyl (Protein N-term) were set as
variable modifications. The peptide tolerance of 20 ppm and MS/MS tol-
erance of 0.05 Da were used. Number of 13C was set as 1 to consider
monoisotopic+ 1 peaks as precursor ions. Percolator40 was used for con-
trolling the false discovery rates (FDRs) at 1% on both the PSM and unique
peptide level in terms of q values. The identified PSMs were further pro-
cessed with IonQuant37 (version 1.3.6) to re-assign precursor ions. The
PSMs which could not be assigned to any precursor ions with IonQuant
were removed for further analysis. Furthermore, the reduced ionmobility of
peptide ions was calibrated linearly using three selected ions (352.33,
761.467, 933.919)whichwere constitutivelydetected in all of the rawdata, to
minimize the run-to-run variability of the obtained 1/K0 values. The CCS
value Ω was calculated from the obtained value of 1/K0 using the Mason-
Schamp equation49:

Ω ¼ 3Ze
16N0

2π
μkBT

� �1=2 1
K0

; ð1Þ

where e is the charge on an electron, where Z is the charge number of
the analyte ion, where kB is the Boltzmann constant, where N0 is
Loschmidt constant, where T is the temperature, and where μ is the
reduced mass of the ion and neutral given by the harmonic mean of the
molecular masses of the drift gas and analyte ion, respectively. Peptide
ions without any variable modifications were used for analysis. We
only considered the most abundant feature for each modified
peptide ion.

Mathematical explanation of feature extraction in PPLN
Assume that we use a feature extractor which, when fed with a length-l
peptide ion sequence, outputs a length-l sequence fvpglp¼1

of d-dimensional
feature vectors. We then propose the following PE, which we term the
bidirectional PE: the feature vector sequence fvpglp¼1

is aggregated into a
single 2d-dimensional vector �v via:

�v ¼ �vN

�vC

� �
; ð2Þ

�vN ¼ 1
l=2

Xl=2
p¼1

cp � vp; ð3Þ

�vC ¼ 1
l=2

Xl=2
p¼1

cp � vlþ1�p; ð4Þ

where ∘ denotes the element-wise (Hadamard) product of vectors, and
where cp ¼ ðcp;1; . . . ; cp;dÞ> is the encoding vector for position p from one
of the terminals. That is, �vN summarizes the features from the half of the
amino acid sequence on the N-terminal side, and �vC summarizes the
features from the other half of the amino acid sequence on the C-terminal
side. (When l is odd, onemay have to introduce an appropriate rounding of
the half-integer l/2. In our implementation used in the experiments, we used
the python built-in function round().) These vectors are concatenated to
form the resulting feature vector �v. One can argue that the bidirectional PE
bears the same spirit as that in ref. 15 where they used the bidirectional
LSTM rather than the (unidirectional) LSTM to deal with peptide
sequences. As mentioned above, an alternative choice to the bidirectional
PE might be the unidirectional PE, where the d-dimensional aggregated
vector �vu is obtained via:

�vu ¼
1
l

Xl

p¼1

cp�vp: ð5Þ

Experimental model settings based on pretrained deep protein
language model
We used the pretrained ESM-1b model25 as the feature extractor in PPLN,
whose output is a sequence of d = 1280-dimensional feature vectors. As for
the encoding vectors cp used in PE, we considered the following functional
form:

cp;i ¼
sin p

aði�1Þ=d

� �b
þ γ; i : odd;

cos p
aði�2Þ=d

� �b
þ γ; i : even;

8><
>: ðp ¼ 1; 2; . . . ; l; i ¼ 1; 2; . . . ; dÞ

ð6Þ

with user-tunable parameters (a, b, γ). This formulation is inspired by the
positional encoding used in the attention mechanism of the transformer
architecture for a deep natural language model50. We used (a, b, γ) = (1000,
1, 0) in the following experiments.

We used PyTorch and adoptedminibatch learningwith batch size 200.
The number of layers of the prediction NN was set to 10 and their
dimensions were 1000 except for the last layer that outputs the scalar
CCS value.

It is acceptable to set parameters (a, b, γ) of PE and the architecture of
the prediction NN appropriately according to the nature of dataset or
computer resource environments. Performance using other architectures is
shown in Supplementary Table 3.

We trained the prediction NN with Adam optimizer (learning rate:
0.0003) and the MSE loss function using the training data over 400 epochs,
and tested the CCS prediction performance of the trained model on the
test data.

Fig. 7 | E. coli peptide identification results with or
without CCS error. CCS predictions were per-
formed with the conventional LSTM-based method
and the proposed PPLN trained with the HeLa
dephosphorylated dataset.
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Performance metrics
The definitions of Pearson’s correlation coefficient r, RMSE, and MAE are
given by:

r ¼
PN

n¼1 Ω̂n � �̂Ω
� �

Ωn � �Ω
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 Ω̂n � �̂Ω

� �2 PN
n¼1 Ωn � �Ω

� �2r ; ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

Ω̂n �Ωn

� �2
vuut ; ð8Þ

and

MAE ¼ 1
N

XN
n¼1

∣Ω̂n �Ωn∣; ð9Þ

respectively, whereN = 18,335 is the number of test samples, whereΩn and
Ω̂n are the experimental and predicted CCS values, respectively, of nth test
sample, and where �Ω :¼ ð1=NÞPN

n¼1Ωn and
�̂Ω :¼ ð1=NÞPN

n¼1Ω̂n are the
averages of the experimental and predicted CCS values. Δ95% error is the
interval that contains 95% of the peptides in the error distribution.

Data availability
The MS raw data and analysis files have been deposited with the Proteo-
meXchange Consortium (http://proteomecentral.proteomexchange.org)
via the jPOST partner repository51 (https://jpostdb.org) with the data set
identifier PXD046201.

Code availability
The source code for CCS value prediction with the proposed PPLN is
available on GitHub (https://github.com/a-nakai-k/PPLN).
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