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ABSTRACT

Sparse mixture of experts (SMoE) is an effective solution for scaling up model
capacity without increasing the computational costs. A crucial component of SMoE
is the router, responsible for directing the input to relevant experts; however, it also
presents a major weakness, leading to routing inconsistencies and representation
collapse issues. Instead of fixing the router like previous works, we propose an
alternative that assigns experts to input via indirection, which employs the discrete
representation of input that points to the expert. The discrete representations
are learnt via vector quantization, resulting in a new architecture dubbed Vector-
Quantized Mixture of Experts (VQMoE). We provide theoretical support and
empirical evidence demonstrating the VQMoE’s ability to overcome the challenges
present in traditional routers. Through extensive evaluations on both large language
models and vision tasks for pre-training and fine-tuning, we show that VQMoE
achieves a 28% improvement in robustness compared to other SMoE routing
methods, while maintaining strong performance in fine-tuning tasks.

1 INTRODUCTION

Scaling Transformers with data and compute has demonstrated unprecedented successes across
various domains such as natural language processing (NLP) tasks (Du et al., 2022; Fedus et al., 2022;
Zhou et al., 2024), and visual representation learning (Riquelme et al., 2021a; Shen et al., 2023b).
However, training and inference of a single large Transformer-based model might require hundreds
of thousands of compute hours, costing millions of dollars (Kaddour et al., 2023). This issue has
motivated contemporary studies to investigate Sparse Mixture-of-Experts (SMoE) (Shazeer et al.,
2017; Zoph et al., 2022; Xue et al., 2024; Jiang et al., 2024). SMoE models that are inspired by
(Jacobs et al., 1991a) usually include a set of experts sharing the same architecture and a router that
activates only one or a few experts for each input. Compared to dense models of the same size,
SMoE counterparts significantly reduce inference time thanks to not using all experts simultaneously
(Artetxe et al., 2022; Krajewski et al., 2024).

However, training SMoEs remains a challenge due to representation collapse, that is, either a
small number of experts receive most of the routed tokens or all experts converge to learn similar
representations. To tackle the issue, several works (Chi et al., 2022; Chen et al., 2023a; Do et al., 2023)
have focused on router policy improvement. However, these do not touch a fundamental question, ‘Do
we really need a router in the first place?’ Our research suggests that adopting a discrete representation
could help solve the challenges currently faced by the router method. Discrete representation learning
in the context of SMoE is motivated by its ability to capture structured and interpretable patterns within
data, aligning with the way that humans categorize and process information through distinct symbols,
like tokens. This approach enables better generalization and facilitates knowledge transfer across
different contexts. Additionally, discrete representations provide a robust and efficient mechanism
for selecting and routing inputs to the appropriate experts by clustering them more effectively. By
bridging the gap between discrete and continuous representations, this method leads to more stable
and interpretable expert assignments, helping to mitigate issues such as representation collapse and
overfitting, which are common challenges in SMoE training.

Employing vector quantization (VQ) techniques to learn discrete representation, this paper proposes
a novel mixture of expert framework, named VQMoE, which overcomes the representation collapse
and inconsistency in training sparse mixture of experts. More specifically, we prove that the existing
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router methods are inconsistent and VQMoE suggests an optimal expert selection for training SMoE.
Additionally, our method guarantees superior SMoE training strategies compared to the existing
methods by solving the representation collapse by design.

We evaluate the proposed method by conducting pre-training of Large Language Models (LLMs)
on several advanced SMoE architectures, such as SMoE (Jiang et al., 2024), StableMoE (Dai et al.,
2022), or XMoE (Chi et al., 2022), followed by fine-tuning on downstream tasks on both Language
and Vision domains.

In summary, the primary contributions of this paper are threefold: (1) we theoretically demonstrate
that learning a discrete representation is an optimal approach for expert selection and that VQMoE
inherently addresses the issue of representation collapse; (2) we propose the use of the Vector Quanti-
zation method to learn cluster structures and resolve related challenges; and (3) we conduct extensive
experiments on large language models and vision pre-training and fine-tuning tasks, providing an
in-depth analysis of VQMoE’s behavior to showcase its effectiveness.

2 RELATED WORK

Sparse Mixture of Experts (SMoE). Sparse Mixture of Experts (SMoE) builds on the Mixture of
Experts (MoE) framework introduced by Jacobs et al. (1991b); Jordan & Jacobs (1994), with the
core idea that only a subset of parameters is utilized to process each example. This approach was first
popularized by Shazeer et al. (2017). SMoE’s popularity surged when it was combined with large
language models based on Transformers (Zhou et al., 2022; Li et al., 2022; Shen et al., 2023a), and its
success in natural language processing led to its application across various fields, such as computer
vision (Riquelme et al., 2021b; Hwang et al., 2023; Lin et al., 2024), speech recognition (Wang et al.,
2023; Kwon & Chung, 2023), and multi-task learning (Ye & Xu, 2023; Chen et al., 2023b).

