
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPEN ROLE-PLAYING WITH DELTA-ENGINE

Anonymous authors
Paper under double-blind review

ABSTRACT

Game roles can be reflections of personas from a parallel world. In this paper, we
propose a new style of game-play to bridge self-expression and role-playing: open
role-playing games (ORPGs), where players are given the autonomy to craft and
embody their unique characters in the game world. Our vision is that, in the real
world, we are individually similar when we are born, but we grow into unique
ones as a result of the strongly different choices we make afterward. Therefore,
in an ORPG, we empower players with freedom to decide their own growing
curves through natural language inputs, ultimately becoming unique characters.
To technically do this, we propose a special engine called Delta-Engine. This
engine is not a traditional game engine used for game development, but serves
as an in-game module to provide new game-play experiences. A delta-engine
consists of two components, a base engine and a neural proxy. The base engine
programs the prototype of the character as well as the foundational settings of
the game; the neural proxy is an LLM, which realizes the character growth by
generating new code snippets on the base engine incrementally. In this paper,
we self-develop a specific ORPG based on delta-engines. It is adapted from the
popular animated series “Pokémon”. We present our efforts in generating out-of-
domain and interesting role data in the development process as well as accessing
the performance of a delta-engine. While the empirical results in this work are
specific, we aim for them to provide general insights for future games. 1

1 INTRODUCTION

The virtual world, often more idealistic than reality, presenting a utopian escape and an alternative
life, has captivated human imagination for decades. Films like “Free Guy” and “Ready Player One”
have presented this vision for us. Role-playing games (RPGs) offer players the opportunity to step
into a well-designed character and enjoy its growth in a virtual game world, e.g. an Egyptian guard
in “Assassin’s Creed”, an American West bounty hunter in “Red Dead Redemption”. However,
conventional RPGs come with inherent limitations, where players are bound to some pre-scripted
characters. As time passes, they may find themselves merely acting out someone else, without any
personal connection. Rather, players desire to become another version of themselves in a parallel
world. To fulfill such deepest desire for autonomy and self-expression, this paper introduces the
concept of open role-playing games (ORPGs), which allow players to craft their own identities,
attributes, and powers, etc.

How ORPGs are played to make each player’s character distinguished In reality, while we are
individually similar at birth, we make different choices (whether actively or passively) as we grow up
afterward, which shape us into totally different people. This vision underpins the primary feature of
ORPGs: players are given the autonomy to manipulate the growth of their characters and become truly
unique ones. We notice that current RPGs also offer some extent of autonomy by providing players
with different options when their characters grow. However, it is very hard to exhaust every possible
option and fulfill the desire of every player. In this paper, we consider a generalized situation, where
players are able to direct the growth with free-form natural language descriptions, e.g. “Let me learn
a talent to burn the enemy”. Such broad semantic space of natural language unlocks an unprecedented
openness over traditional RPGs. However, the openness in ORPGs do not mean the players can
become anybody or anything without constraint. All of the attempts should be contextualized within
the specific game world, e.g. adhering to the physical laws and established worldview.

1Code, data, and demonstration are in our supplementary materials.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

How ORPGs are technically implemented As aforementioned, the character growth in ORPGs is
driven by natural language, which is difficult to interpret for existing game systems. We thus propose
Delta-Engine. It is a neural engine (Wu et al., 2024a) incorporating a large language model (LLM)
(Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023; Jiang et al., 2023; Team et al., 2024). LLMs
can serve as a powerful non-linear function to transfer natural language instructions into some kinds
of outputs, such as the engine’s code. Specifically, a delta-engine is composed of two components: a
base engine and a neural proxy. The base engine is the initial coding of the character. The neural
proxy is an LLM, enabling the character growth by generating new code snippets that expand the
base engine. A delta-engine is different from traditional game engines (e.g. Unity, UE), which serve
as a platform for game development, but serves as an embedded module within the game system.
It would bring an entirely novel game-play experience, where the code of a player’s character is
personalized and dynamically generated.

To materialize our concept, we have developed a tangible ORPG Free Pokémon based on delta-
engines, which will be open-sourced. The characters in the game are inspired from the popular
Pokémon animated series2. In the game, players are born with a common pokemon template. From
there, they have the freedom to grow up, learning their desired talents, described through natural
language, being a unique pokemon to their tastes. An ORPG is data-driven. Therefore, data acts
as a significant element in the development process, for aligning the neural proxy to enhance its
adaptability. However, the data needed can be very domain-specific. Given the high cost of manually
annotated data, this paper explores a collaborative design approach that leverages both human
expertise and LLMs to generate high-quality data.

2 RELATED WORK

AI-driven RPGs belong to a profound field of study that spans a series of sub-topics, e.g. role-playing
(Shanahan et al., 2023; Värtinen et al., 2024; Wang et al., 2024), narrative (Wu et al., 2024c; Zhao
et al., 2024a;b), world building (Bruce et al., 2024; Wang et al., 2023b), data creation (Wang et al.,
2023c; Rezwana & Maher, 2023). This paper focuses on the form of the virtual world, i.e. to evolve,
and proposes a special engine to enable such evolution. The basic logic of our world engine is the
instruction-driven game engine (Wu et al., 2024b), a neural engine incorporating LLMs as integral
components. Our engine can be triggered by a high-level evolving instruction to generate new code
snippets. A relevant recent work is GameNGen (Valevski et al., 2024), a real-time game engine based
on diffusion models. As opposed to GameNGen, which renders the content directly from prompts,
our delta-engine generates the executable code and embed it into the base engine. The eventual
rendering and operation is still done by the backbone engine, which is made by code.

The chosen playground in our work belongs to role-play games (RPGs), a genre that has seen
significant advancements in recent years due to the integration of LLMs (Wu et al., 2024c; OpenAI,
2023; Touvron et al., 2023; Jiang et al., 2023; Yang et al., 2023). As opposed to these efforts, our
work enhances the player experiences by offering biodiversity of virtual roles. Any role can become
a truly unique one through exclusive evolution.

