
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACTIONFILLER: FILL-IN-THE-BLANK
PROMPTING FOR OS AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many existing methods for operating system (OS) agents focus on predicting the
next action based on the current state, which constructs a predefined task exe-
cution pipeline. While these methods demonstrate promising performance, re-
liance on state cognition modules like detector or recognizer could impede execu-
tion efficiency, particularly in long-horizon tasks with intricate action trajectories.
Recognizing the remarkable accuracy of large language models (LLMs) in pro-
cessing short instructions, this paper proposes the ActionFiller framework. The
goal is to integrate easily executable short tasks into longer, cohesive tasks using
fill-in-the-blank prompts, thereby minimizing redundant operations and enhanc-
ing efficiency. ActionFiller employs two types of action-oriented fill-in-the-blank
prompts: one designed for subtasks and another for specific actions. To gener-
ate subtask prompts, we introduce a Foresight Optimization Agent (FOA) that
constructs an initial prompt by referencing past short tasks. It then fills in the un-
referenced parts with detailed prompts generated by a planning agent, effectively
retaining valuable past experiences. Next, an Action Template Agent (ATA) gen-
erates action prompts for each subtask. This process yields three distinct types
of action prompts: 1) executable action sequences, 2) non-executable action se-
quences with prompt parameters, and 3) pure text descriptions. To execute the ac-
tion prompts effectively, we propose the CohesiveFlow method, which optimizes
the second and third types of prompts by leveraging the cognitive state of the en-
vironment. Inspired by masked language modeling, the CohesiveFlow agent inte-
grates the current environmental state with previously executed action sequences
to update parameters and text descriptions, ensuring both feasibility and effec-
tiveness in execution. To validate the efficacy of our approach for long-horizon
instructions, we introduce a new benchmark called EnduroSeq and conduct ex-
periments using the WinBench short instruction dataset. The results demonstrate
that ActionFiller significantly enhances task completion rates and execution effi-
ciency, offering a novel solution for the application of intelligent agents in com-
plex environments.

1 INTRODUCTION

The development of language models (LM) has led to the emergence of AI-based agentsWang et al.
(2024b); Xi et al. (2023), which play diverse roles in facilitating planning, decision-making, and
reflection in both single-agentGe et al. (2024); Wang et al. (2023b) and multi-agentHong et al.
(2023); Wu et al. (2023) scenarios across various instructionsGe et al. (2023). Currently, operating
system (OS) agentsZhang et al. (2024); Humphreys et al. (2022); Hong et al. (2024); Gur et al.
(2023); Wang et al. (2024a) primarily rely on two methodologies: constructing execution pipelines
for predefined tasksWang et al. (2024a) or using trained models to predict actions based on the
current stateZhang et al. (2024); Hong et al. (2024).

In an OS, agents analyze the current state to predict subsequent actions through a decision-making
mechanism that evaluates this state and selects the most optimal action. However, before making
decisions, state cognition modules—such as icon and text detectors—are employed to assess the run-
ning environmentHong et al. (2024). This approach can reduce execution efficiency and prolong ex-
ecution times, especially with complex long instructions. Moreover, this decision-making paradigm
differs significantly from human cognitive processes. Humans tend to optimize their choices based

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Operation Instructions

OS Environment

Observe

Feedback

Action

Operation Instructions

OS Environment

Action

Thinking
Past Experience

If
Need

Action

Observe
Feedback

Figure 1: Comparative analysis of general OS agents and our ActionFiller.

on past experiences, often evaluating processes more streamlined before execution. This discrep-
ancy prompts a reevaluation of the methodologies used by OS agents in search of more effective
solutions. To further highlight these differences, we have illustrated this distinction in Figure 1 that
clarifies the approaches of OS agents versus Our ActionFiller.

To address these challenges, this paper introduces the ActionFiller framework—a novel approach
designed to efficiently generate action sequences for operating system (OS) agents. The primary
goal is to integrate easily executable short tasks into longer, cohesive tasks using fill-in-the-blank
prompts, thereby minimizing redundant operations and enhancing overall efficiency. Unlike tradi-
tional methodsSignificant Gravitas; Hong et al. (2023); Zhang et al. (2024) , which rely heavily on
cognitive decision-making, ActionFiller provides a more flexible solution by automating the creation
of specific action templates and simulating human-like decision-making processes. This enhance-
ment improves the responsiveness and adaptability of OS agents.