However, SMoE faces a major problem in training known as representation collapse, i.e., the experts
converge to similar outputs. To address this, various methods have been introduced. XMoE (Chi
et al., 2022) calculates routing scores between tokens and experts on a low-dimensional hypersphere.
SMoE-dropout (Chen et al., 2023a) uses a fixed, randomly initialized router network to activate
experts and gradually increase the number of experts involved to mitigate collapse. Similarly,
HyperRouter (Do et al., 2023) utilizes HyperNetworks (Ha et al., 2016) to generate router weights,
providing another pathway for training SMoE effectively. StableMoE (Dai et al., 2022) introduces
a balanced routing approach where a lightweight router, decoupled from the backbone model, is
distilled to manage token-to-expert assignments. The StableMoE strategy ensures stable routing by
freezing the assignments during training, while SimSMoE Do et al. (2024) forces experts to learn
dissimilar representations. Despite these extensive efforts, the representation collapse issue persists,
as highlighted by Pham et al. (2024). While most solutions focus on improving routing algorithms,
our approach takes a different path by learning a discrete representation of input that points to relevant
experts.

Discrete Representation. Discrete representations align well with human thought processes; for
example, language can be understood as a series of distinct symbols. Nevertheless, the use of discrete
variables in deep learning has proven challenging, as evidenced by the widespread preference for
continuous latent variables in most current research. VQVAE (van den Oord et al., 2017) implements
discrete representation in Variational AutoEncoder (VAE) (Kingma & Welling, 2022) using vector
quantisation (VQ). IMSAT (Hu et al., 2017) attains a discrete representation by maximizing the
information-theoretic dependency between data and their predicted discrete representations. Recent
works follow up the vector quantisation ideas and make some enhancements for VAE, for example: (Yu
et al., 2022); (Mentzer et al., 2023); and (Yang et al., 2023). Mao et al. (2022) utilize a discrete
representation to strengthen Vision Transformer (ViT) (Dosovitskiy et al., 2021). To the best of our
knowledge, our paper is the first to learn a discrete representation of Sparse Mixture of Experts.

3 METHOD

We propose a novel model, Vector-Quantized Mixture of Experts (VQMoE), which learns discrete
representations for expert selection. As illustrated in Fig. 1a, our approach selects experts directly
based on the input representation, eliminating the need for a trained router. To prevent information
loss, we integrate discrete and continuous representations within the model.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.1 PRELIMINARIES

Sparse Mixture of Experts. Sparse Mixture of Experts (SMoE) is often a transformer architecture
that replaces the MLP layers in standard transformers with Mixture of Experts (MoE) layers (Shazeer
et al., 2017). Given x ∈ Rn×d as the output of the multi-head attentions (MHA), the output of SMoE
with N experts is a weighted sum of each expert’s computation Ei(x) by the router function S(x):

fSMoE(x) =

N∑
i=1

S(x)i · Ei(x) =

N∑
i=1

S(x)i ·W 2
FFNi

ϕ
(
W 1

FFNi
x
)

(1)

Where S(x) is computed by TopK function as equation (2) that determines the contribution of each
expert to the SMoE output.

S(x) = TopK(softmax(G(x)), k); TopK(v, k) =

{
vi if vi is in the top k largest of v
−∞ otherwise

(2)

Discrete Representation Learning. van den Oord et al. (2017) propose VQVAE, which uses Vector
Quantisation (VQ) to learn a discrete representation. Given an input x ∈ Rn×d, VQVAE discretized
the input into a codebook V ∈ RK×d where K is the codebook size and d is the dimension of the
embedding. Let denote zv(x) ∈ Rn×d denotes the output of the VQVAE and 1() is the indicator
function. The discrete representation zq(xi) = vk, where k = argminj ∥zv(xi)− vj∥2 is
achieved by vector quantizer qθ that maps an integer z for each input x as:

qθ(z = k | x) = 1

(
k = argmin

j=1:K
∥zv(x)−Vj∥2

)
(3)

3.2 VECTOR-QUANTIZED MIXTURE OF EXPERTS (VQMOE)

Pre-training VQMoE. Existing Sparse Mixture of Experts (SMoE) models learn continuous repre-
sentations and select experts based on routing scores derived from token-expert embeddings. In this
paper, we propose a novel architecture that learns simultaneously continuous and discrete representa-
tions at a training phase as Figure 1a. The continuous representation enables the model to capture
complex structures in the data, while the discrete representation learns latent representation from data
and then transfers the knowledge to downstream tasks. Given x ∈ Rn×d as the output of the MHA
and fv is a vector quantization operator, the output of the VQMOE layer at the Pre-training phase as
follows:

fVQMoE(x) = g (x)c f
SMoE(x) + g (x)d

K∑
l=1

fFFN
l (x̃l), (4)

Where x̃l = vk if xl ∈ Vl codebook, otherwise x̃l = 0⃗ ; fFFN
l (x̃l) corresponds to the expert

associated with the Vl codebook; g(x)c(x) = col0(G(x)), g(x)d(x) = col1(G(x)) is gating function
for continuous and discrete representation with G(x) = softmax(WT

g × x). WT
g ∈ R2×d is a

learnable weight and K is number of codes.