We are not the first to choose “Pokémon” as the topic in the research. A most recent work is
Pokéllmon (Hu et al., 2024), but they do an orthogonal job from us. Pokéllmon is an LLM-based
framework for powerful battle strategies based on existing pokemon characters. Free Pokémon is a
novel game genre, allowing players to generate their own pokemon characters (Butler et al., 2017).
In addition, our work does not focus on generating visual assets of new pokemon characters (Liapis,
2018; Geissler et al., 2020). We notice that it is also an interesting line for further developing ORPGs.

Procedural content generation (PCG) (Shaker et al., 2016; Smith et al., 2011; Summerville et al.,
2018) can be another relevant line of work to ORPGs. Practically, the player’s behavior won’t directly
affect the delta-engine, but rather go through a procedure, which eventually decides the prompt to the
neural proxy. In this paper, we do not focus on the design of the evolving procedure but only study
the naked delta-engine.

There is a large body of work studying AI players across various game domains, e.g. Atari (Mnih
et al., 2013), Minecraft (Fan et al., 2022; Wang et al., 2023a), StarCraft, (Vinyals et al., 2019),
Werewolf (Xu et al., 2023), SIMA (Team et al., 2024), CRADLE (Tan et al., 2024).

2https://www.pokemon.com/us

2

https://www.pokemon.com/us

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 DELTA-ENGINE

Base Engine A base engine is the initial state of the delta-engine. It depicts the prototype of the
virtual world, typically a mass of objects with associated methods and basic utilities.

As any object (e.g. environment, individual) grows, it acquires new properties. As a result, its
associated engine is given new code. Considering an individual born with a blank template, its initial
engine may be several lines of code supporting its only walking ability. As it grows stronger and
learns to run and even fly, its codebase will be updated and expanded to reflect these new properties.

Neural Proxy The neural proxy is a neural wrapper around the base engine, which scales the base
engine by producing new code. In our paper, it is a large language model (LLM), particularly one of
those that are additionally pre-trained on code, e.g. CodeLLaMA (Rozière et al., 2023), CodeGemma
(Mesnard et al., 2024).

We denote all the objects and methods of the engine at some moment as a state. The LLM proxy
seeks to predict the new state moment-by-moment. To make this process efficient, we ensure that the
proxy always generates the incremental code on top of the current engine state, either adding new
features or overloading existing ones.

Incremental Prediction Given an input and the current engine state, a delta-engine seeks to predict
the incremental value. This idea can be formalized as:

∆yt = F(yt−1, xt) (1)

where F is the neural proxy, xt is the input, yt−1 is the current engine state, and ∆yt is the incremental
value of yt−1 and yt. The initial state y0 is the base engine.

yt can be obtained by merging ∆yt and yt−1:

yt = m(∆yt, yt−1) (2)

where m is the merge function.

Retrieval y0 can be super large for a complicated virtual world and yt−1 will also become more
and more as it evolves, negatively impacting the engine’s scalability. We notice that evolution, both in
nature and in virtual worlds, tends to occur gradually, which means each evolution step of an object is
relevant to only a small fraction of the current engine. Therefore, for each prediction, we retrieve the
relevant parts of the engine dynamically, denoted as ỹt−1, to replace the entire yt−1 as the reference:

∆yt = F(ỹt−1, xt). (3)

ỹt−1 is a sparse version of yt−1, which is the key to the delta-engine’s scalability to very long turns.

We have the neural proxy determine the entries to retrieve itself (Yu et al., 2023). Concretely, it takes a
pre-step, predicting which parts of the engine are essential for scale. To do this, we index all methods
within the engine using their names and prompt the neural proxy with the skeleton overview of the
engine, which only keeps the structure and method names and skips the detailed implementation.
Then, we extract the implementation of the methods from the engine according to the method names.

We will illustrate a concrete case of incremental prediction in the next section.

4 PLAYGROUND: FREE POKÉMON

Free Pokémon is developed based on delta-engines, which allows open-ended evolution for pokemon
roles. Users can write their ideas in natural language, which directly manipulates the evolution step
of the roles. As a result of that, the pokemon roles are able to acquire customized abilities and moves
widely different from those in official games.

Figure 1 demonstrates the Free Pokémon system. It consists of two kinds of engines, role engine and
battle engine. Every single pokemon role corresponds to a role engine, which is a delta-engine. It
scales at each evolution step. The battle engine is responsible to host the battles between different
pokemon roles. First, we can initialize the pokemon role by providing some basic settings, e.g.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

class GreenBug(PokemonBase):
 def __init__(self):
 super().__init__()

 def move_1(self): # Tackle
 ret=self.attack()
 if not(ret['miss'] or ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)

 def move_2(self): # Lunge
 ret=self.attack()
 if not(ret['miss'] or ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)
 self.target.set_boost('atk',-1)

Species
 Green-Bug
Types
 Bug
Stats
 HP: 105, ATK: 140, DEF: 90,
 SPA: 80, SPD: 90, SPE: 95

Role Engine Battle EngineUser

Let's learn a new move called
Rayquazalize.
power: 120
accuracy: 100
category: Physical
type: Dragon
GreenBug’s types become Drangon
and Flying. Then, it can protect
the user from the next attack.

class GreenBug(PokemonBase):
 def __init__(self):
 super().__init__()

 def move_1(self): # Tackle
 ret=self.attack()
 if not(ret['miss'] or ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)

 def move_2(self): # Lunge
 ret=self.attack()
 if not(ret['miss'] or ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)
 self.target.set_boost('atk',-1)

 def move_3(self): # Rayquazalize
 self.state['types']=['Dragon','Flying']
 ret=self.attack()
 if not(ret['miss'] or ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)
 self.set_condition('Protected')

 def get_immune(self):
 if self['conditions'].get('Protected'):
 del self['conditions']['Protected']
 return True
 return False

Evolve

Initialize

Instruction

Figure 1: Free Pokémon system. Please see our supplementary materials for web demonstration.

species, types, and stats, which then will be transformed into a json format. In Free Pokémon,
the initial states of all roles are almost the same, which is done by rules. Here, the user crafts a
pokemon “Green-Bug” of Bug type. Then, its role code is initialized, with moves Tackle and Lundge.
Specifically, the role is instantiated as a subclass GreenBug of PokemonBase. The move 1, and
move 2 correspond to its two moves respectively.