The ActionFiller framework consists of two types of action-oriented prompts: one for subtasks and
another for action sequences. Subtask prompt: The objective of the subtask prompt is to construct a
coherent sequence of steps that reflects human experience while balancing effectiveness and opera-
tional flexibility. To achieve this, we introduce a Foresight Optimization Module (FOM). Initially,
this module references past human experiences to generate a prompt that incorporates both reference
steps and additional operational steps. Subsequently, a more detailed prompt is created, devoid of
human experiential references, outlining potential subtasks. Finally, this second prompt optimizes
uncertain aspects by integrating both human experience and operational flexibility. Action prompt:
an Action Template Agent (ATA) use the subtask prompt to generates three distinct types of ac-
tion prompts for execution: 1) Executable Action Sequences: These templates are derived from
human experiences and contain tasks with short instructions. This memory can be populated by
the language model (LM) using predefined templates or by human input based on specific contexts.
Executable action sequences can be directly executed by the OS agent. 2) Unexecutable Action
Sequences: Characterized by variable parameters, these sequences cannot be executed without addi-
tional context or information. Once the parameters are updated based on the current environmental
state, they can become executable. 3) Pure Textual Descriptions: This type emphasizes conveying
actions through natural language, providing a narrative or illustrative format. However, these de-
scriptions often exceed the LM’s immediate capabilities, necessitating further elaboration or context
for effective execution.

To address the limitations of the latter two types of prompts that cannot be executed directly, we pro-
pose the CohesiveFlow method. Inspired by masked language modeling, the CohesiveFlow agent
integrates current environmental data and executed action sequences to refine parameters and de-
compose textual descriptions into actionable sequences, ensuring both feasibility and effectiveness.

To evaluate the efficacy of ActionFiller, we introduce a benchmark called EnduroSeq, specifically
designed to assess long-horizon instruction execution. Complementary experiments were conducted
using the WinBench short instruction dataset. Experimental results indicate that ActionFiller signif-
icantly enhances task completion rates and execution efficiency, offering a transformative solution
for the deployment of intelligent agents in complex environments. In summary, our contributions
can be summarized as follows:

• We focus on the often-overlooked issue of decision efficiency and propose a novel frame-
work termed ActionFiller to streamline the generation of action sequences. This framework

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

reduces reliance on cognitive decision-making processes, improves the utilization of mem-
ory packages, and enhances execution efficiency for operating system agents.

• To optimize action templates, we introduce the CohesiveFlow method, which optimizes
unexecutable action sequences by dynamically updating parameters and leveraging envi-
ronmental contexts, thereby facilitating more effective decision-making.

• We also present the EnduroSeq benchmark, specifically designed to evaluate long-horizon
instruction execution, providing comprehensive validation of our approach.

• Our experimental findings demonstrate that ActionFiller not only increases task completion
rates but also improves the adaptability of agents in diverse and complex scenarios, paving
the way for more responsive AI-driven solutions.

2 RELATED WORK

2.1 LLM-BASED OS AGENTS

Yao et al. (2022) and Deng et al. (2024) improved agent performance in real web tasks by developing
high-quality web task datasets. Gur et al. (2023) automated the processing of these tasks through
the use of pre-trained language models (LLMs) and self-experience learning, while Zheng et al.
(2024a) utilized GPT-4V for visual comprehension and web operations. As for the user interface
(GUI), Wang et al. (2023a) transform graphical information into HTML representations, incorporat-
ing application-specific domain knowledge with LLMs. Yan et al. (2023) introduced a multimodal
intelligent mobile agent utilizing GPT-4V, investigating its ability to interpret annotated screenshots.
Zhang et al. (2024) replicated human spatial autonomy in managing mobile applications by utiliz-
ing XML files for localization, while Wang et al. (2024c) employed visualization module tools for
the same purpose, thereby removing the dependency on XML files. Moreover, Hong et al. (2024)
created a GUI agent founded on pre-trained visual language models. Zhang et al. (2024) developed
a UI multi-agent framework specifically designed for the Windows operating system.