Fine-tuning VQMoE. According to (Geva et al., 2021), the Feed-forward layers (FFN) constitute
two-thirds of a transformer model’s parameters. Thus, VQMoE enhances the robustness and efficiency
of the Mixture of Experts by leveraging the discrete representations learned during the Pre-training
phase. For further details, the output of VQMoE during the fine-tuning stages only requires the
discrete representation part as Figure 1b, leading to the following output from the VQMoE layer in
the fine-tuning phase:

fVQMoE(x) =
K∑
l=1

fFFN
l (x̃l) (5)

3.3 TRAINING PROCEDURE

Pretraining. The training objective is jointly minimizing the loss of the target task and losses of
the Vector Quantization module (Ll2 and Lcommitment ) as in (van den Oord et al., 2017). Equation
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(a) VQMoE Pre-training (b) VQMoE Fine-tuning

Figure 1: Illustration of the proposed VQMoE architecture for Pre-training and fine-tuning. (a) At the
Pre-training stage, VQMoE architecture learns simultaneously continuous and discrete representation
at the Pre-training phase. The continuous representation is learned by the conventional SMoE, while
the Vector Quantization block facilitates the learning of a discrete representation. The final output
is then combined by a gate layer. (b) VQMoE learns a discrete representation that is capable of
operating efficiently and robustly on downstream tasks. VQMoE computes the discrete representation
only during the fine-tuning stage to achieve robustness and efficiency.

6 specifies the overall loss function for training VQMoE with three components: (1) task loss; (2)
l2 loss; (3) a commitment loss. While Ll2 helps to move the embedding vi towards the outputs
zv(x), the commitment loss makes sure the output of the Vector Quantization module commits to the
embedding and its output does not grow. The Vector Quantization algorithm does not vary with β,
we follow β = 0.25 as van den Oord et al. (2017). We introduce a new parameter, α, to regulate the
contribution of the Vector Quantization loss to the overall loss. A higher value of α favors a stronger
adherence to the discrete representation, and vice versa.

L = Ltask + α(∥sg [zv(x)]− v∥22 + β ∥zv(x)− sg[v]∥22) (6)

where sg(.) is the stop gradient operator defined as follows:

sg(x) =

{
x forward pass
0 backward pass

(7)

Fine-tuning. For downstream tasks, we fine-tune the pretraining model by utilizing the codebook
learned from the Equation 6 by freezing all parameters at the Vector Quantization module. Thus, the
training objective simply becomes: L = Ltask .

4 THEORETICAL GUARANTEES OF VQMOE

4.1 THEORY ANALYSIS

Problem settings. We consider an MoE layer with each expert being an MLP layer which is trained
by gradient descent and input data {(xi, yi)}ni=1 generated from a data distribution D. Same as
(Chen et al., 2022); (Dikkala et al., 2023), we assume that the MoE input exhibits cluster properties,
meaning the data is generated from K distinct clusters (C1, C2, ..., Ck).

Inspired by (Dikkala et al., 2023), we conceptualize the router in Sparse Mixture of Experts as a
clustering problem. This leads us to define a consistent router in Definition B.1. Furthermore, we
introduce a definition for an inconsistent router in SMoE as outlined in Definition B.2, along with
the concept of inconsistent expert selection presented in Theorem 4.1 during the training of SMoE.

Theorem 4.1 (Inconsistent Experts Selection) Let fMHA be a multi-head attention (MHA) func-
tion producing an output x ∈ Rn×d, and consider N experts with embeddings ei for expert i where

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

i ∈ [1, N ]. Assume that fMHA converges at step tm, while the expert embeddings e converge at step
te, with tm ≫ te. For each output x, the expert K ∈ [1, N ] is selected such that

K = arg min
j∈[1,N ]

dist(x, ej).

Under these conditions, the expert embeddings e form an inconsistent routing mechanism.

The proof of Theorem 4.1 is given in Appendix A, and we have the following insights. Theorem 4.1
implies that an expert selection process by a router as the conventional SMoE leads to the inconsistent
router. Indeed, the router layer is designed as a simple linear layer, x is the output of MHA function in
practice. In practice, an SMoE router is significantly simpler than the MHA function. Consequently,
this design leads to the router functioning as an inconsistent router, contributing to the representation
collapse issue and instability during training.

Proposition 4.2 (Optimal Experts Selection) Given input data partitioned into k clusters
(C1, C2, . . . , Ck) and a mixture of experts (MoE) layer with k experts (E1, E2, . . . , Ek), the as-
signment of each cluster Ci to expert Ei for i ∈ [1, k] constitutes an optimal expert selection
solution.

Proposition 4.2 demonstrates that if we are given a clustering structure as input, assigning each
part of the input to its corresponding expert results in an optimal expert selection. This implies that
learning a discrete representation and directing each component to the appropriate expert yields an
optimal solution. The proof of Proposition 4.2 can be found in Appendix A.