The blue stream in Figure 1 demonstrates the role’s evolving process. This user provides a natural
language description of his desire, letting his role learn a new move “Rayquazalize”, whose secondary
effect is to switch types and protect it from the next attack. This instruction will be sent to the role
engine and trigger its scaling. As a result, it generates two new methods under the subclass. This
scaling process will repeat for each evolution step.

Free Pokémon is an open-sourced playground for researchers interested in delta-engines. To facilitate
research, the delta-engine is exposed directly to the researchers/users. They are able to manipulate
the delta-engine by issuing any instructions, inputting anything they like. For example, one can craft
a “Thanos” pokemon that owns super powerful moves to beat any other pokemons in one turn; even
intentionally make problematic instructions to access the engine’s behavior.

In Figure 2, we showcase the template we use for incremental prediction in Free Pokémon. In the
first step, we prompt the neural proxy to decide the entries by providing a structural overview of
the engine. Here, the proxy decides to retrieve two methods, get power and set boost. In the
second step, we retrieve the implementation of these two methods as the reference for the neural
proxy and prompt it to evolve the role. Eventually, it generates the incremental value of the engine as
the response. Specifically, in the response, we develop a decorator “Increment” to merge the new
code into the engine.

5 TRAINING DATA GENERATION

The delta-engine transfers the development process of the system to a hybrid of programming and
data engineering. Developers are tasked to craft a sufficient amount of data to align the neural proxy.
This process is labor-intensive. Even experienced professional designers can’t always come up with
fresh and innovative ideas. A recent philosophy is to synthesize pseudo data using powerful LLMs
as generators (Wang et al., 2023c; Wu et al., 2024c). However, the synthetic data is somewhat low-
quality and there can be significant and unknown biases within it (Shumailov et al., 2023). Instead, we
adopt a human and AI co-design process, where LLMs are harnessed as assistant designers, working
collaboratively with human designers. We first discuss two major demands of generated data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Input for Retrieve
You are a game programmer for Pokemon. I
will give you a structural overview of
an engine implementation of a pokemon
role and a natural language instruction.
You are tasked to retrieve the entries
you need to further implement the
instruction.

Overview:
PokemonBase
- get_power
- get_stat
- attack
- get_damage
- set_boost
- ...

Evolve instruction:
{instruction}

Response
get_power
set_boost

Input for Evolve
You are a game programmer for Pokemon. I will give
you a python implementation of a pokemon role and
a natural language instruction. You are tasked to
follow the instruction to evolve the pokemon role.
You can overload methods or add new ones.

Current implementation:
```python
{state}
```

Evolve instruction:
{instruction}

Response
```python
@Increment(Pikachu,'_move_3')
def value():
  return ('Quick Attack',40,100,
  'Physical','Normal',1,['contact'])

@Increment(Pikachu)
def move_3(self): # Quick Attack
  ret=self.attack()
  if not (ret['miss'] or ret['immune']):
    damage_ret=self.get_damage()
    damage=damage_ret['damage']
    self.target.take_damage(damage)
```

Figure 2: Input-output template for incremental prediction in Free Pokémon. The engine is imple-
mented using Python. For brevity, we omit some elements: the engine state yt−1, instruction xt.

Being Novel Players are highly creative. For example, they won’t be satisfied with similar content
for long; they keep discovering novel and imaginative elements in the virtual world. Therefore, it is
crucial for the delta-engine to scale to a broad range of novelty. However, we find that LLMs are
not good at creating novel content based on given instances. Rather, they lean to combine existing
content, such as merging two talents into a new one; or make superficial modifications, such as
transforming a regular dog to a bigger dog. Such secondary data no longer enhances scalability, the
emergence of which necessitates a leap into out-of-domain content.

Being Interesting Interestingness further aligns the delta-engine to the player base. Our demand is
to refine the data design process by picking out the interesting portion from large amount of data.
As opposed to novelty, which can be straightforwardly measured using similarity scores, however,
quantifying interestingness has always been a challenging task (Nelson & Mateas, 2007; Todd et al.,
2024). It is highly subjective and lacks a precise definition, making it difficult to devise instructions
for LLMs to assess.

5.1 PROTOTYPES ENHANCED IMAGINATION

We conjecture that LLMs lack or even do not have imagination; their creative outputs are still guided
by the prompts they receive. However, the naive prompts e.g. “please use your imagination” fail
to offer useful clues to inspire the LLM’s imagination. To address this, we propose to leverage an
explicit prototype, a descriptive paragraph of an entity or scene, as the imaginative foundation. It
facilitates the generation of novel content by providing a concrete reference point.

Figure 3 illustrates the idea. For example, we seek to use Tyrannosaurus as the prototype to design
a pokemon role. We retrieve the corresponding description from Wikipedia and prompt the LLM
generator. The result is a novel pokemon characterized by stronger bite power, aligning with the
notable feature of Tyrannosaurus. In addition to real-world entities, prototypes can also come from
fictional sources. In our project, we retrieve the animals from Wikipedia, e.g. Tyrannosaurus,
Smilodon, Sperm Whale; also retrieve the virtual creatures from “Monster Hunter”3, a popular action
video game. The distinction between the two sources is that the super-natural creatures in Monster
Hunter typically lead to higher novelty of the pokemon roles designed upon them. However, these
roles may go too far, increasing the likelihood of grammatical errors within the generated code, which
we will discuss below.