Although various text and visual language agent models have undergone extensive testing across
web, mobile, and desktop environments—including UFO Zhang et al. (2024), CC-Net Humphreys
et al. (2022), AiTW Rawles et al. (2024), CogAgent Hong et al. (2024), MM-Navigator Yan et al.
(2023), SeeAct Zheng et al. (2024b), WebAgent Gur et al. (2023), OS-Copilot Wu et al. (2024), and
MobileAgentWang et al. (2024a)—the effectiveness of task reuse, especially in handling complex
instructions, still necessitates further investigation.

2.2 LARGE MULTIMODAL MODELS

In recent years, Large Multimodal Models (LMMs) have made significant progress, particularly
GPT-4V OpenAI (2023) and Gemini Team et al. (2023). Several studies Akter et al. (2023); OpenAI
(2023); Yang et al. (2023b); Zhang et al. (2023); Yang et al. (2023a); Yan et al. (2023) highlight
their exceptional integration in visual and linguistic reasoning capabilities, demonstrating powerful
multimodal skills.

Although open-source models perform well on certain benchmark tests, there is still a performance
gap compared to GPT-4V. However, these open-source models have advantages in terms of con-
trollability and ease of fine-tuning, making them suitable for various applications. For example,
CogAgent Hong et al. (2024) has been fine-tuned on HTML and screenshot pairs to enhance web
understanding capabilities and has improved the processing of high-resolution image details through
an image encoder. Additionally, Ferret You et al. (2023) can provide visual referencing and local-
ization functionalities after fine-tuning. These models have also had their capabilities in visual
and linguistic understanding and reasoning confirmed by further research from Kazemzadeh et al.
(2014); Goyal et al. (2017); Hendrycks et al. (2020); Saikh et al. (2022); Lu et al. (2022); Zhong
et al. (2023); Yue et al. (2024).

3 ACTIONFILLER

In this section, we first give the pipeline of ActionFiller in subsection 3.1, then provide the generation
process of two types of fill-in-the-blank as well as the action execution process.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Planer Actor

Observer

Instruction

Planer Actor

Observer

Instruction

If need

Reflector

Reflector

Subfigure (a). The general pipeline in OS agent

Subfigure (b). The our pipeline in OS agent

Figure 2: Comparative illustration of general OS agent and ActionFiller in Pipelines.

3.1 PIPELINE DEFINITION

In this paper, we consider an agent that employs a large language model, denoted as L, in conjunction
with a text-based memory, M, using the Windows operating system as an example. To address the
instructions provided by a human user, represented as q, the agent operates within an environment
defined by an execution function E . At each step ti, the agent utilizes an observer, such as a text or
a icon detector, to obtain the observation oi from the current environment state si. Subsequently, it
runs L(q,M, oi) to predict the current action ai. As the action ai is executed, the environment state
transitions from si to si+1 according to E(si, ai).
This observe-act loop continues until the model predicts the stop action ai = STOP or reaches a
predetermined termination condition, such as a maximum number of steps. The pipeline is illustrated
in Figure 2(a). From this figure, it is evident that each action execution requires one perception of
the environment from the observer. However, frequent reliance on the observer during long-horizon
instructions could be time-consuming.

To address this challenge, our objective is to minimize the number of observations as much as
possible in the execution step. The general pipeline can refer to the Figure 2(b). When observation
cannot be bypassed, we also provide detailed prompts to facilitate action prediction. Leveraging
the LLM’s high accuracy with short instructions, we consider using short instructions to effectively
resolve a long-horizon instruction. To achieve this, we first introduce a structural memory SM that
encompasses various basic functions for each application on the PC, where each function consists
of a sequence of instructions and actions, along with explanations for each action. Each basic
function contains only 3-6 action steps. We then retrieve SM to select the appropriate basic function
F for the instruction. We treat F as a foundational element and employ it to generate reusable
subtask prompts and subsequent action prompts, thereby invoking the observer only when absolutely
necessary. Next, we introduce two types of action-oriented fill-in-the-blank, subtask prompt and
action prompt.

3.2 FILL-IN-THE-BLANK PROMPT

The ActionFiller framework consists of two types of action-oriented prompts: one designed for
subtasks and another tailored for action sequences. In figure 3, we show the core mechanism behind
this framework.