4.2 VQMOE SOLVES REPRESENTATION COLLAPSE BY DESIGN

The representation collapse problems in SMoE, which leads all experts to learn the same thing, first
declared by (Chi et al., 2022). Same as (Chi et al., 2022); (Do et al., 2023), we illustrate the
presentation collapse issue by Jacobian matrix approach. Indeed, Jacobian matrix of SMoE with
respect to x ∈ Rn×d is followed as:

JSMoE = S(x)kJFFN +

N∑
j=1

S(x)k (δkj − Sj)E(x)ie
⊤
j = S(x)kJFFN +

N∑
j=1

cje
⊤
j , (8)

where cj = S(x)k (δkj − Sj)E(x)i. Equation 8 consists two terms: (1) S(x)kJFFN represents a
contribution from input token and experts to the final output; (2)

∑N
j=1 cje

⊤
j indicates to learn better

gating function to minimize the task loss. Moreover, Equation 8 is suggested to be updated toward a
linear combination of the expert embeddings. Since N << d in practice, the above equation shows
representation collapse from Rd to RN .

Compared to SMoE, does VQMoE reduce the representation collapse issue? To answer the essential
question, we calculate the Jacobian matrix of VQMoE with respect to x ∈ Rn×d is given by:

JV QMoE = g (x)c JSMoE + Jg(x)cfSMoE(x) + g (x)d JV Q + Jg(x)dfVQMoE(x) (9)

Equation 9 is written shortly as below:

JV QMoE = J1 +

N∑
j=1

cje
⊤
j +

K∑
l=1

dle
⊤
l +

∑
m∈c,d

gme⊤m = J1 +

N+K+2∑
j=1

oje
⊤
j (10)

where J1 = S(x)kJFFN ; cj = S(x)k (δkj − Sj)E(x)i ; dl = g (x)d (due to the vec-
tor quantization operator using pass gradient trick (van den Oord et al., 2017)); gm =
S(x)m (δmk − Sk) fm where fm ∈ [fSMoE(x), fVQMoE].

Same as the Jacobian matrix of SMoE, the Jacobian matrix of VQMoE consists two terms: (1) J1
depends on input token and experts to the final output; (2)

∑N+K+2
j=1 oje

⊤
j indicates to learn better

gating function to minimize the task loss. We can see that N +K +2 >> N , it implies that VQMoE
is better than SMoE to solve the representation collapse issue. In theory, we can choose the number of
codes to be approximately d−N − 2 with a hashing index to experts to address the issue. However,
this involves a trade-off with the computational resources required to learn the codebook.
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Configuration Enwik8 (BPC) Text8 (BPC) WikiText-103 (PPL) lm1b (PPL)

Architecture Algorithm Base Large Base Large Base Large Base Large

Transformer

VQMoE 1.48 1.41 1.47 1.40 38.74 31.98 59.48 49.30
SMoE 1.49 1.41 1.49 1.40 39.50 32.30 60.88 51.30
SMoE-Dropout 1.82 2.22 1.70 1.89 72.62 107.18 97.45 159.09
XMoE 1.51 1.42 1.49 1.42 39.56 32.65 61.17 51.84
StableMoE 1.49 1.42 1.49 1.41 39.45 32.34 60.72 50.74

Transformer-XL

VQMoE 1.19 1.08 1.28 1.17 29.48 23.85 56.85 48.70
SMoE 1.20 1.09 1.29 1.18 30.16 24.02 58.00 48.71
SMoE-Dropout 1.56 2.24 1.56 1.86 58.37 40.02 93.17 68.65
XMoE 1.21 1.09 1.28 1.17 30.34 24.22 58.33 50.64
StableMoE 1.20 1.10 1.28 1.19 29.97 24.19 58.25 49.17

# Params 20M 210M 20M 210M 20M 210M 20M 210M

Table 1: BPC on the enwik-8 and text8 test sets; and perplexity on the Wikitext-103 and One Billion
Word test sets. Lower is better, best results are in bold.

5 EXPERIMENT

We conduct experiments to explore the following hypotheses: (i) VQMoE provides an effective
SMoE training algorithm for LLMs; (ii) VQMoE delivers a robust and efficient solution during the
fine-tuning phase; and (iii) VQMoE outperforms other routing methods in vision domain.

5.1 EXPERIMENTAL SETTINGS

To answer the three above hypotheses, we conduct experiments on Vision, Language, and Time-series
tasks. For Pre-training language models, we examine two common tasks in the training and
evaluation of large language models: character-level language modeling using the enwik8 and text8
datasets (Mahoney, 2011), and word-level language modeling with the WikiText-103 (Merity et al.,
2016) and One Billion Word datasets (Chelba et al., 2014). For Parameter-efficient fine-tuning, we
consider pre-trained base models on enwik8 and efficient Fine-tuning it on a downstream task. We
choose the SST-2 (Socher et al., 2013), SST-5 (Socher et al., 2013), IMDB (Maas et al., 2011), and
BANKING77 (Casanueva et al., 2020) datasets. For vision tasks, we employ the Vision Transformer
model (Dosovitskiy et al., 2021) with the state-of-the-art routing method and our method to train and
evaluate the image classification task. Our experiments encompass four image classification datasets:
Cifar10, Cifar100 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), SVHN (Netzer et al., 2011).