3https://www.monsterhunter.com

5

https://www.monsterhunter.com

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Pool

LLM

Evaluator

Human

Prototype Script Code Pool

programdesign filter

augment

joint-evaluate

design & program

Human’s participation
LLM’s participation

...
 "types": ["Dragon", "Dark"],
 "ability": {
 "Titan Bite": "Biting moves
have a 50% chance to flinch."},
 "moves": {
 "Tail Smash": {...},
...

 Tyrannosaurus was a bipedal
carnivore with a long, heavy tail.
It is among the largest known land
predators, with its estimated bite
force being the largest among all
terrestrial animals.

[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0...]

...
@Increment(Tyrannosaurus)
def move_3(self): # Fire Fang
 attack_ret=self.attack()
 if not (attack_ret['miss'] or attack_ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)
 if not self.target.isfaint():
 if rnd()<50/100:
 self.target.set_condition('Flinch',counter=0)
 ...

Does it drain?
Is it tanky?
Can it power-boost?
...Tag of Interest

Trained Neural Proxy

Figure 3: Human and AI design (co-design). At the top left, we illustrate the process we leverage
prototypes to enhance the LLM’s design. We align the descriptions of the prototype and its associated
design result using colors.

5.2 TAGS OF INTEREST

We hypothesize that interestingness is an accumulation of potential factors that may pique the users’
interest (Althöfer, 2010). This implies that the more potential factors there are, the more likely the
users will find the content interesting. Therefore, we introduce an interestingness evaluator based on
these factors, which we call Tags of Interest (ToI). We then need a tagger to label them out given the
instance.

Firstly, we establish a set of ToI. Since they vary significantly across different scenarios, this is a
heuristic process. We can construct a one-dimensional “interestingness vector”, where each tag
is represented as one bit. For example, if a pokemon role has the ability to boost its power, the
corresponding bit of this tag will be set to 1; otherwise, set to 0. We use a rule-based tagger to mine
the potential tags of a role from its role code. For example, if a pokemon role can boost its power,
it will inevitably overload the method get power. Based on the interestingness vector, we set a
threshold; if the magnitude of the vector does not reach the threshold, the sample will be filtered out.

5.3 HUMAN AND AI CO-DESIGN

Figure 3 illustrates our co-design process with the dual participation of human and AI (LLM)
designers to generate the training data we need. In this process, we seek to generate two parts of data,
role script and role code. The former is a natural language json script that details the pokemon role.
We use a script-code pair to identify a role. Eventually, we split each role into several states as the
training samples for doing incremental prediction.

Concretely, we initialize the sampling pool with 20 manually-crafted seed instances of script-code
pairs. The human designer first determines the prototype and prompts the LLM designer to generate
a novel role script based on the prototype. Then, the LLM designer is prompted to program the role
script into the role code. More specifically, we sample 5 instances from the sampling pool to augment
the LLM’s coding, while only sampling 1 instance to augment its designing. A key observation is that
the in-context instances of other role scripts may bias the effect of the provided prototype, incurring
low creativity of the response. On the other hand, in-context instances act as useful references for the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

LLM to generate high-quality role code since the programming step does not rely on creativity but
accuracy. The LLM designer we use is either of GPT4 or Claude3. The newly designed script-code
pair will be sent to the evaluator, which is a joint process with both rule-based and manual strategies.
First, code that fails to compile or introduces new methods yet without calling them will be filtered
out. Second, code that fails to pass the interestingness threshold will also be discarded. After the
rule-based filtering, the human designer makes the final check on the script and code. Eventually, we
place the new instance into the sampling pool ready for the next cycle of design.

An important trick is that, we replace the third-party LLM designers (GPT4/Claude3) with one of the
trained neural proxy in the middle of the design process. We find them, yet powerful, still struggle
with the nuanced requirements of the programming problem in our project, providing low-accuracy
responses, while the trained model can tackle much better.

The incorporation of AI greatly accelerates the creative process of human designers (Rezwana &
Maher, 2023), creating high-quality data. In Figure 3, we observe that human designers mainly act as
a prototype designer and a joint evaluator to refine the eventual instances.

6 EXPERIMENT

This section reports our experiments. The results are based on our chosen domain Free Pokémon.
Nonetheless, if the proposed methods effectively work on our domain, it is highly promising to
generalize them in the future.

6.1 BASIC SETTING

To access the quality of the co-designed data, we prepare another set of data of the same size purely
synthesized by Claude3 . Specifically, the synthetic data is generated using a similar pipeline as in
Figure 3. The difference is that we automatically sample the official pokemon roles as the prototypes,
while canceling the manual evaluation step, since these two steps necessitate human participation.
We show the data statistics in the upper half of Table 1.

On the other hand, we prepare two sets of test data, corresponding to easy and hard. The easy-level
data comprises 19 existing pokemon roles, all of which have appeared in official pokemon games. We
sample them from the internet. This set of data is easier because the majority of roles in the training
data, including purely synthesized and co-designed, inevitably share similarity with the existing ones.
Their distributions are closer as a result. To deeply access the scalability of the engine, in addition,
we invite 10 volunteers to manually craft the hard-level data. All of them are not only experienced in
playing pokemon games, but also have a wealth of experience with a wide range of games, greatly
allowing them to design novel pokemon roles. Eventually, we obtain 16 original role scripts. We
manually program them and obtain the ground truth role code. Beyond originality, volunteers are
asked to craft more moves and abilities for one role, which helps us to better evaluate the scalability.
From Table 1, we observe that the number of evolution steps and sentence length of hard-level data is
much more than those of easy-level data.

We fine-tune the CodeGemma-7b model (Mesnard et al., 2024)4. CodeGemma is a code LLM that is
additionally pre-trained on a large number of code corpora. We train each model using LoRA (Hu
et al., 2022) with r = 8, α = 32, learning rate 1.5e-4, and batch size 4 for 5 epochs.

We report two scores.