Subtask Prompt: The objective of the subtask prompt is to construct a coherent sequence of steps
that reflects human experience while balancing effectiveness and operational flexibility. To achieve
this, we introduce a Foresight Optimization Module (FOM). Initially, this module leverages past
human experiences to generate a prompt that incorporates both reference steps—grounded in his-
torical data—and additional operational steps that are adaptable to various contexts. Following this,
a more detailed prompt is created, devoid of direct human experiential references, which outlines
potential subtasks in a clear and organized manner. This second prompt is then optimized to address

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Foresight Optimization Agent (FOA)

MemoryPlaner Planer

« «

Plan Without Memory Plan With Memory
Optimize

«

Subtask Prompt

Subtask With Reference

Subtask Without Reference
Subtask Prompt

Action Template Agent (ATA)

Executable
 action 

sequences

Non-executable
 action sequences 

with prompt 
parameters

Pure
 text 

descriptions

Action Prompt

Memory

Figure 3: Fill-In-The-Blank prompt generation.

uncertain aspects by integrating both human experience and operational flexibility, ensuring that the
agent can navigate complexities effectively. In Figure 4 (a), we provide a detailed demo to show
how to generate subtask prompts.

Action Prompt: To emulate human thought processes in addressing complex problems, we have
developed three types of action prompts to enhance familiarity with specific tasks. These prompts
are designed to correspond to various levels of understanding, ranging from full mastery to initial
recognition. By aligning the LLM’s responses with the user’s prior experience, the prompts help the
agent deliver adaptive, context-aware actions, reducing redundant operations and improving overall
efficiency.

In our paper, an Action Template Agent (ATA) utilizes the subtask prompt to generate three dis-
tinct types of action prompts for execution: 1) Executable Action Sequences: These templates are
derived from human experiences and consist of tasks that involve short, clear instructions. This
memory can be populated by the language model (LM) using predefined templates or through hu-
man input, tailored to specific contexts. Executable action sequences can be directly executed by the
operating system agent, allowing for seamless interaction with the environment. 2) Unexecutable
Action Sequences: These sequences are characterized by variable parameters, rendering them non-
executable without additional context or information. Once the parameters are updated based on
the current environmental state, they can transform into executable sequences, enabling the agent
to adapt to changing conditions effectively. 3) Pure Textual Descriptions: This type emphasizes
conveying actions through natural language, providing a narrative or illustrative format that is rich
in detail. However, these descriptions often exceed the LM’s immediate capabilities, necessitating
further elaboration or contextual information for effective execution. This prompts the agent to seek
additional input or clarification before proceeding. A detailed illustration is provided in Figure 4(b),
where various types of action prompts are colored to distinguish between them.

3.3 COHESIVEFLOW AGENT

We observed that during action execution, the latter two types of prompts—non-executable action
sequences with prompt parameters, and pure text descriptions—struggle to function effectively in
the OS environment. To address this issue, we propose a CohesiveFlow agent, which focuses on
either providing the correct parameters to render non-executable prompts executable, or optimizing
textual descriptions to generate accurate, concise action sequences.

When encountering a second action prompt, we utilize a large language model (LLM) such as GPT-
4 to predict the parameters for the next action based on previously executed actions and the current
OS environment state. These parameters vary depending on the action type: for instance, a click op-
eration requires coordinates, whereas a text-based action requires specific input. Rather than relying
on traditional probabilistic models, this prediction task is framed as a sequence-to-sequence genera-
tion problem. The LLM predicts the next action At from an input sequence that includes the users’

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Planer

1. Open Google Chrome
   - Action: Launch a web browser application 
on the computer.
«
7. Select Color Printing

 - In the print dialog, ensure that the printer is 
set to print in color. Check the printer settings 
and select "Color" under the print options if 
necessary.

Memory Planer
1.Open Google Chrome and navigate to 
Google by typing "https://www.google.com" 
and pressing enter. 
«
7.Press enter to print the page.

FOA

step(1) - Open Google Chrome and 
navigate to Google by typing 
"https://www.google.com" and pressing 
enter.
- Launch a web browser application on 

the computer, such as Google Chrome.
«
step(6) - Press enter to print the page.
- Confirm the print settings, including 

the number of copies, page range, and 
any other preferences such as layout or 
paper size. Click the "Print" button to 
print Xiao 'RQJ¶V homepage in color.