5.2 PRE-TRAINING LANGUAGE MODELS

Training tasks We explore two common tasks in the training and evaluation of LLMs. First,
character-level language modeling on the enwik8 or text8 datasets (Mahoney, 2011), which are
common datasets to evaluate the model’s pre-training capabilities. We also consider the word-level
language modeling task on WikiText-103 (Merity et al., 2016) and One Billion Word dataset (Chelba
et al., 2014), a much larger and more challenging dataset, to test the models scaling capabilities.
For all datasets, we follow the default splits of training-validation-testing. Second, we consider
Fine-tuning the models on downstream applications to investigate the models’ capabilities of adapting
to different domains. To this end, we consider pre-trained medium models on enwik8 and Fine-tuning
them on a downstream task. We choose the SST-2 (Socher et al., 2013), SST-5 (Socher et al., 2013),
IMDB (Maas et al., 2011), and BANKING77 (Casanueva et al., 2020) datasets, which are common
NLP tasks to evaluate pre-trained models. Following Chen et al. (2023a), we freeze the router and
only optimize the experts’ parameter in this experiment.

Models. For the language tasks, we follow the same settings as in SMoE-Dropout (Chen et al., 2023a).
We consider two decoder-only architectures: (i) the standard Transformer (Vaswani et al., 2017); and
(ii) and Transformer-XL (Dai et al., 2019a) with the same number of parameters as Transformer. We
evaluate our method versus the state of art Sparse Mixture of Expert Layers such as StableMoE (Dai
et al., 2022) and XMoE (Chi et al., 2022). We consider two model configurations: (i) base: with
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four SMoE blocks and 20M parameters; (ii) large: with twelve SMoE layers and 210M parameters.
We emphasize that we are not trying to achieve state-of-the-art results due to the limited resource
constraints. Instead, we evaluate the small and large models on various datasets to demonstrate the
scalability and efficacy of our algorithm. Lastly, we conduct extensive investigations using the tiny
model to understand the algorithm behaviours and their robustness to different design choices. Lastly,
unless otherwise stated, we implement them with K = 2 in the experiments.

Baselines. We compare our VQMoE with state-of-the-art SMoE training strategies for LLMs.
SMoE (Jiang et al., 2024) employs a simple router trained end-to-end with the experts. Stable-
MoE (Dai et al., 2022) proposes a two-phase training process where the first phase trains only the
router, and then the router is fixed to train the experts in the second phase. XMoE (Chi et al., 2022)
implements a deep router that comprises a down-projection and normalization layer and a gating
network with learnable temperatures. Lastly, motivated by SMoE-Dropout (Chen et al., 2023a), we
implement the SMoE-Dropout strategy that employs a randomly initialized router and freeze it
throughout the training process.

Training procedure. For the language modeling experiments, we optimize the base models and
the large models for 100,000 steps. We use an Adam (Kingma & Ba, 2017) optimizer with a Cosine
Annealing learning rate schedule (Loshchilov & Hutter, 2017). The lowest validation loss checkpoint
is used to report the final performance on the test set.

Q1: Does VQMoE perform better on Pre-training tasks compared to routing methods? A1: Yes.

Table 1 presents the evaluation metrics comparing VQMoE with state-of-the-art approaches. We
also show the performance progression of the base model on the validation set. Notably, across all
methods, the Transformer-XL architecture consistently outperforms the standard Transformer on
all datasets. While advanced strategies like XMoE and StableMoE tend to surpass vanilla SMoE
when model complexity is increased (from small to medium) or more data is introduced (moving
from enwik8 to WikiText-103 or One Billion Word), these improvements are often inconsistent or
marginal. In contrast, VQMoE consistently outperforms all competitors across benchmarks (keeping
in mind that the BPC metric is log-scaled), architectures, and also converges more quickly. This
highlights VQMoE’s effectiveness in learning an efficient routing policy for the language modeling
pre-training task.

Q2: Does VQMoE keep outperforming the router method when scaling up? A2: Yes.

Table 1 also demonstrates that VQMoE maintains consistently strong performance when scaled up to
12-layer Transformer and Transformer-XL architectures. Across all four datasets, the performance gap
between VQMoE and other routing methods widens as the dataset size increases, from enwik8 to the
One Billion Word dataset. This suggests that our approach has the potential to scale effectively with
larger language models and bigger datasets. An interesting observation is that SMoE-Dropout (Chen
et al., 2023a) performs the worst among all methods, indicating that a random routing policy is
insufficient and requires updating for effective training. This finding highlights that the success of
SMoE-Dropout is largely due to its self-slimmable strategy, which linearly increases the number of
activated experts (K) during training. However, this approach transforms the sparse network into a
dense one, contradicting the original motivation behind using SMoE for large-scale models.

Q3: When does VQMoE outperform router methods in terms of robustness? A3: The lower hidden
size of FFN.

Compared to the routing methods, VQMoE achieves competitive performance which only requires
80% number of parameters. Figure 2a and Figure 2b demonstrate the robustness of our method on
the Enwik8 and Text8 datasets, respectively.