Exe%: We calculate the success rate of executing the role code on top of the engine. Specifically, we
randomly synthesize 100 roles as imaginary opponents and have the role under test to battle with
them, choosing a random action each time. One success will be counted if all actions are executed
successfully against all opponents.

Acc%: We further verify the accuracy/correctness of the role code. This step is done by GPT4, which
is prompted to compare two code snippets. Note that we calculate the correctness only among the
successfully executed code.

4https://huggingface.co/google/codegemma-7b-it

7

https://huggingface.co/google/codegemma-7b-it

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Upper: Dataset statistics, in order: the number of roles we created, the number of samples,
the average number of evolution steps of each role, and the average sentence length. To calculate the
sentence length, we use the CodeGemma tokenizer. Lower: Results on different test sets. ✓ indicates
the 100% score. “Retr.” refers to the retrieval technique.

Statistic Roles Samples #Evolves #Length
SY. TRAIN 167 500 3.0 1197.8
CO. TRAIN 175 502 2.9 1167.3
EASY TEST 19 43 2.3 997.2
HARD TEST 16 87 5.4 1841.6

Easy Hard
Performance Exe Acc Exe Acc
CODEGEMMA w. SY. 95.3 86.0 86.2 58.6
CODEGEMMA w. CO. ✓ 95.3 90.8 83.9
CODEGEMMA w. CO. w. RETR. ✓ ✓ 92.0 89.7

6.2 MAIN RESULTS

From the lower half of Table 1, we find that the two models trained on synthetic data and co-designed
data (Sy. & Co.) perform comparatively on the easy test set. This is due to the closer gap between
training and test data in this scenario. More specifically, the co-designed data by both humans and AI
performs slightly better. The resultant model and its retrieval-augmented version achieves a full Exe
rate, and the latter also achieves a full Acc rate.

On the other hand, the hard test data delivers a large distribution gap from the training data, leading to
noticeable performance drop across all three model counterparts. More importantly, the gap between
Exe and Acc becomes more pronounced. The elevated Exe rate indicates that the trained model is
inclined to respond with executable code even if the input role is unfamiliar. However, the accuracy
of code is much harder to fulfill. We find that the model trained only on synthetic data is notably
weaker. This is due to the fact that the synthetic data is too limited and doesn’t provide useful signals
for out-of-domain generalization. In contrast, the co-design process produces high-quality data with
out-of-domain signals, which significantly generalizes the model, improving the Acc rate from 58.6
to 83.9. Furthermore, we find that the retrieval technique also shows its positive impact, further
improving Acc to 89.7.

In addition to out-of-domain generalizability, the delta-engine’s scalability includes its scaling
performance through long evolution steps. To do this, we conduct another experiment where we
continuously scale the delta-engine. Specifically, we randomly sample abilities and moves from the
existing database and repeatedly prompt the neural proxy to scale, until it gives a non-executable
response. The result will be a “super patchwork” pokemon role. We repeat this process 100 times.
Figure 4 shows two histograms, where we demonstrate the scaling performance of the engine through
the evolution steps and the engine size. The engine size refers to the number of tokens of its current
code. Intuitively, we observe that as the evolution increments, the performance exhibits a pronounced
degradation. More specifically, as the evolution accumulates to 20 steps, only half of the cases give
an executable response. A similar trend can be seen as the engine size accumulates to 5000. Note
that, the length limit of the CodeGemma model is 8192. However, we find that the introduction of
the retrieval technique brings a nice scalability in the face length increasing. The resultant model
maintains a nice performance up to 30 evolution steps. This is because the retrieved engine state is
much smaller compared to the entire engine. We illustrate a case on the right side of Figure 4. The
model only retrieves the type change method from the engine as the context for the following
incremental prediction.

So far, we haven’t explore larger-sized LLMs, though they can be promisingly stronger.

6.3 DATA ANALYSIS

To further investigate why co-designed data outperforms synthetic data and the distinction between
easy and hard test data, we take a closer look into the underlying data distribution. Therefore,
we visualize the data points of pokemon roles from two distinct views in Figure 5. Specifically,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

def move_2(self): # Skyrip Wing
 self.type_change()
 if self['hp_ratio']< \
 self.target['hp_ratio']:
 self.set_boost('atk',1,'self')
 attack_ret=self.attack()
 if not (attack_ret['miss'] or
attack_ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)

@Increment(Neos,'_move_3')
def value():
 return ('Burn to Ash',90,85,
 'Special','Fire',0,[])

class Neos(PokemonBase):
 def __init__(self):
 super().__init__()

 def type_change(self):
 self.state['types']=['Normal',
 self['act']['type']]

 def move_1(self): # Neos Force
 if self['types']!=['Normal']:
 del self.state['types'][-1]
 self.set_boost('atk',1,'self')
 attack_ret=self.attack()
 if not (attack_ret['miss'] or \
 attack_ret['immune']):
 damage_ret=self.get_damage()
 damage=damage_ret['damage']
 self.target.take_damage(damage)

class Neos(PokemonBase):
 def __init__(self):
 super().__init__()

 def type_change(self):
 self.state['types']=['Normal',
 self['act']['type']]

@Increment(Neos,'_ability')
def value():
 return ['Elemental Heart',
 'Elemental Boost']

@Increment(Neos)
def type_change(self):
 if self['types']!=['Normal',
 self['act']['type']]:
 self.state['types']=['Normal',
 self['act']['type']]
 self.state['status']=None
 self.restore(self['max_hp']//3,'h')

Retrieve

Predict

Figure 4: Histograms of 100 sampling. We highlight the number of evolution steps in the training
data as a baseline. On the right, we show a concrete case of the retrieval process.

Semantics Interestingness

1 No additional effect.
2 Always hits 3 times. Any miss hit will not break the
following hits.
3 Ends the effects of Electric Terrain, Grassy Terrain,
Misty Terrain, and Psychic Terrain.",
4 Lowers the target's Atk and Special Atk by 1 stage.
The next sound-based move drains 50% HP lost by the
target.
5 Raises the user's Atk and Spe by 1 stage.
6 Lowers the user's Def and Special Def by 1 stage.