Subfigure (a). The pipeline for Subtask Prompt Generation
Subtask Prompt

step(1) - Open Google Chrome and 
navigate to Google by typing 
"https://www.google.com" and pressing 
enter.
- Launch a web browser application on 

the computer, such as Google Chrome.
«
step(6) - Press enter to print the page.
- Confirm the print settings, including 

the number of copies, page range, and 
any other preferences such as layout or 
paper size. Click the ³3ULQW´ button to 
print [[[¶V homepage in color.

Subtask Prompt

ATA
Executable

 action 
sequences

Non-executable
 action sequences 

with prompt 
parameters

Pure
 text 

descriptions

Open Google Chrome, Press(ctrl, l), Type(https://www.google.com),
Press(enter), Type([[[¶V profile and contact information), Press(enter),
Browse through the search results to find the relevant profile page,
Double_Click(profile page link).

Find Prof [[[¶V profile 
and contact information.

Action Prompt

Subfigure (b). The pipeline for Action Prompt Generation

Figure 4: Demonstration of subtask and action prompt pipelines in OS agents

instruction q, current environment state St, past actions A1:t−1, and possibly future actions At+1:

that may be executed. The prediction process is formulated as: At = LLM(q, St, A1:t−1, At+1:)

When handling pure text descriptions T that are non-executable, the LLM transforms the text into
an optimized action sequence A through the following process: A = LLM(q, T, St, A1:t−1)

After executing the updated action at step t, we assess whether the action successfully achieves the
intended goal. If the action fulfills its purpose, we adjust the remaining action sequence Ât+1: by
considering the outcome of At. This update process is defined as: Ât+1: = LLM(St, A1:t)

Through iterative execution, our method leverages the LLM’s capacity to infer complex relationships
and dynamically adapt to the evolving state and context.

3.4 ENDUROSEQ DATASET

Figure 5: Dataset categories by solution path
availability.

CategoryTask Examples Tasks %
Dynamic
Tasks

Using Excel to plan weekly meals
and check nutrition facts, then cre-
ate a shopping list in Amazon to en-
sure all ingredients are available.

15 50

Static
Tasks

Find rental apartments near NYU
with a budget under $3,500 per
month using Zillow, and compile
the details (address, rent, and URL
link) in a Microsoft Word docu-
ment.

15 50

Total 30 100

Characteristics and Statistics of ENDUROSEQ in Subtasks and Actions Across Samples

������� ������� ������� �������

��������	����
���
���

��

��

��

��

��

�

�

�

�

�

��
��
�
�

�	

��������
����������	�	

���������	�	

� � �� �� �� �� ��

��������	���
��
�
����

�

�

�

�

�

�

�

�

�

�

��
��
�

�
��

��������
�����������	�

����������	�

Figure 6: Characteristics and statistics of EN-
DUROSEQ in subtasks and actions across sam-
ples.

To thoroughly evaluate the performance on long-horizon instructions, we introduce a novel dataset
named EnduroSeq, specifically designed for this purpose. EnduroSeq consists of 30 carefully cu-
rated samples that are categorized into two distinct types of tasks: (1) Open tasks and (2) Static
tasks. Open tasks are characterized by their flexibility, allowing for multiple possible solution paths

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Each sample in the ENDUROSEQ with a short task description.

Category Application Type Task Description

Product Tools

Chrome Static Change the settings of Chrome.

Static Create bookmarks of several websites.

Teams Static Schedule a meeting to corporate with team members.

Google Docs
Static Create and share a document in Google Docs.

Dynamic Create a company report using Google Docs.

Dynamic Create a project proposal using Google Docs.

Office
Dynamic Design and document a six-week HIIT bootcamp plan using Microsoft Word and

Excel.

Dynamic Write an outline for a speech at an international conference.

Dynamic Develop a beginner gym strength training plan.

Slack Static Create a channel in slack to corparate with teammates.

Online Service

Amazon Static Search and filter the items.

Static Select a mattress that meets your requirements and buy it.

Google Translate Static Translate a speech into French.

Walmart Static Purchasing something in Walmart.

Zillow Static Search apartments near NYU to rent.

Coursera Dynamic Find and enroll a data science program.

allrecipes.com Dynamic Organize a dinner party for six people by selecting recipes.