5.3 PARAMETER-EFFICIENT FINE-TUNING

Q4: What is the biggest advantage of SMoE, compared to the conventional SMoE? A4: Parameter-
Efficient Fine-Tuning.

We see that the discrete representation that VQMoE learns at the Pretraning stage 5.2 might consist
of rich knowledge. To test this hypothesis, we use only the discrete representation for downstream
tasks, allowing VQMoE to save 28% of computational resources compared to SMoE. Table 2 reports
the accuracy of the models fine-tuned on the test sets of various datasets. Overall, we observe that
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(a) Robust VQMoE Benchmark (Enwik8) (b) Robust VQMoE Benchmark (Text8)

Figure 2: Illustration of the proposed Robust VQMoE architecture for Pre-training on Enwik8 and
Text8 dataset. (a) Robust VQMoE architecture achieves the same performance with the routing meth-
ods while only using 80% of the parameters on Enwik8 dataset. (b) Roubust VQMoE demonstrates
robustness on the Text8 dataset. Bits-per-character (BPC) on the Enwik8 and Text8 datasets, and
lower is better.

Architecture FLOPs(x1010) Transformer Transformer-XL

Dataset SST-2 SST-5 IMDB BANKING77 SST-2 SST-5 IMDB BANKING77

VQMoE 5.6145 82.6 41.1 89.5 84.8 83.3 42.0 89.1 85.3
SMoE 7.7620 82.1 39.5 89.3 82.6 80.8 40.4 88.6 80.2
SMoE-Dropout 7.7620 81.3 39.6 88.9 77.9 81.8 40.0 89.1 77.3
XMoE 7.7620 82.4 39.9 89.0 83.1 81.3 40.3 88.7 82.7
StableMoE 7.7620 82.2 40.4 89.1 82.7 82.5 41.1 88.5 78.6

Table 2: Accuracy of the model after fine-tuned on various datasets. Higher is better, best results are
in bold.

VQMoE demonstrates strong transfer learning capabilities by achieving the highest accuracy on all
datasets. Notably, on the more challenging datasets of SST-5 and BANKING77, which have fewer
training samples or more classes, we observe larger performance gains from VQMoE versus the
remaining baselines (over 5% improvements compared to the second-best method). This result shows
that VQMoE can learn a discrete representation that is not only good for pre-training but also exhibits
strong transfer capabilities to various downstream tasks.

5.4 VISION

Q5: Can VQMoE compete with SMoE in the Vision domain? A5: Yes.

To make our performance comparison informative and comprehensive, we consider two kinds of
baselines that are fairly comparable to VQMoE: (1) Dense Model (Vision Transformer) (Dosovitskiy
et al., 2021); (2) SoftMoE (Puigcerver et al., 2024) - the most advanced MoE in Vision domain. We
perform two configurations for training the Mixture of Experts: (1) small - 10 million parameters
(10M); (2) large - 110 million parameters (110M). The result at Table 3 shows that VQMoE
outperforms both Vision Transformer Dense (Dosovitskiy et al., 2021), SoftMoE (Puigcerver et al.,
2024), , and other routing methods such as (Dai et al., 2022), (Chi et al., 2022) on six out of eight
tasks across four image classification datasets. We also run our experiments three times with different
seeds and report the average result and standard deviation. The average performance of our method
surpasses other baselines and is more stable, as indicated by the low standard deviation.

5.5 IN-DEPTH ANALYSIS

Consistent Score. Figure 3a illustrates that expert selections when training SMoE face inconsistent
problems. As the Theorem 4.1, this inconsistency arises because the router’s coverage rate signif-
icantly exceeds that of the Transformer representation. The figure 3a also shows that our method
achieves the highest consistency score compared to the SMoE and XMoE models. However, the
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Architecture Vision Transformer (Small) Vision Transformer (Large) Average
# params 10M 110M -

Dataset Cifar10 Cifar100 STL-10 SVHN Cifar10 Cifar100 STL-10 SVHN -

VQMoE 89.7±0.4 67.3±0.4 66.5±0.3 95.6±0.1 92.8±0.3 67.0±0.5 64.3±0.5 96.0±0.2 79.9±0.3

SMoE 88.7±0.2 65.4±0.5 66.4±0.1 95.4±0.1 85.7±8.5 55.5±2.8 64.4±0.2 94.5±0.1 77.0±1.6

XMoE 88.8±0.2 65.5±0.5 66.3±0.2 95.4±0.1 87.1±6.4 55.9±0.6 64.6±0.3 94.1±0.2 77.2±1.1

StableMoE 88.8±0.1 65.5±0.1 66.5±0.2 95.4±0.1 84.7±10.5 55.5±1.8 64.3±0.6 94.5±0.9 76.9±1.8

SoftMoE 85.6±0.3 61.4±0.3 65.4±0.2 94.8±0.1 80.3±9.7 42.9±1.4 63.2±0.5 93.5±0.1 73.4±1.6

ViT (Dense) 89.0±0.2 65.7±0.3 66.6±0.2 95.6±0.1 92.2±0.3 60.2±2.6 64.1±0.5 96.0±0.1 78.7±0.5

Table 3: Accuracy of models evaluated on vision datasets. Higher is better, best results are in bold.