1 No additional effect.
2 Hits twice.
3 Has a 10% burn the target.
4 Has a 30% chance to make the target flinch.
5 Has a higher chance for a critical hit.
6 Lower the target’s Atk by 2 stages.

Co-designed

Synthetic

Figure 5: Comparison of the roles crafted by different methods and a concrete case on the right. We
visualize them from the semantics and interestingness space.

we apply the sentence embedding model5 to encode the role descriptions into vectors and obtain
the interestingness vectors based on ToI. Then, we apply t-SNE to project all vectors into a two-
dimensional space.

From the left side of Figure 5, we observe that the co-designed data points nearly encompass all
synthetic data points, with the distribution of the latter exhibiting more converged. It highlights the
fact that the co-designed outweighs the synthetic one in terms of semantic diversity, thus enhancing
the training. We show a case on the right side. They belong to the same pokemon role yet are
generated by different methods. We find that the synthetic data easily falls into an identical pattern,
while the co-designed one exhibits great diversity. We find a quite different vision when we segment
the data from interestingness. A similar observation is apparent that the co-designed data points
continue to cover almost all synthetic ones. In particular, we notice that in the upper right, the area
we have highlighted with a red box, there is a blind spot of the synthetic data. It means that the model
trained solely on synthetic data, fails to capture meaningful signals from the test data in this area.
Furthermore, we observe that most of the hard test data points, which are crafted by humans, are
distributed in this area.

7 CONCLUSION

This paper concentrates on the evolving nature of the virtual world. We model this by proposing
the delta-engine. The experiments are made on our self-developed playground Free Pokémon. This
work is the initial attempt into the study, opening up a wealth of valuable topics for future research,
e.g. developing a fully realized virtual world system, studying better training techniques to align the
neural proxy, addressing the safety concerns.

REFERENCES

Ingo Althöfer. Automatic generation and evaluation of recombination games. J. Int. Comput. Games
Assoc., 33(4):215–216, 2010. doi: 10.3233/ICG-2010-33405. URL https://doi.org/10.

5https://huggingface.co/sentence-transformers/all-mpnet-base-v2

9

https://doi.org/10.3233/ICG-2010-33405
https://doi.org/10.3233/ICG-2010-33405
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://doi.org/10.3233/ICG-2010-33405
https://doi.org/10.3233/ICG-2010-33405

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

3233/ICG-2010-33405.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Jake Bruce, Michael D. Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtle, Feryal
M. P. Behbahani, Stephanie C. Y. Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sherjil
Ozair, Scott E. Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satinder Singh,
and Tim Rocktäschel. Genie: Generative interactive environments. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=bJbSbJskOS.

Eric Butler, Kristin Siu, and Alexander Zook. Program synthesis as a generative method. In
Sebastian Deterding, Alessandro Canossa, Casper Harteveld, Jichen Zhu, and Miguel Sicart (eds.),
Proceedings of the International Conference on the Foundations of Digital Games, FDG 2017,
Hyannis, MA, USA, August 14-17, 2017, pp. 6:1–6:10. ACM, 2017. doi: 10.1145/3102071.3102076.
URL https://doi.org/10.1145/3102071.3102076.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, An-
drew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_
Benchmarks.html.

Dominique Geissler, Elisa Nguyen, Daphne Theodorakopoulos, and Lorenzo Gatti. Pokérator
- unveil your inner pokémon. In F. Amı́lcar Cardoso, Penousal Machado, Tony Veale, and
João Miguel Cunha (eds.), Proceedings of the Eleventh International Conference on Computational
Creativity, ICCC 2020, Coimbra, Portugal, September 7-11, 2020, pp. 500–503. Association
for Computational Creativity (ACC), 2020. URL https://computationalcreativity.
net/iccc20/papers/159-iccc20.pdf.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Sihao Hu, Tiansheng Huang, and Ling Liu. Pokellmon: A human-parity agent for pokemon battles
with large language models. CoRR, abs/2402.01118, 2024. doi: 10.48550/ARXIV.2402.01118.
URL https://doi.org/10.48550/arXiv.2402.01118.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. doi: 10.
48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.06825.

Antonios Liapis. Recomposing the pokémon color palette. In Kevin Sim and Paul Kaufmann
(eds.), Applications of Evolutionary Computation - 21st International Conference, EvoApplications

10

https://doi.org/10.3233/ICG-2010-33405
https://doi.org/10.3233/ICG-2010-33405
https://doi.org/10.3233/ICG-2010-33405
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=bJbSbJskOS
https://doi.org/10.1145/3102071.3102076
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://computationalcreativity.net/iccc20/papers/159-iccc20.pdf
https://computationalcreativity.net/iccc20/papers/159-iccc20.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/arXiv.2402.01118
https://doi.org/10.48550/arXiv.2310.06825

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

2018, Parma, Italy, April 4-6, 2018, Proceedings, volume 10784 of Lecture Notes in Computer
Science, pp. 308–324. Springer, 2018. doi: 10.1007/978-3-319-77538-8\ 22. URL https:
//doi.org/10.1007/978-3-319-77538-8_22.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Aakanksha
Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie
Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Char-
line Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David
Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Cristian
Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob
Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan,
Jeremy Chen, Johan Ferret, Justin Chiu, and et al. Gemma: Open models based on gemini
research and technology. CoRR, abs/2403.08295, 2024. doi: 10.48550/ARXIV.2403.08295. URL
https://doi.org/10.48550/arXiv.2403.08295.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/abs/1312.5602.