Social Media
Youtube Static Search and compile a list of quality Git learning tutorials.

Spotify Static Create a playlist of your favorite songs.

songkick.com Dynamic Check the play schedule of a band.

Development Tools
leetcode Static Find a java method of the ”Two Sum” problem.

jupyter notebook Static Use Windows cmd to create and configure a Jupyter Notebook file for machine learn-
ing.

VSCode Dynamic Develop a Python web application using Visual Studio Code and Flask.

Cross-App

Web Browser, Office Static Search and organize a list of movies directed by Christopher Nolan on IMDb.

Static Use Google to search for LA weather on weather.com and view it by month.

Web Browser, Office
Dynamic Find the Apple products information and compare two product.

Dynamic Use Microsoft Office tools to do a personal wellness retreat.

Dynamic Compile a comprehensive list of faculty members.

Web Browser, Office, Amazon Dynamic Using Excel to plan Weekly Meals and check nutrition facts, then add them to Shop-
ping List in Amazon.

Office, Amazon Dynamic Design an outfit for the everyday man in spring on Amazon.

to achieve the desired outcome. In contrast, static tasks are more rigid, offering only one predefined
solution path that must be followed precisely. In Table 5, we present the breakdown of tasks catego-
rized by solution path availability, showcasing examples, the number of tasks, and their respective
percentages.

Each sample in the dataset is constructed to encompass a wide range of complexity, with over 8
sub-tasks and at least 11 action sequences, as illustrated in Figure 6. Each task and action sequence
is designed to mimic real-world scenarios involving extended, multi-step instructions that challenge
the model’s ability to maintain context over long sequences. The detail of each instruction is shown
in Table 1. Additionally, EnduroSeq is intended to facilitate the evaluation of various aspects of
performance, such as adaptability to dynamic tasks and robustness in handling tasks with fixed
constraints.

4 EXPERIMENTS

4.1 IMPLEMENTATIONS

In our experiments, the agent operates within a well-defined action space tailored to the Windows
operating system. This action space consists of discrete actions, including basic navigation, se-
lection, and interaction commands. Each action is mapped to the functional requirements of the
environment, enabling the agent to efficiently progress through various tasks. For example, in the
WindowsBench dataset, the action space includes task-specific interactions such as launching ap-
plications, navigating menus, and executing commands. The detailed action space is provided in
Table 2.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Action Name Function Call Description
Open app open app(’Teams’) Opens the specified app, e.g., Teams.
Press press(’Enter’) Simulates pressing the ’Enter’ key.
Type text type text(’amazon.com’) Inputs a text string, e.g., ’amazon.com’.
Left click left click(x, y) Performs a left click at coordinates (x, y).
Double click double click(x, y) Double-clicks at coordinates (x, y).
Right click right click(x, y) Right-clicks at coordinates (x, y).
Hover hover(x, y) Hovers over coordinates (x, y).
Swipe swipe(x1, y1, x2, y2) Swipes from (x1, y1) to (x2, y2).
Home home() Returns to the main interface.

Table 2: Action space for agent interaction in our ActionFiller

Table 3: Performance comparison (%) on ENDUROSEQ.

Framework Category SR CR Avg. SR Avg. CR

GPT-4o (Human Surrogate)
Static Tasks 40.0 62.3 56.7 73.8Dynamic Tasks 73.3 85.2

GPT-o1 (Human Surrogate)
Static Tasks 46.7 68.5 60.0 77.7Dynamic Tasks 73.3 86.8

ActionFiller
Static Tasks 80.0 91.8 80.0 92.7Dynamic Tasks 80.0 93.5

4.2 DATASET & BASELINES & METRICS

Dataset We utilize the WindowsBench and ENDUROSEQ datasets to evaluate the performance
of our ActionFiller framework and baseline methods. WindowsBench, originally derived from the
UFO agent, consists of 30 samples spanning 9 applications, along with a cross-application dataset
containing a rich variety of operational samples. ENDUROSEQ is a custom dataset designed to
include extensive subtasks and actions. It is segmented into static and dynamic categories, with the
former targeting single-path solutions and the latter accommodating multi-path solutions.

Baselines In our paper, we use GPT-4o and GPT-o1 as our baseline.