(a) Consistent Score. (b) VQMoE Representation. (c) SMoE Representation.

Figure 3: Analysis Inconsistent Expert Selection and Representation Collapse issues when training
SMoE. Figure 3a demonstrates consistent score movement from VQMoE, compared with SMoE
and XMoE. Figure 3b and Figure 3c visualize the representation by experts in 2D dimension using
Principal Component Analysis (PCA) method.

VQMoE model’s consistency score is around 75%, as our method also requires learning a continuous
representation during the Pre-training phase.

Representation Collapse issue. To visualize the Representation collapse problem in practice, we
apply Principal Component Analysis (PCA) method to reduce from d dimension of the Transformer
to 2D for plotting purposes, thanks to (Chi et al., 2022). Figures 3b and 3c show the expert
representations from the pretrained VQMoE and SMoE models. The results suggest that VQMoE
experiences less representation collapse in the expert space compared to SMoE. The analysis is in
line with the theorem proof at Section 4.2. However, projecting the d-dimensional space onto 2D for
visualization may lead to information loss.

5.6 ABLATION STUDY

We examine the effectiveness of VQMoE across various hyper-parameter settings, with all experi-
ments conducted using the base Transformer architecture on the WikiText-103 dataset.

Vector Quantization Method. To learn a discrete representation, we research various types of
Vector Quantization methods, including VQVAE (van den Oord et al., 2017), VQGAN (Yu et al.,
2022), LFQ (Yu et al., 2023), and ResidualVQ (Yang et al., 2023). We observe that VQGAN using
cosine similarity for distance achieves good and stable results in practice as Figure 6a. Interestingly,
VQGAN with lower dimensionality also delivers strong performance and exhibits robustness.

Number of codebook impact. The number of codebook entries is a crucial hyperparameter when
training Vector Quantization techniques. As shown in Figure 6b, we can see the best performance
when the number of codebook entries matches the number of experts. This aligns with the proof by
(Dikkala et al., 2023), which demonstrates that in the optimal case, the number of clusters equals the
number of experts.

Sensitiveness of VQ loss contribution α. Figure 6c illustrates the impact of α, which controls the
contribution of the Vector Quantization loss to the overall loss. If α is too high, it leads to a better
discrete representation but may negatively affect the final target. Conversely, if α is too low, it may
result in a poor discrete representation. Therefore, α should be selected based on the data, typically
within the range of (0.05, 0.15).
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6 CONCLUSION AND FUTURE DIRECTIONS

This study illustrates Vector-Quantized Mixture of Experts (VQMoE), which is novel and theoretically-
grounded architecture to overcome challenges in training SMoE such as representation collapse
and inconsistency. We evaluate our method on various Pre-training and Fine-tuning tasks, for both
language and vision domains. The results show that VQMoE outperforms the routing methods both
theoretically and empirically. Furthermore, fine-tuning VQMoE with the discrete representation for
downstream tasks could reduce computational resource usage by 28%. We believe that focusing on
discrete representation learning will offer a promising strategy for training and testing sparse mixtures
of experts (SMoE) at a large scale. Finally, we believe that our approach opens up new research
avenues for effectively training SMoE, where cutting-edge techniques in discrete representation
learning and vector quantization can be harnessed to enhance their performance.
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A APPENDIX

Supplementary Material for “On the effectiveness of discrete
representations in sparse mixture of experts"

This document is organized as follow. Appendix B presents the detailed proof of our theoretical
analysis in Section 4. Appendix C provide in-depth analysis about the representation collapse while
Appendix D presents all the implementation details and additional results.

B PROOF FOR RESULTS IN SECTION 4

B.1 PROOF OF THEOREM 4.1

Definition B.1 (Consistent Router) A sequence of points x1, x2, . . . , xn and a corresponding se-
quence of clusters C1, C2, . . . , Ck are said to be consistent if, for every point xp ∈ Ci, the condition

dist(xp, ui) ≤ min
j ̸=i

dist(xp, uj)

is satisfied, where dist(a, b) denotes the distance between a and b, and ui is the center of cluster Ci.

Definition B.2 (Inconsistent Router) A sequence of points x1, x2, . . . , xn and a corresponding
sequence of clusters C1, C2, . . . , Ck are said to be inconsistent if there exists a point xp ∈ Ci such
that

dist(xp, ui) > min
j ̸=i

dist(xp, uj),

where dist(a, b) represents the distance between a and b, and ui is the center of cluster Ci.

In this proof, we use contradiction to establish the theorem. Assume that the expert embeddings e
form a consistent router. By Definition B.1, we have:

dist(xp, ui) ≤ min(dist(xp, Cj)),

where ui is the representation corresponding to the closest expert ei.