Mark J. Nelson and Michael Mateas. Towards automated game design. In Roberto Basili and
Maria Teresa Pazienza (eds.), AI*IA 2007: Artificial Intelligence and Human-Oriented Comput-
ing, 10th Congress of the Italian Association for Artificial Intelligence, Rome, Italy, September
10-13, 2007, Proceedings, volume 4733 of Lecture Notes in Computer Science, pp. 626–637.
Springer, 2007. doi: 10.1007/978-3-540-74782-6\ 54. URL https://doi.org/10.1007/
978-3-540-74782-6_54.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Jeba Rezwana and Mary Lou Maher. Designing creative AI partners with COFI: A framework for
modeling interaction in human-ai co-creative systems. ACM Trans. Comput. Hum. Interact., 30(5):
67:1–67:28, 2023. doi: 10.1145/3519026. URL https://doi.org/10.1145/3519026.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023. doi: 10.
48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.

Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content Generation in Games.
Computational Synthesis and Creative Systems. Springer, 2016. ISBN 978-3-319-42714-0. doi: 10.
1007/978-3-319-42716-4. URL https://doi.org/10.1007/978-3-319-42716-4.

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models. Nat.,
623(7987):493–498, 2023. doi: 10.1038/S41586-023-06647-8. URL https://doi.org/10.
1038/s41586-023-06647-8.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross J. Anderson.
The curse of recursion: Training on generated data makes models forget. CoRR, abs/2305.17493,
2023. doi: 10.48550/ARXIV.2305.17493. URL https://doi.org/10.48550/arXiv.
2305.17493.

Gillian Smith, Elaine Gan, Alexei Othenin-Girard, and Jim Whitehead. Pcg-based game design:
enabling new play experiences through procedural content generation. In Proceedings of the 2nd
International Workshop on Procedural Content Generation in Games, PCGames ’11, Bordeaux,
France, June 28, 2011, pp. 7:1–7:4. ACM, 2011. doi: 10.1145/2000919.2000926. URL https:
//doi.org/10.1145/2000919.2000926.

Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård, Amy K. Hoover,
Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural content generation via machine

11

https://doi.org/10.1007/978-3-319-77538-8_22
https://doi.org/10.1007/978-3-319-77538-8_22
https://doi.org/10.48550/arXiv.2403.08295
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-540-74782-6_54
https://doi.org/10.1007/978-3-540-74782-6_54
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1145/3519026
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.1007/978-3-319-42716-4
https://doi.org/10.1038/s41586-023-06647-8
https://doi.org/10.1038/s41586-023-06647-8
https://doi.org/10.48550/arXiv.2305.17493
https://doi.org/10.48550/arXiv.2305.17493
https://doi.org/10.1145/2000919.2000926
https://doi.org/10.1145/2000919.2000926

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

learning (PCGML). IEEE Trans. Games, 10(3):257–270, 2018. doi: 10.1109/TG.2018.2846639.
URL https://doi.org/10.1109/TG.2018.2846639.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia,
Jiechuan Jiang, Longtao Zheng, Xinrun Xu, Yifei Bi, Pengjie Gu, Xinrun Wang, Börje F. Karlsson,
Bo An, and Zongqing Lu. Towards general computer control: A multimodal agent for red dead
redemption II as a case study. CoRR, abs/2403.03186, 2024. doi: 10.48550/ARXIV.2403.03186.
URL https://doi.org/10.48550/arXiv.2403.03186.

SIMA Team, Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic Besse, Andrew Bolt, Adrian
Bolton, Bethanie Brownfield, Gavin Buttimore, Max Cant, Sarah Chakera, Stephanie C. Y. Chan,
Jeff Clune, Adrian Collister, Vikki Copeman, Alex Cullum, Ishita Dasgupta, Dario de Cesare,
Julia Di Trapani, Yani Donchev, Emma Dunleavy, Martin Engelcke, Ryan Faulkner, Frankie
Garcia, Charles Gbadamosi, Zhitao Gong, Lucy Gonzalez, Kshitij Gupta, Karol Gregor, Arne Olav
Hallingstad, Tim Harley, Sam Haves, Felix Hill, Ed Hirst, Drew A. Hudson, Jony Hudson,
Steph Hughes-Fitt, Danilo J. Rezende, Mimi Jasarevic, Laura Kampis, Nan Rosemary Ke,
Thomas Keck, Junkyung Kim, Oscar Knagg, Kavya Kopparapu, Andrew K. Lampinen, Shane
Legg, Alexander Lerchner, Marjorie Limont, Yulan Liu, Maria Loks-Thompson, Joseph Marino,
Kathryn Martin Cussons, Loic Matthey, Siobhan Mcloughlin, Piermaria Mendolicchio, Hamza
Merzic, Anna Mitenkova, Alexandre Moufarek, Valéria Oliveira, Yanko Gitahy Oliveira, Hannah
Openshaw, Renke Pan, Aneesh Pappu, Alex Platonov, Ollie Purkiss, David P. Reichert, John
Reid, Pierre Harvey Richemond, Tyson Roberts, Giles Ruscoe, Jaume Sanchez Elias, Tasha
Sandars, Daniel P. Sawyer, Tim Scholtes, Guy Simmons, Daniel Slater, Hubert Soyer, Heiko
Strathmann, Peter Stys, Allison C. Tam, Denis Teplyashin, Tayfun Terzi, Davide Vercelli, Bo-
jan Vujatovic, Marcus Wainwright, Jane X. Wang, Zhengdong Wang, Daan Wierstra, Duncan
Williams, Nathaniel Wong, Sarah York, and Nick Young. Scaling instructable agents across
many simulated worlds. CoRR, abs/2404.10179, 2024. doi: 10.48550/ARXIV.2404.10179. URL
https://doi.org/10.48550/arXiv.2404.10179.

Graham Todd, Alexander Padula, Matthew Stephenson, Éric Piette, Dennis JNJ Soemers, and
Julian Togelius. Gavel: Generating games via evolution and language models. arXiv preprint
arXiv:2407.09388, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023. doi: 10.48550/arXiv.2307.09288. URL https://doi.org/10.
48550/arXiv.2307.09288.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-
time game engines. CoRR, abs/2408.14837, 2024. doi: 10.48550/ARXIV.2408.14837. URL
https://doi.org/10.48550/arXiv.2408.14837.