Metrics We use two metrics to evaluate the performance of mobile device operation agents across
different dimensions:

• Success Rate (SR): This metric quantifies the agent’s ability to successfully accomplish as-
signed tasks. A score of 1 is attributed when a task is fully completed, signifying successful
execution.

• Completion Rate (CR): This metric evaluates the agent’s intermediate performance during
task execution, specifically assessing the effectiveness of its actions. In scenarios requiring
complex planning, even if the task is not fully completed, incremental progress or partially
effective actions contribute positively to this score.

4.3 EXPERIMENT RESULTS

The experimental results in Table 3 highlight the superior performance of our proposed ActionFiller
method across various applications in long instruction. For instance, in tasks such as Outlook and
File Explorer, our method consistently achieves higher success rates and better Completion Rates
(CR) compared to baseline approaches using gpt-4o and gpt-o1. Specifically, our method excels
in handling complex applications like Visual Studio Code and Edge Browser, where it significantly
outperforms the baseline, demonstrating its effectiveness in improving task completion and robust-
ness. This strong performance across both static and dynamic tasks confirms the efficiency and
reliability of the ActionFiller framework in optimizing agent actions and reducing errors.

To show the superiority of our ActionFiller in the short instruction, the experimental results in Ta-
ble 4 show that ActionFiller significantly outperforms GPT-4 and GPT-o1 in the WindowsBench
tests. Whether in terms of Success Rate (SR) or Completion Rate (CR), ActionFiller demonstrates

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Performance statistics for various applications in WindowsBench.

Application GPT-4 GPT4-o1 ActionFiller
SR Step CR SR Step CR SR Step CR

Outlook 100% 8.4 73.9% 60.0% 7.6 76.2% 100% 6.5 96.0%
Photos 40.0% 7.0 32.7% 60.0% 6.8 35.7% 80% 3.2 93.7%
PowerPoint 40.0% 10.4 35.2% 40.0% 10.0 40.0% 80% 5.2 85.2%
Word 20.0% 9.2 15.3% 40.0% 8.4 40.0% 80% 5.4 81.5%
Adobe Acrobat 0.0% 7.6 40.2% 0.0% 6.4 42.9% 40% 4.7 75.6%
File Explorer 80.0% 6.2 63.4% 80.0% 9.0 72.7% 100% 4.8 88.7%
Visual Studio Code 40.0% 7.4 40.3% 40.0% 4.6 52.6% 80% 4.3 80.2%
WeChat 40.0% 6.2 68.0% 40.0% 6.4 72.0% 80% 5.6 83.1%
Edge Browser 60.0% 8.2 58.8% 80.0% 7.6 77.1% 100% 6.3 94.0%
Cross-Application 0.0% 13.8 49.7% 0.0% 13.4 60.6% 60% 10.4 73.5%

Locate Image:
�Open File Explorer (Win + E).
�Navigate to C:\New folder_1.
�Double-click the image to confirm it's the one you want to 
search.
Open Google Image Search:
�Open your browser (e.g., Chrome).
�Go to https://images.google.com.
Search by Image:
�Click the camera icon in the search bar.
�Select "Upload an image."
�Upload the image from C:\New folder_1.
Review Results:
�Browse similar image results.
�Click on any image for more details or larger versions.
Optional:
�Right-click a desired image and select "Save image as..." to 
download it.

1. Press Win + E to open File Explorer.

2. Click on the address bar.

3. Type "C:\New folder_1" and press Enter.

4. Double-click on the image file to open it.

5. Summarize the content of the image.

6. Open a web browser.

7. Go to the Google Images website by typing 

"https://images.google.com" in the address bar 

and pressing Enter.

8. Type the summarized text into the search bar.

9. Press Enter to search for similar images.}
GPT-4o ActionFiller

Figure 7: Comparison of generated plans between GPT-4 and ActionFiller.

higher efficiency and reliability across most applications, especially in key applications such as
Outlook, Photos, and PowerPoint. It not only completes more tasks but also achieves a higher com-
pletion rate with fewer steps, showcasing its exceptional ability in handling complex tasks. This
proves the strong advantages of ActionFiller in task automation within the Windows ecosystem.