According to (Chi et al., 2022), projecting information from a hidden representation space Rd to
the expert dimension N leads to representation collapse. Now, consider three experts x, y, z whose
embeddings ex, ey, ez collapse. Without loss of generality, assume that ey lies between ex and ez in
the embedding space. Then, we have:

dist(y, uy) ≤ min(dist(x, ex), dist(y, ey), dist(z, ez)) ≤ dist(ex, ez).

Let te denote the step at which the embeddings ex and ez converge, and tm denote the step at which
the Multi-Head Attention (MHA) module converges. From step te, it follows that:

lim
te→tm

dist(y, uy) = lim
te→tm

dist(ex, ez) = 0.

Thus, y (the output of MHA) converges at step te.

This directly contradicts the assumption that the MHA converges at step tm, where te ≪ tm.
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B.2 PROOF OF PROPOSITION 4.2

We use contradiction to prove the proposition. Assume that, at training step t, there exists a set
of pairs (Ci, Ej) such that i ̸= j. Let x1, x2, . . . , xk represent a sequence of inputs sampled from
K clusters. From step t0 to step tk−1, each pair (xj , Ej), where j ∈ [1, k], is updated using the
following gradient descent equation:

W l+1
Ej

= W l
Ej

− ηJ (xj),

where W l
Ej

is the weight of expert Ej at iteration l, J (xj) is the Jacobian matrix with respect to
input xj , and η is the learning rate.

Let L denote the loss function during the training process described by Equation 6. After tk training
steps, the following condition holds:

Ej(xj) = min
c∈[1,k]

Ej(xc).

Under the assumption of contradiction, there exists a set of pairs

K∑
i,j=1;i ̸=j

(Ci, Ej)

where the loss function L is minimized. However, by definition of the loss minimization process, the
inequality

K∑
i=1

(Ci, Ei) ≤
K∑

i,j=1;i ̸=j

(Ci, Ej)

must hold.

This leads to a contradiction with our initial assumption.

C REPRESENTATION COLLAPSE ANALYSIS

To illustrate Theorem 4.1, we perform a language model task as described in Section D.2, examining
the movement of Expert Input Representation in Figure 4 and Expert Embedding (router) in Figure 5.
We analyze the dynamics of the expert input representations by tracking their changes across training
iterations. The results indicate that the inputs to the experts become increasingly divergent over time.
This divergence suggests that the model learns to represent the data in a more specialized and diverse
manner, allowing each expert to focus on distinct features or patterns within the data. Similarly,
we track the changes in expert embeddings (router) throughout the training process. However, the
trend is the opposite: the expert embeddings appear to converge quickly, stabilizing around 10,000
iterations. The findings align with our assumption stated in Theorem 4.1, indicating that Expert
Embedding converges more quickly than Expert Input Representation. These results provide further
evidence supporting the Theorem 4.1.

D EXPERIMENTS IMPLEMENTATION DETAILS

This section provides detailed parameters of our experiments in Section 5.

D.1 GENERAL SETTINGS

The experiments are based on the publicly available SMoE-Dropout implementation(Chen et al.,
2023a)1. However, the pre-training was conducted on two H100 GPUs, so results might differ when
using parallel training on multiple GPUs.

1https://github.com/VITA-Group/Random-MoE-as-Dropout
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Figure 4: Training SMoE Expert Input Representations across Training Iterations.

Figure 5: Training SMoE Router (Expert embedding) across Training Iterations.
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(a) Vector Quantization method. (b) Number of codebook. (c) Impact of α for VQMoE.

Figure 6: Pre-training small Transformer-XL on WikiText-103 across different hyperparameters.

D.2 PRE-TRAINING EXPERIMENTS

Table 4 provides the detailed configurations for pre-training Transformer (Vaswani et al., 2017),
Transformer-XL Dai et al. (2019b) on Enwik8, Text8, WikiText-103,and One Billion
Word.

Dataset Input length Batch size Optimizer Lr # Training Step

Enwik8 512 48 Adam 3.5e-4 100k
Text 512 48 Adam 3.5e-4 100k
WikiText-103 512 22 Adam 3.5e-4 100k
One Billion Word 512 11 Adam 3.5e-4 100k

Table 4: Hyperparameter settings for pre-training experiments on Enwik8, Text8. ,
WikiText-103. , and One Billion Word.

D.3 FINE-TUNING EXPERIMENTS

For fine-tuning experiments, we employ the identical model architecture as in pre-training. Table 5
presents the detailed configurations utilized for fine-tuning experiments on SST-2, SST-5, IMDB,
and BANKING77 datasets. We start with the pretrained checkpoint of the base model on enwik8,
remove the final layer, and replace it with two randomly initialized fully connected layers to serve as
the classifier for each fine-tuning dataset. All methods are fine-tuned for 5,000 steps with a uniform
learning rate.

Dataset Input length Batch size Optimizer Lr # Epochs

SST-2 512 16 Adam 1e-4 5
SST-5 512 16 Adam 1e-4 5
IMDB 512 4 Adam 1e-4 5
BANKING77 512 16 Adam 1e-4 5

Table 5: Detail settings for fine-tuning experiments on the evaluation datasets.
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