Susanna Värtinen, Perttu Hämäläinen, and Christian Guckelsberger. Generating role-playing game
quests with GPT language models. IEEE Trans. Games, 16(1):127–139, 2024. doi: 10.1109/TG.
2022.3228480. URL https://doi.org/10.1109/TG.2022.3228480.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,

12

https://doi.org/10.1109/TG.2018.2846639
https://doi.org/10.48550/arXiv.2403.03186
https://doi.org/10.48550/arXiv.2404.10179
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2408.14837
https://doi.org/10.1109/TG.2022.3228480

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning. Nat., 575(7782):
350–354, 2019. doi: 10.1038/S41586-019-1724-Z. URL https://doi.org/10.1038/
s41586-019-1724-z.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. CoRR,
abs/2305.16291, 2023a. doi: 10.48550/ARXIV.2305.16291. URL https://doi.org/10.
48550/arXiv.2305.16291.

Noah Wang, Z. y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo,
Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu, Wenhao
Huang, Jie Fu, and Junran Peng. Rolellm: Benchmarking, eliciting, and enhancing role-playing
abilities of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and
virtual meeting, August 11-16, 2024, pp. 14743–14777. Association for Computational Linguistics,
2024. doi: 10.18653/V1/2024.FINDINGS-ACL.878. URL https://doi.org/10.18653/
v1/2024.findings-acl.878.

Ruoyao Wang, Graham Todd, Xingdi Yuan, Ziang Xiao, Marc-Alexandre Côté, and Peter A. Jansen.
Bytesized32: A corpus and challenge task for generating task-specific world models expressed
as text games. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 13455–13471. Association for Computational Linguistics, 2023b. doi:
10.18653/V1/2023.EMNLP-MAIN.830. URL https://doi.org/10.18653/v1/2023.
emnlp-main.830.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association for Computational Linguistics,
2023c. doi: 10.18653/V1/2023.ACL-LONG.754. URL https://doi.org/10.18653/v1/
2023.acl-long.754.

Hongqiu Wu, Xingyuan Liu, Yan Wang, and Hai Zhao. Instruction-driven game engine: A poker
case study. In Delia Irazu Hernandez Farias, Tom Hope, and Manling Li (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
pp. 507–519, Miami, Florida, USA, November 2024a. Association for Computational Linguistics.
URL https://aclanthology.org/2024.emnlp-demo.51.

Hongqiu Wu, Yan Wang, Xingyuan Liu, Hai Zhao, and Min Zhang. Instruction-driven game engines
on large language models. CoRR, abs/2404.00276, 2024b. doi: 10.48550/ARXIV.2404.00276.
URL https://doi.org/10.48550/arXiv.2404.00276.

Weiqi Wu, Hongqiu Wu, Lai Jiang, Xingyuan Liu, Hai Zhao, and Min Zhang. From role-play to
drama-interaction: An LLM solution. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and
virtual meeting, August 11-16, 2024, pp. 3271–3290. Association for Computational Linguistics,
2024c. doi: 10.18653/V1/2024.FINDINGS-ACL.196. URL https://doi.org/10.18653/
v1/2024.findings-acl.196.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf.
CoRR, abs/2309.04658, 2023. doi: 10.48550/ARXIV.2309.04658. URL https://doi.org/
10.48550/arXiv.2309.04658.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng
Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, Juntao
Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu,

13

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.18653/v1/2024.findings-acl.878
https://doi.org/10.18653/v1/2024.findings-acl.878
https://doi.org/10.18653/v1/2023.emnlp-main.830
https://doi.org/10.18653/v1/2023.emnlp-main.830
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://aclanthology.org/2024.emnlp-demo.51
https://doi.org/10.48550/arXiv.2404.00276
https://doi.org/10.18653/v1/2024.findings-acl.196
https://doi.org/10.18653/v1/2024.findings-acl.196
https://doi.org/10.48550/arXiv.2309.04658
https://doi.org/10.48550/arXiv.2309.04658

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei
Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu, Xuehai
Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang, Zenan Zhou,
and Zhiying Wu. Baichuan 2: Open large-scale language models. CoRR, abs/2309.10305, 2023.
doi: 10.48550/ARXIV.2309.10305. URL https://doi.org/10.48550/arXiv.2309.
10305.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are strong
context generators. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/forum?id=fB0hRu9GZUS.

Runcong Zhao, Wenjia Zhang, Jiazheng Li, Lixing Zhu, Yanran Li, Yulan He, and Lin Gui. Nar-
rativeplay: Interactive narrative understanding. In Nikolaos Aletras and Orphée De Clercq
(eds.), Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics, EACL 2024 - System Demonstrations, St. Julians, Malta, March
17-22, 2024, pp. 82–93. Association for Computational Linguistics, 2024a. URL https:
//aclanthology.org/2024.eacl-demo.10.

Runcong Zhao, Qinglin Zhu, Hainiu Xu, Jiazheng Li, Yuxiang Zhou, Yulan He, and Lin Gui. Large
language models fall short: Understanding complex relationships in detective narratives. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 7618–7638.
Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.FINDINGS-ACL.454.
URL https://doi.org/10.18653/v1/2024.findings-acl.454.

14

https://doi.org/10.48550/arXiv.2309.10305
https://doi.org/10.48550/arXiv.2309.10305
https://openreview.net/forum?id=fB0hRu9GZUS
https://openreview.net/forum?id=fB0hRu9GZUS
https://aclanthology.org/2024.eacl-demo.10
https://aclanthology.org/2024.eacl-demo.10
https://doi.org/10.18653/v1/2024.findings-acl.454

	Introduction
	Related Work
	Delta-Engine
	Playground: Free Pokémon
	Training Data Generation
	Prototypes Enhanced Imagination
	Tags of Interest
	Human and AI Co-Design

	Experiment
	Basic Setting
	Main Results
	Data Analysis

	Conclusion