4.4 CASE STUDY

In Figure 7, we present a demonstration using the instruction: ‘Open the image at C: \\New folder 1,
summarize its content, and use the summarized text to search for a similar image on Google.’ The
left side of the figure shows GPT-4’s generated plan, while the right side displays ActionFiller’s
plan. We observe that GPT-4 misinterprets the intent of the instruction. In contrast, ActionFiller
not only correctly comprehends the instruction but also provides a more efficient execution strat-
egy, completing the task with a single action using the Observer (clicking the image). This further
demonstrates the effectiveness and efficiency of ActionFiller.

We also show a successful episode in Figure 8, illustrating a successful episode where ActionFiller is
employed to execute a long instruction for renting a house. The framework effectively decomposes
the complex task into manageable subtasks, allowing for a structured and step-by-step approach.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Task Trajectory Using ActionFiller’s Generated Plan in Long Instructions.

This ensures the agent remains adaptable to dynamic changes in the environment while maintaining
a high level of accuracy and efficiency throughout the task.

5 CONCLUSION

In conclusion, this paper presents the ActionFiller framework as a novel approach to enhance the
efficiency of operating system agents in executing long-horizon tasks. By leveraging the strengths
of large language models and integrating short, executable tasks through innovative fill-in-the-blank
prompts, ActionFiller minimizes redundancy and optimizes performance. The introduction of the
Foresight Optimization Agent and Action Template Agent allows for the effective generation of ac-
tion prompts, while the CohesiveFlow method ensures seamless execution by incorporating the cur-
rent environmental state. Our experiments, validated by the EnduroSeq benchmark and conducted
on the WinBench dataset, reveal significant improvements in task completion rates and execution ef-
ficiency. Overall, ActionFiller paves the way for more effective applications of intelligent agents in
complex environments, demonstrating its potential to redefine task execution strategies in operating
systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Syeda Nahida Akter, Zichun Yu, Aashiq Muhamed, Tianyue Ou, Alex Bäuerle, Ángel Alexander
Cabrera, Krish Dholakia, Chenyan Xiong, and Graham Neubig. An in-depth look at gemini’s
language abilities. arXiv preprint arXiv:2312.11444, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Yingqiang Ge, Yujie Ren, Wenyue Hua, Shuyuan Xu, Juntao Tan, and Yongfeng Zhang. Llm as os
(llmao), agents as apps: Envisioning aios, agents and the aios-agent ecosystem. arXiv preprint
arXiv:2312.03815, 2023.

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
Openagi: When llm meets domain experts. Advances in Neural Information Processing Systems,
36, 2024.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning,
pp. 9466–9482. PMLR, 2022.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
objects in photographs of natural scenes. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 787–798, 2014.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36, 2024.

Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa:
A novel resource for question answering on scholarly articles. International Journal on Digital
Libraries, 23(3):289–301, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Significant Gravitas. AutoGPT. URL https://github.com/Significant-Gravitas/
AutoGPT.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile UI using
large language models. In Albrecht Schmidt, Kaisa Väänänen, Tesh Goyal, Per Ola Kristensson,
Anicia Peters, Stefanie Mueller, Julie R. Williamson, and Max L. Wilson (eds.), Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems, CHI 2023, Hamburg,
Germany, April 23-28, 2023, pp. 432:1–432:17. ACM, 2023a. doi: 10.1145/3544548.3580895.
URL https://doi.org/10.1145/3544548.3580895.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023b.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079, 2024c.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models
for zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1, 2023b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
arXiv preprint arXiv:2310.07704, 2023.

12

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://doi.org/10.1145/3544548.3580895


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction. arXiv preprint
arXiv:2402.07939, 2024.

Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan,
William Yang Wang, and Linda Ruth Petzold. Gpt-4v (ision) as a generalist evaluator for vision-
language tasks. arXiv preprint arXiv:2311.01361, 2023.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024a. URL https://openreview.
net/forum?id=piecKJ2DlB.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024b.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models. arXiv preprint arXiv:2304.06364, 2023.

13

https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB

	Introduction
	Related Work
	LLM-based OS Agents
	Large Multimodal Models

	ActionFiller
	Pipeline Definition
	Fill-In-The-Blank Prompt
	CohesiveFlow Agent
	EnduroSeq Dataset

	Experiments
	Implementations
	Dataset & Baselines & Metrics
	Experiment Results
	Case Study

	Conclusion

